
A Cryptographic Solution to a Game Theoretic Problem

Yevgeniy Dodis� Shai Haleviy Tal Rabiny
Abstract

Although Game Theory and Cryptography seem to have some similar scenarios in common, it is very
rare to find instances where tools from one area are applied inthe other. In this work we use cryptography
to solve a game theoretic problem. The problem that we discuss arises naturally in the game theory area
of two-party strategic games. In these games there are two players. Each player decides on a “move”
(according to some strategy), and then the players execute the game, i.e. the two players make their
moves simultaneously. Once these moves are played each player receives a payoff, which depends on
both moves. Each player only cares to maximize its payoff.

In the game theory literature it was shown that higher payoffs can be achieved by the players if they
use correlated strategies. This is enabled through the introduction of a trusted third party (a “mediator”),
who assists the players in choosing their move. Though now the property of the game being atwo player
game is lost. It is natural to ask whether a game can exist which would be a two player game yet maintain
the high payoffs which the mediator aided strategy offered.

We answer this question affirmatively. We extend the game by adding an initial step in which the
two players communicate and then they proceed to execute thegame as usual. For this extended game
we can prove (informally speaking) the following: any correlated strategy for 2-player games can be
achieved, provided that the players are computationally bounded and can communicate before playing
the game.

We obtain an efficient solution to the above game-theoretic problem, by providing a cryptographic
protocol to the followingCorrelated Element Selectionproblem. Both Alice and Bob know a list of pairs(a1; b1) : : : (an; bn) (possibly with repetitions), and they want to pick arandomindexi such that Alice
learns onlyai and Bob learns onlybi. We believe that this problem has other applications, beyond our
application to game theory. Our solution is quite efficient:it has constant number of rounds, negligible
error probability, and uses only very simple zero-knowledge proofs.

The protocol that we describe in this work uses as a basic building block “blindable encryption
schemes” (such as ElGamal or Goldwasser-Micali). We note that such schemes seem to be a very useful
general primitive for constructing efficient protocols. Asan example, we show a simple1-out-of-n
oblivious transfer protocol based on any such encryption scheme.

Key words. Game theory, Nash equilibria, Correlated equilibria, Element selection, Correlated coins,
Coin Flipping, Blindable encryption, Oblivious transfer.

�Lab. of Computer Science, Massachusetts Institute of Technology, 545 Tech Square, Cambridge,
MA 02139, USA. Email:yevgen@theory.lcs.mit.edu.yIBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598, USA.
Email: fshaih,talrg@watson.ibm.com.

1 Introduction

The research areas of Game Theory and Cryptography are both extensively studied fields with many prob-
lems and solutions. Yet, the cross-over between them is surprisingly small: very rarely (if at all) are tools
from one area borrowed to address problems in the other. In this paper we exhibit the benefits which arise
in such a combined setting. Namely, we show how cryptographic tools can be used to address a natural
problem in the Game Theory world. We hope that this work will encourage greater synergy between these
classical fields.

1.1 Two Player Strategic Games

The game-theoretic problem that we consider in this work belongs to the general area oftwo player strategic
games, which is an important field in Game Theory (see [18, 30]). In the most basic notion of a two player
game, there are two players, each with a set of possible moves. The game itself consists of each player
choosing a move from its set, and then both players execute their moves simultaneously. The rules of the
game specify apayoff function for each player, which is computed on the two moves.Thus, the payoff of
each player depends both on its move and the move of the other player. Astrategyfor a player is a (possibly
randomized) method for choosing its move. The fundamental assumption of game theory is that each player
is selfish and rational, i.e. its sole objective is to maximize its (expected) payoff.

A pair of players’ strategies achieves anequilibrium when these strategies areself-enforcing, i.e. each
player’s strategy is anoptimal responseto the other player’s strategy. In other words, once a playerhas
chosen a move and believes that the other player will follow its strategy, its (expected) payoff will not
increase by changing this move. This notion was introduced in the classical work of Nash [29].

In a Nash equilibrium, each player chooses its moveindependentlyof the other player. (Hence, the
induced distribution over the pairs of moves is a product distribution.) Yet, Aumann [2] showed that in
many games, the players can achieve much higher expected payoffs, while preserving the “self-enforcement”
property, if their strategies arecorrelated(so the induced distribution over the pairs of moves is no longer
a product distribution). To actually implement such acorrelated equilibrium, the model of the game is
modified and a “trusted third party” (called amediator) is introduced. This mediator chooses the pair of
moves according to the right distributions and privately tells each player what its designated move is. Since
the strategies are correlated, the move of one player typically carries some information on the move of the
other player. In a Correlated equilibrium, no player has an incentive to deviate from its designated move,
even knowing this extra information about the other player’s move.

1.2 Removing the Mediator

As the game was intended for two players, it is natural to ask if correlated equilibria can be implemented
without the mediator. In the language of cryptography, we ask if we can design a two party game to eliminate
the trusted third party from the original game. It is well known that in the standard cryptographic models,
the answer is positive, provided that the two players can interact, that they are computationally bounded,
and assuming some standard hardness assumptions ([21, 32]). We show that this positive answer carries
over also to the Game Theory model. Specifically, we consideranextended game, in which the players first
exchange messages, and then they choose their moves and execute them simultaneously. (The payoffs are
still computed as a function of the moves, according to the same payoff function as in the original game.)
Also, we define acomputational Nash equilibriumas one where the strategies of both players are restricted
to probabilistic polynomial time. Then, we prove the following:

1

Theorem 1 If secure two-party protocols exist for non-trivial functions, then for any Correlated equilibriums of the original gameG, there exists an extended gameG0 with a computational Nash equilibrium�, such
that the payoffs for both players are the same in� ands.

In other words, any Correlated equilibrium payoffs ofG can be achieved using a computational Nash
equilibrium ofG0. Thus, the mediator can be avoided if the players are computationally bounded and can
communicate prior to the game.

We stress that although this theorem is quite natural from a cryptography point of view, the models
of Game Theory and Cryptography are different, thus provingit in the Game Theory framework requires
some care. In particular, two-party cryptographic protocols always assume that at least one player is honest,
while the other player could be arbitrarily malicious. In the game-theoretic setting, on the other hand,both
players are selfish and rational: they (certainly) deviate from the protocol if they benefit from it, and (can
be assumed to) follow their protocol otherwise. Also, it is important to realize that in this setting we cannot
use cryptography to “enforce” honest behavior. The only thing that the players are able to do is to choose
their moves and execute them at the end of the game. Hence, even the most elaborate protocol would be
useless if a “cheating player” can simply ignore the fact that it was “caught cheating” during the protocol,
and nonetheless choose a move that maximizes its profit. We discuss these issues further in Section 3.

1.3 Doing it Efficiently

Although the assumption of Theorem 1 can be proven using tools of generic two-party computations [21,
32], it would be nice to obtain extended games (i.e. protocols) which are more efficient than the generic ones.
In Section 4 we observe that for many cases, the underlying cryptographic problem reduces to a problem
which we callCorrelated Element Selection. We believe that this natural problem has other cryptographic
application and is of independent interest. In this problem, two players,A andB, know a list of pairs(a1; b1); : : : ; (an; bn) (maybe with repetitions), and they need to jointly choose a random indexi, so that
playerA only learns the valueai and playerB only learns the valuebi.1

We therefore dedicate a part of the paper to presenting an efficient cryptographic solution to the Correlat-
ed Element Selection problem. Our final protocol is very intuitive, has constant number of rounds, negligible
error probability, and uses only very simple zero-knowledge proofs. We note that some of our techniques
(in particular, the zero-knowledge proofs) are similar to those used for mixing networks (see [1, 24] and the
references therein), even though our usage and motivation are quite different.

