
Inremental CodesYevgeniy Dodis� Shai HaleviyAbstratWe introdue the notion of inremental odes. Unlike a regular ode of a given rate, whihis an unordered set of elements with a large minimum distane, an inremental ode is anordered vetor of elements eah of whose pre�xes is a good regular ode (of the orrespondingrate). Additionally, while the quality of a regular ode is measured by its minimum distane, wemeasure the quality of an inremental ode C by its ompetitive ratio A: the minimum distaneof eah pre�x of C has to be at most a fator of A smaller than the minimum distane of thebest regular ode of the same rate.We �rst onsider inremental odes over an arbitrary ompat metri spaeM , and onstruta 2-ompetitive ode for M . When M is �nite, the onstrution takes time O(jM j2), exhauststhe entire spae, and is NP-hard to improve in general. We also show optimal inremental odesfor important spei� spaes: the real interval [0; 1℄ and, most signi�antly, the hamming spaeFn over moderate alphabets (jF j � n). Finally, we onentrate our attention on hammingspaes Fn over small alphabets. Obtaining good ompetitive ratio is somewhat hard in thisase sine our urrent knowledge of oding theory does not even yield very good regular odesof a given rate. Nevertheless, we give three eÆient onstrutions of inremental odes over Fnahieving onstant ompetitive ratios for various important settings of parameters.
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1 Motivating ExampleImagine the following problem whih was atually given to one of the authors. An Internet ompanywants to assign aount numbers to its ustomers when the latter shop on-line. An aount numberallows the ustomer to hek the status of the order, get ustomer support, et. In partiular, theustomer an enter it over the phone. Beause of that and several other reasons, aount numbersshould not be too long. On the other hand, we would like aount numbers to be somewhat farfrom eah other, so that it is unlikely for the ustomer to aess a valid number by mis-entering fewdigits. One way to ahieve this would be to use an error-orreting ode of reasonable minimumdistane (for example, a random aount number might work for a while). This has two problems,however. First, good distane implies not very good rate, and sine the aount numbers are quiteshort, we \waste" a lot possible aount numbers, and exhaust our small aount spae too quikly(thus, losing ustomers). Seondly, when the number of ustomers is small, the orresponding pre�xof our ode is not as good as we ould have made it with so few aount numbers.We propose a muh better solution to this problem, namely, to use an inremental ode. Suha ode will eventually exhaust (or nearly exhaust) the whole spae. Indeed, when the number ofustomers is huge, we prefer to have lose aounts numbers rather than to lose ustomers. On theother hand, when the number of ustomers is i, inremental ode guarantees that the �rst i aountnumbers we assign will be almost as far from eah other as any possible i aount numbers ouldbe! In other words, the minimal distane of larger and larger pre�xes of the ode slowly dereasesat an almost optimal pae.Notie that while it is ustomary to measure regular odes of a given rate in terms of their minimumdistane, a more relevant measure of inremental odes is the relative behavior of minimal distaneon larger and larger pre�xes. This leads to the notion of a ompetitive ratio of an inremental odeC. Namely, C is A-ompetitive if the minimum distane of eah pre�x of C is at most A timessmaller than that of the optimum ode of the same rate.Organization. While the main motivation for inremental odes omes from the hamming spaes,we start in Setion 2 by de�ning and studying the orresponding notion on arbitrary (�nite or evenompat) metri spaes. In partiular, we obtain a 2-ompetitive odes for any suh metri spae,and show that it is NP-hard (in general) to beat this ompetitive ratio. In Setion 3 we givetwo optimal onstrutions for spei� important spaes. One onstruts an optimal inrementalode for the real interval [0; 1℄, while the other gives a simple and eÆient 1-ompetitive ode forthe Hamming spae over moderate alphabets. In partiular, it gives an optimal and very pratialsolution to the \aount problem" de�ned above. Finally, in Setion 4 we onentrate in more detailon the intriaies of the hamming spae over small alphabets. While it is muh harder to obtainompetitive odes in this ase (sine our understanding of optimal odes is somewhat limited), wegive several eÆient onstrutions ahieving onstant ompetitive ratios.2 General Notion and ConstrutionHere we formally de�ne the onept of inremental odes and give their onstrutions for general(ompat) metri spaes. To avoid verbosity, we �rst talk about arbitrary �nite metris, and laterextend our results to any (possibly in�nite) ompat metris.So let M = (M;D) be any �nite metri spae on point set M with metri D. A (regular) ode on1



