
Intrusion-Resilient Publi-Key EnryptionYevgeniy Dodis1, Matt Franklin2, Jonathan Katz3, Atsuko Miyaji2;4,and Moti Yung51 Department of Computer Siene, New York University. dodis�s.nyu.edu2 Department of Computer Siene, University of California, Davis.fmiyaji,frankling�s.udavis.edu3 Department of Computer Siene, University of Maryland, College Park.jkatz�s.umd.edu4 Japan Advaned Institute of Siene and Tehnology. miyaji�jaist.a.jp5 Department of Computer Siene, Columbia University. moti�s.olumbia.eduAbstrat. Exposure of seret keys seems to be inevitable, and mayin pratie represent the most likely point of failure in a ryptographisystem. Reently, the notion of intrusion-resiliene [17℄ (whih extendsboth the notions of forward seurity [3, 5℄ and key insulation [11℄) wasproposed as a means of mitigating the harmful e�ets that key expo-sure an have. In this model, time is divided into distint periods; thepubli key remains �xed throughout the lifetime of the protool but theseret key is periodially updated. Seret information is stored by botha user and a base; the user performs all ryptographi operations duringa given time period, while the base helps the user periodially updatehis key. Intrusion-resilient shemes remain seure in the fae of multi-ple ompromises of both the user and the base, as long as they are notboth ompromised simultaneously. Furthermore, in ase the user andbase are ompromised simultaneously, prior time periods remain seure(as in forward-seure shemes).Intrusion-resilient signature shemes have been previously onstruted[17, 15℄. Here, we give the �rst onstrution of an intrusion-resilient publi-key enryption sheme, based on the reently-onstruted forward-seureenryption sheme of [8℄. We also onsider generi transformations forseuring intrusion-resilient enryption shemes against hosen-iphertextattaks.1 IntrodutionExposure of seret keys is perhaps the most debilitating attak on aryptosystem sine it typially implies that all seurity guarantees arelost. This problem is emerging as an ever-greater threat as ryptographiprimitives are deployed on inexpensive, lightweight, and mobile devies;in these ases, it is typially muh easier for an adversary to break intothe devie and obtain the seret keys than to rak the omputational

assumptions on whih the system is based. Clearly, onerns about keyexposure must be addressed in a satisfatory manner by the researhommunity.Reognizing the need to address these onerns, a long line of researhhas foused on dealing with the threat of key exposure. Methods to pre-vent key exposure entirely (e.g., by using tamper-resistant devies) seemost-prohibitive and impratial for most ommon appliations. Thus, re-searh has foused on making key exposures more diÆult, or, alternately,minimizing the damage when (partial) key exposure ours. As an exam-ple, threshold ryptography [10, 9℄ distributes serets among n devies sothat exposure of serets from, say, t of these devies will not allow anadversary to \break" the sheme. On the other hand, this requires thatat least t + 1 devies partiipate every time a ryptographi operationmust be performed. While this may be aeptable in some senarios, thisdoes not seem appropriate for mobile users and in other settings wherethe risk of key exposure is high but users need the ability to performryptographi omputations on their own.Alternative approahes to this problem have been proposed wherebythe key required for ryptographi omputations always resides on a singledevie. In suh proposals, time is divided into distint periods 1; : : : ; Nand seret keys evolve over time (publi keys, however, are �xed for thelifetime of the sheme). The goal here is to ontain | as muh as possible| damage from key exposures that our. Forward-seure ryptosystems[3, 5℄ were the �rst solutions in this vein. In forward-seure shemes, theseret key is stored by a single user and this key is updated by the user atthe beginning of every time period. An adversary who exposes a key forperiod t an perform ryptographi operations (signing, derypting, et.)for periods t0 � t but annot break the sheme (in the appropriate sense)for any prior time periods t0 < t. The e�et of key exposure is therebyontained as muh as possible given that a single user stores all seretkeying information.To address the issue of obtaining seurity for time periods follow-ing key exposure, the notion of key-insulation [11, 12℄ was proposed. Thismodel had the distinguishing feature of assuming (a limited amount of) se-ure storage on a server with whih the user periodially interats. (Here,one an imagine the \user" as a mobile devie and the \server" as adesktop PC in the user's home.) The user an perform all ryptographioperations during any partiular time period on his own and an also up-date his keys | with the help of the server | at disrete time intervals asabove. Beause a limited amount of seure storage is assumed, the seurity