Our protocol for Correlated Element Selection uses as a toolblindable encryption(which can be viewed
as a counterpart of blindable signatures [9]). Stated roughly, blindable encryption is the following: given
an encryption of an (unknown) messagem, and an additional messagem0, a random encryption ofm +m0 can be easily computed. This should be done without knowingm or the secret key. Examples of
semantically secure blindable encryption schemes (under appropriate assumptions) include Goldwasser-
Micali [22], ElGamal [16] and Benaloh [5]. (In fact, for our Correlated Element Selection protocol, it is
sufficient to use a weaker notion of blindability, such as theone in [31].) Aside from our main application,
we also observe that blindable encryption appears to be a very convenient tool for devising efficient two-
party protocols and suggest that it might be used more often.To demonstrate that, we show in Appendix C a
very simple protocol to achieve1-out-of-n Oblivious Transfer(

�n1�-OT) protocol from any secure blindable
encryption scheme.2

1A special case of Correlated Element Selection whenai = bi is just the standardcoin-flippingproblem [7]. However, this is
a degenerate case of the problem, since it requires no secrecy. In particular, none of the previous coin-flipping protocols seem to
extend to solve our problem.

2It is known that oblivious transfer is complete for two-party secure computation [14, 26], hence blindable encryption schemes
are sufficient for secure two-party computation.

2

1.4 Related Work

Game Theory. Realizing the advantages of removing the mediator, variouspapers in the Game Theory
community have been published to try and achieve this goal. Barany [3] substitutes the trusted mediator
with four (potentially untrusted) players. These players (two of which were the actual players who needed
to play the game) distributively (and privately) computed the moves for the two active players. This protocol
works in an information-theoretic setting (which explainsthe need for four players; see [6]). Of course, if
one is willing to use a group of players to simulate the mediator, then the general multiparty computation
tools (e.g. [6, 11]) can also be used, even though the solution of [3] is simpler and more efficient. The work
of Lehrer and Sorin [25] describes protocols that “reduce” the role of the mediator (the mediator in this
protocol computes some function on values which the playerschose).

Cryptography. We already mentioned the relation of our work to generic two-party secure computations
[21, 32], and to mix-networks [1, 24]. Additionally, encryption schemes with various “blinding properties”
were used for many different purposes, including among others for secure storage [19], and secure circuit
evaluations [31].

2 Background in Game Theory

Two-player Games. Although our results apply to a much larger class of two-player games3, we demon-
strate them on the simplest possible class of finitestrategic games(with perfect information). Such a gameG has two players1 and 2, each of whom has a finite setAi of possibleactionsand apayoff functionui : A1 � A2 7! R (i = 1; 2), known to both players. The players move simultaneously, each choosing an
actionai 2 Ai. Thepayoffof playeri is ui(a1; a2). The (probabilistic) algorithm that tells playeri which
action to take is called itsstrategy, and a pair of strategies is called astrategy profile. In our case, a strategysi of playeri is simply a probability distribution over its actionsAi, and a strategy profiles = (s1; s2) is
a probability distribution overA1 � A2. Game Theory assumes that each player isselfish and rational, i.e.
only cares about maximizing its (expected) payoff. As a result, we are interested in strategy profiles that
areself-enforcing. In other words, even knowing the strategy of the other player, each player still has no
incentive to deviate from its own strategy. Such a strategy profile is called anequilibrium.

Nash equilibrium. This is the best known notion of an equilibrium [29]. It corresponds to a strategy
profile in which players’ strategies areindependent. More precisely, the induced distribution over the pairs
of actions, must be a product distribution,s(A1�A2) = s1(A1)�s2(A2). Deterministic (orpure) strategies
are a special case of such strategies, wheresi assigns probability 1 to some action. For strategiess1 ands2,
we denote byui(s1; s2) theexpectedpayoff for playeri when players independently follows1 ands2.
Definition 1 A Nash equilibriumof a gameG is an independent strategy profile(s�1; s�2), such that for anya1 2 A1, a2 2 A2, we haveu1(s�1; s�2) � u1(a1; s�2) andu2(s�1; s�2) � u2(s�1; a2).
In other words, given that player2 follows s�2, s�1 is an optimal response of player1 and vice versa.

Correlated equilibrium. While Nash equilibrium is quite a natural and appealing notion (since players
can follow their strategies independently of each other), one can wonder if it is possible to achieve higher
expected payoffs if one allowscorrelatedstrategies.

3For example,extensive games with perfect information and simultaneousmoves, see [30].

3

In a correlated strategy profile [2], the induced distribution overA1�A2 can be an arbitrary distribution,
not necessarily a product distribution. This can be implemented by having a trusted party (calledmediator)
sample a pair of actions(a1; a2) according to somejoint probability distributions(A1 � A2), and “recom-
mend” the actionai to playeri. We stress that knowingai, playeri now knows aconditional distribution
over the actions of the other player (which can be different for differentai’s), but knowsnothing more. We
denote these distributions bys2(� j a1) ands1(� j a2).

For anya01 2 A1; a02 2 A2, letu1(a01; s2 j a1) be the expected value ofu1(a01; a2) whena2 is distributed
according tos2(� j a1) (similarly for u2(s1; a02 j a2)). In other words,u1(a01; s2 j a1) measures the expected
payoff of player 1 if his recommended action wasa1 (thus,a2 is distributed according tos2(� j a1)), but it
decided to playa01 instead. As before, we letui(s) be the expected value ofui(a1; a2) when(a1; a2) are
drawn according tos.

Similarly to the notion of Nash equilibrium, we now define aCorrelated equilibrium, which ensures that
players have no incentive to deviate from the “recommendation” they got from the mediator.

Definition 2 A Correlated equilibriumis a strategy profiles� = s�(A1 � A2) = (s�1; s�2), such that for any(a�1; a�2) in the support ofs�, and anya1 2 A1 anda2 2 A2, we haveu1(a�1; s�2 j a�1) � u1(a1; s�2 j a�1) andu2(s�1; a�2 j a�2) � u2(s�1; a2 j a�2).
Given Nash (resp. Correlated) equilibrium(s�1; s�2), we say that(s�1; s�2) achievesNash (resp. Correlated)
equilibrium payoffs[u1(s�1; s�2); u2(s�1; s�2)℄.

It is known that Correlated equilibria can give equilibriumpayoffsoutside(and better!) than anything in
the convex hull of Nash equilibria payoffs, as demonstratedin the following simple example first observed
by Aumann [2], who also defined the notion of Correlated equilibrium.

