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Abstract

Although Game Theory and Cryptography seem to have som&ssaenarios in common, it is very
rare to find instances where tools from one area are applibe iother. In this work we use cryptography
to solve a game theoretic problem. The problem that we désatises naturally in the game theory area
of two-party strategic games. In these games there are y@®md. Each player decides on a “move”
(according to some strategy), and then the players exelatgame, i.e. the two players make their
moves simultaneously. Once these moves are played eacdtr peives a payoff, which depends on
both moves. Each player only cares to maximize its payoff.

In the game theory literature it was shown that higher paycdih be achieved by the players if they
use correlated strategies. This is enabled through thedattion of a trusted third party (a “mediator”),
who assists the players in choosing their move. Though neygitbperty of the game beingwo player
gameis lost. Itis natural to ask whether a game can existwhdauild be a two player game yet maintain
the high payoffs which the mediator aided strategy offered.

We answer this question affirmatively. We extend the gameduayng an initial step in which the
two players communicate and then they proceed to execugatine as usual. For this extended game
we can prove (informally speaking) the following: any cdated strategy for 2-player games can be
achieved, provided that the players are computationaliynded and can communicate before playing
the game.

We obtain an efficient solution to the above game-theoretiblpm, by providing a cryptographic
protocol to the followingCorrelated Element Selectigmoblem. Both Alice and Bob know a list of pairs
(a1,b1) ... (an,b,) (possibly with repetitions), and they want to pickesndomindex: such that Alice
learns onlya; and Bob learns only;. We believe that this problem has other applications, beymmr
application to game theory. Our solution is quite efficighhas constant number of rounds, negligible
error probability, and uses only very simple zero-knowkedgoofs.

The protocol that we describe in this work uses as a basidihgilblock “blindable encryption
schemes” (such as EIGamal or Goldwasser-Micali). We natestirch schemes seem to be a very useful
general primitive for constructing efficient protocols. As example, we show a simpleout-of-n
oblivious transfer protocol based on any such encryptibese.
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1 Introduction

The research areas of Game Theory and Cryptography are Xetis&ely studied fields with many prob-
lems and solutions. Yet, the cross-over between them isisungly small: very rarely (if at all) are tools
from one area borrowed to address problems in the other.idmpéper we exhibit the benefits which arise
in such a combined setting. Namely, we show how cryptogapsols can be used to address a natural
problem in the Game Theory world. We hope that this work wilt@urage greater synergy between these
classical fields.

1.1 Two Player Strategic Games

The game-theoretic problem that we consider in this workitgd to the general areatwfo player strategic
gameswhich is an important field in Game Theory (see [18, 30]).h& most basic notion of a two player
game, there are two players, each with a set of possible moMaes game itself consists of each player
choosing a move from its set, and then both players execatertioves simultaneously. The rules of the
game specify gpayofffunction for each player, which is computed on the two movdsus, the payoff of
each player depends both on its move and the move of the d#yarpA strategyfor a player is a (possibly
randomized) method for choosing its move. The fundamestalraption of game theory is that each player
is selfish and rationali.e. its sole objective is to maximize its (expected) payof

A pair of players’ strategies achieves equilibrium when these strategies aself-enforcingi.e. each
player’s strategy is aoptimal responséo the other player’s strategy. In other words, once a pléesr
chosen a move and believes that the other player will folltsastrategy, its (expected) payoff will not
increase by changing this move. This notion was introdundte classical work of Nash [29].

In a Nash equilibrium each player chooses its mowvelependentlyof the other player. (Hence, the
induced distribution over the pairs of moves is a productrihistion.) Yet, Aumann [2] showed that in
many games, the players can achieve much higher expectefigayhile preserving the “self-enforcement”
property, if their strategies arrelated(so the induced distribution over the pairs of moves is ngéon
a product distribution). To actually implement suclke@related equilibrium the model of the game is
modified and a “trusted third party” (calledraediato) is introduced. This mediator chooses the pair of
moves according to the right distributions and privatelisteach player what its designated move is. Since
the strategies are correlated, the move of one player tjpicarries some information on the move of the
other player. In a Correlated equilibrium, no player hasraemtive to deviate from its designated move,
even knowing this extra information about the other pla/arbve.

1.2 Removing the Mediator

As the game was intended for two players, it is natural to fiskrrelated equilibria can be implemented
without the mediator. In the language of cryptography, vkgfage can design a two party game to eliminate
the trusted third party from the original game. It is well lmothat in the standard cryptographic models,
the answer is positive, provided that the two players cagraut, that they are computationally bounded,
and assuming some standard hardness assumptions ([21V82]3how that this positive answer carries
over also to the Game Theory model. Specifically, we considextended gamén which the players first
exchange messages, and then they choose their moves antkekern simultaneously. (The payoffs are
still computed as a function of the moves, according to tleespayoff function as in the original game.)
Also, we define a&omputational Nash equilibriuras one where the strategies of both players are restricted
to probabilistic polynomial time. Then, we prove the foliog:



Theorem 1 If secure two-party protocols exist for non-trivial furetis, then for any Correlated equilibrium
s of the original game?, there exists an extended gaewith a computational Nash equilibrium, such
that the payoffs for both players are the same iand s.

In other words, any Correlated equilibrium payoffs@fcan be achieved using a computational Nash
equilibrium of G'. Thus, the mediator can be avoided if the players are coriipogly bounded and can
communicate prior to the game.

We stress that although this theorem is quite natural fromyptagraphy point of view, the models
of Game Theory and Cryptography are different, thus provirig the Game Theory framework requires
some care. In particular, two-party cryptographic proteedwvays assume that at least one player is honest,
while the other player could be arbitrarily malicious. I thame-theoretic setting, on the other harath
players are selfish and rationathey (certainly) deviate from the protocol if they benefdrh it, and (can
be assumed to) follow their protocol otherwise. Also, itgbrtant to realize that in this setting we cannot
use cryptography to “enforce” honest behavior. The onlggtthat the players are able to do is to choose
their moves and execute them at the end of the game. Henae{levenost elaborate protocol would be
useless if a “cheating player” can simply ignore the fact thevas “caught cheating” during the protocol,
and nonetheless choose a move that maximizes its profit. $gas$ these issues further in Section 3.