M is simply a subset of points S �M . The minimum distane dM(S) of S is the smallest pairwisedistane between distint points in S. For an integer i we de�ne the quantity opt-dM(i) to be thelargest minimal distane of a ode of ardinality i: opt-dM(i) = maxjSj=i dM(S).An inremental ode C = h1 : : : ki is an ordered sequene of distint points of M . C is exhaustiveif k = jM j, i.e. the ode eventually runs through the entire spae. For every i 2 [k℄ we de�nethe i-th pre�x of C, Ci = f1 : : : ig, and view it as a regular ode of ardinality i. We say thatC is A-ompetitive, if for every i 2 [k℄, the i-th pre�x Ci of C forms a ode of distane at leastopt-dM(i)=A, i.e. opt-dM(i) � A � dM(Ci). We denote by rM(C) the (best) ompetitive ratioof C, and by opt-rM(k) the smallest ompetitive ratio of any inremental ode of ardinality k:opt-rM(i) = minjCj=k rM(C). We de�ne opt-rM = opt-rM(jM j), and all it the ompetitive ratioof M. (We notie that sine the pre�x an A-ompetitive inremental ode is also A-ompetitive,we have that opt-rM(k) is a non-dereasing funtion of k.) We say that an inremental ode C isperfet if C is 1-ompetitive, and that the spae M is inrementally perfet if it has an exhaustive1-ompetitive ode (opt-rM = 1).Theorem 11. The ompetitive ratio of any M is at most 2: opt-rM � 2. Moreover, given M as an input,one an onstrut an exhaustive 2-ompetitive inremental ode C for M in time O(jM j2). Infat, onstruting k-pre�x of C an be done in time O(k � jM j).2. There exist M with ompetitive ratio 2.3. For any A < 2 and givenM as an input, it is NP-hard to onstrut A-ompetitive inrementalode for M, even when the ompetitive ratio of M is 1. In partiular, it is NP-hard toapproximate to ompetitive ratio of M within a fator less than 2.Proof: Given a point p and a �nite set of points S, de�ne the distane from p to S to be D(p; S) =minq2SD(p; q). We use the following simple greedy algorithm for onstruting C.1. Let 1 be any point of M , and let C1 = f1g.2. For k = 2 to jM j,� Let k be the furthest point from Ck�1, i.e. maximizing D(k; Ck�1).� Set Ck = fkg [ Ck�1.3. Output C = 
1 : : : jM j�.It is easy to see that eah iteration of greedy an be implemented in linear time O(jM j), justifyingthe running time. Indeed, having seleted points Ck�1 = f1 : : : k�1g, for eah point p 2 M weonly need to maintain the losest point losest(p) in Ck�1, i.e. the one ahieving D(p; losest(p)) =D(p; Ck�1). Assuming we have done this, k | the furthest point from f1 : : : k�1g | is the pointmaximizing D(p; losest(p)), whih takes linear time to �nd. To maintain losest(p), initially wehave losest(p) = 1, and after seleting k we update losest(p) to k only if D(p; losest(p)) >D(p; k). These jM j updates again take linear time per iteration.Now, take any 2 � k � jM j. The 2-ompetitiveness of C follows from the two laims below.Claim 1: dM(Ck) = D(k; Ck�1), i.e. the losest pair of points in Ck inludes k.Proof: Assume dM(Ck) = D(i; j) < D(k; Ck�1), where i < j < k. Then D(j ; Cj�1) = D(i; j) <D(k; Ck�1) � D(k; Cj�1), i.e. k should have been added before j , a ontradition.2



Claim 2: D(k; Ck�1) � 12 � opt-dM(k).Proof: Let b1 : : : bk be the optimum ode of ardinality k, i.e. D(bi; bj) � opt-dM(k) for i 6= j.Then the k open balls of radius R = 12 � opt-dM(k) around the bi's are all disjoint. Hene, at leastone of these k balls does not ontain any of the �rst (k � 1) seleted points 1 : : : k�1. Say this isthe ball around bj . Hene, D(bj ; Ck�1) � R. But k is the furthest point from Ck�1, and, therefore,D(k; Ck�1) � D(bj; Ck�1) � R.We next give an example ofM with opt-rM = 2. LetM = fw; x1; x2; y1; y2; zg, where D(w; xi) = 1,D(xi; yj) = 2, D(yj; z) = 1, i; j = 1; 2, and the other distanes are the length of the shortest pathsindued by the above assignments (see Figure 1). In partiular, the furthest 2 point are w andz of distane 4, and the best 4-ode is fx1; x2; y1; y2g of minimum distane 2. In other words,opt-dM(2) = 4 = D(w; z) and opt-dM(4) = 2 = D(xi; yj), i; j = 1; 2. Now, for any inrementalode C = h1; 2; 3; 4i, unless C4 = fx1; x2; y1; y2g, one of the pairwise distanes in C4 will be 1,giving a gap of 2=1 = 2. On the other hand, if C4 = fx1; x2; y1; y2g, then D(1; 2) = 2, giving againa gap of 4=2 = 2 for the 2-pre�x of C.
