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Abstract

Biometrics offer a potential source of high-entropy, secret information. Before such data
can be used in cryptographic protocols, however, two issues must be addressed: biometric data
(1) are not uniformly distributed, and (2) are not exactly reproducible. Recent work, most
notably that of Dodis, Reyzin, and Smith, has shown how these obstacles may be overcome
using public information which is reliably sent from a server to the (human) user. Subsequent
work of Boyen has shown how to extend these techniques — in the random oracle model — to
enable unidirectional authentication from the user to the server without the assumption of a
reliable channel.

Here, we show two efficient techniques enabling the use of biometric data to achieve mutual
authentication/authenticated key exchange over a completely insecure (i.e., adversarially con-
trolled) channel. In addition to achieving stronger security guarantees than the above-mentioned
work of Boyen, we improve upon his solution in a number of other respects: we tolerate a broader
class of errors and (in one case) improve upon the parameters of his solution and give a proof
of security in the standard model.

1 Using Biometric Data for Secure Authentication

Biometric data — which offers a potential source of high-entropy, secret information — has been
suggested as a way to enable strong, cryptographically secure authentication of human users without
requiring them to remember or store traditional cryptographic keys.1 Before such data can be used
in existing cryptographic protocols, however, two issues must be addressed: first, biometric data
are not uniformly distributed and hence will not guarantee “security” (at least not in any provable
sense) if used as-is, say, as a key for a pseudorandom function. While the problem of non-uniformity
can be addressed using a hash function (viewed either as a random oracle [2] or as a strong extractor
[19]), the second and more difficult problem is that biometric data are not exactly reproducible (as
two biometric scans of the same feature are rarely identical); hence, traditional protocols will not
even guarantee correctness when the parties use a shared secret generated from biometric data.

Much work has focused on addressing the aforementioned problems in an attempt to develop
secure techniques for biometric authentication [8, 15, 18, 14, 20]. Most recently, Dodis, Reyzin, and
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Smith [9] studied how to use biometric data to securely derive cryptographic keys for use in a general
context, and thus, in particular, for the purposes of authentication. Roughly speaking (see Section 2
for formal definitions), they introduce two primitives: a secure sketch which allows recovery of a
shared secret from any value “close” to this secret, and a fuzzy extractor which extracts a uniformly
distributed random string s from this shared secret in an error-tolerant manner. Both primitives
rely on a “public” string pub which is stored by the server and transmitted to the user; loosely
speaking, pub encodes the redundancy needed for error-tolerant reconstruction. The primitives are
designed so as to be “secure” even when an adversary learns the value of this public string.

Unfortunately, although these primitives suffice to obtain security in the presence of an eaves-
dropping adversary who may learn pub when it is sent to the user — or by passively monitoring
the server’s storage — the work of Dodis, et al. does not address the issue of malicious adversar-
ial modification of pub, either in the case when pub is transmitted over an insecure network or
when an adversary might tamper with the server’s storage. As a consequence, their work does
not provide a method for secure authentication in the presence of an active adversary who may
modify the messages sent between the two parties. Indeed, depending on the specific construction
used, attempting to use a maliciously-altered public string with one’s biometric could result in the
exposure of information related to one’s biometric secret. A “solution” is for the user to store pub

himself rather than obtain it from the server (or to authenticate pub using a certificate chain), but
this defeats the purpose of using biometrics in the first place: namely, to avoid the need for the
user to store any additional cryptographic information (even if it need not be kept secret).

Boyen [5], inter alia, partially addresses the issue of adversarial modification of pub (although
the main focus of his work is the orthogonal issue of re-using biometrics with multiple servers,
which we do not explicitly address here). The main disadvantage of applying his technique in our
context is that it provides only unidirectional authentication from the user to the server. Indeed,
his approach cannot be used to achieve authentication of the server to the user since his definition of
“insider security” (cf. [5, Section 5.2]) does not preclude an adversary from knowing the (incorrect)
value s′ recovered by the user when the adversary forwards a modified pub′ to this user; if the
adversary knows s′, then from the viewpoint of the user the adversary can do anything the server
could do, and hence authentication of the server to the user is impossible. The lack of mutual
authentication implies that — when communicating over an insecure network — the user and
server cannot securely establish a shared session key with which to encrypt and authenticate future
messages: the user may unwittingly share a key with an adversary who can then decrypt any data
sent by the user as well as authenticate arbitrary data of the adversary’s choice.