obtainable here is better than in the forward-seure ase; in partiular,shemes an be designed suh that an adversary who exposes keys storedby the user multiple times (i.e., at time periods T = ft1; : : : ; t`g) annot\break" the sheme for any other time period either in the past or in thefuture (i.e., for any time periods t 62 T). In strong key-insulated shemes,exposing only the seret keys stored on the server does not permit anadversary to \break" the sheme at all.Reently, these models were synthesized into the most powerful notionset forth to date: intrusion-resiliene [17℄. As in the key-insulated model,this model assumes a user who performs all ryptographi operations anda server with whih the user interats to update his keys at disrete timeintervals. Now, however, it is no longer assumed that the server is seure.Sine key exposures at the server are now assumed to our frequently,the user and server have the option of \refreshing" their serets (thisis reminisent of proativation [23℄). Here (informally speaking; see theformal de�nition in Setion 2), shemes an be designed suh that anadversary who exposes keys stored at both the user and the server onmultiple oasions | but never at the same time | annot \break" thesheme for any time periods other than those for whih keys were exposedat the user. Furthermore, in ase the keys of the user and server areboth exposed at some time t (and no refresh was performed in betweenthese exposures), the sheme remains forward-seure so that the adversaryannot \break" the sheme at any prior time periods t0 < t.We note that eah of these models may be appropriate in di�erent en-vironments. Forward-seure shemes are advantageous in that the useris self-suÆient and need not interat with any other devie. On theother hand, the seurity provided by key-insulated and intrusion-resilientshemes is better and these shemes might therefore be used when in-terating with a server is feasible and does not represent a serious draw-bak. Finally, although the intrusion-resilient model o�ers stronger seu-rity guarantees than the key-insulated model, we note that solutions forthe latter are (thus far) muh more eÆient. The hoie of whih typeof sheme to use therefore depends heavily on an assumption about the(physial) seurity of the server.1.1 Our ContributionsMuh work has foused on the design and analysis of forward-seuresignature shemes [5, 20, 2, 16, 21℄ and, more reently, a forward-seurepubli-key enryption sheme has been onstruted [8℄. Key insulatedpubli-key enryption shemes [11, 7, 6℄ and signature shemes [12℄ are

also known. Thus far, however, only onstrutions of intrusion-resilientsignature shemes [17, 15℄ have been proposed.1 Here, we give the �rst def-initions of intrusion-resilient publi-key enryption and the �rst onstru-tion of an intrusion-resilient publi-key enryption sheme. Our sheme isbased on the reent forward-seure enryption sheme of [8℄, and theseurity of our sheme is therefore based on the BDH assumption inthe random orale model. As in [8℄, we may modify our sheme so asto ahieve semanti seurity in the standard model under the deisionalBDH assumption.We also onsider generi transformations for seuring intrusion-resilientpubli-key enryption shemes against adaptive hosen-iphertext attaks(in the random orale model). We show that any suh transformationthat works for \standard" publi-key enryption shemes also works forintrusion-resilient publi-key enryption shemes.2 In partiular, then, wemay apply known onversions (e.g., those of [13, 22℄) to our sheme so asto obtain the �rst intrusion-resilient publi-key enryption sheme seureagainst hosen-iphertext attaks.2 De�nitions and PreliminariesThe de�nitions given here are the �rst to appear for the ase of intrusion-resilient enryption; they exatly parallel those appearing in [17℄ for thease of intrusion-resilient signatures.In our model time is divided into distint periods labeled 1; : : : ; N . Wehave a base and a user who (jointly) establish a publi key whih remains�xed for the duration of the protool. Enryption of a message dependson the urrent time period; thus, iphertexts have the form ht; Ci wheret indiates the time period during whih enryption was performed. Thebase and the user eah store seret keying information: at time periodt, the user stores suÆient information to derypt messages sent duringtime t (so, to derypt, the user does not need to ontat the base). At thebeginning of time period t + 1, the base updates its keys and sends anupdate message to the user; this update message, in partiular, will on-tain information enabling the user to ompute the key needed to deryptduring period t+1. Finally, the base an also send refresh messages to the1 As mentioned by [17℄, forward-seure publi-key enryption is neessary in order tobuild intrusion-resilient publi-key enryption. At that time, however, no non-trivialforward-seure publi-key enryption shemes were known.2 As pointed out in [8℄, this does not seem to be the ase for forward-seure enryptionshemes.