C D
C 4,4 1,5
D 5,1 0,0

“Chicken”

C D
C 1/4 1/4
D 1/4 1/4
Mixed Nash

C D
C 1/3 1/3
D 1/3 0

Correlated

Game of “Chicken”. We consider a simple2 � 2 game, the so called game of
“Chicken” shown in the table to the right (much more dramaticexamples can be
shown in larger games). Here each player can either “dare” (D) or “chicken out”
(C). The combination(D;D) has a devastating effect on both players (payoffs[0; 0℄),(C;C) is quite good (payoffs[4; 4℄), while each player would ideally prefer to dare
while the other chickens-out (giving him5 and the opponent1). While the “wis-
est” pair of actions is(C;C), this is not a Nash equilibrium, since both players
are willing to deviate toD (believing that the other player will stay atC). The
game is easily seen to have three Nash equilibria:s1 = (D;C), s2 = (C;D) ands3 = (12 � D + 12 � C; 12 � D + 12 � C). The respective Nash equilibrium payoffs
are [5; 1℄, [1; 5℄ and [52 ; 52 ℄. We see that the first two pure strategy Nash equilibria
are “unfair”, while the last mixed equilibrium has small payoffs, since the mutually
undesirable outcome(D;D) happens with non-zero probability in the product distri-
bution. The best “fair” equilibrium in the convex hull of theNash equilibria is the
combination12s1 + 12s2 = (12 (C;D) + 12(D;C)), yielding payoffs[3; 3℄. On the other hand, the profiles� = (13 (C;D)+ 13(D;C)+ 13(C;C)) is a correlated equilibrium, yielding payoffs[313 ; 313 ℄, which is better
than any convex combination of Nash equilibria.

To briefly see it, consider the “row player”1 (same works for player2). If it is recommended to playC,
its expected payoff is12 � 4 + 12 � 1 = 52 since, conditioned ona1 = C, player2 is recommended to playC
andD with probability 12 each. If player1 switched toD, its expected payoff would still be12 �5+ 12 �0 = 52 ,
making player1 reluctant to switch. Similarly, if player1 is recommendedD, it knows that player2 playsC (as(D;D) is never played ins�), so its payoff is5. Since this is the maximum payoff of the game, player1 would not benefit by switching toC in this case. Thus, we indeed have a Correlated equilibrium,where
each player’s payoff is13(1 + 5 + 4) = 313 , as claimed.

4

3 Removing the Mediator

In this section we show how to remove the mediator using cryptographic means. We assume the existence
of generic secure two-party protocols and show how to achieve our goal by using such protocols in the
game-theoretic(rather than its designated cryptographic) setting. In other words, the players remain self-
ish and rational, even when running the cryptographic protocol. In Section 4 we give a specific efficient
implementation for the types of cryptographic protocols that we need.

Extended Games. To remove the mediator, we assume that the players are (1) computationally bound-
ed and (2) can communicate prior to playing the original game, which we believe are quite natural and
minimalistic assumptions. To formally define the computational power of the players, we introduce an ex-
ternal security parameter into the game, and require that the strategies of both players can be computed in
probabilistic polynomial time in the security parameter.4

To incorporate communication into the game, we consider anextended game, which is composed of three
parts: first the players are given the security parameter andthey freely exchange messages (i.e., execute any
two-party protocol), then each player locally selects its move, and finally both players execute their move
simultaneously.5 The final payoffsu0i of the extended game are just the corresponding payoffs of the original
game applied to players’ simultaneous moves at the last step.

The notions of a strategy and a strategy profile are straightforwardly generalized from those of the basic
game. Similarly to the notion of a Nash equilibrium, we definethe notion of acomputational Nash equi-
librium of the extended game, where the strategies of both players are restricted to probabilistic polynomial
time. Also, since we are talking about a computational model, the definition must account for the fact that
the players may break the underlying cryptographic scheme with negligible probability (e.g., by guessing
the secret key), thus gaining some advantage in the game.

Definition 3 A computational Nash equilibriumof an extended gameG is an independent strategy profile(s�1; s�2), such that
(a) boths�1, s�2 are PPT computable; and
(b) for any other PPT computable strategiess01; s02 there exists a negligible function� such that on security
parameterk, we haveu1(s01; s�2) � u1(s�1; s�2) + �(k) andu2(s�1; s02) � u2(s�1; s�2) + �(k).

The idea of getting rid of the mediator is now very simple. Consider a Correlated equilibriums(A1�A2)
of the original gameG. Recall that the job of the mediator is to sample a pair of actions(a1; a2) according
to the distributions, and to giveai to playeri. We can view the mediator as a trusted party who securely
computes a probabilistic (polynomial-time) functions. Thus, to remove it we can have the two players
execute a cryptographic protocolP that securely computes the functions. The strategy of each player
would be to follow the protocolP , and then play the actiona that it got fromP .

Yet, several issues have to be addressed in order to make thisidea work. First, the above description does
not completely specify the strategies of the players. A fullspecification of a strategy must also indicate what
a player should do if the other playerdeviatesfrom its strategy (in our case, does not follow the protocolP). While cryptography does not address this question, it is crucial to resolve it in our setting, since “the
game must go on”: No matter what happens insideP , both players eventually have to take simultaneous
actions, and receive the corresponding payoffs (which theywish to maximize). Hence we must explain how
to implement a “punishment for deviation” within the game-theoretic framework.

4Note that the parameters of the original game (like the payoff functions, the correlated equilibrium distribution, etc.) are all
independent of the security parameter, and thus can always be computed “in constant time”.

5The notion of an extended game is a special case of the well-studied notion of an extensive games see [30].

5

Punishment for Deviations. We employ the standard game-theoretic solution, which is topunish the
cheating player to hisminimax level. This is the smallest payoff that one player can “force” the other player
to have. Namely, the minimax level of player2 is v2 = mins1 maxs2 u2(s1; s2). Similarly, minimax level
of player 1 is v1 = mins2 maxs1 u1(s1; s2). To complete the description of our proposed equilibrium,
we let each player punish the other player to its minimax level, if the other player deviates fromP (and
is “caught”). Namely, if player 2 cheats, player 1 will play in the last stage of the game the strategys1
achieving the minimax payoffv2 for player2 and vice versa. First, we observe the following simple fact:

Lemma 1 Let [v1; v2℄ be the payoffs achieved by Correlated equilibriums�. Then,vi � vi.
Proof: Consider player1. Let s�2 be the marginal strategy of player2 in the Correlated equilibriums�, and
let s01 be the best (independent) response of player1 to s�2. (The strategys01 can be thought of as what player
1 should do if it knows that player 2 plays according tos�2, but it did not get any “recommendation” from
the mediator.)

Sinces� is a Correlated equilibrium, it follows thatv1 � u1(s01; s�2), since a particular deviation of player1 from the correlated equilibrium is to “ignore” its recommendation and always plays01, and we know that
no such deviation can increase the payoff of player 1. Also, recall thats01 is the best (independent) strategy
in response tos�2, so we haveu1(s01; s�2) = maxs1 u1(s1; s�2). Hence we getv1 � u1(s01; s�2) = maxs1 u1(s1; s�2) � mins2 maxs1 u1(s1; s2) = v1:
The same holds for player 2.

We are now ready to prove Theorem 1, which we recall from the introduction:

Theorem 1 If secure two-party protocols exist for non-trivial functions, then for any Correlated equilib-
rium s of the original gameG, there exists an extended gameG0 with a computational Nash equilibrium�,
such that the payoffs for both players are the same in� ands.
Proof: (sketch) The extended gameG0 is the gameG, preceeded with a cryptographic protocolP for
securely computing the functions. (Such protocol exists by our assumption.) The computational Nash
equilibrium� consists of both players following their part in the protocol P , and executing the moves that
they got from this protocol.