1.1 Our Contributions

Here, we provide the first full solution to the problem of secure remote authentication using biomet-
ric data: in particular, we show techniques allowing for mutual authentication and/or authenticated
key exchange over a completely insecure channel. We show two constructions: the first is a generic
solution which protects against modification of the public value pub in any context in which secure
sketches/fuzzy extractors are used. Thus, this solution serves as a “drop-in” replacement which
“compiles” any protocol which is secure when pub is assumed to be transmitted reliably into one
which is secure even when pub might be tampered with (we do not formalize this notion, but rather
view it as an intuitive way to understand our results). Our second construction is specific to the
setting of remote authentication/key exchange, and improves upon our first solution in this case.
In addition to enabling mutual authentication, our constructions enjoy the following additional
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advantages compared to the work of Boyen [5]:

◦ Our solutions tolerate a stronger class of errors than those considered by Boyen. In particular,
Boyen’s work only allows for data-independent errors, whereas our analysis handles arbitrary
(bounded) errors. We remark that small yet data-dependent errors seem natural in the context
of biometrics.

◦ Our second solution is proven secure in the standard model.

◦ Our second solution achieves improved bounds on the entropy loss. For practical choices of the
parameters, this results in an improvement of roughly 128 bits of entropy. This is particularly
important since biometrics have relatively low entropy to begin with.2

Organization. We review some basic definitions as well as the primitives of Dodis, et al. in
Section 2. In Section 3 we introduce the notion of robust sketches/fuzzy extractors which are
resilient — in a very strong way — to any modification of the public value, and can be used as a
generic replacement for the sketches/fuzzy extractors of [9]. Our second solution, which is specific
to the problem of using biometrics for authentication and offers some advantages with respect to
our generic construction, is described in Section 4.

2 Definitions

Unless explicitly stated otherwise, all logarithms are base 2. We let Uℓ denote the uniform dis-
tribution over ℓ-bit strings. A (discrete) metric space is a finite set M equipped with a symmet-
ric distance function d : M ×M → Z

+ ∪ {0} satisfying the triangle inequality and such that
d(x, y) = 0⇔ x = y. (All metric spaces considered in this work will be discrete.) For the applica-
tion to biometrics, we assume that the format of the biometric data is such that it forms a metric
space under some appropriate distance function. We will not need to specify any particular metric
space in our work, as our constructions build in a generic way on any sketches/fuzzy extractors
constructed over any such space (e.g., those constructed in [9] for a variety of metrics). If (Ω, P )
is a probability space over which random variables W, W ′ (taking values in a metric spaceM) are
defined, then we say d(W, W ′) ≤ t if for all ω ∈ Ω it holds that d(W (ω), W ′(ω)) ≤ t.

Given a metric space (M, d) and a point x ∈M we define VolMt (x)
def
= |{x′ ∈M | d(x, x′) ≤ t}|

and VolMt
def
= maxx∈M{VolMt (x)}. The latter is simply the maximum number of points in any

“ball” of radius t in the given metric space.
The min-entropy H∞(A) of a random variable A is defined as − log(maxa Pr[A = a]). Follow-

ing [9], for a pair of random variables A and B, we define the average min-entropy of A given B as

H̄∞(A|B)
def
= − log

(

Expb←B

[

2−H∞(A|B=b)
])

. The statistical difference between A and B over the

same domain D is defined as SD(A, B)
def
= 1

2

∑

v∈D |Pr[A = d]− Pr[B = d]|.