1.3 Doing it Efficiently

Although the assumption of Theorem 1 can be proven using twiofjeneric two-party computations [21,
32], it would be nice to obtain extended games (i.e. prog)ashich are more efficient than the generic ones.
In Section 4 we observe that for many cases, the underlyiyigtagraphic problem reduces to a problem
which we callCorrelated Element SelectioWe believe that this natural problem has other cryptogcaph
application and is of independent interest. In this probléno players,A and B, know a list of pairs
(a1,b1),..., (an,b,) (Maybe with repetitions), and they need to jointly choosaralom index, so that
player A only learns the value; and playerB only learns the valug;.

We therefore dedicate a part of the paper to presenting aieefficryptographic solution to the Correlat-
ed Element Selection problem. Our final protocol is veryitive, has constant number of rounds, negligible
error probability, and uses only very simple zero-knowkeggoofs. We note that some of our techniques
(in particular, the zero-knowledge proofs) are similarttose used for mixing networks (see [1, 24] and the
references therein), even though our usage and motivatioguate different.

Our protocol for Correlated Element Selection uses as eblowable encryptior{which can be viewed
as a counterpart of blindable signatures [9]). Stated ryudptindable encryption is the following: given
an encryptiore of an (unknown) message, and an additional messag€, a random encryption af. +
m' can be easily computed. This should be done without knowingr the secret key. Examples of
semantically secure blindable encryption schemes (ungleropriate assumptions) include Goldwasser-
Micali [22], EIGamal [16] and Benaloh [5]. (In fact, for ouro@related Element Selection protocol, it is
sufficient to use a weaker notion of blindability, such asdhe in [31].) Aside from our main application,
we also observe that blindable encryption appears to beyacegwenient tool for devising efficient two-
party protocols and suggest that it might be used more oft@demonstrate that, we show in Appendix C a
very simple protocol to achievieout-of+: Oblivious Transfel((’f)—OT) protocol from any secure blindable
encryption scheme.

A special case of Correlated Element Selection wiage:= b; is just the standardoin-flippingproblem [7]. However, this is
a degenerate case of the problem, since it requires no gedneparticular, none of the previous coin-flipping prottsceeem to
extend to solve our problem.

2It is known that oblivious transfer is complete for two-yasecure computation [14, 26], hence blindable encryptihresies
are sufficient for secure two-party computation.



1.4 Related Work

Game Theory. Realizing the advantages of removing the mediator, vanmapers in the Game Theory
community have been published to try and achieve this goatamy [3] substitutes the trusted mediator
with four (potentially untrusted) players. These playévgo(of which were the actual players who needed
to play the game) distributively (and privately) computed moves for the two active players. This protocol
works in an information-theoretic setting (which explathe need for four players; see [6]). Of course, if
one is willing to use a group of players to simulate the medjahen the general multiparty computation
tools (e.g. [6, 11]) can also be used, even though the solofi¢3] is simpler and more efficient. The work
of Lehrer and Sorin [25] describes protocols that “redudss tole of the mediator (the mediator in this
protocol computes some function on values which the plagleose).

Cryptography. We already mentioned the relation of our work to generic paoty secure computations
[21, 32], and to mix-networks [1, 24]. Additionally, enctign schemes with various “blinding properties”
were used for many different purposes, including amongrstfe secure storage [19], and secure circuit
evaluations [31].

2 Background in Game Theory

Two-player Games. Although our results apply to a much larger class of two-ptayame$, we demon-
strate them on the simplest possible class of fistitategic gamegwith perfect information). Such a game
G has two playerd and 2, each of whom has a finite set; of possibleactionsand apayoff function
u; : A1 X Ay — R (i = 1,2), known to both players. The players move simultaneousighehoosing an
actiona; € A;. Thepayoffof playeri is u;(a1,a2). The (probabilistic) algorithm that tells play&mwhich
action to take is called itstrategy and a pair of strategies is calledtategy profile In our case, a strategy
s; of playeri is simply a probability distribution over its actions;, and a strategy profile = (s, s2) is

a probability distribution overl; x As. Game Theory assumes that each playselfish and rationali.e.
only cares about maximizing its (expected) payoff. As altesie are interested in strategy profiles that
are self-enforcing In other words, even knowing the strategy of the other plagach player still has no
incentive to deviate from its own strategy. Such a strateqfilp is called arequilibrium

Nash equilibrium. This is the best known notion of an equilibrium [29]. It capends to a strategy
profile in which players’ strategies amdependentMore precisely, the induced distribution over the pairs
of actions, must be a product distributiofA; x A2) = s1(A41) x s2(A2). Deterministic (opure) strategies
are a special case of such strategies, whgessigns probability 1 to some action. For strategieandss,

we denote byu;(s1, s2) theexpectedpayoff for player; when players independently followy andss.

Definition 1 A Nash equilibriumof a gameG is an independent strategy profie}, s3), such that for any
a; € Ay, ay € Az, we haveu; (s7,s5) > ui (a1, s5) andug (s, s5) > ua(s], az).

In other words, given that playerfollows s3, s} is an optimal response of playgand vice versa.

Correlated equilibrium.  While Nash equilibrium is quite a natural and appealing aro{jsince players
can follow their strategies independently of each othemg can wonder if it is possible to achieve higher
expected payoffs if one allowrrelatedstrategies.

3For exampleextensive games with perfect information and simultanetmees see [30].



In a correlated strategy profile [2], the induced distribatoverA; x As can be an arbitrary distribution,
not necessarily a product distribution. This can be impleted by having a trusted party (calletkdiato)
sample a pair of action@:;, ay) according to somgint probability distributions(A4; x A,), and “recom-
mend” the actioru; to playeri. We stress that knowing;, playeri now knows aconditional distribution
over the actions of the other player (which can be differentiffferenta;’s), but knowsnothing more We
denote these distributions By(- | a;) ands; (- | a2).

Foranya| € A;,df, € Ay, letu;(a], s2 | a1) be the expected value of (¢}, a2) whenay is distributed
according toss(- | aq) (similarly for ug(s1,d), | az)). In other wordsyu, (a}, s2 | a1) measures the expected
payoff of player 1 if his recommended action was(thus, a, is distributed according tex(- | a1)), but it
decided to play: instead. As before, we let;(s) be the expected value @f(a;,as) when(aq,az) are
drawn according ta.

Similarly to the notion of Nash equilibrium, we now defin€arrelated equilibriumwhich ensures that
players have no incentive to deviate from the “recommendathey got from the mediator.

Definition 2 A Correlated equilibriunis a strategy profiles™ = s*(A4; x Ag) = (s}, s5), such that for any
(a},a3) in the support ok*, and anya; € A; andas € Ay, we haveu; (a}, s5 | a]) > ui(a1, s5 | a}) and
up(s1, a5 | a3) > uy(si, a2 | a3).