Clearly, this strategy achieves the same payoffs[v1; v2℄ as the original correlated equilibrium. We only
need to show that it is a computational Nash equilibrium. Indeed, if playeri believes that the other player
follows its designated strategy (i.e., behaves honestly inthe protocolP), then the correctness ofP implies
that the probability of the this player “cheating without getting caught” is negligibly small. If we denote this
probability of cheating by�(k), and denote the highest payoff that playeri can get in the original game byvi, then the expected payoff of a strategy that includes cheating inP is at most�(k)vi + (1� �(k))vi = vi + �(k)(vi � vi)� (1� �(k))(vi � vi) � vi + �(k)(vi � vi)
where the inequality follows from Lemma 1. Sincevi � vi is just some constant which does not depend onk, this is at most negligibly larger thanvi. (We notice that a particular type of cheating (in the cryptographic
setting) is early stopping. Since the extended game must always result in players getting payoffs, stopping
is not an issue in game theory, since it will be punished by theminimax level as well.)

Finally, if no player has cheated inP , the privacy ofP implies that we achieved exactly the same effects
as with the mediator: each player only learns its move, does not learn anything about the other player’s move
except for what is implied by its move (and possibly except for a negligible additional advantage). Sinces
is a Correlated equilibrium, both players will indeed take the action they outputted inP .

6

A few remarks are in order: first, since the extended game produces some distribution over the moves
of the players, then any Nash equilibrium payoffs achievable in the extended game are also achievable as
Correlated equilibrium payoffs of the original game. Thus,Theorem 1 is the best possible result we could
hope for.6

Also, one question that may come to mind is why would a player want to carry out a “minimax pun-
ishment” when it catches the other player cheating (since this “punishment” may also hurt the “punishing
player”). However, the notion of Nash equilibrium only requires player’s actions to be optimalprovided the
other player follows its strategy. Thus, it is acceptable to carry out the punishment even if this results in a
loss forbothplayers. (“the cheating player should have been rational and should not have cheated in the first
place”). We note that this oddity (known as an “empty threat”in the game-theoretic literature) is not just a
feature of our solution, but rather an inherent weakness of the notion of Nash equilibrium.

4 The Correlated Element Selection Problem

In most common games, the joint strategy of the players is described by a short list of pairsf(move1;move2)g,
where the strategy is to choose at random one pair from this list, and have Player 1 playmove1 and Player 2
playmove2. (For example, in the game of chicken the list consists of three pairsf(D;C); (C;D); (C;C)g.)7

Hence, to obtain an efficient solution for such games, we needan efficient cryptographic protocol for
the following problem: Two players,A andB, know a list of pairs(a1; b1); : : : ; (an; bn) (maybe with
repetitions), and they need to jointly choose a random indexi, and have playerA learn only the valueai and
playerB learn only the valuebi. We call this problem theCorrelated Element Selectionproblem. In this
section we describe our efficient solution for this problem.We start by presenting some notations and tools
that we use (in particular, “blindable encryption schemes”). We then show a simple protocol that solves this
problem in the special case where the two players are “honestbut curious”, and explain how to modify this
protocol to handle the general case where the players can be malicious.

4.1 Notations and Tools

We denote by[n℄ the setf1; 2; : : : ng. For a randomized algorithmA and an inputx, we denote byA(x)
the output distribution ofA on x, and byA(x; r) we denote the output string when using the randomnessr. If one of the inputs toA is considered a “key”, then we write it as a subscript (e.g.,Ak(x)). We usepk; pk1; pk2; : : : to denote public keys andsk; sk1; sk2; : : : to denote secret keys.

The main tool that we use in our protocol isblindable encryption schemes. Like all public key encryption
schemes, blindable encryption schemes include algorithmsfor key-generation, encryption and decryption.
In addition they also have a “blinding” and “combining” algorithms. We denote these algorithms byGen,En, De, Blind, andCombine, respectively. Below we formally define the blinding and combing func-
tions. In this definition we assume that the message spaceM forms a group (which we denote as an additive
group with identity0).

Definition 4 (Blindable encryption) A public key encryption schemeE is blindable if there exist (PPT)
algorithms Blind and Combine such that for every messagem and every ciphertext 2 Enpk(m):� For any messagem0 (also referred to as the “blinding factor”),Blindpk(;m0) produces arandom

encryption ofm +m0. Namely, the distributionBlindpk(;m0) should be equal to the distribution
6For example, there is no way to enforce the “desirable” outcome (C;C) in the Game of “Chicken”, no matter which crypto-

graphic protocols we design. Indeed, both players will wantto deviate toD before making their final moves.
7Choosing from the list with distribution other than the uniform can be accommodated by having a list with repetitions, where

a high-probability pair appears many times.

7

Enpk(m+m0). Enpk(m+m0) � Blindpk(;m0) (1)� If r1; r2 are the random coins used by two successive “blindings”, then for any two blinding factorsm1;m2,Blindpk(Blindpk(;m1; r1);m2; r2) = Blindpk(;m1 +m2; Combinepk(r1; r2)) (2)

Thus, in a blindable encryption scheme anyone can “randomlytranslate” the encryption of m into an
encryption ofm+m0, without knowledge ofm or the secret key, and there is an efficient way of “combining”
several blindings into one operation.

Both the ElGamal and the Goldwasser-Micali encryption schemes can be extended into blindable en-
cryption schemes. We note that most of the components of our solution are independent of the specific
underlying blindable encryption scheme, but there are someaspects that still have to be tailored to each
scheme. (Specifically, proving that the key generation process was done correctly is handled differently
for different schemes. See Section 4.4). The reader is referred to Section B for further discussion of the
blindable encryption primitive.

4.2 A Protocol for the Honest-but-Curious Case

Let us recall the Correlated Element Selection problem. Twoplayers share a public list of pairsf(ai; bi)gni=1.
For reasons that will soon become clear, we call the two players the “Preparer” (P) and the “Chooser” (C).
The players wish to pick a random indexi such thatP only learnsai andC only learnsbi.

Figure 1 describes the Correlated Element Selection protocol for the honest-but-curious players. We
employ a semantically secure blindable encryption scheme and for simplicity, we assume that the keys for
this scheme were chosen by a trusted party ahead of time and given toP , and that the public key was also
given toC. We briefly discuss some key generation issues in Section 4.4.

The protocol is very simple: First the Preparer randomly permutes the list, encrypts it element-wise and
sends the resulting list to the Chooser. (Since the encryption is semantically secure, the Chooser “cannot
extract any useful information” about the permutation�.) The Chooser picks a random pair of ciphertexts(`; d`) from the permuted list (so the final output pair will be the decryption of these ciphertexts). It then
blinds ` with 0 (i.e. makes a random encryption of the same plaintext), blindsd` with a random blinding
factor�, and sends the resulting pair of ciphertexts(e; f) back to the Preparer. Decryption ofe gives the
Preparer its elementa (and nothing more, sincee is arandomencryption ofa after the blinding with0), while
the decryption~b of f does not convey the value of the actual encrypted message since it was blinded with a
random blinding factor. The Preparer sends~b to the Chooser, who recovers his elementb by subtracting the
blinding factor�.

