
Randomness Extraction and Key Derivation

Using the CBC, Cascade and HMAC Modes⋆

Yevgeniy Dodis1, Rosario Gennaro2, Johan H̊astad3,
Hugo Krawczyk4, and Tal Rabin2

1 New York University. E:mail: dodis@cs.nyu.edu
2 IBM Research. E-mail: {rosario,talr}@watson.ibm.com
3 Royal Institute, Sweden. E-mail: johanh@nada.kth.se

4 Technion, Israel, and IBM Research. E-mail: hugo@ee.technion.ac.il

Abstract. We study the suitability of common pseudorandomness modes
associated with cryptographic hash functions and block ciphers (CBC-
MAC, Cascade and HMAC) for the task of “randomness extraction”,
namely, the derivation of keying material from semi-secret and/or semi-
random sources. Important applications for such extractors include the
derivation of strong cryptographic keys from non-uniform sources of ran-
domness (for example, to extract a seed for a pseudorandom generator
from a weak source of physical or digital noise), and the derivation of
pseudorandom keys from a Diffie-Hellman value.

Extractors are closely related in their applications to pseudorandom
functions and thus it is attractive to (re)use the common pseudoran-
dom modes as randomness extractors. Yet, the crucial difference between
pseudorandom generation and randomness extraction is that the former
uses random secret keys while the latter uses random but known keys. We
show that under a variety of assumptions on the underlying primitives
(block ciphers and compression functions), ranging from ideal random-
ness assumptions to realistic universal-hashing properties, these modes
induce good extractors. Hence, these schemes represent a more practical
alternative to combinatorial extractors (that are seldom used in prac-
tice), and a better-analyzed alternative to the common practice of using
SHA-1 or MD5 (as a single un-keyed function) for randomness extraction.
In particular, our results serve to validate the method of key extraction
and key derivation from Diffie-Hellman values used in the IKE (IPsec’s
Key Exchange) protocol.

1 Introduction

1.1 Key Derivation and Randomness Extractors

Key derivation is a central functionality in cryptography concerned with the
process of deriving secret and random cryptographic keys from some source of

⋆ Extended abstract. Full version available at eprint.iacr.org/2004/

semi-secret randomness. In general, it is sufficient to derive a single random and
secret key (say of length 128) which can then be used to key a pseudorandom
function (or a pseudorandom generator) to obtain further pseudorandom keys
as needed. Thus, a basic question, which motivates the work presented here,
is how to derive such a random and secret key when all that is given is an
imperfect source of randomness which contains some good amount of secret
(computational) entropy, but this entropy is not presented in a direct form of
uniformly (or pseudorandomly) distributed secret bits. This problem arises in
a variety of scenarios such as when deriving keys from a non-uniform source of
noise (as used, for example, by physical random generators) or from semi-random
data (say, coming from user’s input or the sampling of computer events, etc.).
This is also the case when deriving keys from a Diffie-Hellman (DH) exchange.
Let us elaborate on the latter case.

Let’s assume that two parties run a DH protocol in order to agree on a shared
secret key, namely, they exchange DH exponentials gx and gy and compute the
DH value gxy. In this case, gx and gy as seen by the attacker fully determine
gxy. Yet, it is assumed (by the Decisional Diffie-Hellman, DDH, assumption)
that a computationally-bounded attacker cannot distinguish gxy from a random
element in the group generated by g. Thus, one can assume that gxy contains
t = log2(order(g)) bits of computational entropy relative to the view of the
attacker (for a formal treatment of computational entropy in the DH context
see [GKR04]). However, this entropy is spread over the whole value gxy which
may be significantly longer than t.5 Thus, we are in a situation similar to that of
an imperfect source of randomness as discussed above. In particular, gxy cannot
be used directly as a cryptographic key, but rather as a source from which to
extract a shorter string (say, of length 128) of full computational entropy which
can then be used as a cryptographic key.

The tools used to derive a uniform key from these sources of imperfect ran-
domness are often referred to as randomness extractors. The amount of theo-
retical results in this area is impressive; moreover, some of the constructions
that have proven extraction guarantees are also efficient (see [Sha02] for a recent
survey). One such example is the so called “pairwise independent universal hash
functions” (also called ”strongly universal”) [CW79] which have quite efficient
implementations and provable extraction properties. In particular, [HILL99]
shows (see also [Lub96,Gol01]) that if an input distribution has sufficient min-
entropy (meaning that no single value is assigned a too-large probability even
though the distribution may be far from uniform) then hashing this input into a
(sufficiently) shorter output using a function chosen at random from a family of
strongly universal hash functions results in an output that is statistically-close
to uniform. (This result is often referred to as the “Leftover Hash Lemma”.)

5 For example, consider that g is an element of prime order q in Z∗

p (i.e., p and
q are primes and q/p − 1), and that |p| = 1024 and |q| = 512. In this case the
DDH assumption guarantees that the value gxy hides (from the attacker) 512 bits of
computational entropy, yet these bits are spread in some unknown way among the
1024 bits of gxy.

2

Yet, in spite of these results and an extensive literature studying their ap-
plication to real cryptographic problems (such as those mentioned earlier, and
in particular for the DH case [GKR04]) one seldom encounters in practice the
use of strong universal hashing or other proven extractors. Instead, the common
practice is to use cryptographic hash functions (such as MD5 and SHA-1) for
the purpose of randomness extraction. A main reason for this practice, justified
by engineering considerations, is that cryptographic hash functions are readily
available in software and hardware implementations, and are required by most
cryptographic applications for purposes other than randomness extraction (e.g.,
as pseudorandom functions). Therefore, it is attractive and convenient to use
them for key extraction as well. Also, the common perception that these hash
functions behave as random functions (formalized via the notion of “random
oracles”) make them intuitively appealing for the extraction applications.