2.1 Secure Sketches and Fuzzy Extractors

We review the definitions from [9] using slightly different terminology. Recall from the introduction
that a secure sketch provides a way to recover a shared secret w from any value w′ which is “close”
to w. More formally:

2For instance, estimates for iris scans range from 173 bits [8] to 250 bits [13] of entropy per eye.
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Definition 1 An (m, m′, t)-secure sketch over a metric space (M, d) is a sketching procedure
SS :M→ {0, 1}∗ along with a recovery procedure Rec, such that:

Security: For all random variables W overM with H∞(W ) ≥ m, we have H̄∞(W | SS(W )) ≥ m′.

Error tolerance: For all w, w′ ∈M with d(w, w′) ≤ t we have Rec(w′, SS(w)) = w. ♦

While secure sketches address the issue of error correction, they do not address the issue of the
possible non-uniformity of W . Fuzzy extractors, defined next, correct for this.

Definition 2 An (m, ℓ, t, δ)-fuzzy extractor over a metric space (M, d) consists of an extraction
algorithm Ext :M→ {0, 1}ℓ × {0, 1}∗ and a recovery procedure Rec such that:

Security: For all random variables W over M with H∞(W ) ≥ m, if 〈R, pub〉 ← Ext(W ) then
SD(〈R, pub〉, 〈Uℓ, pub〉) ≤ δ.

Error tolerance: For all w, w′ ∈ M with d(w, w′) ≤ t, if 〈R, pub〉 ← Ext(w) then it is the case
that Rec(w′, pub) = R. ♦

As shown in [9, Lemma 3.1], it is easy to construct a fuzzy extractor over a metric space (M, d)
given any secure sketch defined over the same space, by applying a (standard) strong randomness
extractor [19] and including the (randomly chosen) “key” of the extractor as part of pub. Starting
with an (m, m′, t)-secure sketch and with an appropriate choice of extractor, this yields an (m, m′−
2 log(1

δ ), t, δ)-fuzzy extractor.

2.2 Modeling Error in Biometric Applications

As error correction is a key motivation for our work, it is necessary to develop some formal model
of the types of errors that may occur. In prior work by Boyen [5], the error in various biometric
readings was assumed to be under adversarial control but with the restriction that the adversary
could only specify data-independent errors (e.g., constant shifts, permutations, etc.). It is not clear
that this is a realistic model in practice, as one certainly expects, say, portions of the biometric
where “features” are present to be more susceptible to error.

Here, we consider a much more general error model where the errors may be data-dependent and
hence correlated with each other and even with the (secret) biometric itself. Furthermore, as we
are ultimately interested in modeling “nature” (as manifested in the physical processes that cause
fluctuations in the biometric measurements), we do not even require that the errors be efficiently
computable. The only restriction we make is that the errors are “small” and, in particular, less than
the desired error-correction bound; since the error-correction bound in any real-world application
should ensure correctness with high probability, this restriction seems reasonable. Formally:

Definition 3 A t-bounded distortion ensemble W = {Wi}i=0,... is a sequence of random variables
Wi : Ω→M such that for all i we have d(W0, Wi) ≤ t. We refer to W0 as the original variable. ♦

For our application, W0 will represent the biometric reading obtained when a user initially
registers with a server, and Wi will represent the biometric reading upon subsequent authentication
attempts by this user. Note that mutual authentication fails if an adversary can guess Wi for some
i > 0. Luckily, the following lemmas give bounds on this probability. First, we show that the
min-entropy of each Wi is, at worst, log VolMt bits less than that of W0. Moreover, when publishing
SS(W0) using a secure sketch, we show that Wi is in fact no easier to guess than W0.
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Lemma 1 Let W0 and W1 be two random variables over M satisfying d(W0, W1) ≤ t, and let B
be an arbitrary random variable. Then

H̄∞(W1 | B) ≥ H̄∞(W0 | B)− log VolMt .