It is easy to show that if both players follow the protocol then their output is indeed a random pair(ai; bi)
from the known list. Moreover, at the end of the protocol the Preparer has no information aboutb other than
what’s implied by its own outputa, and the Chooser gets “computationally no information” about a other
than what’s implied byb. Hence we have:

Theorem 2 Protocol CES-1 securely computes the (randomized) function of the Correlated Element Se-
lection problem in the honest-but-curious model.

Proof omitted.

8

Protocol CES-1
Common inputs: List of pairsf(ai; bi)gni=1, public keypk.
Preparer knows: secret keysk.P : 1. Permute and Encrypt.

Pick a random permutation� over[n℄.
Let (i; di) = (Enpk(a�(i)); Enpk(b�(i))), for all i 2 [n℄.
Send the listf(i; di)gni=1 toC.C : 2. Choose and Blind.
Pick a random index̀ 2 [n℄, and a random blinding factor�.
Let (e; f) = (Blindpk(`; 0); Blindpk(d`; �)).
Send(e; f) to P .P : 3. Decrypt and Output.
Seta = Desk(e), ~b = Desk(f). Outputa.
Send~b toC.C : 4. Unblind and Output.
Setb = ~b� �. Outputb.

Figure 1: Protocol for Correlated Element Selection in the honest-but-curious model.

4.3 Dealing with Dishonest Players

Generic transformation. Following the common practice in the design of secure protocols, one can mod-
ify the above protocol to deal with dishonest players by adding appropriate zero-knowledge proofs. That is,
after each flow of the original protocol, the corresponding player proves in zero knowledge that it indeed
followed its prescribed protocol: After Step 1, the Preparer proves that it knows the permutation� that was
used to permute the list. After Step 2 the Chooser proves thatit knows the index̀ and the blinding factor
that was used to produce the pair(e; f). Finally, after Step 3 the Preparer proves that the plaintext ~b is
indeed the decryption of the ciphertextf . Given these zero-knowledge proofs, one can appeal to general
theorems about secure two-party protocols, and prove that the resulting protocol is secure in the general case
of potentially malicious players.

We note that the zero-knowledge proofs that are involved in this protocol can be made very efficient, so
even this “generic” protocol is quite efficient (these are essentially the same proofs that are used for mix-
networks in [1], see Appendix A). However, a closer look reveals that one does not need all the power of
the generic transformation, and the protocol can be optimized in several ways.

Proof of proper decryption. To withstand malicious players, the PreparerP must “prove” that the ele-
ment~b that it send in Step 3 ofCES-1 is a proper decryption of the ciphertextf . However, this can be
done in a straightforward manner without requiring zero-knowledge proofs. Indeed, the Preparer can reveal
additional information (such as the randomness used in the encryption off), as long as this extra informa-
tion does not compromise the semantic security of the ciphertext e. The problem is thatP may not be able
to compute the randomness of the blinded valuef (for example, in ElGamal encryption this would require
computation of discrete log). Hence, we need to device a different method to enable the proof.

9

The proof will go as follows: for eachi 2 [n℄, the Preparer sends the elementb�(i) and corresponding
random string that was used to obtain ciphertextsdi in the first step. The Chooser can then check that the
elementd` that it chose in Step 2 was encrypted correctly, and learn thecorresponding plaintext.

Clearly, in this protocol the Chooser gets more informationthan just the decryption off (specifically, it
gets the decryption of all thedi’s). However, this does not effect the security of the protocol, as the Chooser
now sees a decryption of a permutation of list that he knew at the onset of the protocol. This permutation of
the allbi’s does not give any information about the output of the Preparer, other than what is implied by its
outputb. In particular, notice that ifb appears more than once in the list, then the Chooser does not know
which of these occurrences was encrypted byd`.

Next, we observe that after the above change there is no need for the Chooser to sendf to the Preparer;
it is sufficient ifC sends onlye in Step 2, since it can compute the decryption ofd` by itself.

A weaker condition in the second proof-of-knowledge. Finally, we observe that since the security of the
Chooser relies on an information-theoretic argument, the second proof-of-knowledge (in which the Chooser
proves that it knows the index̀) does not have to be fully zero-knowledge. In fact, tracing through the proof
of security, one can verify that it is sufficient for this proof to be witness hidingin the sense of Feige and
Shamir [17]. The resulting protocol is described in Figure 2.

Remark. Notice that for the modified protocol we did not use the full power of blindable encryption, since
we only used “blindings” by zero. Namely, all that was used inthese protocols is that we can transform any
ciphertext into a randomencryption of the same plaintext. (The zero-knowledge proofs also use only
“blindings” by zero.) This is exactly the “random self-reducibility” property used by Sander et al. [31].

4.4 Key Generation Issues

In the protocols above we assumed that the encryption keys were chosen in an appropriate way ahead of
time (say, by a trusted party). If we want to include the key generation as part of the protocols themselves
(i.e., have the Preparer choose them and send the public keysto the Chooser in Step 1), we must ensure that
the Preparer doesn’t choose “bad keys”.

A generic way to solve this problem is to have the Preparer prove in zero knowledge that it followed
the key generation algorithm. We note, however, that for ourapplication this is an overkill. Indeed, the
security of the Chooser does not depend on the “hiding” properties of the encryption scheme. What the
Chooser needs to verify is that this is a committing encryption (so that the Preparer cannot “open” the
list of dj ’s in more than one way), and that the output of the blinding operation is independent of which
ciphertext of a given message was used as an input (i.e., thatfor all m and1; 2 2 Enpk(m), it holds thatBlindpk(1; 0) � Blindpk(2; 0)).

If we use ElGamal encryption to implement the blindable encryption, then checking these conditions is
easy (assuming that the factorization ofp � 1 is known, wherep is the modulus used for the encryption).
For the Goldwasser-Micali encryption, the first property requires proving that a given elementy (y = �1 in
the case of a Blum integerN) is a quadratic non-residue modN (which can be done quite efficiently [23]),
while the second property is automatically satisfied.

4.5 Putting It All Together

We now finally described all the components of our solution. Let us quickly re-cap everything and consider
the efficiency of the protocol.

10

Protocol CES-2
Common inputs: List of pairsf(ai; bi)gni=1, public keypk.
Preparer knows: secret keysk.P : 1. Permute and Encrypt.

Pick a random permutation� over[n℄, and random stringsf(ri; si)gni=1.
Let (i; di) = (Enpk(a�(i); r�(i)); Enpk(b�(i); s�(i))), for all i 2 [n℄.
Sendf(i; di)gni=1 toC.

Sub-protocol�1: P proves in zero-knowledge that it knows the randomnessf(ri; si)gni=1 and permutation� that were used to obtain the listf(i; di)gni=1.C : 2. Choose and Blind.
Pick a random index̀ 2 [n℄.
Send toP the ciphertexte = Blindpk(`; 0).
Sub-protocol�2: C proves in a witness-hiding manner that it knows
the randomness and index` that were used to obtaine.P : 3. Decrypt and Output.
Seta = Desk(e). Outputa.
Send toC the list of pairsf(b�(i); s�(i))gni=1 (in this order).C : 4. Verify and Output .
Denote by(b; s) the`’th entry in this lists (i.e.,(b; s) = (b�(`); s�(`))).
If d` = Enpk(b; s) then outputb.

Figure 2: Protocol for Correlated Element Selection.