user at any point in time; if a refresh is exeuted between ompromisesof the user and the base, the system remains seure (refreshes thus servea similar purpose to proativation [23℄).As in [17℄, the adversary in our model an obtain serets from the baseand the user for multiple, adaptively-hosen time periods. The adversaryan also interept update and refresh messages sent by the base. Infor-mally speaking (a preise de�nition is given below), if the adversary onlyompromises the base, the enryption sheme remains seure. If the ad-versary ompromises the user repeatedly, the enryption sheme remainsseure exept for periods whose serets were obtained (either diretly orby ombination of ompromise and intereption of update/refresh mes-sages). Finally, even if the base and the user are ompromised during thesame time period (and no refresh was sent in the interim), the enryptionsheme remains seure for prior time periods.2.1 Funtional Spei�ationWe �rst de�ne orret operation of the sheme, and defer a de�nition ofseurity to the next setion. The notation SKt;r (respetively, SKBt:r)denotes the user's (respetively, base's) seret key for time period t follow-ing r refreshes. We say t:r = t0:r0 if t = t0 and r = r0. We say t:r < t0:r0if t < t0 or if t = t0 and r < r0. As in prior work, we assume for on-veniene that a key update ours immediately after key generation toobtain keys for t = 1, and that a key refresh ours immediately afterevery key update to obtain keys for r = 1.De�nition 1. A key-updating publi-key enryption sheme � onsistsof the following ppt algorithms:{ Gen, the key generation algorithm, takes as input seurity parameter1k and the total number of time periods N . It outputs the initial userkey SK0:0, the initial base key SKB0:0, and the publi key PK.{ En, the enryption algorithm, takes as input the publi key PK, atime period t, and a message m. It outputs iphertext ht; Ci. (Notethat refreshes are transparent to the sender, but updates are not sinethey our at well-de�ned intervals.){ De, the deryption algorithm, takes as input the urrent user keySKt:r and a iphertext ht; Ci. It outputs a message m. (As usual, werequire that, for any r, we have De(SKt:r;En(PK; t;m)) = m.){ UpdBase, the base key update algorithm, takes as input the urrentbase key SKBt:r. It outputs a new base key SKBt+1:0 for the nexttime period as well as key update message SKUt.

{ UpdUser, the user key update algorithm, takes as input the urrentuser key SKt:r and a key update message SKUt. It outputs the newuser key SKt+1:0 for the next time period.{ RefBase, the base key refresh algorithm, takes as input the urrent basekey SKBt:r. It outputs a new base key SKBt:r+1 as well as key refreshmessage SKRt:r.{ RefUser, the user key refresh algorithm, takes as input the urrent userkey SKt:r and a key refresh message SKRt:r. It outputs a new userkey SKt:r+1.2.2 De�nition of SeurityTo aid our de�nition of seurity, we let RN(t) denote the number ofrefreshes that our in time period t. Reall that eah update is assumedto be followed by an immediate refresh, so keys with r = 0 are neveratually used.RN is for notational onveniene only; it need not be knownin advane.Consider the following \thought experiment" whih generates all key-ing information for the entire lifetime of the sheme:Experiment Generate-Keys(k;N;RN)t := 0; r := 0(SK0:0; SKB0:0; PK) Gen(1k; N)for t = 1 to N(SKBt:0; SKUt�1) UpdBase(SKB(t�1):r)SKt:0 UpdUser(SK(t�1):r ; SKUt�1)for r = 1 to RN(t)(SKBt:r; SKRt:(r�1)) RefBase(SKBt:(r�1))SKt:r RefUser(SKt:(r�1); SKRt:(r�1))Let SK�; SKB�; SKU�, and SKR� denote the sets of user keys, basekeys, update messages, and refresh messages generated in the ourse ofthe above experiment. We now de�ne the following orales available tothe adversary:{ LR, the left-or-right enryption orale. On input (t;m0;m1) the oralehooses a random bit b and returns En(PK; t;mb). This orale maybe queried only one3 by the adversary, and allows us to de�ne anotion of seurity.3 A hybrid argument (as in [4℄) shows that seurity under a single aess to LR isequivalent to seurity under polynomially-many aesses to LR. We thus use thesimpler de�nition for onveniene.

{ Ose, the key exposure orale (based on the sets SK�; SKB�; SKU�;and SKR�) whih:1. On input (\s", t:r) outputs SKt:r;2. On input (\b", t:r) outputs SKBt:r;3. On input (\u", t) outputs SKUt and SKR(t+1):0;4. On input (\r", t:r) outputs SKRt:r.Queries to this orale orrespond to ompromise of the user or base, orto interepting update or refresh messages. (We assume that queriesto this orale always have t; r within the appropriate bounds.)For any set Q of key exposure queries, we say that SKt:r is Q-exposedif at least one of the following is true:{ (\s", t:r) 2 Q{ r > 1, (\r", t:(r � 1)) 2 Q, and SKt:(r�1) is Q-exposed{ r = 1, (\u",t� 1) 2 Q, and SK(t�1):RN(t�1) is Q-exposedA ompletely analogous de�nition may be given for Q-exposure of a basekey SKBt:rClearly, if SKt:r isQ-exposed then the adversary an derypt messagesenrypted during time period t. Similarly, if SKt:r and SKBt:r are bothQ-exposed (for some t; r) then the adversary an run the update algorithmsitself and thereby derypt messages enrypted during any time periodt0 � t. Thus, we say the sheme is (t;Q)-ompromised if either SKt:r isQ-exposed (for some r) or if both SKt0:r and SKBt0:r are Q-exposed (forsome r and t0 < t).We say the adversary sueeds if it an determine the bit b used by theLR orale, where this orale was queried on a time period t for whih thesheme was not (t;Q)-ompromised. More formally, onsider the followingexperiment exeuted with some algorithm A:Experiment Run-Adversary(A; k;N;RN)Generate-Keys(k;N;RN)b0 ALR;Ose(1k; N; PK;RN)Let Q be the set of queries made by A to OseLet (t;m0;m1) be the query made to LRLet b be the bit used by LR in responding to the queryif b 6= b0 or the sheme is (t;Q)-ompromisedreturn 0else return 1We de�ne A's probability of suess as the probability that 1 is output inthe above experiment. The advantage of adversary A in attaking sheme