Proof Fix x ∈ M and any outcome B = b. Since d(W0, W1) ≤ t, we have Pr[W1 = x | B =
b] ≤

∑

x′|d(x,x′)≤t Pr[W0 = x′ | B = b] ≤ VolMt · 2
−H∞(W0|B=b), which means H∞(W1 | B = b) ≥

H∞(W0 | B = b)− log VolMt . Since this holds for every b, the lemma follows.

Secure sketches imply the following, stronger form of Lemma 1. It states that points close to W0

cannot be easier to guess than W0 if the adversary knows the value of the sketch.

Lemma 2 Let W0 and W1 be two random variables over M satisfying d(W0, W1) ≤ t, and let B
be an arbitrary random variable. Then

H̄∞(W1 | SS(W0), B) ≥ H̄∞(W0 | SS(W0), B).

Proof Notice that since d(W0, W1) ≤ t, we have Rec(W1, SS(W0)) = W0, which means that if
for some x, b, pub we have Pr(W1 = x | SS(W0) = pub, B = b) ≥ α, then Pr(W0 = Rec(x, pub) |
SS(W0) = pub, B = b) ≥ α as well. Since this holds for all x, b and pub, the lemma follows.

The analogue of Lemma 2 for fuzzy extractors holds as well.

3 Robust Sketches and Fuzzy Extractors

Recall that a secure sketch, informally, takes a secret w and returns some value pub which allows
recovery of w given any w′ “close” to w. When pub is transmitted to a user over an insecure network,
however, an adversary might modify pub in transit. In this section, we define the notion of a robust
sketch, which protects against this sort of attack in a very strong way: with high probability, the
user will detect whether pub has been modified and can thus immediately abort in this case. A
robust fuzzy extractor is defined similarly. We then show: (1) a construction of a robust sketch in
the random oracle model (starting from any secure sketch), and (2) a conversion from any robust
sketch to a robust fuzzy extractor (this conversion works in the standard model). We conclude this
section by showing the immediate application of robust fuzzy extractors to the problem of mutual
authentication.

We first define a slightly stronger notion of a secure sketch:

Definition 4 An (m, m′, t)-secure sketch (SS, Rec) is said to be well-formed if it satisfies the
conditions of Definition 1 except for the following modifications: (1) Rec may now return either
an element in M or the distinguished symbol ⊥, and (2) for all w′ ∈ M and arbitrary pub′, if
Rec(w′, pub′) 6=⊥ then d(w′, Rec(w′, pub′)) ≤ t. ♦

It is straightforward to transform any secure sketch (SS, Rec) into a secure sketch (SS, Rec′) which
is well-formed: Rec′ runs Rec and then verifies that its output is within distance t of the input
value. If yes, it returns this value; otherwise, it outputs ⊥.

We now define the notion of a robust sketch:

Definition 5 Given algorithms (SS, Rec) and random variables W = {W0, W1, . . . , Wn} over
metric space (M, d), consider the following game between an adversary A and a challenger: Let
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w0 (resp., wi) be the value assumed by W0 (resp., Wi). The challenger computes pub ← SS(w0)
and gives pub to A. Next, for i = 1, . . . , n, the challenger and A proceed as follows: A outputs
pubi 6= pub and is given Rec(wi, pubi) in return. If there exists an i such that Rec(wi, pubi) 6=⊥ we
say the adversary succeeds and this event is denoted by Succ.

We say (SS, Rec) is an (m, m′′, n, ε, t)-robust sketch (over (M, d)) if it is a well-formed (m, ·, t)-
secure sketch and: (1) for all t-bounded distortion ensembles W with H∞(W0) ≥ m and all adver-
saries A we have Pr[Succ] ≤ ε; and (2) the average min-entropy of W0 — conditioned on the entire
view of A throughout the above game — is at least m′′.3 ♦

We remark that a simpler definition would be to consider only random variables {W0, W1} and to
have A only output a single value pub1 6= pub. A standard hybrid argument would then imply the
above definition with ε increased by a multiplicative factor of n. We have chosen to work with the
more general definition above as it allows for a tighter concrete security analysis. Also, although the
above definition considers all-powerful adversaries, we will focus our attention on security against
(computationally unbounded) adversaries whose queries to a random oracle are limited.