1.2 Randomness Extraction via Common Chaining Modes

In this paper we attempt to bridge between the world of provable extraction
and the common practice of relying on idealized hash functions. The question
that we ask is what is the best way to use cryptographic hash functions, or
other widely available cryptographic tools such as block ciphers, for the task of
randomness extraction. Specifically, we consider three common modes of oper-
ation: CBC chaining, cascade (or Merkle-Damgard) chaining, and HMAC, and
analyze the appropriateness of these modes as extraction tools. Since the goal is
to provide as general (and generic) as possible results, we do not investigate the
extraction properties of specific functions (say SHA-1 or AES) but rather ab-
stract the basic primitives (the compression functions in the case of the cascade
and HMAC modes, and block ciphers in the case of CBC), as random functions
or permutations.6

Before going on with the description of our results, it is worth considering
the following issue. Given that the common practice is to extract randomness
using a hash function modeled as a random oracle, then how much do we gain
by analyzing the above modes under the weaker, but still idealized, randomness
assumption on the underlying basic primitives. There are several aspects to this
question.

The first thing to note is that modeling the compression function of SHA-
1, for example, as a random function, or as a family of random functions, is a
strict relaxation to modeling SHA-1 (as a single un-keyed function) as a ran-
dom function. This is easily seen from the fact that even if one starts with a
random function as the compression function the result of the cascade chain-
ing (which is how SHA-1 is derived) is not a random function. (For example,
in the cascade construction, the probability that two L-block inputs that differ
only in their first block are mapped to the same k-bit output is L/2k, while for

6 In the case of HMAC we obtain results based on non-ideal assumptions on the
underlying basic primitives (see Section 1.3).

3

a random function this probability is 1/2k). Another important point is that
cryptographic design work focuses on building the basic blocks, i.e. a compres-
sion function or a block cipher. Thus, making an assumption on these primitives
will represent the design goals which there can be an attempt to satisfy. Also
analysis of the type presented here, rather than implying the security of any spe-
cific implementation of these functions, serves to validate the suitability of the
corresponding chaining modes for some defined goal (in our case the goal is ran-
domness extraction). Indeed, the common approach for analyzing such modes
(e.g., [Dam89,BKR94,BCK96a,BCK96b]) is to make some assumption on the
basic primitive (for example, assuming the underlying compression function to
be a pseudorandom function, or a secure MAC, or a collision-resistant hash func-
tion) and then proving that these or other properties are preserved or implied
by the chaining operation.

In addition, the “monolithic” randomness assumption on a single (unkeyed)
function such as SHA-1 is inappropriate for the setting of randomness extraction
as no single function (even if fully random) can extract a close-to-uniform distri-
bution from arbitrary high-entropy input distributions. This is so, since once the
function is fixed (even if to purely random values) then there are high-entropy
input distributions that will be mapped to small subsets of outputs.7 Therefore,
the viable approach for randomness extraction is to consider a family (or col-
lection) of functions indexed by a set of keys. When an application requires the
hashing of an input for the purpose of extracting randomness, then a random
element (i.e., a function) from this family is chosen and the function is applied
to the given input. While there may be specific input distributions that interact
badly with specific functions in the family, a good randomness-extraction family
will make this “bad event” happen with very small probability. Universal hash
families, mentioned before, are examples of this approach. An important point
here is that, while the choice of a function from the family is done by selecting
a random index, or key, this key does not need to be kept secret (this is im-
portant in applications that use extraction to generate secret keys; otherwise,
if we required this index to be secret then we would have a “chicken and egg”
problem).

In our setting, families of keyed functions come up naturally with block ci-
phers and compression functions (for the latter we consider, as in HMAC, the
variable IV as the key to the function). These functions are defined on fixed
length inputs (e.g., 512 bits in the case of compression function of SHA-1, or
128 in the case of AES). Then, to hash arbitrarily long inputs, we extend these
families by the appropriate chaining mode: cascade chaining (or HMAC) for com-
pression functions, and CBC-MAC in the case of block ciphers. What makes the
analysis of these functions challenging (in the setting of randomness extraction)
is that, as discussed before, the key to the function is random but known. For ex-

7 For example, let F be a random function from ℓ to k bits and let S denote the subset
of {0, 1}ℓ that is mapped by F to outputs with a low-order bit of zero. If we consider
the uniform distribution on S as the input distribution, then this distribution has
almost full entropy, yet the output of F on S is trivially distinguishable from uniform.

4

ample, the fact that the above functions are widely believed to be pseudorandom
does not help much here since, once the key is revealed, the pseudorandom prop-
erties may be lost completely (see full paper). Yet, as we will see in Section 4.2,
we do use the pseudorandom property in some of our analysis. Also worth not-
ing is that using families that are pseudorandom for extraction is particularly
convenient since these same functions can then be used by the same application
(for example, a key-exchange protocol, a random generator, etc.) for further key
derivation (using the extracted key to key the pseudorandom function).

The last question is how to generate the random known keys used by the
extractor. Technically this is not hard, as the parties can generate the appropri-
ate randomness, but the exact details depend on the application. For example,
in the DH key exchange discussed earlier, the parties exchange in the clear ran-
domly chosen values, which are then combined to generate a single key κ for the
extractor family {Hκ} (e.g. HMAC-SHA1). The shared key is set to Hκ(gxy).
We note that this is substantially the procedure in place in the IKE protocol
[RFC2409,IKEv2] (see also [Kra03]), and this paper presents the first formal
analysis of this design.

A similar DH key extraction step is required in non-interactive scenarios,
such as ElGamal or Cramer-Shoup encryption. There the extractor key κ can
be chosen either by the encryptor and appended to the ciphertext, or chosen by
the decryptor and included in the public key (this choice is mandatory in case
we want CCA-security, as we don’t want to leave the choice of κ in the hands
of the adversary). For a different example, consider a cryptographic hardware
device, containing a physical random generator that samples some imperfect
source of noise. In this case the application can choose a random hash function
in the family and wire-in its key into the randomness generation circuit [BST03].
Notice that by using our results, it will be possible to perform the extraction
step using circuitry (such as a block-cipher or a cryptographic hash function)
which is very likely to already be part of the device.