Given Nash (resp. Correlated) equilibriufi, s3), we say tha{sj, s3) achievesNash (resp. Correlated)
equilibrium payoffgu; (s3, s3), ua(s7, s3)].

It is known that Correlated equilibria can give equilibriygayoffsoutside(and better!) than anything in
the convex hull of Nash equilibria payoffs, as demonstratettie following simple example first observed
by Aumann [2], who also defined the notion of Correlated eélopiiim.

cC D
Game of “Chicken”. We consider a simplé x 2 game, the so called game of C | 4,4| 15
“Chicken” shown in the table to the right (much more dramai@mples can be D | 5,1 0,0

shown in larger games). Here each player can either “dam®”af “chicken out” “Chicken”
(C). The combinatior{D, D) has a devastating effect on both players (pay(off8]),
(C,C) is quite good (payoff$4, 4]), while each player would ideally prefer to dare C D

while the other chickens-out (giving hith and the opponent). While the “wis- Cll4| 14
est” pair of actions iSC,C), this is not a Nash equilibrium, since both players D | 1/4 | 1/4
are willing to deviate toD (believing that the other player will stay &t). The Mixed Nash
game is easily seen to have three Nash equilista= (D, C), s* = (C,D) and

$$=(3-D+4%- C,% D + L .C). The respective Nash equilibrium payoffs C D
are[5,1], [1,5] and [2, 2]. We see that the first two pure strategy Nash equilibria C | 1/3 | 1/3

are “unfair”, while the last mixed equilibrium has small péfg, since the mutually D | 1/3| O
undesirable outcomgD, D) happens with non-zero probability in the product distri- ~ Correlated
bution. The best “fair” equilibrium in the convex hull of tidash equilibria is the
combinationjs! + £s? = (3(C,D) + $(D,()), yielding payoffs[3,3]. On the other hand, the profile
s* = (3(C,D)+ £(D,C) + 3(C, C)) is a correlated equilibrium, yielding payoffs:, 3], which is better
than any convex combination of Nash equilibria.

To briefly see it, consider the “row playet”(same works for playet). If itis recommended to plag’,
its expected payoff i% -4+ % -1 = % since, conditioned on; = C, player2 is recommended to play
and D with probability 1 each. If player switched toD, its expected payoff would still be-5+ 1.0 = 2,
making playerl reluctant to switch. Similarly, if playet is recommended, it knows that playe plays
C (as(D, D) is never played in*), so its payoff is5. Since this is the maximum payoff of the game, player
1 would not benefit by switching t@’ in this case. Thus, we indeed have a Correlated equilibrivinere
each player's payoff i (1 + 5 + 4) = 31, as claimed.
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3 Removing the Mediator

In this section we show how to remove the mediator using ograiphic means. We assume the existence
of generic secure two-party protocols and show how to aehau goal by using such protocols in the
game-theoretidrather than its designated cryptographic) setting. lreothords, the players remain self-
ish and rational, even when running the cryptographic patoln Section 4 we give a specific efficient
implementation for the types of cryptographic protocokst thre need.

Extended Games. To remove the mediator, we assume that the players are (1pwationally bound-
ed and (2) can communicate prior to playing the original gawigich we believe are quite natural and
minimalistic assumptions. To formally define the compuatadil power of the players, we introduce an ex-
ternal security parameter into the game, and require tleastifategies of both players can be computed in
probabilistic polynomial time in the security paraméter.

To incorporate communication into the game, we considexéanded gamavhich is composed of three
parts: first the players are given the security parametettaydfreely exchange messages (i.e., execute any
two-party protocol), then each player locally selects itsven and finally both players execute their move
simultaneously. The final payoffs.. of the extended game are just the corresponding payoffedariginal
game applied to players’ simultaneous moves at the last step

The notions of a strategy and a strategy profile are straigh#rdly generalized from those of the basic
game. Similarly to the notion of a Nash equilibrium, we define notion of acomputational Nash equi-
librium of the extended game, where the strategies of both playergstricted to probabilistic polynomial
time. Also, since we are talking about a computational matiel definition must account for the fact that
the players may break the underlying cryptographic scheittevegligible probability (e.g., by guessing
the secret key), thus gaining some advantage in the game.

Definition 3 A computational Nash equilibriurof an extended gam@ is an independent strategy profile
(s%,s3), such that

(a) bothsy, s are PPT computable; and

(b) for any other PPT computable strategi€s s, there exists a negligible functignsuch that on security
parameterk, we haveu, (s/, s3) < ui(s], s5) + p(k) andusg(sy, sh) < ug(si, s3) + p(k).

The idea of getting rid of the mediator is now very simple. §ldar a Correlated equilibrius(A; x As)
of the original game=. Recall that the job of the mediator is to sample a pair obast{a,, a2) according
to the distributions, and to givea; to playeri. We can view the mediator as a trusted party who securely
computes a probabilistic (polynomial-time) functien Thus, to remove it we can have the two players
execute a cryptographic protocél that securely computes the functien The strategy of each player
would be to follow the protocaP, and then play the actiamthat it got fromP.

Yet, several issues have to be addressed in order to makddhisiork. First, the above description does
not completely specify the strategies of the players. Adpé#cification of a strategy must also indicate what
a player should do if the other playdeviatesfrom its strategy (in our case, does not follow the protocol
P). While cryptography does not address this question, itusial to resolve it in our setting, since “the
game must go on”: No matter what happens insitjeboth players eventually have to take simultaneous
actions, and receive the corresponding payoffs (which ¢hiels to maximize). Hence we must explain how
to implement a “punishment for deviation” within the ganmedretic framework.

“Note that the parameters of the original game (like the dayoictions, the correlated equilibrium distribution, gtare all
independent of the security parameter, and thus can alwagsrhputed “in constant time”.
The notion of an extended game is a special case of the weliest notion of an extensive games see [30].



Punishment for Deviations. We employ the standard game-theoretic solution, which ipuioish the
cheating player to himinimax level This is the smallest payoff that one player can “force” ttteeo player

to have. Namely, the minimax level of play2iis vy = min,, max,, uz(s1,s2). Similarly, minimax level

of player1 is v; = ming, max,, ui(s1,s2). To complete the description of our proposed equilibrium,
we let each player punish the other player to its minimaxlJa¥¢he other player deviates from? (and

is “caught”). Namely, if player 2 cheats, player 1 will play the last stage of the game the strategy
achieving the minimax payoff, for player2 and vice versa. First, we observe the following simple fact:

Lemma 1 Let vy, vo] be the payoffs achieved by Correlated equilibrisin Then,v; > v;.