We now construct the robust sketch (SS, Rec) from any well-formed secure sketch (SS∗, Rec∗).
In what follows, H : {0, 1}∗ → {0, 1}k is modeled as a random oracle.

SS(w)

pub∗ ← SS∗(w)
h = H(w, pub∗)
return pub = 〈pub∗, h〉

Rec(w, pub = 〈pub∗, h〉)

w′ = Rec∗(w, pub∗)
if w′ =⊥ output ⊥
if H(w′, pub∗) 6= h output ⊥
otherwise, output w′

Theorem 1 If (SS∗, Rec∗) is a well-formed (m, m′, t)-secure sketch over metric space (M, d) and
H is a random oracle with k bits of output, then (SS, Rec) is an (m, m′′, n, ε, t)-robust sketch over
(M, d) for any adversary making at most qh queries to the random oracle, where

ε = (q2
h + n) · 2−k + (3qh + 2n · VolMt ) · 2−m′

m′′ = m′ − log
(

(q2
h + n) · 2m′−k + (3qh + 2n · VolMt )

)

When k ≥ m′+log qh (which can be enforced in practice), this simplifies to ε ≤ (4qh+2n·VolMt )·2−m′

and m′′ ≥ m′ − log(4qh + 2n · VolMt ).

Proof (Sketch) It is easy to see that (SS, Rec) is an (m, ·, t)-secure sketch and thus we only need
to prove the latter two conditions of Definition 5. In order to provide intuition, the following proof is
somewhat informal; however, the arguments given here can easily be formalized. Let pub = 〈pub∗, h〉
denote the value output by SS in an execution of the game described in Definition 5. Note that if
A ever outputs pubi = 〈pub∗i , hi〉 with pub∗i = pub∗ then the response is always ⊥ (since then we
must have hi 6= h and so Rec will output ⊥). Thus, we simply assume that pub∗i 6= pub∗.

Fix a t-bounded distortion ensemble {W0, W1, . . . , Wn} with H∞(W0) ≥ m. For any output

pubi = 〈pub∗i , hi〉 of A, define the random variable W ′
i

def
= Rec∗(Wi, pub∗i ). In order not to complicate

notation, we let H∞(W ′
i )

def
= − log (maxx∈M Pr[W ′

i = x]); i.e., we ignore the probability that W ′
i =⊥

since A does not succeed in such a case. H̄∞(W ′
i | X), for a random variable X, is defined similarly.

Let w0, wi, and w′i denote the values taken by the random variables W0, Wi, W
′
i , respectively.

3In particular, this implies that (SS, Rec) is an (m, m′′, t)-secure sketch.
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We classify the random oracle queries of A into two types: type 1 queries are those of the form
H(·, pub∗), and type 2 queries are all the others. Informally, type 1 queries represent attempts by
A to learn the value of w0 (in particular, if A finds w such that H(w, pub∗) = h then it is “likely”
that w0 = w), while type 2 queries represent attempts by A to determine an appropriate value for
some hi (i.e., if A “guesses” that w′i = w for a particular choice of pub∗i then a “winning” strategy
is for A to obtain hi = H(w, pub∗i ) and output pubi = 〈pub∗i , hi〉).

Without loss of generality, we assume that A makes all its type 1 queries first, then makes all its
type 2 queries, and finishes by making all its n recovery queries non-adaptively. The first assumption
is legitimate since the oracle answers to type 1 and type 2 queries (as well as the responses to them)
are independent from each other, and can thus be safely re-ordered. Further, the adversary should
not expect to gain any information whatsoever from the challenger responses Rec(Wi, pubi) — i.e.,
it must expect all of these to take the value ⊥ — since as soon as this condition fails the adversary
succeeds and thus never needs to actually use that information. This also justifies why the recovery
queries can be made in parallel, and after all the random oracle queries.