1.3 Our Results

The Extraction Properties of CBC-MAC Mode. We show, in Section 3, that if
f is a random permutation over {0, 1}k and X is an input distribution with
min-entropy of at least 2k, then the statistical distance between F (X) (where F
represents the function f computed in CBC-MAC mode over L blocks) and the
uniform distribution on {0, 1}k is L · 2−k/2. As an example, in the application
(discussed before) in which we use the CBC-MAC function F to hash a Diffie-
Hellman value computed over a DDH group of order larger than 22k, we get that
the output distribution F (gxy) is computationally indistinguishable from a dis-
tribution whose distance from uniform is at most L2−k/2, hence proving (under
DDH) that the k-bit output from F (gxy) is computationally indistinguishable
from uniform (and thus suitable for use as a cryptographic key). Note that if
one works over Z∗

p for 1024-bit p and k = 128, then all we need to assume is a
min-entropy of 256 out of the 1024 bits of gxy. In the full paper we show that

5

for input distributions with particularly high entropy (in particular those that
contain a k-bit block of almost-full entropy) the CBC-MAC mode guarantees an
almost-uniform output for any family of permutations.

The Extraction Properties of Cascade Chaining. In Section 4 we study the cas-
cade (or Merkle-Damgard) chaining used in common hash functions such as
MD5 and SHA-1. We show these families to be good extractors when modeling
the underlying compression function as a family of random functions. However,
in this case we need a stronger assumption on the entropy of the input dis-
tribution. Specifically, if the output of the compression function is k-bit long
(typically, k = 128 or 160) we assume a min-entropy of 2k over the whole input,
and “enough” min-entropy over the distribution induced on the last block of
input (typically of length 512 bits). For example, if the last block has k bits of
min-entropy, and we assume L blocks, then the statistical distance between the
output of the cascade construction and the uniform distribution (on {0, 1}k) is
at most L · 2−k/2. We note that the above restriction on the last-block distribu-
tion is particularly problematic in the case of practical functions such as MD5
and SHA since the input-padding conventions of these functions may cause a
full fixed block to be added as the last block of input. In this case, the output
distribution is provably far from uniform. Fortunately, we show that our anal-
ysis is applicable also to the padded-input case. However, instead of proving a
negligible statistical distance, what we show is that the output of the “padded
cascade” is computationally indistinguishable from uniform, a result that suffices
for the cryptographic applications of extraction. Finally, we prove that when ev-
ery block of input has large-enough min-entropy (conditioned on the distribution
of previous blocks), then the above extraction results hold under the sole (and
non-ideal) assumption that the underlying compression function is a family of
δ-AU functions (for sufficiently small δ).

The Extraction Properties of HMAC. HMAC is the most widely used pseudoran-
dom mode based on functions such as MD5 or SHA, thus proving its extraction
properties is extremely important. Our main result concerning the good extrac-
tion properties of HMAC is proven on the basis of a high min-entropy (2k bits)
in the input distribution X , without relying on any particular entropy in the
last block of input. Specifically, let F denote the keyed hash function underlying
an instantiation of HMAC (e.g., F is SHA-1 with random IV) and let f be the
corresponding outer compression function. Then we show that if F is collision
resistant and f is modeled as a random function then the output of HMAC (on
input drawn from the distribution X) is indistinguishable from uniform for any
attacker that is restricted in the number of queries to the function f . Moreover,
if the compression function itself is a good extractor, then HMAC is a good
extractor too. However, in this latter case if we are interested in an output of ℓ
close-to-uniform bits then the key to the underlying compression function needs
to be sufficiently larger than ℓ. As a concrete example, if ℓ = 160 (e.g., we need
to generate a pseudorandom key of length 160) then we can use HMAC with
SHA2-512. Note that this result is particularly interesting in the sense that it

6

uses no idealized assumptions, and yet the output of HMAC is provably close to
uniform (even against completely unbounded attackers, including attackers that
can break the collision resistance of F).

Remark (Pseudorandom functions with known keys). It is tempting to use the
pseudorandomness properties enjoyed by the modes studied here as a basis to
claim good (computational) extraction properties. For example, in spite of the
fact that the output of these functions may be statistically very-far from uniform,
it is still true that no (efficient) standard statistical test will be able to tell apart
this output from random (simply because such a test does not use the knowledge
of the key even if this key is known.) Yet, for cryptographic applications using a
family of functions as extractors, based solely on the assumption that the family
is pseudorandom, may be totally insecure. We illustrate this point by showing,
in the full paper, an example of a secure pseudorandom family whose output is
trivially distinguishable from randomness once the key is known.

All proofs appear in the full version of the paper.

2 Universal Hashing and Randomness Extraction

Preliminaries. For a probability distribution X we use the notation x∈R X to
mean that x is chosen according to the distribution X . For a set S, x∈R S is used
to mean that x is chosen from S with uniform probability. Also, for a probability
distribution X we use the notation PrX (x) to denote the probability assigned by
X to the value x. (We often omit the subscript when the probability distribution
is clear from the context.) Throughout the paper, we will use d(L) to denote the
maximal numbers of divisors of any number smaller or equal to L. As a very
crude upper bound, we will sometimes use the fact that d(L) ≤ 2

√
L.

Min-Entropy and Collision probability. For a probability distribution X
over {0, 1}ℓ, we define its min-entropy as the minimum integer m such that for
all x ∈ {0, 1}ℓ, PrX (x) ≤ 2−m. We denote the min-entropy of such X by H∞(X).
The collision probability of X is Col(X) = Prx,x′ ∈R X (x = x′) =

∑

x Pr(X = x)2,
and the Renyi (or collision) entropy of X is H2(X) = − log2 Col(X). It is easy to
see that these two notions of entropy are related: H∞(X) ≤ H2(X) ≤ 2H∞(X).
In particular, we will frequently use the fact that Col(X) = 2−H2(X) ≤ 2−H∞(X).