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Figure 1: The \shortest path" losure of these distanes de�ne \bad" M.Finally, we show that it is NP-hard to onstrut an A-ompetitive ode for A < 2 when givenM as an input, even if opt-rM = 1. We make a redution from the Maximal IndependentSet problem, whih is known to be NP-omplete [GJ79℄. Given a graph G = (V;E), we de�nea metri spae M = (M;d), where M = V and D(i; j) = 1 i� (i; j) 2 E, and D(i; j) = 2otherwise. Let I = fs1 : : : skg � V be some maximal independent set of G. We laim that anoptimal inremental ode for M is 1-ompetitive, and should �rst list the elements of I (or anyother maximal independent set) in any order, followed by the other elements in any order. Indeed,the ode C onstruted this way will have dM(Ci) = 2 for i � k, and dM(Ci) = 1 for i > k. On theother hand, the optimal ode of ardinality i an have the minimum distane of 2 if and only if itis formed on the elements of some independent set in G, i.e. we must have i � k (and this an beahieved). In other words, opt-dM(i) = 2 for i � k and opt-dM(i) = 1 otherwise. To summarize,any 1-ompetitive ode C for M indues the maximum independent set of G by looking at thelargest largest i-pre�x of C with dM(Ci) = 2.On the other hand, any ode whih is not 1-ompetitive for M must be 2-ompetitive. Hene, ifwe have a proedure that an produe A-ompetitive ode for M, where A < 2, this proeduremust in fat produe an optimal 1-ompetitive ode. But we just argued that in this ase we anompute I | the largest independent set of G, whih is NP-hard.Remark 1 Notie that the greedy algorithm above is exatly the same as that of Gonzalez [G85℄3



for the so alled k-enter problem. This is a just a oinidene, sine our problems and the analysisare quite di�erent.Remark 2 Note, while the greedy algorithm is extremely eÆient for generi metri spaes, weare mainly interested in the hamming spae F n. For this spae we annot a�ord to go through thewhole spae, and would like our algorithms to be polynomial in n log(jF j) = log(jM j). We disussan eÆient optimal algorithm for this ase when jF j � n in Setion 3, and eÆient ompetitivealgorithms over small �elds in Setion 4.Extending to ompat spaes. Aside from the omplexity onsiderations, we an extend muhof the disussion above to in�nite metri spaes. There are several things we need to ensure. First,the distanes should be bounded, and for every �nite k there should exist an optimal ode ofardinality k. Additionally, the greedy algorithm that we gave in Theorem 1 makes perfet sense,as long as there exists a point whih is furthest away from a given �nite set of points. The disussionabove suggests to use ompat metri spaes, whih satisfy eah of the above requirements. Forsuh in�nite ompat spaes, we replae exhaustive odes with ountably in�nite odes, and requireevery �nite pre�x of suh a ode to be \A-ompatible" w.r.t. the best ode of a given ardinality.We notie that Theorem 1 implies that there exists a ountably in�nite 2-ompetitive inrementalode for any suh metri spae. In fat, the greedy algorithm is easily implementable for \nie"ompat subsets in Rn (sine on suh sets we an ompute the furthest point from a given set ofpoints; of ourse, these omputation ould beome less and less eÆient one we introdue morepoints). For example, on the interval [0; 1℄, and staring with 1 = 0, our algorithm simply keepssubdividing the largest interval in half. Thus, after 2k points, all the intervals will be of size 1=2k,but one interval will be of size 1=2k+1, giving a ratio 2k+1=(2k + 1) ! 2. We will see in Setion 3that the best ratio for any ompetitive algorithm for [0; 1℄ is in fat ln 4 = loge 4 � 1:386 < 2.3 Optimal ConstrutionsIn this setion we give two optimal onstrutions of inremental odes. The �rst onstrution isover the hamming spae F n when jF j � n (and F is a �eld), and shows that F n is inrementallyperfet. The seond one is for the real interval [0; 1℄ (whih is not inrementally perfet).3.1 Optimal 1-Competitive Code for Hamming spae F n, jF j � nOur inremental ode will be based on Reed-Solomon Codes (RS-odes), whih we briey reallnow. Let F be a �eld of size jF j = q. RS-ode of dimension k and blok length n over F (wherejF j = q � n) maps elements of F k into odewords over F n via the following proedure. Let�1 : : : �n be arbitrary distint elements of F . Given a = (a0 : : : ak�1) 2 F k, assign a polynomialpa(x) = Pk�1i=0 aixi of degree at most (k � 1), and output the odeword (p(�1) : : : p(�n)) 2 F n.Sine any two distint polynomials of degree at most (k � 1) an agree on at most (k � 1) pointsin F , the distane of the RS-ode at least (in fat, exatly) d = n� k + 1. On the other hand, thelassial singleton bound says that any ode of dimension k (i.e., qk odewords) must have minimaldistane at most (n� k+1), ahieved by the orresponding RS-ode. Hene, RS-odes are optimalodes of dimension k, and, in partiular, opt-dM(qk) = n� k + 1 (where M = F n) when the sizeof the �eld q � n. 4