Proof: Consider playet. Let s3 be the marginal strategy of play2in the Correlated equilibriuma*, and
let s be the best (independent) response of playters;. (The strategy can be thought of as what player
1 should do if it knows that player 2 plays accordings{o but it did not get any “recommendation” from
the mediator.)

Sinces* is a Correlated equilibrium, it follows that > u, (s}, s}), since a particular deviation of player
1 from the correlated equilibrium is to “ignore” its recomnaiation and always play}, and we know that
no such deviation can increase the payoff of player 1. Alscali thats is the best (independent) strategy
in response t@;, so we have; (s}, s5) = max;, ui(s1, s5). Hence we get

v1 > ui(s],ss) = maxui(sy,ss) > minmaxui(sy,se) = vi.
s1 52 S1 _
The same holds for player 2.1
We are now ready to prove Theorem 1, which we recall from ttreduction:

Theorem 1 If secure two-party protocols exist for non-trivial furanis, then for any Correlated equilib-
rium s of the original gameZ, there exists an extended gadewith a computational Nash equilibriumm,
such that the payoffs for both players are the same @md s.

Proof: (sketch) The extended gand¥ is the game@, preceeded with a cryptographic protod@lfor
securely computing the function (Such protocol exists by our assumption.) The computatidfash
equilibrium o consists of both players following their part in the protb£y and executing the moves that
they got from this protocol.

Clearly, this strategy achieves the same payjeffsv;] as the original correlated equilibrium. We only
need to show that it is a computational Nash equilibrium.etd] if player: believes that the other player
follows its designated strategy (i.e., behaves honesttiigérprotocolP), then the correctness &f implies
that the probability of the this player “cheating withouttgeyg caught” is negligibly small. If we denote this
probability of cheating by:(k), and denote the highest payoff that playean get in the original game by
w;, then the expected payoff of a strategy that includes algdtiP is at most

()T + (1= p(R))oi = v+ p(k) @ = 03) = (L= (k) (05— 05) < v + (k) (T = v7)

where the inequality follows from Lemma 1. Singg— v; is just some constant which does not depend on
k, this is at most negligibly larger than. (We notice that a particular type of cheating (in the crgpémphic
setting) is early stopping. Since the extended game mustyalnesult in players getting payoffs, stopping
is not an issue in game theory, since it will be punished byntirémax level as well.)

Finally, if no player has cheated iR, the privacy ofP implies that we achieved exactly the same effects
as with the mediator: each player only learns its move, doekearn anything about the other player’'s move
except for what is implied by its move (and possibly exceptafmegligible additional advantage). Since
is a Correlated equilibrium, both players will indeed talke &ction they outputted iR. W
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A few remarks are in order: first, since the extended gameyoesisome distribution over the moves
of the players, then any Nash equilibrium payoffs achievablthe extended game are also achievable as
Correlated equilibrium payoffs of the original game. Thikeorem 1 is the best possible result we could
hope for®

Also, one guestion that may come to mind is why would a playantwo carry out a “minimax pun-
ishment” when it catches the other player cheating (sinte“gunishment” may also hurt the “punishing
player”). However, the notion of Nash equilibrium only régs player’s actions to be optimpiovided the
other player follows its strategyThus, it is acceptable to carry out the punishment everigfrisults in a
loss forbothplayers. (“the cheating player should have been ratiordik&inuld not have cheated in the first
place”). We note that this oddity (known as an “empty thréatthe game-theoretic literature) is not just a
feature of our solution, but rather an inherent weaknesikeohbtion of Nash equilibrium.

4 The Correlated Element Selection Problem

In most common games, the joint strategy of the players isriesi by a short list of pair§(movel, move2)},
where the strategy is to choose at random one pair from gtjsalnd have Player 1 playovel and Player 2
play move2. (For example, in the game of chicken the list consists @edhairs{ (D, C), (C, D), (C,C)}.)’

Hence, to obtain an efficient solution for such games, we aeeeffficient cryptographic protocol for
the following problem: Two playersd and B, know a list of pairs(ai,b1), ..., (ay,b,) (Maybe with
repetitions), and they need to jointly choose a random indard have played learn only the value; and
player B learn only the valué;. We call this problem th€orrelated Element Selectiqgroblem. In this
section we describe our efficient solution for this problékfe start by presenting some notations and tools
that we use (in particular, “blindable encryption schemed/e then show a simple protocol that solves this
problem in the special case where the two players are “hdnggiurious”, and explain how to modify this
protocol to handle the general case where the players caraligious.

4.1 Notations and Tools

We denote byn| the set{1,2,...n}. For a randomized algorithrd and an inputz, we denote byA(x)

the output distribution ofdA on z, and by A(x;r) we denote the output string when using the randomness
r. If one of the inputs taA is considered a “key”, then we write it as a subscript (e4g.(z)). We use

pk, pk1, pko, ... to denote public keys angk, skq, sko, ... to denote secret keys.

The main tool that we use in our protocobindable encryption schemelsike all public key encryption
schemes, blindable encryption schemes include algorifomisey-generation, encryption and decryption.
In addition they also have a “blinding” and “combining” atgbms. We denote these algorithms Gyn,

Enc, Dec, Blind, andCombine, respectively. Below we formally define the blinding and cong func-
tions. In this definition we assume that the message spaf@mms a group (which we denote as an additive
group with identity0).

Definition 4 (Blindable encryption) A public key encryption schendeis blindableif there exist (PPT)
algorithms Blind and Combine such that for every messagmd every ciphertext € Enc,i(m):

e For any message:’ (also referred to as the “blinding factor”) Blind,(c,m") produces aandom
encryption ofrn + m'. Namely, the distributiorBlind,(c, m’) should be equal to the distribution

®For example, there is no way to enforce the “desirable” aute(C, C) in the Game of “Chicken”, no matter which crypto-
graphic protocols we design. Indeed, both players will viarteviate taD before making their final moves.

"Choosing from the list with distribution other than the wmifi can be accommodated by having a list with repetitiongresh
a high-probability pair appears many times.



Encyp(m +m').
Encyi(m +m') = Blind,i(c,m') (1)

e If 1,7y are the random coins used by two successive “blindings’n thee any two blinding factors
ml? m21

Blind,,(Blindp(c, m1; 1), ma; 12) = Blindy(c, mi + ma; Combineyi(ri,r2)) 2

Thus, in a blindable encryption scheme anyone can “randdralyslate” the encryptiors of m into an
encryption ofm+m/, without knowledge ofn or the secret key, and there is an efficient way of “combining”
several blindings into one operation.