Statistical Distance. Let X1,X2 be two probability distributions over the
set S. The statistical distance between the distributions X1 and X2 is defined as
SD(X1,X2) = 1

2

∑

s∈S |PrX1(s) − PrX2(s)|. If two distributions have statistical
distance of (at most) ǫ, then we refer to them as ǫ-close. We note that ǫ-close
distributions cannot be distinguished with probability better than ǫ even by a
computationally unbounded adversary. It is also well known that if Y has support
on some set S and U is the uniform distribution over this set, then

SD(Y, U) ≤ 1

2

√

|S| · Col(Y) − 1 (1)

7

Definition 1. Let k and ℓ be integers, and {hκ}κ∈K be a family of hash functions
with domain {0, 1}ℓ, range {0, 1}k and key space K. We say that the family
{hκ}κ∈K is δ-almost universal (δ-AU) if for every pair of different inputs x, y from
{0, 1}ℓ it holds that Pr(hκ(x) = hκ(y)) ≤ δ, where the probability is taken over
κ∈R K. For a given probability distribution X on {0, 1}ℓ, we say that {hκ}κ∈K

is δ-AU w.r.t. X if Pr(hκ(x) = hκ(y)) ≤ δ where the probability is taken over
κ∈R K and x, y ∈R X conditioned to x 6= y.

Clearly, a family {hκ}κ∈K is δ-AU if it is δ-AU w.r.t. all distributions on {0, 1}ℓ.
The notion of universal hashing originates with the seminal papers by Carter
and Wegman [CW79,WC81]; the δ-AU variant used here was first formulated in
[Sti94]. The main usefulness of this notion comes from the following lemma whose
proof is immediately obtained by conditioning on whether the two independent
samples from X collide or not (below E denotes the expected value).

Lemma 1. If {hκ}κ∈K is δ-AU w.r.t. X , then Eκ[Col(hκ(X))] ≤ Col(X) + δ.

Now, using the above lemma and Eq. (1), the lemma below extends the
well-known “Leftover Hash Lemma” (LHL) from [HILL99] in two ways. First,
it relaxes the pairwise-independence condition assumed by that lemma on the
family of hash functions, and allows for “imperfect” families in which the collision
probability is only ǫ-close to perfect (i.e., 2−k + ǫ instead of 2−k). Second, it
allows for the collision probability to depend on the input distribution rather
than being an absolute property of the family of hash functions. We use these
straightforward extensions of the LHL in an essential way for achieving our
results. We also note that the standard LHL can be obtained from Lemma 2
below by setting ǫ = 0.

Lemma 2. Let ℓ and k be integers, let X be a probability distribution over
{0, 1}ℓ, and let {hκ}κ∈K be a family of hash function with domain {0, 1}ℓ and
range {0, 1}k. If {hκ}κ∈K is (1

2k + ǫ)-almost universal w.r.t. X , U is uniform

over {0, 1}k and κ is uniform over K, then

SD((κ, hκ(X)), (κ, U)) ≤ 1

2
·
√

2k · (Col(X) + ǫ) ≤ 1

2
·
√

2k · (2−H∞(X) + ǫ) (2)

Proof. Using Eq. (1) and conditioning on the common value of κ, we get

2SD((κ, hκ(X)), (κ, U)) ≤
√

2k|K|Col(κ, hκ(X)) − 1 =
√

2kEκ[Col(hκ(X))] − 1

and the rest follows immediately from Lemma 1 with δ = 2−k + ǫ.

Remark 1. It is important to note that for the above lemma to be useful one
needs ǫ ≪ 1/2k, or otherwise the derived bound on the statistical closeness ap-
proaches 1. Moreover, this fact is not a result of a sub-optimal analysis but rather
there are examples of families with ǫ = 1/2k (i.e., (2/2k)-AU families) that gen-
erate outputs that are easily distinguishable from uniform. For example, if {hκ}

8

is a family of pairwise independent hash functions with k-bit outputs, and we de-
fine a new family {h′

κ} which is identical to {hκ} except that it replaces the last
bit of output with 0, then the new family has collision probability of 2/2k yet its
output (which has a fixed bit of output) is trivially distinguishable from uniform.
The fact that we need ǫ ≪ 1/2k (say, ǫ ≈ 1/22k) makes the analysis of CBC and
the cascade construction presented in the next sections non-trivial. In particular,
the existing analyses of these functions (such as [BKR94,BCK96b]) are too weak
for our purposes as they yield upper bounds on the collision probability of these
constructions that are larger than 2/2k.

3 The CBC-MAC Construction

Here we study the suitability of the CBC-MAC mode as a randomness extractor.
Recall that for a given permutation f on {0, 1}k, the CBC-MAC computation
of f on an input x = (x1, x2, . . . xL), with L blocks in {0, 1}k, is defined as x̄L

where the latter value is set by the recursion: x̄0 = 0, x̄i = f(xi ⊕ x̄i−1) for
1 ≤ i ≤ L. We denote the output of the above CBC-MAC process by F (x).

Our main result in this section states the extraction properties of CBC-MAC
for a random permutation f on K = 2k elements. To state it more compactly,
we let ǫ(L, K) = (d(L))2LK−2 + L6K−3, and notice that ǫ(L, K) = O(L2/K2)
when L < K1/4 (here we use the fact that d(L) ≤ 2

√
L).

Theorem 1. Let F denote the CBC-MAC mode over a random permutation
f on {0, 1}k, and let X be an input distribution to F defined over L-block
strings. Then the statistical distance between F (X) and the uniform distribu-
tion on {0, 1}k is at most

√

K · 2−H∞(X) + O(K · ǫ(L, K))

In particular, assuming L < 2k/4 and H∞(X) ≥ 2k, the above statistical distance
is at most O(L/2k/2).