Letting F k�1[x℄ to denote the set of polynomials of degree at most (k � 1), we an view the RS-ode of dimension k as mapping an element of F k�1[x℄ into F n. Viewed this way, we observe thatF 0[x℄ � F 1[x℄ : : : � F n�1[x℄, whih allows us to to view the RS-ode of dimension (k � 1) andoptimal distane (n � k + 2) as a subset of the RS-ode of rate k and optimal minimal distane(n�k+1). Thus, if we �rst enode (i.e., evaluate at n points) the polynomials of degree 0, followedby the polynomials of degree 1 and so on, we see that the minimal distane of our inremental odeslowly dereases from n to (n � 1), : : : , all the way to 1. More spei�ally, at the time we areenoding polynomials of degree k, our urrent ode has minimal distane (n� k+1) (being part ofthe RS-ode of dimension k), whih is optimal by the singleton bound sine our urrent ode hasmore than qk�1 elements (as we already listed qk�1 polynomials of degree at most (k � 1)).Thus, we showed that the Hamming spae F n has a 1-ompetitive exhaustive ode C = h0; : : : ; N�1i,where N = qn. To eÆiently ompute i, we notie the following. If we write the elements of Fas numbers 0; : : : ; (q � 1) (0 being the \zero" of F ), and then interpret the representation of aninteger i 2 f0; : : : ; N � 1g base jF j as a string a(i) 2 F n, then listing i in the inreasing orderorresponds to the lexiographi order of the a(i)'s, whih also lists the polynomials pa(i) in theorder of inreasing degrees, as needed. To summarize, we getTheorem 2 F n is inrementally perfet when jF j = q � n and F is a �eld. In partiular, theinremental ode C = h0; : : : ; N�1i, where i = (pa(i)(�1); : : : ; pa(i)(�n)) 2 F n, is exhaustive and 1-ompetitive. Moreover, for 1 � k � n and when qk�1 � i < qk, the minimal distane of f0; : : : ; igis (n� k + 1).Pratial Disussion and Examples: We notie that the proedure of omputing i is verypratial and eÆient (at most quadrati in n and log jF j), and does not need to keep any stateas i grows (unlike, for example, the greedy algorithm for generi metri spaes). For example,onsider the problem of assigning aount numbers to Internet shoppers. For for any n, we anselet any prime power (sine F is a �eld) q � n to be jF j, and be able to serve the maximalnumber of ustomers, qn, while having the property than when the number of ustomers is lessthan qk, all aount numbers have at least (n� k+1) distint symbols. For example, if q = n = 9,we get pratial sheme for 99 = 387; 420; 489 ustomers with 9-digit aounts over digits 1 : : : 9(say, 0 is a speial harater when entering on the phone), the �rst 4; 782; 969 (resp. 43; 046; 721)of whih have at least 3 (resp. 2) distint digits. And if 11 digits are aeptable, we an have 1111(whih is more than we will ever need) aount numbers (say, over 0 : : : 9; �), the �rst 20 (resp.200) million of whih have at least 5 (resp. 4) distint digits. Finally, if we an use 25 Englishletters as haraters, even 7-harater aount numbers let us handle the world population (morethan 6 billion numbers), the �rst 10 (resp. 250) million of whih have at least 3 (resp. 2) distintharaters.3.2 Optimal Code for [0; 1℄An inremental ode over [0; 1℄ is simply a sequene of points C = hp1; p2; : : :i. If we let qi1 : : : qiidenote p1 : : : pi in the inreasing order (so that qi1 � qi2 : : : � qii), then after i steps [0; 1℄ is split into(i + 1) intervals I0 = [0; qi1℄; I2 = [qi1; qi2℄; : : : ; Ii = [qii ; 1℄. Clearly, the minimal distane of Ci isd(Ci) = min(jI1j; : : : ; jIi�1j)), while the optimum distane is opt-d(i) = 1=(i � 1) (by spreading thepoints uniformly). When adding pi+1 we simply subdivide one of the Ij 's into two subintervals. Ifwe assume that p1 = 0 and p2 = 1 (whih will happen in our solution and will be the \worst ase"5



in the lower bound proof), then the \border" intervals I0 and Ii+1 disappear, and our objetive isto plae the points p3; p4; : : : on [0; 1℄ in suh a manner that the length of the smallest interval aftereah pi is as lose to 1=(i � 1) as possible. We notie that the dual \maximal interval" version ofthe latter problem | make the largest interval as lose to 1=(i � 1) as possible | is a well knowndispersion problem (see [DT97, C00, M99℄). While our lower bound and its proof will be somewhatdi�erent for our \minimal interval" version, it will turn out that the optimal sequene for bothversions will be the same, whih is not at all lear a-priori.Let H(k) = (1 + 12 + : : :+ 1k ) denote the kth harmoni series.Lemma 1 Inremental ode of (2i+1) points in [0; 1℄ annot be A-ompetitive for A < 2 � [H(2i)�H(i+ 1)℄.Proof: Consider a ode of 2i+1 points in [0; 1℄ with ompetitive ratio A. For every j � i, onsiderthe distanes between adjaent points after plaing the �rst j points. Let `j1 � `j2 � : : : `jj�1 bethese distanes, sorted in inreasing order. We need the following laim:Claim: `jk � `j+1k+2 for 1 � k � j � 2.Proof: Adding a point (in this ase, (j + 1)-st point) an either add one more distane to the listof interval distanes (if the new point is the rightmost or the leftmost), or