Both the ElGamal and the Goldwasser-Micali encryption su® can be extended into blindable en-
cryption schemes. We note that most of the components of@utian are independent of the specific
underlying blindable encryption scheme, but there are saspects that still have to be tailored to each
scheme. (Specifically, proving that the key generation ggsavas done correctly is handled differently
for different schemes. See Section 4.4). The reader isreefdo Section B for further discussion of the
blindable encryption primitive.

4.2 A Protocol for the Honest-but-Curious Case

Let us recall the Correlated Element Selection problem. filagers share a public list of paif$a;, b;) }7 ;.
For reasons that will soon become clear, we call the two pkatyee “Preparer” P) and the “Chooser”@).
The players wish to pick a random indeguch thatP only learnse; andC only learnsh;.

Figure 1 describes the Correlated Element Selection ppbfoc the honest-but-curious players. We
employ a semantically secure blindable encryption schamda simplicity, we assume that the keys for
this scheme were chosen by a trusted party ahead of time aad @i P, and that the public key was also
given toC. We briefly discuss some key generation issues in Section 4.4

The protocol is very simple: First the Preparer randomlymees the list, encrypts it element-wise and
sends the resulting list to the Chooser. (Since the enanyps semantically secure, the Chooser “cannot
extract any useful information” about the permutatiah The Chooser picks a random pair of ciphertexts
(ce, dg) from the permuted list (so the final output pair will be the igption of these ciphertexts). It then
blinds ¢, with 0 (i.e. makes a random encryption of the same plaintext)dbliia with a random blinding
factor 8, and sends the resulting pair of ciphertefdsf) back to the Preparer. Decryption efgives the
Preparer its element(and nothing more, singeis arandomencryption o after the blinding withd), while
the decryptiorb of f does not convey the value of the actual encrypted messageisinas blinded with a
random blinding factor. The Preparer sehds the Chooser, who recovers his elemieby subtracting the
blinding factorg.

It is easy to show that if both players follow the protocolrtfteeir output is indeed a random péis, b;)
from the known list. Moreover, at the end of the protocol thedarer has no information abdubther than
what'’s implied by its own outpu&, and the Chooser gets “computationally no information”whoother
than what's implied by. Hence we have:

Theorem 2 Protocol CES-1 securely computes the (randomized) function of the Cdedl&lement Se-
lection problem in the honest-but-curious model.

Proof omitted.



Protocol CES-1

Common inputsList of pairs{(a;, b;) }"_,, public keypk.
Preparer knowssecret keyk.

P 1. Permute and Encrypt
Pick a random permutatiomn over|n|.
Let (ci, d;) = (Encpr(ar()), Encpr(bry)), for alli € [n].
Send the lis{(c;, d;)}7-, to C.

C: 2. Choose and Blind
Pick a random indeX € [n], and a random blinding factg.
Let (e, f) = (Blindyi(ce,0), Blind,,(de, B)).
Send(e, f) to P.

P 3. Decrypt and Output.
Seta = Decgi(€), b = Decgi(f). Outputa.
Sendbto C.

C: 4. Unblind and Output.

Seth = b — f. Outputb.

Figure 1: Protocol for Correlated Element Selection in thedst-but-curious model.

4.3 Dealing with Dishonest Players

Generic transformation. Following the common practice in the design of secure pato©ne can mod-

ify the above protocol to deal with dishonest players by agdippropriate zero-knowledge proofs. That is,
after each flow of the original protocol, the corresponditayer proves in zero knowledge that it indeed
followed its prescribed protocol: After Step 1, the Prepareves that it knows the permutatianthat was
used to permute the list. After Step 2 the Chooser provesttkabws the index! and the blinding factor
that was used to produce the péit f). Finally, after Step 3 the Preparer proves that the plairites
indeed the decryption of the ciphertekt Given these zero-knowledge proofs, one can appeal to gener
theorems about secure two-party protocols, and provehbatsulting protocol is secure in the general case
of potentially malicious players.

We note that the zero-knowledge proofs that are involvedisgrotocol can be made very efficient, so
even this “generic” protocol is quite efficient (these arsesgially the same proofs that are used for mix-
networks in [1], see Appendix A). However, a closer look edgdhat one does not need all the power of
the generic transformation, and the protocol can be optichia several ways.

Proof of proper decryption. To withstand malicious players, the Prepafemust “prove” that the ele-
mentb that it send in Step 3 oEES-1 is a proper decryption of the ciphertekt However, this can be
done in a straightforward manner without requiring zerosledge proofs. Indeed, the Preparer can reveal
additional information (such as the randomness used inrtbeygtion of f), as long as this extra informa-
tion does not compromise the semantic security of the cipkiet. The problem is thaP may not be able

to compute the randomness of the blinded vglu#or example, in EIGamal encryption this would require
computation of discrete log). Hence, we need to device ardifit method to enable the proof.



The proof will go as follows: for each € [n], the Preparer sends the elemépt) and corresponding
random string that was used to obtain ciphertektm the first step. The Chooser can then check that the
elementd, that it chose in Step 2 was encrypted correctly, and learndhesponding plaintext.

Clearly, in this protocol the Chooser gets more informattmam just the decryption of (specifically, it
gets the decryption of all th&'s). However, this does not effect the security of the protoas the Chooser
now sees a decryption of a permutation of list that he kneWweabhset of the protocol. This permutation of
the allb;’s does not give any information about the output of the Prapather than what is implied by its
outputb. In particular, notice that ib appears more than once in the list, then the Chooser doesaat k
which of these occurrences was encryptedipy

Next, we observe that after the above change there is no nedwfChooser to senfito the Preparer;
it is sufficient if C' sends only in Step 2, since it can compute the decryptionipby itself.

A weaker condition in the second proof-of-knowledge. Finally, we observe that since the security of the
Chooser relies on an information-theoretic argument, ¢élgersd proof-of-knowledge (in which the Chooser
proves that it knows the inde§) does not have to be fully zero-knowledge. In fact, trachmgtigh the proof
of security, one can verify that it is sufficient for this pfdao be witness hidingn the sense of Feige and
Shamir [17]. The resulting protocol is described in Figure 2

Remark. Notice that for the modified protocol we did not use the fullveo of blindable encryption, since
we only used “blindings” by zero. Namely, all that was usethiese protocols is that we can transform any
ciphertextc into a randomencryption of the same plaintext. (The zero-knowledge fsratso use only
“blindings” by zero.) This is exactly the “random self-regitoility” property used by Sander et al. [31].