0. Initially, the Preparer chooses the keys for the blindable encryption scheme, sends the public key to
the Chooser and proves in zero-knowledge that the encryption is committing and has the blinding
property. As we said above, this proof must be tailored to theparticular encryption scheme that is
used. Also, this step can be carried out only once, and the resulting keys can be used for many
instances of the protocol. (Alternatively, we can use a trusted third party for this step.)

1. The Preparer encrypts the known listf(ai; bi)gni=1 in some “canonical” manner, blinds with zero
the list of ciphertexts, and permutes it with a random permutation �. It sends the resulting listsf(i; di)gni=1 to the Chooser, and uses theELC protocol to prove in zero-knowledge that it knows the
permutation that was used.

2. The Chooser blinds with zeros the list ofi’s, and re-permutes it with a random permutation�. It
sends the resulting listfeigni=1 to the Prover, and again uses theELC protocol to prove that it knows
the permutation that was used. Here we can optimize the proofsomewhat, since we later only usee1,
and also because the proof only needs to be witness hiding.

3. The Preparer decrypts the first ciphertexte1, and outputs the corresponding plaintexta.

11

It also sends to the Chooser the list of thebi’s, permuted according to�, together with the randomness
that was used to blind their “canonical encryption” to get thedi’s in Step 1.

4. The ChooserC sets` = ��1(1), and letsb; s denote thè ’th element and randomness, respectively,
in the last list that it got from the Preparer. He checks that blinding with zero (and randomnesss) of
the “canonical encryption” ofb indeed yields the ciphertextd`. If this is correct,C outputsb.

Although we can no longer use the general theorems about secure two-party protocols, the security proof
is nonetheless quite standard. Specifically, we can prove:

Theorem 3 Protocol CES-2 securely computes the (randomized) function of the Correlated Element Se-
lection problem.

Proof omitted.

Efficiency. We note that all the protocols that are involved are quite simple. In terms of number of com-
munication flows, the key generation step (Step 0 above) takes at most five flows, Step 1 takes five flows,
Step 2 takes three flows and Step 3 consists of just one flow. Moreover, these flows can be piggybacked on
each other. Hence, we can implement the protocol with only five flows of communication, which is equal
to the five steps which are required by a single proof. In termsof number of operations, the complexity of
the protocol is dominated by the complexity of the proofs in Steps 1 and 2. The proof in Step 1 requiresnk blinding operations (for a list of sizen and security parameterk), and the proof of Step 2 can be opti-
mized to aboutnk=2 blinding operations on the average. Hence, the whole protocol has about32nk blinding
operations.8

5 Epilogue: Cryptography and Game Theory

An interesting aspect of our work is the synergy achieved between cryptographic solutions and the game-
theory world. Notice that by implementing our cryptographic solution in the game-theory setting, we gain
on the game-theory front (by eliminating the need for a mediator), but we also gain on the cryptography
front (for example, in that we eliminate the problem of earlystopping). In principle, it may be possible
to make stronger use of the game theory setting to achieve improved solutions. For example, maybe it is
possible to prove that in the context of certain games, a player does not have an incentive to deviate from its
protocol, and so in this context there is no point in asking this player to prove that it behaves honestly (so
we can eliminate some zero-knowledge proofs that would otherwise be required).

More generally, it may be the case that working in a model in which “we know what the players are
up to” can simplify the design of secure protocols. It is a very interesting open problem to find interesting
examples that would demonstrate such phenomena.

References

[1] M. Abe. Universally Verifiable Mix-net with VerificationWork Independent on the number of Mix-
centers. InProceedings of EUROCRYPT ’98, pp. 437-447, 1998.

8We note that the protocol includes just a single decryption operation, in Step 3. In schemes where encryption is much more
efficient than decryption – such as the Goldwasser-Micali encryption – this may have a significant impact on the performance of
the protocol.

12

[2] R. Aumann. Subjectivity and Correlation in Randomized Strategies. InJournal of Mathematical
Economics, 1, pp. 67-95, 1974

[3] I. Barany. Fair distribution protocols or how the players replace fortune.Mathematics of Operations
Research, 17(2):327–340, May 1992.

[4] M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower the error in computationally
sound protocols? In38th Annual Symposium on Foundations of Computer Science, pages 374–383.
IEEE, 1997.

[5] J. Benaloh. Dense Probabilistic Encryption. InProc. of the Workshop on Selected Areas in Cryptog-
raphy, pp. 120-128, 1994.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. InProceedings of the 20th Annual ACM Symposium on Theory of
Computing, pages 1–10, 1988.

[7] M. Blum. Coin flipping by telephone: A protocol for solving impossible problems. InAdvances in
Cryptology – CRYPTO ’81. ECE Report 82-04, ECE Dept., UCSB, 1982.

[8] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.JCSS, 37(2):156–
189, 1988.

[9] D. Chaum. Blind signatures for untraceable payment. InAdvances in Cryptology – CRYPTO ’82,
pages 199–203. Plenum Press, 1982.

[10] D. Chaum and H. Van Antwerpen. Undeniable signatures. In G. Brassard, editor,Advances in Cryptol-
ogy — Crypto’89, pages 212–217, Berlin, 1989. Springer-Verlag. Lecture Notes in Computer Science
No. 435.

[11] D. Chaum, C. Crépeau, and E. Damgård. Multiparty unconditionally secure protocols. InAdvances
in Cryptology – CRYPTO ’87, volume 293 of99 Lecture Notes in Computer Science, pages 462–462.
Springer-Verlag, 1988.

[12] D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brickell, editor,Advances in
Cryptology — Crypto’92, pages 89–105, Berlin, 1992. Springer-Verlag. Lecture Notes in Computer
Science No. 740.

[13] R. Cramer, I. Damgard, and P. MacKenzie. Efficient zero-knowledge proofs of knowledge without
intractability assumptions. To appear in2000 International Workshop on Practice and Theory in
Public Key Cryptography, January 2000, Melbourne, Australia.

[14] C. Crépeau and J. Kilian. Weakening security assumptions and oblivious transfer. InAdvances in
Cryptology – CRYPTO ’88, volume 403 ofLecture Notes in Computer Science, pages 2–7. Springer-
Verlag, 1990.

[15] C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. InProceedings of the 30th Annual
ACM Symposium on Theory of Computing, pages 409–418. ACM Press, 1998.

[16] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Advances in Cryptology – CRYPTO ’84, volume 196 ofLecture Notes in Computer Science, pages
10–18. Springer-Verlag, 1985.

13

[17] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. InProceedings of
the 22nd Annual ACM Symposium on Theory of Computing, pages 416–426. ACM Press, 1990.

[18] D. Fudenberg, J. Tirole. Game Theory. MIT Press, 1992.

[19] J. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure distributed storage and retrieval. InProc. 11th
International Workshop on Distributed Algorithms (WDAG ’97), volume 1320 ofLecture Notes in
Computer Science, pages 275–289. Springer-Verlag, 1997.

[20] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a method-
ology of cryptographic protocol design. In27th Annual Symposium on Foundations of Computer
Science, pages 174–187. IEEE, 1986.

[21] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. InProceedings of the 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, 1987.

[22] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, April 1984.

[23] S. Goldwasser, S. Micali, and C. Rackoff. The knowledgecomplexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

[24] M. Jakobsson. A Practical Mix. InProceedings of EUROCRYPT ’98, pp. 448–461, 1998.