The proof of the theorem follows from Lemma 2 in combination with the
following lemma that shows that CBC-MAC mode with a random permutation
is δ-AU for sufficiently small δ.

Lemma 3. Let F denote the CBC-MAC mode over a permutation f on {0, 1}k.
For any x, y ∈ {0, 1}Lk, if x 6= y then Pr[F (x) = F (y)] ≤ 1

K +O(ǫ(L, K)) where
the probability is over the choice of a random permutation f .

4 The Cascade Construction

We first recall the Merkle-Damgard approach to the design of cryptographic hash
functions and introduce some notation and terminology. For given integers k and

9

b, b > k > 0, let {fκ : κ ∈ K} be a family of functions such that K = {0, 1}k, and
for all κ ∈ K the function fκ maps b bits into k bits. On the basis of this family
we build another family {Fκ : κ ∈ K} that works on inputs of any length which
is a multiple of b and produces a k-bit output. For each κ ∈ K, the function
Fκ is defined as follows. Let x = (x1, . . . , xL), for some L ≥ 1 and xi ∈ {0, 1}b

(for all i), denote the input to Fκ; we define L variables (each of length k)
x̄1, . . . , x̄L as x̄0 = κ, x̄i+1 = fx̄i

(xi+1), and set Fκ(x) = x̄L. For processing
inputs of arbitrary length one needs a rule for padding inputs to a length that is
a multiple of b. Specific functions that build on the above approach, such as MD5
and SHA-1, define their specific padding; we expand on this issue in Section 4.2.
For the moment we assume inputs of length Lb for some L. Some more notation:
Sometimes we use F to denote the family {Fκ}κ∈K, and we write F (x) to denote
the random variable Fκ(x) for κ∈R K. Finally, we use K to denote 2k.

The family {fκ}κ∈K is called the “compression function(s)” and the family
{Fκ}κ∈K is referred to as the “cascade construction” (over the compression func-
tion {fκ}κ∈K). Typical values for the parameters of the compression function are
b = 512 and k ∈ {128, 160}.

4.1 The Basic Cascade Construction

The main result of this section is the following. Assume X is an input distribu-
tion with 2k bits of (overall) min-entropy and “enough” bits of min-entropy in
its last (b-bit) block (“enough” will be quantified below). For the cascade con-
structions we model the underlying family of compression functions as a family
of random functions (with k-bit outputs). Then the output of F on the distribu-
tion X is statistically close to uniform. This result is formalized in the following
theorem. As in Section 3, we let ǫ(L, K) = (d(L))2LK−2 + L6K−3, and notice
that ǫ(L, K) = O(L2/K2) when L < K1/4.

Theorem 2. Let F = {Fκ} be the cascade construction defined, as above, over
a family of random functions {fκ}. Let X be the input distribution to F defined
over L-block strings, and XL denote the probability distribution induced by X on
the last block xL for x∈R X . Then, if U is the uniform distribution over {0, 1}k,
we have

SD(F (X), U) ≤
√

K · 2−H∞(X) + L · 2−H∞(XL) + O(K · ǫ(L, K)) (3)

In particular, if H∞(X) ≥ 2k, H∞(XL) ≥ k, and L ≤ 2k/4, then SD(F (X), U) ≤
O(L/2k/2).

The proof of the theorem follows from Lemma 2 in combination with the
following lemma that shows that the cascade construction with a random family
of compression functions is δ-AU for sufficiently small δ.

Lemma 4. Let F = {Fκ} be the cascade construction defined over a family of
random functions {fκ}. Let X be an input distribution as assumed in Theorem 2,

10

where H∞(XL) > log L. Then, the family F is (1
K + L

K2H∞(XL) +O(ǫ(L, K)))-AU
w.r.t. X .

The proof of this lemma is based on the following two propositions: the first
analyzes the collision probability of the cascade function F over random com-
pression functions on inputs that differ (at least) in the last block (Proposition 1);
then we extend the analysis to the general case, i.e. for any two different x and
y (Proposition 2). All proofs appear in the final paper.

Proposition 1. Let F = {Fκ} be the cascade construction defined over a family
of random functions {fκ}. Let x, y be two inputs to F that differ (at least) in the
last block, namely, xL 6= yL, and let κ ∈ K be any value of the initial key. Then
PrF (Fκ(x) = Fκ(y)) ≤ 1

K + O(ǫ(L, K)), where the probability is taken over the
choice of random functions in F .

Proposition 2. Let F be defined as above, let x, y be two different inputs to
F , and let κ be any value of the initial key. Then PrF (F (x) = F (y)) ≤ L

K +
O(Lǫ(L, K)), where the probability is taken over the choice of random functions
in F .

The Value of the Initial Key κ. We note that the above analysis holds for
any value of the initial key κ, when the functions are truly random, which means
that in principle κ can be fixed to a constant. However, in practice not all the
functions of the function family {fκ} satisfy this requirement. Thus, choosing κ
at random allows, for example, to extend our analysis to the situation where a
negligible fraction of functions in F are not close to random functions.

Necessity of Min-Entropy in the Last Block. We argue that assuming
non-trivial min-entropy in the last block is required, even if the family {fκ} of
compression functions is completely random. Assume an input distribution in
which the last block is fixed to a value B. The first L−1 blocks induce some dis-
tribution for the last key in the sequence. Examining the distribution on fκ(B),
induced by (any) distribution on κ it is easy to see that this distribution is sta-
tistically far from the uniform distribution. In particular, we expected with high
probability a constant fraction of elements will not appear in the distribution.