4.4 Key Generation Issues

In the protocols above we assumed that the encryption keys gl@sen in an appropriate way ahead of
time (say, by a trusted party). If we want to include the kegegation as part of the protocols themselves
(i.e., have the Preparer choose them and send the publitdkéys Chooser in Step 1), we must ensure that
the Preparer doesn’t choose “bad keys”.

A generic way to solve this problem is to have the Preparevegoio zero knowledge that it followed
the key generation algorithm. We note, however, that forapplication this is an overkill. Indeed, the
security of the Chooser does not depend on the “hiding” ptegseof the encryption scheme. What the
Chooser needs to verify is that this is a committing encoypfiso that the Preparer cannot “open” the
list of d;'s in more than one way), and that the output of the blindingrapon is independent of which
ciphertext of a given message was used as an input (i.efothalt m andc, c2 € Enc,i(m), it holds that
Blind,(c1,0) = Blindy(c2,0)).

If we use EIGamal encryption to implement the blindable gpiton, then checking these conditions is
easy (assuming that the factorizationpot 1 is known, wherep is the modulus used for the encryption).
For the Goldwasser-Micali encryption, the first propertguiees proving that a given elemepfy = —1 in
the case of a Blum integéY) is a quadratic non-residue mad (which can be done quite efficiently [23]),
while the second property is automatically satisfied.

4.5 Putting It All Together

We now finally described all the components of our solutioet us quickly re-cap everything and consider
the efficiency of the protocol.
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Protocol CES-2

Common inputsList of pairs{(a;, b;)}?_,, public keypk.
Preparer knowssecret keyk.

P: 1. Permute and Encrypt
Pick a random permutation over[n], and random string$(r;, s;) }7*; .
Let (CZ’, dz) = (Encpk(aﬂ(i); Tﬁ(i)), Encpk(bﬂ(i); Sw(i)))1 foralli € [TL]
Send{(c;,d;)}i-, toC.

Sub-protocolIT;: P proves in zero-knowledge that it knows the randomness
{(ri, s;) }i-, and permutationr that were used to obtain the li§tc;, d;)}" ;.

C: 2. Choose and Blind
Pick a random index € [n].
Send toP the ciphertexe = Blind,(cy,0).

Sub-protocol I1y: C proves in a witness-hiding manner that it knows
the randomness and indéthat were used to obtain

P . 3. Decrypt and Output.
Seta = Decyy(e). Outputa.
Send toC the list of pairs{ (b i), sx(;)) }i=1 (in this order).

C: 4. Verify and Output.
Denote by(b, s) the'th entry in this lists (i.€.{(b, s) = (bx(¢), Sx(¢)) )-
If dp = Ency(b; s) then outpub.

Figure 2: Protocol for Correlated Element Selection.

0. Initially, the Preparer chooses the keys for the blindaicryption scheme, sends the public key to
the Chooser and proves in zero-knowledge that the encryfgi@ommitting and has the blinding
property. As we said above, this proof must be tailored topduicular encryption scheme that is
used. Also, this step can be carried out only once, and thétires keys can be used for many
instances of the protocol. (Alternatively, we can use aé&adighird party for this step.)

1. The Preparer encrypts the known l{gtz;, b;) }7; in some “canonical” manner, blinds with zero
the list of ciphertexts, and permutes it with a random peation 7. It sends the resulting lists
{(ci,d;)}7-, to the Chooser, and uses tBeC protocol to prove in zero-knowledge that it knows the
permutation that was used.

2. The Chooser blinds with zeros the list@fs, and re-permutes it with a random permutatjanlt
sends the resulting lidie; }7_; to the Prover, and again uses #eC protocol to prove that it knows
the permutation that was used. Here we can optimize the payéwhat, since we later only usg
and also because the proof only needs to be witness hiding.

3. The Preparer decrypts the first ciphertextand outputs the corresponding plaintext

11



It also sends to the Chooser the list of this, permuted according to, together with the randomness
that was used to blind their “canonical encryption” to getdfis in Step 1.

4. The Choose€ sets/ = p*l(l), and letsh, s denote the’'th element and randomness, respectively,
in the last list that it got from the Preparer. He checks thiading with zero (and randomnes3 of
the “canonical encryption” of indeed yields the ciphertex. If this is correct,C outputsb.

Although we can no longer use the general theorems abouteswonrparty protocols, the security proof
is nonetheless quite standard. Specifically, we can prove:

Theorem 3 Protocol CES-2 securely computes the (randomized) function of the Cdedl&lement Se-
lection problem.

Proof omitted.

Efficiency. We note that all the protocols that are involved are quitepmin terms of number of com-
munication flows, the key generation step (Step 0 aboveltakenost five flows, Step 1 takes five flows,
Step 2 takes three flows and Step 3 consists of just one floneder, these flows can be piggybacked on
each other. Hence, we can implement the protocol with ondyffaws of communication, which is equal
to the five steps which are required by a single proof. In tesfmaumber of operations, the complexity of
the protocol is dominated by the complexity of the proofs igS 1 and 2. The proof in Step 1 requires
nk blinding operations (for a list of size and security parametef), and the proof of Step 2 can be opti-
mized to about:k /2 blinding operations on the average. Hence, the whole pobtas aboutgnk blinding
operation$

5 Epilogue: Cryptography and Game Theory

An interesting aspect of our work is the synergy achievedéeh cryptographic solutions and the game-
theory world. Notice that by implementing our cryptographbolution in the game-theory setting, we gain
on the game-theory front (by eliminating the need for a ntedjabut we also gain on the cryptography
front (for example, in that we eliminate the problem of eatgpping). In principle, it may be possible
to make stronger use of the game theory setting to achieveouag solutions. For example, maybe it is
possible to prove that in the context of certain games, agpldges not have an incentive to deviate from its
protocol, and so in this context there is no point in asking ftayer to prove that it behaves honestly (so
we can eliminate some zero-knowledge proofs that wouldrailse be required).

More generally, it may be the case that working in a model inctvliwe know what the players are
up to” can simplify the design of secure protocols. It is apeteresting open problem to find interesting
examples that would demonstrate such phenomena.
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A The Zero-Knowledge Proofs

In this section we provide efficient implementations for d-protocoldI; andIl,. Recall that inl1;, the
Preparer needs to prove that the list of ciphertéxts, d;)}7_, is a permuted encryption of the known list
{(as, b))}, andinll, the Chooser needs to prove that the cipherexas obtained from a blinding-with-
zero of one of the ciphertexts.