[25] E. Lehrer and S. Sorin. One-shot public mediated talk. Discussion Paper 1108, Northwestern Univer-
sity, 1994.

[26] J. Kilian. Founding Cryptography on Oblivious Transfer. In Proc. of STOC, pp. 20–31, 1988.

[27] P. MacKenzie. Efficient ZK Proofs of Knowledge. Unpublished manuscript, 1998.

[28] M. Naor and B. Pinkas. Oblivious transfer with adaptivequeries. InAdvances in Cryptology – CRYPTO
’99, volume 1666 ofLecture Notes in Computer Science, pages 573–590. Springer-Verlag, 1999.

[29] J.F. Nash. Non-Cooperative Games.Annals of Mathematics,54 pages 286–295.

[30] M. Osborne, A. Rubinstein. A Course in Game Theory. The MIT Press, 1994.

[31] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In40th Annual
Symposium on Foundations of Computer Science, pages 554–567. IEEE, 1999.

[32] A. C. Yao. Protocols for secure computations (extendedabstract). In23rd Annual Symposium on
Foundations of Computer Science, pages 160–164. IEEE, Nov. 1982.

A The Zero-Knowledge Proofs

In this section we provide efficient implementations for thesub-protocols�1 and�2. Recall that in�1, the
Preparer needs to prove that the list of ciphertextsf(i; di)gni=1 is a permuted encryption of the known listf(ai; bi)gni=1, and in�2 the Chooser needs to prove that the ciphertexte was obtained from a blinding-with-
zero of one of the ciphertexts`.

Both protocols�1 and�2 are derived from a simple zero-knowledge proof for a problemwhich we
call Encrypted List Correspondence. In this problem, whichwas studies in the context of mix-networks,

14

Protocol ELC

Common inputs: fxigni=1, fyigni=1 (andpk).P knows: �, frigni=1 s.t.yi = Blindpk(x�(i); 0; ri), for all i 2 [n℄.P : Choose a random permutation� over[n℄, andn random stringsfsigni=1.
Setti = Combine(r�(i); si)
Setzi = Blindpk(y�(i); 0; si) �= Blindpk(x(�Æ�)(i); 0; ti)�.
Send toC fzigni=1.C : Choose� 2R f0; 1g and send it toPP : If � = 0, reply with (�, fsigni=1), else reply with (� Æ �, ftigni=1).C : If � = 0, checkzi = Blindpk(y�(i); 0; si).
If � = 1, checkzi = Blindpk(x(�Æ�)(i); 0; ti).

Figure 3: A zero-knowledge proof-of-knowledge for Encrypted List Correspondence.

a proverP wants to prove in zero-knowledge that two lists of ciphertexts, x1; : : : ; xn andy1; : : : ; yn, are
permuted encryptions of the same list. More precisely,P wants to prove that one list was obtained by
blinding-with-zero and permuting the other, and that he knows a permutation� and random coinsr1; : : : ; rn
such thatyi = Blindpk(x�(i); 0; ri), for all i 2 [n℄.9 An efficient zero-knowledge proof for this problem
was described by Abe [1]. (Although Abe’s proof assumes ElGamal encryptions, it is easy to see that any
blindable encryption will do.) For self-containment, we describe this proof in Figure 3. The protocol in
Figure 3 achieves knowledge-error of 1/2. There are known transformations that can be used to derive a
constant-round, negligible-error protocol from a three-round, constant-error one. (Specifically, we can get
a 5-round, negligible-error zero-knowledge proof-of-knowledge for Encrypted List Correspondence.) We
discuss this issue further in Appendix D.

A.1 The protocol�1
In sub-protocol�1, The Preparer needs to prove that the list of ciphertextsf(i; di)gni=1 is a permuted en-
cryption of the known listf(ai; bi)gni=1. This can be done by having the prover encrypt the listf(ai; bi)gni=1
in some “canonical” manner (say, using the all-zero random string) to generate a ciphertext listf(gi; hi)gni=1,
and then prove using theELC protocol that the two listsf(i; di)gni=1 andf(gi; hi)gni=1 are encryptions of
the same list. The only problem here is that the original listof ciphertextsf(i; di)gni=1 was not obtained
by blinding the listf(gi; hi)gni=1, but rather by directly encrypting the plaintext listf(ai; bi)gni=1. Hence, to
use this protocol we slightly change the protocolCES-2 itself, and have the Preparer encrypt the plaintext
list by first encrypting it in a “canonical” manner to getf(gi; hi)gni=1, and then blind with zero and per-
mute the latter list to getf(i; di)gni=1. We stress that due to Equation (2) (from the definition of blindable
encryption), this change in the protocol does not change thedistribution of the ciphertext listf(i; di)gni=1.

9We remark that a similar proof can be shown even when the two lists were not generated as blindings of each other, and even
if the two lists were obtained using two different blindableencryption schemes.

15

A.2 The protocol�2
At first glance, the problem in Protocol�2 seems substantially different than the Encrypted List Correspon-
dence problem. Furthermore, constructing a simple protocol that “the ciphertexte was obtained as blinding
of some ciphertext`” (without revealing`) seems rather hard. Nonetheless, we can pose the problem of
protocol�2 as an instance of the Encrypted List Correspondence. To thisend, we again slightly modify the
protocolCES-2, by having the Chooser blind with zero and re-permute the entire list (rather than just pick
and blind one ciphertext), and then prove in zero-knowledgethat it knows the corresponding permutation.
Specifically, the Chooser selects a random permutation� over [n℄, permutes the entire list ofi’s according
to �, and then blinds with zero each of the ciphertexts. The entire new list (denotedfeigni=1) is then sent
to the Preparer. The preparer only uses a single, agreed upon, ciphertext from the list (say,e1), in the rest
of the protocol, but it uses the whole list to verify the proof. (Therefore, the effective index that is chosen
by Chooser is̀ = ��1(1).) To prove that it chose the list ofei’s according to the prescribed protocol, the
Chooser now proves that it knows the permutation�, which is exactly what is done in theELC protocol.

Two optimizations. Since we only use the ciphertexte1 in the CES-2 protocol (and “we don’t really
care” whether the otherei’s are obtained properly), we can somewhat simplify and optimize the proof in�2, as follows: The Chooser can send onlye1 (just as it is done in the protocolCES-2). Then, in the
zero-knowledge proof, he prepares the full set of encryptions z1; :::zn (as if he actually prepared and sent
all theei’s). Then, depending on the query bit, he either reveals the correspondence between thei’s and all
thezi’s, or the correspondence betweene1 and one of thezi’s.

Another optimization takes advantage of the fact that in thecontext of theCES-2 protocol, we only
need this proof to be witness hiding, rather than fully zero-knowledge. It is therefore possible to just repeat
the protocol from Figure 3 many times in parallel to get a negligible error (and we do not need to worry
about adding extra flows of commitment).

B Implementation of Blindable Encryption

As we said above, possible implementations of blindable encryption include ElGamal encryption and the
Goldwasser-Micali encryption scheme. Below we briefly describe these scheme.

B.1 ElGamal Encryption

The generation algorithm picks a randomk-bit primep = 2q + 1, whereq is prime and a generatorg for
the subgroupQ of quadratic residues modulop. Then it picks a randomx 2 Zq and setsh = gx. The secret
key isx, the public key ish (andp).