� (where N and RN(�) are assumed to be lear from ontext, and arealways at most polynomial in k) is de�ned as twie A's probability ofsuess, minus 1. We denote this advantage by AdvA;�(k). We may nowde�ne seurity of an intrusion-resilient sheme.De�nition 2. A key-updating publi-key enryption sheme � is said tobe an intrusion-resilient sheme ahieving semanti seurity if, for all pptadversaries A and all N;RN(�) polynomial in k, we have AdvA;�(k) <"(k) for some negligible funtion "(�).A de�nition appropriate for desribing the onrete seurity of � may beeasily derived from the above. A de�nition of seurity against adaptivehosen-iphertext attaks is also evident, and we defer suh a de�nitionto the full version of this paper.2.3 Cryptographi AssumptionsThe seurity of our sheme is based on the diÆulty of the bilinear DiÆe-Hellman (BDH) problem as reently formalized by Boneh and Franklin[7℄ (see also [19, 18℄). We review the relevant de�nitions as they appearin [7℄. Let G 1 and G 2 be two yli groups of prime order q, where G 1is represented additively and G 2 is represented multipliatively. We use amap ê : G 1 � G 1 ! G 2 for whih the following hold:1. The map ê is bilinear ; that is, for all P0; P1 2 G 1 and all x; y 2 Zq wehave ê(xP0; yP1) = ê(yP0; xP1) = ê(P0; P1)xy.2. There is an eÆient algorithm to ompute ê(P0; P1) for any P0; P1 2G 1 .A BDH parameter generator IG is a randomized algorithm that takesa seurity parameter 1k, runs in polynomial time, and outputs the desrip-tion of two groups G 1 ; G 2 and a map ê satisfying the above onditions.We de�ne the BDH problem with respet to IG as the following: given(G 1 ; G 2 ; ê) output by IG along with random P; aP; bP; P 2 G 1 , omputeê(P; P)ab. We say that IG satis�es the BDH assumption if the followingis negligible (in k) for all ppt algorithms A:Pr[(G 1 ; G 2 ; ê) IG(1k);P G 1 ; a; b; Zq :A(G 1 ; G 2 ; ê; P; aP; bP; P) = ê(P; P)ab℄:We note that BDH parameter generators for whih the BDH assumptionis believed to hold an be onstruted from Weil and Tate pairings assoi-ated with supersingular ellipti urves or abelian varieties. As our resultsdo not depend on any spei� instantiation, we refer the interested readerto [7℄ for details.

3 ConstrutionOur onstrution builds on the forward-seure enryption sheme of [8℄,whih is based on previous work of [14℄ (both of whih were enabled bythe identity-based enryption sheme of [7℄). We assume here that thereader is familiar with the sheme of [8℄; in fat, many elements of theirsheme are used diretly here.3.1 Sheme IntuitionAssume for simpliity that the total number of time periods N is a powerof 2; that is, N = 2`. We imagine a full binary tree of height ` in whih theroot is labeled with " (representing the empty string) and furthermore ifa node at depth less than ` is labeled with w then its left hild is labeledwith w0 and its right hild is labeled with w1. Let hti denote the `-bitrepresentation of integer t (where 0 � t � 2` � 1). The leaves of the tree(whih are labeled with strings of length `) orrespond to suessive timeperiods in the obvious way; i.e., time period t is assoiated with the leaflabeled by hti. For simpliity, we refer to the node labeled by w as simply\node w". Every node w = w1 � � �wj in the tree will have an assoiated\seret point" Sw 2 G 1 and all interior nodes also have an assoiated\translation point" Qw 2 G 1 . For all nodes we then have the \loal seretkey" skw = (Sw;Qw), where Qw = (Qw1 ; : : : ; Qw1���wj�1). We remark thatwhile the translation points are needed for eÆient deryption, they donot need to be kept seret.The properties of these keys will be as follows:1. To derypt a message enrypted using PK during period t, only keyskhti is needed.2. Given key skw, it is possible to eÆiently derive keys skw0 and skw1.3. Given PK and t, and without skw for all pre�xes w of hti, it is in-feasible to derive skhti and furthermore infeasible to derypt messagesenrypted during period t.One we have a sheme satisfying the above requirements, we utilize thefollowing method. For a given period t, let t0t1 � � � t` = hti, where t0 = �.The \global seret key" gskt for this period will onsist of (1) skhti and also(2) fskt0t1���tj�11g for all 1 � j � ` suh that tj = 0. We denote the latterkeys (i.e., the \loal seret keys" for all right siblings of nodes on the pathfrom hti to the root) by �(t). We refer to the right sibling orrespondingto swapping the \last" 0 of hti to 1 as the deepest sibling. Also, we letSehti = (fSw j w 2 �(t)g) be the set of seret points orresponding to