Both protocolslI; andII, are derived from a simple zero-knowledge proof for a probighich we
call Encrypted List Correspondence. In this problem, whigs studies in the context of mix-networks,
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Protocol ELC

Common inputs{z; }7*,, {yi };=, (andpk).
P knows 7, {r;}1; S.t.y; = Blindyk(z.(),0; r;), foralli € [n].

P :  Choose arandom permutatiprover r], andn random stringqs; }7-; .
Sett; = Combine(r ), si)
Setz; = Blindpk(yp(i),o; ;) (: Blindpk(:];(ﬂop)(i), 0; tz))
Send toC' {z}7;.

C: Chooser € {0,1} and send it ta”
P: If o =0, reply with (o, {s;}"_,), else reply with { o p, {t;}I" ;).

C: If 0 =0, checkz; = Blindpk(yp(i), 0; ;).
If o =1, checkz; = Blindpk(:];(ﬂop)(i), 0; t;).

Figure 3: A zero-knowledge proof-of-knowledge for EncegbiList Correspondence.

a prover? wants to prove in zero-knowledge that two lists of ciphesex,,...,z, andyi,...,y,, are
permuted encryptions of the same list. More precis&yvants to prove that one list was obtained by
blinding-with-zero and permuting the other, and that heAsia permutatiomr and random coinsy, ..., r,
such thaty; = Blindyk(z.(;),0;7;), foralli € [n].% An efficient zero-knowledge proof for this problem
was described by Abe [1]. (Although Abe’s proof assumes Bi@lzencryptions, it is easy to see that any
blindable encryption will do.) For self-containment, wesdebe this proof in Figure 3. The protocol in
Figure 3 achieves knowledge-error of 1/2. There are knoamsformations that can be used to derive a
constant-round, negligible-error protocol from a threasd, constant-error one. (Specifically, we can get
a 5-round, negligible-error zero-knowledge proof-of-edge for Encrypted List Correspondence.) We
discuss this issue further in Appendix D.

A.1 The protocol IT;

In sub-protocolll;, The Preparer needs to prove that the list of ciphertéds d;)}7, is a permuted en-
cryption of the known lis{ (a;, b;) }*_;. This can be done by having the prover encrypt the{lis, b;) } 7,

in some “canonical” manner (say, using the all-zero randiimg) to generate a ciphertext listg;, h;) }i .,

and then prove using tHeLC protocol that the two list§(c;, d;)}?" ; and{(g;, h;)}_, are encryptions of
the same list. The only problem here is that the originaldistiphertexts{(c;, d;)};"., was not obtained
by blinding the list{(g;, h;) }}- ,, but rather by directly encrypting the plaintext l{gi:;, b;) }7_,. Hence, to
use this protocol we slightly change the proto€&S-2 itself, and have the Preparer encrypt the plaintext
list by first encrypting it in a “canonical” manner to géty;, #;)}> ,, and then blind with zero and per-
mute the latter list to gef(c;,d;)}! ;. We stress that due to Equation (2) (from the definition aiddible
encryption), this change in the protocol does not changeigtgbution of the ciphertext list(c;, d;) }i ;.

®We remark that a similar proof can be shown even when the si®\liere not generated as blindings of each other, and even
if the two lists were obtained using two different blindablecryption schemes.
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A.2 The protocol I1,

At first glance, the problem in ProtocHl, seems substantially different than the Encrypted List €on-
dence problem. Furthermore, constructing a simple protbed “the ciphertext was obtained as blinding
of some ciphertext,” (without revealing?) seems rather hard. Nonetheless, we can pose the problem of
protocolll; as an instance of the Encrypted List Correspondence. Tetigiswe again slightly modify the
protocolCES-2, by having the Chooser blind with zero and re-permute thigeeligt (rather than just pick
and blind one ciphertext), and then prove in zero-knowletigé it knows the corresponding permutation.
Specifically, the Chooser selects a random permutatiover [n], permutes the entire list @f’s according

to p, and then blinds with zero each of the ciphertexts. Theemtw list (denotede;} ;) is then sent
to the Preparer. The preparer only uses a single, agreed ciptiertext from the list (say;), in the rest
of the protocol, but it uses the whole list to verify the proéfherefore, the effective index that is chosen
by Chooser i¥ = p~1(1).) To prove that it chose the list ef’s according to the prescribed protocol, the
Chooser now proves that it knows the permutagiomwhich is exactly what is done in tHelC protocol.

Two optimizations. Since we only use the ciphertext in the CES-2 protocol (and “we don't really
care” whether the othet;’s are obtained properly), we can somewhat simplify andnoige the proof in
II,, as follows: The Chooser can send oaly(just as it is done in the protoc@®ES-2). Then, in the
zero-knowledge proof, he prepares the full set of encryistia, ...z, (as if he actually prepared and sent
all thee;’s). Then, depending on the query bit, he either revealsdhespondence between iés and all
the z;'s, or the correspondence betwegrand one of the;’s.

Another optimization takes advantage of the fact that incdvetext of theCES-2 protocol, we only
need this proof to be witness hiding, rather than fully Zemowledge. It is therefore possible to just repeat
the protocol from Figure 3 many times in parallel to get a ig#gle error (and we do not need to worry
about adding extra flows of commitment).

B Implementation of Blindable Encryption

As we said above, possible implementations of blindableygtion include ElGamal encryption and the
Goldwasser-Micali encryption scheme. Below we briefly dibscthese scheme.

B.1 EIGamal Encryption

The generation algorithm picks a randdnbit primep = 2¢ + 1, whereq is prime and a generatgrfor
the subgrou) of quadratic residues modujo Then it picks a random € Z, and sets = g*. The secret
key isz, the public key ish (andp).

To encrypt a message. € @, one picks a random € Z, and setsE/(m) = (¢",h" -m). The
decryptionD(s, t) outputst/s®. The encryption scheme is well known to be semantically reecnder
the decisional Diffie-Hellman assumption (DDH). To blindiphertext(s, t) with blinding factorm/', we
computeBlind((s,t),m') = (s-g¢" ,t-h" -m'), wherer' is chosen at random fro,. We note that
indeed ifs = ¢”, t = A" -m (for some unknowm andrm), thenBlind((s,t),m') = (¢"t" K"+ . (mm')),
which is a random encryption efim' since(r + r’ mod ¢) is random when is. TheCombine(ry,12)
operation is jusfr; + ro mod q).