4.2 The Cascade Construction with Input Padding

The conditions imposed by Theorem 2 on the input distribution X conflict with a
technical detail of the practical implementations of the cascade paradigm (such
as MD5 and SHA-1): rather than applying the cascade process to the input
x∈R X , these functions modify x by concatenating enough padding bits as to
obtain a new input x′ whose length is a full multiple of the block length. In some
cases this padding results in a full fixed block appended to x. Therefore, even
if X has the property that the last block of input has relatively high entropy
(as required by Theorem 2) the actual input x′ to the cascade does not have

11

this property any more. This fact is sufficient to make our main result from
Section 4.1 irrelevant to these real-world functions; luckily, however, we show
here that this serious obstacle can be lifted.

In order to better understand this problem we first describe the actual way
this padding is performed. We consider the concrete value b = 512 used as the
block length in these functions. Let n denote the length of the input x, and let
n′ = n mod 512. If n′ < 448 then x is padded with the binary string 10447−n′

followed by a 64-bit representation of n. If n′ ≥ 448 then a whole new block
is added with a padding similar to the one described above (with the binary
representation of n occupying the last 64 bits of the added block). ¿From this
description, we see that if, for example, the original input x had a length which
was an exact multiple of 512, then x′ = x ‖ B where B is a whole new block
(and ‖ represents the concatenation operation). Moreover, the value of B is the
same (and fixed) for all inputs of the length of x. In particular, if we consider
the case in which we hash Diffie-Hellman values of length of 1024 or 2048 bits
(this is the common case when working over Z∗

p groups), then we get that the
padded input x′ will always have a fixed last block. In other words, regardless
of the entropy existing in the original input x the actual input to the cascade
process now has a zero-entropy last block.

For this case, in which the last block is fixed, we show here that a somewhat
weaker (but still very useful) result holds. Specifically, combining Theorem 2 with
the assumption that the family of (compression) functions {fκ} is pseudorandom,
we can prove that the output from the cascade construction is pseudorandom,
i.e., computationally indistinguishable from uniform (and thus sufficient for most
cryptographic applications) This result holds even though the key to the cascade
function F is revealed! We note that the assumption that the family {fκ} is
pseudorandom is clearly implied by the modeling (from the previous subsection)
of these functions as random. But we also note that assuming the compression
function (family) of actual schemes such as MD5 or SHA-1 to be pseudorandom
is a standard and widely-used cryptographic assumption (see [BCK96b] for some
analytical results on these PRF constructions).

Lemma 5. Let {fκ}κ∈K be a family of pseudorandom functions which is ǫp(T)-
indistinguishable from random for attackers restricted to time T and a sin-
gle query. Let F = {Fκ}κ∈K denote the cascade construction over the family
{fκ}κ∈K. Further, let X be a probability distribution on L-block strings from
which the inputs to F are chosen, and B be a fixed b-bit block. If the output distri-
bution Fκ(X), with random but known key κ, is ǫd-statistically close to uniform,
then the distribution Fκ(X ‖ B) (for random but known κ) is (ǫd + ǫp(T))-
indistinguishable from uniform by attackers that run time T .

The above Lemma together with Theorem 2 show that if {fκ} is a family
of random functions then the cascade construction with a fixed last block block
is indistinguishable from random, provided that the original input distribution
(before padding!) satisfies the conditions of Theorem 2.

12

It is also worth noting that Lemma 5 can be generalized to input distributions
X ∗ that can be described as the concatenation of two probability distributions
X and Y, where X satisfies the conditions of Theorem 2, and Y is an arbitrary
(polynomial-time samplable) distribution independent from X .

A practical consideration. Note that the application of Lemma 5 on an
input distribution X still requires the last block of X (before padding) to have
relatively high min-entropy. To maximize this last-block min-entropy it is advis-
able that any input x whose length is not a multiple of b = 512 be “shifted to
the right” (to a block boundary) by prepending a sufficient number of bits (say,
all zeros) to the beginning of x. This way, the resultant string x′ is of length a
multiple of b and, more importantly, its last block contains the full entropy of
the last b bits in x. Also, this shifting forces the appended padding described
earlier to add a full block as assumed in Lemma 5.8

4.3 Modeling the Compression Function as a δ-AU Family

In Section 4.1 we presented an analysis of the basic cascade construction under
the modeling of the compression function as a family of random functions. Here
we study the question of what can be guaranteed on the output distribution of
the cascade under the simple assumption that the family of compression func-
tions is a good extractor (or more generally that this family is δ-AU). Clearly
this is a more realistic assumption on the underlying compression function. On
the other hand, in order to prove a close-to-uniform output in this case we are
going to require a stronger assumption on the input distribution. Specifically, we
are going to assume that the distribution on every block of input has a high min-
entropy (e.g., 2k bits of min-entropy out of the b bits in the block), conditioned
on the distribution of the previous blocks. We prove below that under these
conditions the output of the cascade function is statistically close to uniform.

We note that the above requirement on the input distribution, while strin-
gent, is met in some important cases, such as applications that extract keys from
a Diffie-Hellman value computed over a high-entropy group. In particular, this
requirement is satisfied by the DH groups in use with the IKE protocol.

Conditional Entropy. Let X and Y be two probability distributions over
{0, 1}a and {0, 1}b respectively. If y ∈ {0, 1}b we denote with X|y the distribution
X conditioned to the event that the string y is selected according to Y. Then
we can define the conditional min-entropy of X|y (and denote it as H∞(X|y))
as the minimum integer m such that for all x ∈ {0, 1}a, PrX|y(x) ≤ 2−m.

We define the conditional min-entropy of X with respect to Y as the expec-
tation over Y of H∞(X|y): H∞(X|Y) =

∑

y∈{0,1}b PrY(y) · H∞(X|y).

8 For example, assume the inputs from the distribution X to be of length 1800 bits.
Given such an input x we prepend to it 248 ’0’s resulting in a 4-block string x′ =
0248 ‖ x. Now when this input is processed by, say, SHA-1 an additional fifth block
is added to x′. The important thing is that the last block of x′ receives as much
entropy from the last 512 bits of x as possible.