it an remove one lengthfrom the list, replaing it with two others (if the new point lies between two old points). In eitherase, there are at most two new lengths that are added to list. This means that among the �rstk+2 lengths on the new list, there are at least k lengths that were already on the old list before weadded the last point. Hene, the k + 2'nd smallest length on the new list annot be smaller thanthe k'th smaller length on the old list.By iterating the above laim, we get for all 0 � j � i � 1; `2i+1�j1 � `2i+11+2j . Notie, `2i+1�j1 is thelength of the smallest interval after adding (2i + 1 � j) points. Sine our ode is A-ompetitive(and sine the optimal arrangement of 2i + 1 � j points has distane 1=(2i � j)), we must have1=(2i�j)`2i+1�j1 � A, whih means that `2i+11+2j � `2i+1�j1 � 1=(A(2i � j)). Summing the last inequality forj = 0 : : : i� 1, we geti�1Xj=0 `2i+11+2j � 1A � � 12i + 12i� 1 + : : :+ 1i+ 2� = 1A � [H(2i) �H(i+ 1)℄ (1)On the other hand, sine `2i+11+2j � `2i+12+2j and all the 2i intervals sum to at most 1, so we geti�1Xj=0 `2i+11+2j � i�1Xj=0 `2i+11+2j + `2i+12+2j2 ! � 12 (2)Combining Equation (1) and Equation (2), we get A � 2 � [H(2i) �H(i+ 1)℄.Sine 2 � [H(2i) �H(i+ 1)℄ � 2 ln� 2ii+1� i!1�! ln 4, we getCorollary 2 If C is an in�nite A-ompetitive ode, then A � ln 4 � 1:386.6



We now show an inremental ode ahieving the bound above. We let p0 = 0, p1 = 1, and expliitlytell the lengths of the i intervals after the �rst (i + 1) points. They are (in inreasing order):log2(1 + 12i�1 ); log2(1 + 12i�2); : : : ; log2(1 + 1i ). Notie, Pij=1 log2(1 + 12i�j ) = log2(Qij=1 2i�j+12i�j ) =log2(2ii ) = 1, indeed. Also, for i = 1 our only interval is indeed of size 1 = log2(1 + 11 ). To add the(i+ 2)nd point, we subdivide the urrently largest interval of size log2(1 + 1i ) into two intervals ofsizes log2(1 + 12i) and log2(1 + 12i+1 ) (again, arithmeti works), as laimed. We see that the lengthof the smallest interval after (i + 1) points is log2(1 + 12i�1) � 1i ln 4 (the latter is easy to hek),proving that this sequene have ompetitive ratio ln 4.Remark 3 The above argument and onstrution an be adjusted to the ase of the losed irle S1(where distane is the shortest ar of the irle), and give the same ompetitive ratio. The �rst twopoints of the ode are put diametrially opposite to eah other, and then we interleave the \interval"onstrution above on the lower and upper semi-irles. The lower bound extends as well.4 Hamming Spae (Error-Correting Codes)In this setion we disuss the hamming spae F n. We refer the reader to [MS81℄ for more informationon some of the fats we use in this hapter. Reall, we showed in Theorem 2 that F n is inrementallyperfet when jF j = q � n (and F is a �eld). We now onsider the more diÆult ase whenjF j = q � n (in partiular, binary). As we will see, obtaining tight bounds for this ase is expetedto be harder (see below), but �rst let us reall some terminology that we will need later.A ode with K odewords and minimal distane d over F is said to have rate � = logqK=n,dimension k = logqK and relative distane Æ = d=n. We omit the subsript to the spae from thequantities opt-r and opt-d when the hamming spae is lear from the ontext, and otherwise writeopt-r(K; q; n) and opt-d(K; q; n) to emphasize the spae. We let opt-Æ(� ; q; n) = 1n �opt-d(q�n; q; n)be the largest possible relative distane of a ode of rate � over F . We let Vq(R; n) denote thevolume of an n-dimensional sphere of radius R in F n, and notie that asymptotially, we have1n � logq Vq(�n; n) � Hq(�) = � logq(q � 1) � � logq � � (1 � �) logq(1 � �), where Hq(�) above isthe q-ary entropy funtion (in partiular, Vq(�n; n) � qnHq(�)).As a �rst observation, we notie below the the Hamming spae is not inrementally perfet:Lemma 3 If q < n, then the Hamming spae [q℄n is not inrementally perfet, unless q = 2; n = 4.Proof: Let q < n and assume that [q℄n is inrementally perfet. Sine the words 1n : : : qn havepairwise distane n, we have that opt-d(q) = n. Hene, if [q℄n has a 1-ompetitive inrementalode C, it must be that d(Cq) = n. Namely, any two of the �rst q words of C must di�er in all theoordinates 1 � i � n. In fat, we an assume w.l.o.g. that the words 0n : : : (q � 1)n are the �rst qwords in C.1 This means, however, that the (q+1)'st word of C must agree with one of the �rst qwords in at least lnq m positions, implying that d(Cq+1) � n� lnq m.On the other hand, we now show that the optimal (q+1)-word ode in [q℄n has minimum distane atleast n�l 2nq(q+1)m. Consider a (q+1)�n matrix, whose rows would orrespond to q+1 odewords.We desribe how to �ll this matrix so that every two rows would agree in at most d2n=(q(q + 1))e1This is true sine we an always permute the symbols in oordinate i of all the words of C, without hanging anyof the distanes of the ode. 7