nodes in �(t). Sine there is some redundant information stored as partof gskt (in partiular, the translation points do not need to be storedmultiple times as part of eah loal seret key), we may note that gsktatually onsists of Shti, Sehti, and Qhti.We may notie that gstt enables derivation of all the loal seret keysfor periods t through N (indeed, one an easily derive gskt+1 from gskt),but none of the loal seret keys for periods t0 < t. This will allow us toahieve forward seurity, as in [8℄. However, in our model we also needto proatively split gskt between the user and the base, so that we anderive the sharing for period t+ 1 from that of period t. To ahieve this,we let the user store skhti | to enable deryption within the urrenttime period | but additively share eah seret point in Sehti betweenthe user and the base. Intuitively, skhti by itself only allows the user toderypt at period t, and the fat that the rest of the global key Sehtiis split ensures that exposure of the user annot ompromise any of thefuture periods. Seurity against ompromises of the base is similar (andeven simpler sine the base does not even store Qhti), exept that here,even the urrent period is seure. Proativation is simple as well: thebase simply randomly refreshes the 2-sharing of Sehti. This gives us fullintrusion-resiliene.The only issue to resolve is how to update (the sharing of) gskt to(the sharing of) gskt+1 without ompromising seurity. We notie thatthis proedure requires hoosing several new seret points and translationpoints. We annot let the user or the base generate these on their own,sine this will ompromise the seurity of the sheme if the orrespondingplayer is orrupted during this phase. Instead, we will have the user andbase generate these points jointly. The hallenge is to do it via a singlemessage from the base to the user. We give a high level desription of themain step for doing so. For any node w, if we let Qw = swP for some sw(where P is some �xed publi point) we will have Sw0 = Sw + swH1(w0)and Sw1 = Sw + swH1(w1) (here, H1 is a hash funtion de�ned as partof the sheme). Assume the user and base already have a random sharingSw = S0w + S00w, and wish to generate Qw and a random sharing of Sw0and Sw1. The base hooses a random s0w, sets Q0w = s0wP , S0w0 = S0w +s0wH1(w0), and S0w1 = S0w+s0wH1(w1), and sends Q0w to the user. The userhooses a random s00w, sets Qw = Q0w+s00wP (impliitly, Qw = (s0w+s00w)P ,so sw = s0w+s00w), S00w0 = S00w+s00wH1(w0), and S00w0 = S00w+s00wH1(w1). Thisstep is immediately followed by a random refresh, whih ensures that nosingle party has enough ontrol to ause any seurity onerns.