Checking that the public kefp, ¢, g) is “kosher” can be done by verifying thatq are primesp =
2q + 1, andg is an element of ordey. Thus, no interaction is needed in the key generation phHseing
that a ciphertexts, ¢) is an encryption of a messagerequires proving equality of the discrete-log of two
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known elements with respect to two known bases, which cambe dsing several known simple protocols
[10, 12].

B.2 Goldwasser-Micali Encryption

This is the original semantically secure scheme introdume@oldwasser and Micali [22]. The message is
encrypted bit by bit. The generation algorithm picks a rando= pq, a product of twd:-bit primes together
with any quadratic non-residugwith Jacobi symbol (in casen is a Blum integer, i.ep = ¢ = 3 mod 4,
one can fixy = —1). The public key i::» andy, and the secret key jsandgq.

To encrypt a bith € {0,1}, one picks a random € Z* and returngy® - r2 mod n) (i.e. a random
square foh = 0 and a random non-square fioe= 1). To decrypt one simply determines if the ciphertext
¢ Is a square modula, i.e. modulo botlp andq. The scheme is semantically secure under the quadratic
residue assumption. The scheme is clearly blindable, since= Enc(b;r) andcd = Enc(V';r'), then
c-d = Enc(b+V;r-r'") (where the additioh + b' is done modulo 2, and all the other operations are done
modulon).

Proving that a public key., y is committing requires proving that is a quadratic-non-residue mode
n, which can be done efficiently. Proving thais an encryption ob can be done by proving quadratic
residuosity.

B.3 \Verifying Decryption in Blindable Encryption Schemes

It is often useful when an encryption scheme has an efficiema-knowledge proofs for claims of the form
“cis an encryption ofn”.  Although we do not know how to construct such efficient poatl based only
on the blindable encryption property (other than using germnstructions), we can show a simple and
efficient proof for the special case where the decryptiooritlgm also reveals the random coins that were
used in the encryption (as in Goldwasser-Micali). The felleg simple 3-round protocol is such a proof
with soundness error df/2.

For this protocol, we assume without loss of generality that

Blind,,(Encyr(mi; m1), m2; r2) = Encyr(m1 + ma; Combine(ri,rz)) 3

Indeed, lety be any fixed encryption df (the identity ofA/). We can then redefine the encryption process to
be Encyi(m;r) = Blindy(co, m;r). Equation (1) from the definition of blindable encryptioroals that
Ency(m; ) is indeed a random encryptionsaf, while Equation (2) now immediately implies Equation (3).

Protocol for Proving ¢ € Enc,,(m)

Common inputsm, ¢, pk.
Prover knows sk.

P Computer such that = Encyy(m, ). Pick randomn’ € M andr’.
Letd = Blindy(c,m',r") = Blindp,(Ency,(m,r),m', ")

((i) Encyr(m +m', Combineyy(r, T,))> :

P —V: Sendm/, .

V — P: Chooser € {0,1}; Sendo.

P —V: If o =0,send’, else send” = Combineyy(r,r').

V: If o = 0, checkd’ = Blind,(c,m’,r'), else check! = Ency,(m + m/,r").

17



C Blindable Encryption and Oblivious Transfer

We show below a very simple implementationlebut-of« Oblivious Transfewusing blindable encryption.
Recall that al-out-n Oblivious Transfer Protocol implements the following ftinoality. There are two
players,P andC, who have some private input®. has a set ofi stringsX = (z1,...,z,), andC has an
index? € [n]. Atthe end of the protocal’ should learnz, and nothing else, whil¢> should learn nothing
at all. There are other flavors of oblivious transfer, alllkndo be equivalent to the above.

We let P commit to his inputX by encrypting eacl;, i.e. sety; = Ency,(x;) (for all + € [n]) and
sendys, - .., y, to C. Now we are in the situation that the Chooser wants the Peepadecrypty, without
telling him ¢. A simple solution that works in the honest-but-curious elpds as follows:C' chooses a
random blinding factog, setsz = Blindy(ye, ), asksP to decryptz, and subtractg from the result
to recover the correct,. Sincez is the encryption of a random element + 3, P indeed does not learn
any information about. To adjust this protocol to work against malicious playéfs)eeds to prove that he
knows the indexX and blinding factors, and P needs to prove that it decryptectorrectly. The proof ot
is essentially the same problem as in the sub-protbigah our CES-2 protocol, with the only difference
being that now we also have the blinding factorAccordingly, the protocol for solving it is nearly idergic
to the ELC protocol, with the only difference being that the provents the encrypted lists with random
elements rather than with zeros (and shows the blindingfaathen he is asked to “open” the blinding.
Due to space limitations, we omit further details.

We note, though, that a small modification of the above patooplementsandom1-out-of-n obliv-
ious transfer, wher€' should learnz, for a random¢. To implement thatP simply chooses a random
permutationr in the first step and setg = Encpk (7 ,(;))-

D Reducing the Error in a Zero-knowledge Proof-of-knowledge

Below we describe a known transformation from any 3-rourahstant-error zero-knowledge proof-of-
knowledge into a 5-round, negligible error zero-knowleggeof-of-knowledge, that uses trapdoor com-
mitment schemes. We were not able to trace the origin of thissformation, although related ideas and
techniques can be found in [15, 27, 13].

Assume that you have some 3-round, constant-error zensdkdge proof-of-knowledge protocol, and
consider the 3-round protocol that you get by running thestaomi-error protocol many times in parallel.
Denote the first prover message in the resulting protocael,lifie verifier message by, and the last prover
message by. Note that since the original protocol was 3-round, theralfglrrepetition reduces the error
exponentially (see proof in [4]). However, this protocohislonger zero-knowledge.

To get a zero-knowledge protocol, we use a trapdooCf@meleohcommitment schemes [8]. Roughly,
this is a commitment scheme which is computationally bigdind unconditionally secret, with the extra
property that there exists a trapdoor information, knogéedf which enables one to open a commitment in
any way it wants.

In the zero-knowledge protocol, the prover sends to theigein the first round the public-key of the
trapdoor commitment scheme. The verifier then commits,tthe prover sendg, the verifier opens the
commitment to5, and the prover sendsand alsathe trapdoor for the commitmenThe zero-knowledge
simulator follows the one for the standard 4-round protoddie knowledge extractor, on the other hand,
first runs one instance of the proof to get the trapdoor, aed ihcan effectively ignore the commitment in
the second round, so you can use the extractor of the originalind protocol.
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