oordinates. Spei�ally, we �ll the olumns of this matrix in \hunks" of �q+12 � at a time, makingsure that in eah \hunk" every two rows agree in at most one oordinate. This is done as follows:the �q+12 � olumns in eah \hunk" orrespond to all pairs of distint indies 1 � i < j � q + 1.Namely, the olumn v(i; j) orresponding to the pair (i; j) has symbol q in positions i and j, andall the other symbols 1 : : : (q � 1) in the other (q � 1) positions of v(i; j) (in arbitrary order). Sowithin olumn v(i; j), the only two positions that agree are positions i and j. It follows that withinthe urrent \hunk", any two rows i and j agree only in the olumn v(i; j). And as there at most�n=�q+12 �� = l 2nq(q+1)m suh \hunks", any two rows agree in at most l 2nq(q+1)m oordinates.Sine we assume that C is 1-ompetitive, we must haven� � 2nq(q + 1)� � opt-d(q + 1) = d(Cq+1) � n� �nq �i.e. lnq m � l 2nq(q+1)m. It is not hard to see that the only pair n > q that satis�es this inequalityis n = 4 and q = 2, i.e. no other spae an be inrementally perfet. As for f0; 1g4, it is indeedinrementally perfet via the optimal ode f0000; 1111; all words with two 1's; all the restg.How good is the optimal ode? One small problem with the notion of ompetitive ratio oversmall alphabets, is that we need to ompare the performane of the ode with these of the optimalode of the same rate. For odes over small alphabets, we only have bounds on the minimal distaneof the optimal ode, rather than a losed-form formula. Hene, the ompetitive ratio that we anprove depends not only on the performane of the ode in question, but also on the quality of thesebounds.On a brighter side, the disrepany between the known upper- and lower-bounds on the optimaldistane as a funtion of rate is at most a small onstant fator. In fat, the ratio between theHamming bound (an upper-bound) and the Gilbert-Varshamov bound (a lower-bound) is a fatorof 2 \in spirit". To see that, reall that the Hamming bound says that for any ode with Kodewords and minimum distane d over [q℄n, it holds thatK �Vq(d=2; n) � qn, i.e. opt-d(K; q; n) �2V �1q (qn=K; n). The Gilbert-Varshamov bound, on the other hand, says that there exists aK-wordode with minimum distane d satisfying K � Vq(d; n) � qn, i.e. opt-d(K; q; n) � V �1q (qn=K; n).In priniple, this means that when we use the Hamming bound as our estimate for the performaneof the optimal ode, we only lose a fator of two (or less). However, notie that when we use thatbound, we usually use some estimate for V �1q (sine working with V �1q itself is too hard), so wemay lose some small additional fator there (see Setion 4.3 for an example).What is an \eÆient" onstrution? As opposed to the generi ase, where we are given theentire metri spae as input and need to produe as output the \ode" itself (as a list of points), inthe ase of the Hamming spae we usually think of entire spae as being exponential in the relevantparameters, and we think of the ode as having some impliit small representation. What we mayrequire in terms of eÆieny is to have a representation of the ode whose length is polynomial in nand log q, and an eÆient proedure that given this representation and an index i, produes i, thei'th odeword. For example, viewed in this light, a random ode is not an \eÆient onstrution",but a random linear ode is.Construtions. We now turn to the question of eÆient onstrutions of inremental odes.As a most trivial onstrution, onsider a regular ode with K odewords, minimum distane d8



and relative distane Æ = d=n. How well does it perform as an inremental ode (under arbitraryordering)? Without any additional knowledge about the ode, the best ompetitive ratio we an getis n=d = 1=Æ. Still, if we take a family of asymptotially good odes2, we get a family of inrementalodes with onstant rate and onstant ompetitive ratio. Of ourse, this simplisti onstrutionhas several shortomings. First, there is a pretty stringent tradeo� between the rate and therelative distane of the ode, so we will either sari�e the rate (make the ode very sparse), or theompetitive ratio. In partiular, if the rate is lose to 1, the ompletive ratio tends to1. Seondly,even on small pre�xes our ode an have the same minimal distane d, i.e. the distane does notneessarily \gradually derease". Beause of that, there is no point in using more sophistiatedbounds than n on the optimal ode's minimal distane. Thus, this approah does not address theessene of the problem at all.Therefore, we use more sophistiated tehniques that will give us better tradeo�s between the rateand the ompetitive ratio of inremental odes. Spei�ally, we examine three eÆient onstru-tions: (1) using algebrai-geometri odes (AG-odes) as a natural generalization of the RS-odesto small �elds, (2) using onatenation theorem to redue the alphabet size, and (3) using ran-dom linear odes. The latter onstrution will let us ahieve our ultimate goal: have an absoluteonstant ompetitive ratio (slightly more than 2), even when the rate is 1� o(1).4.1 Algebrai-Geometri CodesAlgebrai-Geometri Codes (AG-odes) are natural extensions of the RS-odes to small �elds.Detailed treatment of AG-odes is beyond the sope of this paper, so