To encrypt a messagem 2 Q, one picks a randomr 2 Zq and setsE(m) = hgr; hr �mi. The
decryptionD(s; t) outputst=sx. The encryption scheme is well known to be semantically secure under
the decisional Diffie-Hellman assumption (DDH). To blind a ciphertexths; ti with blinding factorm0, we
computeBlind(hs; ti;m0) = hs � gr0 ; t � hr0 �m0i, wherer0 is chosen at random fromZq. We note that
indeed ifs = gr, t = hr �m (for some unknownr andm), thenBlind(hs; ti;m0) = hgr+r0 ; hr+r0 � (mm0)i,
which is a random encryption ofmm0 since(r + r0 mod q) is random whenr0 is. TheCombine(r1; r2)
operation is just(r1 + r2 mod q).

Checking that the public key(p; q; g) is “kosher” can be done by verifying thatp; q are primes,p =2q + 1, andg is an element of orderq. Thus, no interaction is needed in the key generation phase.Proving
that a ciphertexths; ti is an encryption of a messagem requires proving equality of the discrete-log of two

16

known elements with respect to two known bases, which can be done using several known simple protocols
[10, 12].

B.2 Goldwasser-Micali Encryption

This is the original semantically secure scheme introducedby Goldwasser and Micali [22]. The message is
encrypted bit by bit. The generation algorithm picks a randomn = pq, a product of twok-bit primes together
with any quadratic non-residuey with Jacobi symbol1 (in casen is a Blum integer, i.e.p � q � 3 mod 4,
one can fixy � �1). The public key isn andy, and the secret key isp andq.

To encrypt a bitb 2 f0; 1g, one picks a randomr 2 Z�n and returns(yb � r2 mod n) (i.e. a random
square forb = 0 and a random non-square forb = 1). To decrypt one simply determines if the ciphertext is a square modulon, i.e. modulo bothp andq. The scheme is semantically secure under the quadratic
residue assumption. The scheme is clearly blindable, sinceif = En(b; r) and0 = En(b0; r0), then � 0 = En(b+ b0; r � r0) (where the additionb+ b0 is done modulo 2, and all the other operations are done
modulon).

Proving that a public keyn; y is committing requires proving thaty is a quadratic-non-residue moden, which can be done efficiently. Proving that is an encryption ofb can be done by proving quadratic
residuosity.

B.3 Verifying Decryption in Blindable Encryption Schemes

It is often useful when an encryption scheme has an efficient zero-knowledge proofs for claims of the form
“ is an encryption ofm”. Although we do not know how to construct such efficient protocol based only
on the blindable encryption property (other than using generic constructions), we can show a simple and
efficient proof for the special case where the decryption algorithm also reveals the random coins that were
used in the encryption (as in Goldwasser-Micali). The following simple 3-round protocol is such a proof
with soundness error of1=2.

For this protocol, we assume without loss of generality thatBlindpk(Enpk(m1; r1);m2; r2) = Enpk(m1 +m2; Combine(r1; r2)) (3)

Indeed, let0 be any fixed encryption of0 (the identity ofM). We can then redefine the encryption process to
beEnpk(m; r) = Blindpk(0;m; r). Equation (1) from the definition of blindable encryption shows thatEnpk(m; r) is indeed a random encryption ofm, while Equation (2) now immediately implies Equation (3).

Protocol for Proving 2 Enpk(m)
Common inputs: m; ; pk.
Prover knows: sk.P : Computer such that = Enpk(m; r). Pick randomm0 2M andr0.

Let 0 = Blindpk(;m0; r0) = Blindpk(Enpk(m; r);m0; r0)�(3)= Enpk(m+m0; Combinepk(r; r0))�.P �! V : Sendm0; 0.V �! P : Choose� 2R f0; 1g; Send�.P �! V : If � = 0, sendr0, else sendr00 = Combinepk(r; r0).V : If � = 0, check0 = Blindpk(;m0; r0), else check0 = Enpk(m+m0; r00).
17

C Blindable Encryption and Oblivious Transfer

We show below a very simple implementation of1-out-of-n Oblivious Transferusing blindable encryption.
Recall that a1-out-n Oblivious Transfer Protocol implements the following functionality. There are two
players,P andC, who have some private inputs:P has a set ofn stringsX = (x1; : : : ; xn), andC has an
index` 2 [n℄. At the end of the protocolC should learnx` and nothing else, whileP should learn nothing
at all. There are other flavors of oblivious transfer, all known to be equivalent to the above.

We letP commit to his inputX by encrypting eachxi, i.e. setyi = Enpk(xi) (for all i 2 [n℄) and
sendy1; : : : ; yn toC. Now we are in the situation that the Chooser wants the Preparer to decrypty` without
telling him `. A simple solution that works in the honest-but-curious model, is as follows:C chooses a
random blinding factor�, setsz = Blindpk(y`; �), asksP to decryptz, and subtracts� from the result
to recover the correctx`. Sincez is the encryption of a random elementxj + �, P indeed does not learn
any information about̀. To adjust this protocol to work against malicious players,C needs to prove that he
knows the index̀ and blinding factor�, andP needs to prove that it decryptedz correctly. The proof ofC
is essentially the same problem as in the sub-protocol�2 in our CES-2 protocol, with the only difference
being that now we also have the blinding factor�. Accordingly, the protocol for solving it is nearly identical
to theELC protocol, with the only difference being that the prover blinds the encrypted lists with random
elements rather than with zeros (and shows the blinding factors when he is asked to “open” the blinding.
Due to space limitations, we omit further details.

We note, though, that a small modification of the above protocol implementsrandom1-out-of-n obliv-
ious transfer, whereC should learnx` for a random`. To implement that,P simply chooses a random
permutation� in the first step and setsyi = Enpk(x�(i)).
D Reducing the Error in a Zero-knowledge Proof-of-knowledge

Below we describe a known transformation from any 3-round, constant-error zero-knowledge proof-of-
knowledge into a 5-round, negligible error zero-knowledgeproof-of-knowledge, that uses trapdoor com-
mitment schemes. We were not able to trace the origin of this transformation, although related ideas and
techniques can be found in [15, 27, 13].

Assume that you have some 3-round, constant-error zero-knowledge proof-of-knowledge protocol, and
consider the 3-round protocol that you get by running the constant-error protocol many times in parallel.
Denote the first prover message in the resulting protocol by�, the verifier message by�, and the last prover
message by. Note that since the original protocol was 3-round, then parallel repetition reduces the error
exponentially (see proof in [4]). However, this protocol isno longer zero-knowledge.

To get a zero-knowledge protocol, we use a trapdoor (orChameleon) commitment schemes [8]. Roughly,
this is a commitment scheme which is computationally binding and unconditionally secret, with the extra
property that there exists a trapdoor information, knowledge of which enables one to open a commitment in
any way it wants.

In the zero-knowledge protocol, the prover sends to the verifier in the first round the public-key of the
trapdoor commitment scheme. The verifier then commits to�, the prover sends�, the verifier opens the
commitment to�, and the prover sends and alsothe trapdoor for the commitment. The zero-knowledge
simulator follows the one for the standard 4-round protocol. The knowledge extractor, on the other hand,
first runs one instance of the proof to get the trapdoor, and then it can effectively ignore the commitment in
the second round, so you can use the extractor of the original3-round protocol.

18