3.2 Formal DesriptionWe assume that hash funtions H1 : f0; 1g� ! G 1 and H2 : G 2 ! f0; 1gnare de�ned, either by Gen or else as part of the spei�ation of the sheme.These hash funtions will be treated as random orales in the analysis.Gen(1k; N = 2`) does the following:1. IG(1k) is run to generate group G 1 ; G 2 (of order q) and ê.2. P G 1 ; s" Zq. Set Q = s"P .3. The publi key is PK = (G 1 ; G 2 ; ê; P;Q).4. Set S0 = s"H1(0) and S1 = s"H1(1).5. For j = 1; : : : ; `� 1:(a) s0j Zq. Set Q0j = s0jP .(b) Set S0j0 = S0j + s0jH1(0j0) and S0j1 = S0j + s0jH1(0j1).6. (Note that we have Qh0i = fQ0; : : : ; Q0`�1g, skh0i = (Sh0i;Qh0i), andSeh0i = (S1; : : : ; S0`�11).)7. Pik random Se0h0i and Se00h0i suh that Seh0i = Se0h0i + Se00h0i (i.e.,for eah w 2 �(h0i) we have Sw = S0w + S00w). Set SKB0:0 = Se0h0i,SK0:0 = (skh0i;Se00h0i).8. Output PK;SK0:0, and SKB0:0 and erase all other information.UpdBase(SKBt:r) does the following:1. Parse hti as t0t1 � � � t` where t0 = " for onveniene. Parse SKBt:r asSe0hti = fS0t0���tj�11 j tj = 0g.2. If t` = 0, erase S0hti and set Se0ht+1i equal to the remaining keys. Notethat S0ht+1i is available, sine it was stored as part of Sehti.3. Otherwise, let i be the largest value suh that ti = 0. Denote byw = t0 � � � ti�11 the \deepest sibling" of t. For j = 0; : : : ; `� i� 1:(a) s0w0j Zq. Set Q0w0j = s0w0jP , S0w0j0 = S0w0j + s0w0jH1(w0j0), andS0w0j1 = S0w0j + s0w0jH1(w0j1).4. Erase share S0w and replae it by the resulting (`� i) shares fS0w0j1gabove, thus obtaining the new vetor SKBt+1:0 = Se0ht+1i.5. Set SKUt = (S0ht+1i; Q0w; Q0w0; : : : ; Q0w0`�i�1). (Note that when t` = 0only S0ht+1i is sent.)6. Output SKBt+1:0, SKUt.

UpdUser(SKt:r; SKUt) does the following:1. Parse hti as t0t1 � � � t` where t0 = " for onveniene. Parse SKt:r as(Shti;Qhti;Se00hti), where Se00hti = fS00t0���tj�11 j tj = 0g. Erase Shti.2. If t` = 0, erase S00hti and set Se00ht+1i equal to the remaining keys. Notethat Sht+1i is available, sine it was stored as part of Sehti.3. Otherwise, let i be the largest value suh that ti = 0. Denoteby w = t0 � � � ti�11 the \deepest sibling" of t. Parse SKUt as(S0ht+1i; Q0w; Q0w0; : : : ; Q0w0`�i�1). For j = 0; : : : ; `� i� 1:(a) s00w0j Zq. Set Qw0j = Q0w0j + s00w0jP , S00w0j0 = S00w0j +s00w0jH1(w0j0), and S00w0j1 = S00w0j + s00w0jH1(w0j1).4. Erase share S00w and replae it by the resulting (`� i) shares fS00w0j1g,thus obtaining the new vetor Se00ht+1i. For j = 0; : : : ; `� i� 1, eraseQt0���ti�101j and replae it by Qt0���ti�110j . Thus, we obtain the the newvetor Qht+1i.5. Set Sht+1i = S0ht+1i + S00ht+1i.6. Output SKt+1:0 = (Sht+1i;Qht+1i;Se00ht+1i).RefBase(SKBt:r) does the following:1. Parse SKBt:r as Se0hti = (fS0w j w 2 �(t)g). For eah w 2 �(t), pikrandom Rw 2 G 1 and reset eah S0w := S0w +Rw.2. Output resulting SKBt:r+1 and SKRt:r = (fRw j w 2 �(t)g).RefUser(SKt:r; SKRt:r) does the following:1. Parse SKt:r as (skhti;Se00hti), where Se00hti = (fS00w j w 2 �(t)g). ParseSKRt:r as (fRw j w 2 �(t)g). For eah w 2 �(t), reset S00w := S00w�Rw.2. Output resulting SKt:r+1.EnPK(t;M) (where M 2 f0; 1gn) does the following:1. Let t1 � � � t` = hti. Selet random r Zq.2. Output ht; Ci where:C = (rP; rH1(t1t2); : : : ; rH1(t1 � � � t`);M �H2(ê(Q;H1(t1))r)) :