we informally onentrateon the essentials only (see [S93℄ for more information). Rather than talking about polynomials ofdegree at most � whih an be evaluated at n points in the �eld, AG-odes deal with algebraifuntions with at most � \poles" at the \point of in�nity" whih an be evaluated at n \rationalpoints" of the funtion �eld. In both ases, the valuation map returns n elements of F , and agiven polynomial/algebrai funtion an have at most � zeros. We let L(�;1) denote the spae ofsuh funtions, whih turns out to be a linear spae over F . The famous Riemann-Roh theoremsays that the dimension of this spae is at least �� g + 1, where g is the \genus" of the algebrai�eld (for the RS-odes we an ahieve g = 0, but for smaller �elds g annot be very small; seebelow). All together, AG-odes given by the spae L(�;1) have the following parameters: thedimension k � � � g + 1, the distane d � n � �. Like with the RS-odes, we observe thatL(0;1) � L(1;1) � : : : � L(n� 1;1), whih implies that AG-odes of inreasing pole orders atin�nity de�ne an inremental ode, the �rst (qk � 1) odewords of whih have minimal distane atleast (n � k � g + 1). Sine the singleton bound still says that the optimum distane is at most(n� k + 1), we getTheorem 3 The ompetitive ratio of AG-odes of dimension k (listed in the order spei�ed above)is at least n�k+1n�k�g+1 . In partiular, setting k = n�2g+1 gives an inremental ode with qk odewordsand ompetitive ratio at most 2.While the main advantage of the AG-odes is the fat that they are de�ned on small (e.g. onstantsize) alphabets, we briey point out their limitations. In partiular, the bound above is meaningfulonly when k < n� g, i.e. the rate an be at most (1 � gn). It is known that g � n=(pq � 1),3 sothe maximal rate we an hope to ahieve is roughly (1� 1pq�1).2Reall, family of odes fCngn2N is asymptotially good if both the relative distane and the rate of Cn is 
(1).3When n grows w.r.t. q, and this bound is tight for ertain q's. The general bound is g � (n � q � 1)=(2pq).9



4.2 Conatenation TheoremWe next address a general method of onstruting an inremental ode over small alphabet fromthe one over a large alphabet and a good regular error-orreting ode over a small alphabet.This method is ompletely analogous to the one used when onstruting regular odes over smallalphabets, and is alled the onatenation of odes.Let C = h1 : : : Ki be an inremental ode in [q℄n, with ompetitive ratio A and rate � = (logqK)=n.Let T = ft(1) : : : t(q)g be a regular ode in [q2℄n2 (q2 � q), with distane d2, relative distaneÆ2 = d2=n2, and rate �2 = (logq2 q)=n2. An inremental ode C� = C � T = h�(1) : : : �(K)i �[q2℄n�n2 , the onatenation of C and T , is de�ned as follows. If we write the i-th odeword of C asi = i;1 : : : i;n 2 [q℄n, and interpret q symbols as integers 1 : : : q, then the i-th odeword of C� is�i = t(i;1) : : : t(i;n) 2 [q2℄nn2 . The ode C is alled the \outer ode", and T is alled the \innerode".Theorem 4 C� is an inremental ode in [q2℄nn2 with K odewords, rate �� = (logq2 K)=(nn2) =(logqK � logq2 q)=(nn2) = ��2, and ompetitive ratio A� satisfying:A� � Ad2 �maxi�K opt-d(i; q2; nn2)opt-d(i; q; n) = AÆ2 �max��� opt-Æ(��2; q2; nn2)opt-Æ(�; q; n) (3)Proof: Take the i-pre�x C�i of C�. We laim that d(C�i ) � d(Ci) � d2, whih is lear from theonstrution of C�. Using also A-ompetiveness of C (i.e. opt-d(Ci) � A � d(Ci)), we getA� = maxi�K opt-d(i; q2; nn2)d(C�i ) � maxi�K opt-d(i; q2; nn2)opt-d(i; q; n) � opt-d(i; q; n)d(Ci) � d2 � Ad2 �maxi�K opt-d(i; q2; nn2)opt-d(i; q; n)Clearly, we an try to substitute some known upper (resp. lower) bounds in plae of opt-d(i; q2; nn2)(resp. opt-d(i; q; n)), to get a more algenrai expression in the bound above. For example, in theasympototi sense we an use the Hamming bound in the numerator, and the Gilbert-Varshamovbound in the denominator, and getmax��� opt-Æ(��2; q2; nn2)opt-Æ(�; q; n) - max��� 2 �H�1q2 (1� ��2)H�1q (1� �) = 2 �H�1q2 (1� ��2)H�1q (1� �)(reall, Hq is the q-ary entropy funtion). However, suh generi bound are often not muh easierto work with, and di�erent suh bounds ould be more onvenient for di�erent onstrution.Below we illustrate the bound from Theorem 4 for the ase where the outer ode is the inrementalRS-ode onstruted in Setion 3.1, whih is perhaps the most attrative ase to onsider. Reall,from Setion 3.1 that these inremental odes are 1-ompetitive, an be used with any rate � � 1,and have the restrition that q � n.Corollary 4 Let C be the 1-ompetitive RS-ode of rate � , and T be as before. Then C� has rate�� = ��2 and ompetitive ratio A� � 1� ��2Æ2(1� �) (4)10