13

Lemma 6. Assume that the family of compression functions {fκ}κ∈K from b to
k bits has the property that for any probability distribution B defined over {0, 1}b

with min-entropy of m, the output distribution fκ(B), for κ∈R K and B ∈R B, is
ǫ-close to uniform (for some given ǫ = ǫ(b, k, m)). Further, assume that X is an
input distribution on L b-bit blocks with the property that for each i = 1, . . . , L,
the distribution Xi induced by X on the i-th block has conditional min-entropy m
with respect to the distribution induced by X on blocks 1, . . . , i − 1, and that Xi

Then, the cascade construction over the family {fκ} applied to the distribution
X is (L · ǫ)-close to uniform.

In particular, if we assume that the family {fκ} is (2−k + 2−2k)-AU and the
min-entropy of each input block (as defined above) is at least m = 2k, then we
get (using Lemma 2) a statistical distance between the cascade construction on
L blocks and the uniform distribution on {0, 1}k of at most L2−k/2.

Combining Lemmas 6 and 5 we get that, under the above assumption on
the input distribution, if the family of compression functions is both δ-AU and
pseudorandom then the output of the padded cascade (see Section 4.2) is pseu-
dorandom (i.e. indistinguishable from uniform).

5 HMAC Construction

We now turn to the study of HMAC [BCK96a] as a randomness extraction
family. HMAC (and its underlying family NMAC) is defined using the cascade
construction over a family of compression functions {fκ}κ∈K with domain {0, 1}b,
range {0, 1}k and K = {0, 1}k (as usual we denote K = 2k). The family of
functions NMAC uses two independent keys drawn from K and is defined over
{0, 1}∗ as NMACκ1,κ2(x) = fκ2(Fκ1(x)) where both x and the result from Fκ1(x)
are padded as described in Section 4.2. On the basis of NMAC one defines the
family HMAC as HMACκ1,κ2(x) = NMACκ′

1,κ′

2
(x) where κ′

1 = fiv(κ1⊕pad1) and
κ′

2 = fiv(κ2 ⊕ pad2), the value iv is fixed to the IV defined by the underlying
hash function, and pad1, pad2 are two different fixed strings of length b. The
analysis of HMAC is based on that of NMAC under the specialized assumption
that the keys κ′

1 and κ′
2 are “essentially independent”. We keep this assumption

and develop our analysis on NMAC. (The reason of this form of derivation of
the keys κ′

1, κ
′
2 in HMAC is to allow for the use, without modification, of the

underlying hash function; in particular, without having to replace the fixed IV
with a variable value.)

We start by observing that if one considers the family NMACκ1,κ2 as a δ-
AU family then we get δ > 2/K. This is so since for any two inputs x, y the
probability that NMAC sends both values to the same output is the sum of the
probability that Fκ1(x) = Fκ1(y) (which is at least 1/K) plus the probability
that Fκ1(x) 6= Fκ1(y) but fκ2 maps these two different results to the same value
(which is also at least 1/K). Therefore we cannot apply the results of Section 2
directly to the analysis of NMAC.

14

However, we provide three analyses, which, under different assumptions, es-
tablish the security of NMAC as a randomness extractor.

Dropping Some Output Bits. Specifically, we assume the “outer” function
fκ2 outputs k′ = k − c bits (e.g., in case fκ2 is a random function outputting
k bits, one can simply drop the last c bits and view it as a random function
outputting k′ bits). In this case, a straightforward application of Lemma 1
and Lemma 2 shows that if the family {Fκ1} is δ1-AU w.r.t. X and {fκ2} is
(1/2k′

+ δ2)-AU, then NMAC extracts k′ bits of statistical distance at most
√

2k′(Col(X) + δ1 + δ2) from uniform. Assuming now that both families con-
sist of random functions, then δ2 = 0 and Proposition 2 implies that δ1 ≤
L/K +O(Lǫ(L, K)). This means that if H∞(X) ≥ k, k′ < k− log L− 2 log(1/γ)
and L < 2k/4, then NMAC extracts k′ bits which are γ-close to uniform. In
fact, the same is true even if the outer function family {fκ2} is merely a good
extractor (e.g., if it is pairwise independent). In any case, we get that dropping
roughly (log L + 160) bits from the output of the NMAC construction makes it
a good extractor. To make this result meaningful, however, we must consider
compression functions whose key is non-trivially larger than 160 bits, such as
the compression function for SHA2-512.

Computational Security. Our second approach to analyzing NMAC is sim-
ilar to the analysis of the padded cascade from Lemma 5. We will present it in
the full version.

Modeling fκ2 as a Random Oracle. As we remarked, even if fκ2 is truly
random, the value fκ2(Fκ1(X)) cannot be statistically close to uniform, even
if Fκ1(X) was perfectly uniform. This was argued under an extremely strong
distinguisher that can evaluate f = fκ2 at all of its 2k inputs. This is different
from the typical modeling of f as a random oracle. Namely, in the random
oracle model it is assumed that the adversary can evaluate f at most a bounded
number of points, q ≪ 2k. This assumption can be seen as restrictive, but in fact
a realistic characterization of the adversary’s capabilities. Thus, we show that
when we model the outer function of NMAC, f , as a random oracle then the
construction is a good randomness extractor. We start by showing the general
result about the quality of using a random oracle f as an extractor, and then
apply it to the NMAC construction.

5.1 Random Oracle as An Extractor

In this section, we show that by utilizing the power of the random oracle to the
fullest, we can provide some provable guarantees on the quality of the random
oracle as a randomness extractor. Our precise modeling of the random oracle
f : {0, 1}b → {0, 1}k is the following. The adversary is allowed to adaptively
query the random oracle f at upto q points, and possibly make the distribution X
depend on these q queries. However, we assume that the remaining “unqueried”
(2b − q) values of f are chosen randomly and independently of X , and are never

15

given to the adversary.9 Finally, given a distribution X and a number q, we let
Wq(X) denote the probability mass of the q heaviest elements under X .