DeSKt:r(ht; Ci) does the following:1. Parse hti as t1 � � � t`. Parse SKt:r as (skhti; : : :) and skhti as (Shti;Qhti)where Qhti = (Qt1 ; : : : ; Qt1���t`�1). Parse C as (U0; U2; : : : ; U`; V).2. Compute M = V �H2 ê(U0; Shti)Qj̀=2 ê(Qt1���tj�1 ; Uj)! :We now verify that deryption is performed orretly. When enrypt-ing, we have ê(Q;H1(t1))r = ê(P;H1(t1))rs" . When derypting, we haveU0 = rP , U2 = rH1(t1t2); : : : ; U` = rH1(t1 � � � t`) so thatê(U0; Shti)Qj̀=2 ê(Qt1���tj�1 ; Uj) = ê�rP; s"H1(t1) +Pj̀=2 st1���tj�1H1(t1 � � � tj)�Qj̀=2 ê �st1���tj�1P; rH1(t1 � � � tj)�= ê(P;H1(t1))rs" �Qj̀=2 ê (P;H1(t1 � � � tj))rst1���tj�1Qj̀=2 ê (P;H1(t1 � � � tj))rst1���tj�1= ê(P;H1(t1))rs"and thus deryption sueeds.3.3 EÆienyOur sheme enjoys the same parameters as the forward-seure sheme of[8℄. In fat, our sheme is exatly the \intrusion-resilient" extension oftheir forward-seure sheme. In partiular, our sheme has publi key ofsize O(1), and all other parameters are O(logN) inluding: key genera-tion time, enryption/deryption time, iphertext length, key update timeand message length, key refresh time and message length, and user/basestorage.3.4 ExtensionsThe full version of [8℄ gives a number of extensions of their originalforward-seure sheme. In partiular, they show (1) a modi�ation of thesheme whih an be proven seure in the standard model under the de-isional BDH assumption; and (2) eÆieny improvements whih ahievekey generation time and key update time O(1). Both of these results maybe arried over to our setting, via appropriate (small) modi�ations ofthe sheme presented above.

3.5 Seurity of Our ShemeWe now provide a sketh of the proof of seurity for the above sheme.Theorem 1. Under the omputational BDH assumption (and in the ran-dom orale model), the sheme desribed above is an intrusion-resilientpubli-key enryption sheme ahieving semanti seurity.Proof. We onvert any adversary A whih suessfully attaks the en-ryption sheme into an algorithm A0 whih breaks the BDH assumption.On a high level, A0 will try to simulate the view of A in the followingway: A0 will guess the time period t� for whih A will ask its query tothe LR orale. If this guess turns out to be inorret | in partiular,as soon as A asks a query to LR whih is not for time t� or as soon asthe sheme beomes (t�; Q)-ompromised | A0 aborts the simulation andfails. On the other hand, if A0 is orret in its guess (whih ours withprobability 1=N), then A0 will be able to perfetly simulate the view of Ain attaking the sheme. As in [8℄, this will enable A0 to break the BDHassumption with probability O(AdvA(k)=NqH2), where qH2 is the numberof hash queries A makes to H2.In more detail, adversary A0 is given (G 1 ; G 2 ; ê) as output by IG(1k),and is additionally given random elements P;Q = s�P; P 0 = bP , andU0 = P . The goal of A0 is to output ê(P; P)s�b. A0 will simulate aninstane of the enryption sheme for adversary A. First, A0 sets PK =(G 1 ; G 2 ; ê; P;Q) and gives PK to A. Next, A0 guesses a random indext� 2 f0; : : : ; N � 1g (this represents a guess of the period for whih A willquery LR). Let ht�i = t�1 � � � t�̀ and t�0 = �.To answer the hash queries of A, algorithm A0 maintains lists H list1and H list2 . To begin, H list2 will be empty. H list1 is prepared by �rst havingA0 selet random x2; : : : ; x` 2 Zq and then storing the tuples (t�1; P 0),(t�1t�2; x2P); : : : ; (t�1 � � � t�̀; x`P) in H list1 . Next, A0 proeeds as follows:1. Choose random y1 2 Zq and store (t�1; y1P) in H list1 .2. For 2 � k � `, hoose random yk; sk 2 Zq and then store the value�t�1 � � � t�k�1t�k; ykP � s�1k P 0� in H list1 .A0 will respond to hash queries of A in the obvious way. If A queriesHb(X), then A0 heks whether there is a tuple of the form (X;Y) inH listb . If so, the value Y is returned. Otherwise, A0 hooses random Yfrom the appropriate range, stores (X;Y) in H listb , and returns Y .We point out that �xing the output of the random orale as abovewill allow A0 to simulate the \loal seret keys" for all nodes in the tree(as in [14, 8℄) exept those nodes on the path � from the root to leaf t�.