Proof: We notie that for the RS-ode we have A = 1 and opt-Æ(�; q; n) = 1 � � + 1=n. Nowthe most onvenient bound to use for opt-Æ(��2; q2; nn2) seems to be the (very loose in general)singleton bound, whih says that opt-Æ(��2; q2; nn2) � 1� ��2+1=(nn2). Using Equation (3) now,we get max��� 1� ��2 + 1nn21� �+ 1n � max��� 1� ��21� � = 1� ��21� �We notie the tradeo� that we obtain. In partiular, 1���2Æ2 � 1��2Æ2 � 1 (the latter part follows fromthe singleton bound applied to T ). Thus, our guarantee on A� annot be better than 1=(1 � �).This implies that if we want a onstant ompetitive ratio from C�, we annot make � = 1 � o(1).In other words, even though we an extend the RS-ode to all the rates up to 1, our analysis anno longer provide a onstant guarantee on A�. On a positive note, we an make the rate �� = ��2of C� arbitrarily lose to 1 (at the expense of A�). Finally, it is also interesting to ompare thebound in Equation (4) with the trivial bound we get by simply viewing C� as a ode of minimalrelative distane Æ� = Æ2(1� �). We see that we would get the ratio 1=(Æ2(1� �)), whih is a fator(1� ��2) worse than our bound.4.3 Random Linear CodesWe saw that the expliit (and eÆient) onstrutions from the previous setions failed to ahieve aonstant ompetitive ratio for rates (1� o(1)). On the other hand, Theorem 1 shows the existene(and ineÆient onstrution) of an exhaustive 2-ompetitive odes for any [q℄n. In this setion weshow that, with high probability, a random linear ode will ahieve a ompetitive rate 2(1 + �) (forarbitrarily small �, and possibly better if of understanding of optimal odes will improve), evenfor rate (1 � o(1)) (spei�ally, dimension up to n � �(logq n)). This gives an eÆient (albeitrandomized) proedure to generate ompetitive and almost exhaustive inremental odes.Reall that a (standard) random linear ode of dimension k in [q℄n, is the set of words whih arespanned by the rows of a k � n random matrix G over [q℄. As we are interested in ordered odes,we onsider these words in a anonial order of their oeÆients. Namely, for a given matrix G,the order between two odewords  = xG and 0 = x0G is determined by the lexiographi orderbetween x and x0.4 We note that with this ordering, all the odewords that are spanned by the�rst i rows of G, appear before all the odewords that depend also the i + 1'st row. This meansthat for any m � k, the pre�x Cqm is itself a (random) linear ode.We �rst reall an easy lemma that bounds the minimum distane of a random linear ode.Lemma 5 For k � n, let G be a random k � n q-ary matrix, and let C = C(G) = f1 : : : qkg bethe ordered linear ode that is spanned by G. Then for every � < 1� 1q , we havePr [d(C) < �n℄ < 2k�n(1�Hq(�))Proof: Let S(�n) be the sphere of radius �n around the origin in Hamming spae [q℄n. We knowthat S(�n) ontains Vq(�n; n) � qnHq(�) words. For a �xed k-vetor x 6= �0, we have PrG[xG 24Notie, this is the same lexiographi order we used with the RS-odes in Setion 3.1.11



S(�n)℄ � qnH(�)�n. Using the union bound, we getPr [d(C) < �n℄ = Pr[9x 6= �0; xG 2 S(�n)℄ < qk � q�n(1�H(�))Corollary 6 Let k < n, Æ > 0, and G be a random k�n q-ary matrix. With probability of at least1� Æ (over the hoie of G), the minimum distane of C(G) is at least nH�1q �n�k�logq(1=Æ)n �.Below we prove that a random linear ode has ompetitive ratio of at most 2(1 + �) for rates up to1��( logq nn ). For this proof, we �rst reall a somewhat weak variant of the Hamming bound, andone fat about the (inverse of the) q-ary entropy funtion Hq.Hamming bound. For any q and k � n, opt-d(qk; q; n) � 2nH�1q �n�k�1+logq nn �.Proposition 7 For any onstant � > 0, there exists a onstant \threshold" � = �(�) > 0, so thatfor all Æ � �, all z � 2Æ=� and all q � 2, it holds that H�1q (z + Æ)=H�1q (z) < 1 + �.Theorem 5 For any q, any onstant � > 0, any large enough n, and any k � n� (2 + 6� ) logq n,a random linear ode of dimension k in [q℄n has ompetitive ratio A � 2(1 + �), with probability atleast 1� 1n .Proof: Let G be a random k�n q-ary matrix and let C = C(G) be the ordered linear ode spannedby G. For eah integer m � k, Corollary 6 with Æ = 1=n2 tells us that with probability at least1� 1=n2, the minimum distane of Cqm (i.e., the ode spanned by the �rst m rows of G) is at leastdm = nH�1q �n�m� 2 logq nn �Taking the union bound, we onlude that with probability at least 1� k=n2 > 1� 1=n, the aboveholds for all 1 � m � k. This, in turn, implies that for any m and any i 2 �qm�1 + 1; : : : ; qm	, theminimum distane of Ci is at least dm.On the other hand, the Hamming bound tells us that the minimum distane of the optimal qm�1-word ode annot be more thand�m�1 = 2nH�1q �n� (m� 1)� 1 + logq nn � = 2nH�1q �n�m+ logq nn �This implies that also for every i 2 �qm�1 + 1; : : : ; qm	, the minimum distane of the optimali-word ode annot be more than d�m�1. We onlude that with probability at least 1 � 1=n, theompetitive ratio of C is bounded below by maxm(d�m�1=dm).Fix any m � k, and denote Æ = 3 logq nn and z = n�m�2 logq nn . Sine m � k � n � (2 + 6� ) logq n,it follows that z � (6� logq n)=n = 2Æ=�. Also, for large enough n we have Æ � �(�) (where � is the\threshold" funtion from Proposition 7), we an use Proposition 7 to onlude thatd�m�1dm = 2nH�1(z + Æ)nH�1(z) � 2(1 + �)As the inequality above holds for any m � k, this ompletes the proof of the theorem.12
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