Lemma 7. Assume f is a random oracle from b bits to k bits, and the adversary
can evaluate f in at most q points. Then, for any distribution X on {0, 1}b,
the maximal probability the adversary can distinguish f(X) from the uniform
distribution over {0, 1}k is at most

Wq(X) ≤ min
(

q · 2−H∞(X),
√

q · Col(X)
)

(4)

Remark 2. We already remarked that no single function can be a universally
good extractor, which means that one has to use a function family instead,
indexed by some key κ. On the other hand, in the idealized random oracle
model, we manage to use a single random oracle f in Lemma 7. This is not
a contradiction since we critically assumed that the adversary cannot read the
entire description of the random oracle. In essence, the choice of the random
oracle f can be viewed as a key κ, but the distinguisher cannot read the entire
key (although it has a choice which parts of it to read) and therefore cannot
adversarially choose a bad distribution X . Put differently, in our analysis we
could assume that a large part of the key (i.e., f) is chosen independently of X ,
which is consistent with the conventional extractors such as those obtained by the
LHL. However, unlike the conventional extractors, we (restrictively) assume that
the adversary never learns the entire description of the key (i.e., the unqueried
parts of f), which allowed us to get a much stronger bound that what we could
get with the LHL. For example, LHL required Col(X) ≪ 2−k, while Lemma 7
only requires Col(X) ≪ 1/q.

We will also use the following Corollary of Eq. (4) and Lemma 1.

Corollary 1. If a family of functions {hκ}κ∈K is δ-almost universal w.r.t. X ,
f is a random oracle, U is the uniform distribution of {0, 1}k, and the adversary
can make at most q queries to the random oracle, then the maximal probabil-
ity the adversary can distinguish the pair (κ, f(hk(X))) from (κ, U) is at most
√

q · (Col(X) + δ).

The above corollary implies that the composition of a collision-resistant hash
function and a random oracle could be viewed as a relatively good extractor. This
is because a (computational) collision-resistant function must be (information-
theoretically) almost universal. More precisely, if a function family H = {hκ} is
collision-resistant with exact security δ against non-uniform adversaries running
in linear time, it must also be δ-almost universal. For uniform adversaries running
in time T , H must be δ-almost universal w.r.t. any X which is samplable in time
T/2.

9 We stress that this is very different from our modeling of a random function from
before, where the adversary first chooses the distribution X , after which f is chosen
at random (independently from X) and given to the adversary in its entirety.

16

Application to NMAC. We can now apply Corollary 1 to the case of NMAC
assuming that the outer function f = fκ2 is a random oracle which can be eval-
uated in at most q places. By Proposition 2, the family {Fκ1} is δ-AU when the
function family {fκ1} is chosen at random, for δ < (L + 1)/2k (when L < 2k/4).
Thus, Corollary 1 implies that NMAC extracts k bits which cannot be dis-
tinguished from random with probability more than

√

q(Col(X) + (L + 1)2−k),
which is negligible if q ≪ min[2H2(X), 2k/(L + 1)].

Acknowledgments. We thank David Wagner for valuable discussions.

References

[BST03] B. Barak, R. Shaltiel, and E. Tromer. True Random Number Generators
Secure in a Changing Environment. In CHESS ’03, pages 166–180, 2003.

[BCK96a] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Crypto ’96, pages 1–15, 1996. LNCS No. 1109.

[BCK96b] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom Functions Re-
visited: The Cascade Construction and Its Concrete Security. In Proc. 37th
FOCS, pages 514–523. IEEE, 1996.

[BKR94] M. Bellare, J. Kilian, and P. Rogaway. The Security of Cipher Block Chain-
ing. In Crypto ’94, pages 341–358, 1994. LNCS No. 839.

[CW79] L. Carter and M. N. Wegman. Universal Classes of Hash Functions. JCSS,
18(2):143–154, April 1979.

[Dam89] I. Damgard. A Design Principle for Hash Functions. In Crypto ’89, pages
416–427, 1989. LNCS No. 435.

[GKR04] R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over
Non-DDH Groups. In Eurocrypt ’04, 2004. LNCS No.

[Gol01] Oded Goldreich. Foundations of Cryptography. Cambridge University Press,
2001. Preliminary version http://philby.ucsd.edu/cryptolib.html/.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a
Pseudo-random Generator from any One-way Function. SIAM. J. Com-

puting, 28(4):1364–1396, 1999.
[IKEv2] IKEv2. Internet Key Exchange (IKEv2) Protocol, draft-ietf-ipsec-ikev2-

13.txt, (to be published as an RFC). Editor: C. Kaufman, March 2004.
[Kra03] H. Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated

Diffie-Hellman and Its Use in the IKE Protocols. In Crypto ’03, pages 400–
425, 2003. LNCS No. 2729.

[Lub96] Michael Luby. Pseudorandomness and Cryptographic Applications. Prince-
ton Computer Science Note, Princeton University Press, January 1996.

[RFC2409] RFC2409. The Internet Key Exchange (IKE). Editors: D. Harkins and D.
Carrel, Nov 1998.

[Sha02] R. Shaltiel. Recent developments in Extractors. Bulletin
of the European Association for Theoretical Computer Sci-
ence, Volume 77, June 2002, pages 67-95. Available at:
http://www.wisdom.weizmann.ac.il/˜ronens/papers/survey.ps

[Sti94] D. R. Stinson. Universal Hashing and Authentication Codes. Designs, Codes
and Cryptography 4 (1994), 369-380.

[WC81] M.N. Wegman and L. Carter. New Hash Functions and Their Use in Au-
thentication and Set Equality. JCSS, 22(3):265–279, July 1981.

17