In partiular, �xing the output as above will allow A0 to simulate loalseret keys for all nodes whose parent is on path �; A0 an then generate\real" loal seret keys for the remaining nodes by following the legaldesription of the sheme.Sine all other values stored by the user and by the base are (indi-vidually) random, it should be lear that A0 an simulate all queries of Ato Ose exept those for whih the sheme beomes (t�; Q)-ompromised(where Q now represents the queries of A to Ose up to and inludingthat point in time). When a query to Ose results in the sheme's beom-ing (t�; Q)-ompromised, A0 simply aborts as its guess of t� was inorret;this will our exatly with probability (N � 1)=N . Assuming the shemeis never (t�; Q)-ompromised, A0 an simulate the LR orale as in [14, 8℄.Spei�ally, A0 will return the value (U0; x2U0; : : : ; x`U0; V), where V isa random element from f0; 1gn. Overall, with probability 1=N , A0 willbe able to simulate the entire view of A. It is easy to see that the onlyway for A to get any advantage in the above simulation is to ask the ran-dom orale H2 the value ê(P; P)s�b, as otherwise the enrypted messageis information-theoretially hidden from A. Thus, outputting a randominput element from the H list2 will have non-negligible probability of beingthe value A0 needs to break the BDH assumption.3.6 Seurity Against Adaptive Chosen-Ciphertext AttaksWe briey state our main results, and defer the details until the �nalversion of our paper. To bene�t from a modular approah (i.e., to avoidhaving to re-prove seurity every time a new sheme is onstruted), wewould like to have a generi transformation for seuring intrusion-resilientpubli-key enryption shemes against adaptive hosen-iphertext attaks.Suh a transformation would take any intrusion-resilient publi-key en-ryption sheme ahieving semanti seurity and onvert it to an intrusion-resilient publi-key enryption sheme seure against adaptive hosen-iphertext attaks. We all suh a transformation a CCA2-transformation.Muh work along these lines has been done for the ase of \stan-dard" publi-key enryption (e.g., [13, 22℄ and others), and many CCA2-transformations for \standard" publi-key enryption shemes are known.The next theorem shows that we may leverage o� this work for the aseof intrusion-resilient enryption. Namely:Theorem 2. Any CCA2-transformation for \standard" publi-key en-ryption shemes is also a CCA2-transformation for intrusion-resilientpubli-key enryption shemes.

We note that this is di�erent from the ase of forward-seure publi-keyenryption, where suh a result does not seem to hold [8℄.Applying, e.g., the CCA2-transformation of [13, 22℄ to our shemeabove, we obtain an intrusion-resilient publi-key enryption sheme se-ure against adaptive hosen-iphertext attaks.Referenes1. M. Abdalla, S. Miner, and C. Namprempre. Forward-Seure Threshold SignatureShemes. RSA 2001.2. M. Abdalla and L. Reyzin. A New Forward-Seure Digital Signature Sheme. Asi-arypt 2000.3. R. Anderson. Two Remarks on Publi-Key Cryptology. Invited leture, CCCS '97.Available at http://www.l.am.a.uk/users/rja14/.4. M. Bellare, A Desai, E. Jokipii, and P. Rogaway. A Conrete Seurity Treatmentof Symmetri Enryption. FOCS '97.5. M. Bellare and S. Miner. A Forward-Seure Digital Signature Sheme. Crypto '99.6. M. Bellare and A. Palaio. Proteting against Key Exposure: StronglyKey-Insulated Enryption with Optimal Threshold. Available athttp://eprint.iar.org.7. D. Boneh and M. Franklin. Identity-Based Enryption from the Weil Pairing.Crypto 2001. Full version to appear in SIAM J. Computing and available athttp://eprint.iar.org/2001/090/.8. R. Canetti, S. Halevi, and J. Katz. A Forward-Seure Publi-Key EnryptionSheme. Preliminary version available at http://eprint.iar.org/2002/060/.9. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a FuntionSeurely. STOC '94.10. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Crypto '89.11. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Publi-Key Cryptosystems.Eurorypt 2002.12. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Shemes.PKC 2003.13. E. Fujisaki and T. Okamoto. Seure Integration of Asymmetri and SymmetriEnryption Shemes. Crypto '99.14. C. Gentry and A. Silverberg. Hierarhial ID-Based Cryptography. Asiarypt 2002.15. G. Itkis. Intrusion-Resilient Signatures: Generi Construtions, or Defeating aStrong Adversary with Minimal Assumptions. SCN 2002.16. G. Itkis and L. Reyzin. Forward-Seure Signatures with Optimal Signing and Ver-ifying. Crypto 2001.17. G. Itkis and L. Reyzin. SiBIR: Signer-Base Intrusion-Resilient Signatures. Crypto2002.18. A. Joux. The Weil and Tate Pairing as Building Bloks for Publi-Key Cryptosys-tems. ANTS 2002.19. A. Joux and K. Nguyen. Separating Deision DiÆe-Hellman from DiÆe-Hellman in Cryptographi Groups. Manusript, Jan. 2001. Available athttp://eprint.iar.org.20. H. Krawzyk. Simple Forward-Seure Signatures From any Signature Sheme.CCCS 2000.

21. T. Malkin, D. Miianio, and S. Miner. EÆient Generi Forward-Seure Signa-tures with an Unbounded Number of Time Periods. Eurorypt 2002.22. T. Okamoto and D. Pointheval. REACT: Rapid Enhaned-Seurity AsymmetriCryptosystem Transform. CT-RSA 2001.23. R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attaks. PODC '91.