Let Q1 (resp., Q2) be a random variable denoting the sequence of type 1 (resp., type 2)
queries made by A, and let q1 (resp., q2) denote the value it assumes. For some fixed value of

pub, define γpub
def
= H∞(W0|pub). Notice, since (SS∗, Rec∗) is an (m, m′, t)-secure sketch, we have

Exppub[2
−γpub ] ≤ 2−m′

. Now, define γ′pub,q1

def
= H∞(W0 | pub, q1), and let us call the value q1 “bad”

if γ′pub,q1
≤ γpub − 1. We consider two cases: If 2γpub ≤ 2qh we will not have any guarantees, but

luckily Markov’s inequality implies that Pr[2γpub ≤ 2qh] = Pr[2−γpub ≥ 2−m′
·(2m′

/2qh)] ≤ 2qh ·2
−m′

.
Otherwise, if 2γpub ≥ 2qh, we observe that the type 1 queries of A may be viewed as guesses of w0.
In fact, it is easy to see that we only improve the success probability of A if in response to a type 1
query H(w, pub∗) we simply tell A whether w0 = w or not.4 It is immediate that A learns the
correct value of w0 with probability at most qh · 2

−γpub . Moreover, when this does not happen, A
has eliminated at most qh ≤ 2γpub/2 (out of at least 2γpub) possibilities for w0, which means that
γ′pub,q1

≥ γpub − 1, i.e. that q1 is “good”. Therefore, the probability that q1 is “bad” in this second

case is at most qh · 2
−γpub .

Combining the above two arguments, we see that

Exppub[Pr[q1 bad]] ≤ Prpub[2
γpub ≤ 2qh] + Exppub[qh · 2

−γpub ]

≤ 2qh · 2
−m′

+ qh · 2
−m′

= 3qh · 2
−m′

. (1)

Next, define γ′′pub,q1

def
= maxi(H∞(W ′

i | pub, q1)). Recall that {W0, W1, . . .} is a t-bounded distortion
ensemble which means d(W0, Wi) ≤ t. Furthermore, since (SS∗, Rec∗) is well-formed, {Wi, W

′
i} is

also a t-bounded distortion ensemble5 regardless of pub∗i , which means d(Wi, W
′
i ) ≤ t. Applying

Lemma 2 on (W0, Wi) (and noticing that pub contains pub∗) followed by Lemma 1 on (Wi, W
′
i ), we

find that

γ′′pub,q1
≥ max

i
(H∞(Wi | pub, q1))− log VolMt ≥ γ′pub,q1

− log VolMt . (2)

We now consider the type 2 queries of A. Clearly, the answers to these queries do not affect the
conditional min-entropies of W ′

i (since these queries do not include pub∗), so the best probability

4This has no effect when H(w, pub∗) 6= h as then A learns anyway that w 6= w0. The modification has a small
(but positive) effect on the success probability of A when H(w, pub∗) = h since this fact by itself does not definitively
guarantee that w = w0.

5Ignoring the case when W ′
i =⊥; see the definition of H∞(W ′

i ) given earlier.
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for the attacker to predict any of the W ′
i is still given by 2

−γ′′
pub,q1 (for fixed pub and q1). Assume

now for a second that there are no collisions in the outputs of type 2 queries, and consider the
recovery query 〈pub∗i , hi〉. The chance that this query will be accepted is at most the probability
that A asked some type 2 query H(w′i, ·) for the correct w′i (to which the answer was hi) plus
the probability that such query was not asked yet A nevertheless managed to predict the value
H(w′i, pub∗i ) by sheer luck. Clearly, the second case happens with probability at most 2−k. As for
the first case, every hi will have at most one value w for which the adversary got H(w, pub∗) = hi.
Thus, the best chance of the adversary is to hope that this single w is equal to the correct value

w′i. And we just argued that irrespective of pub∗i , this probability is at most 2
−γ′′

pub,q1 . Therefore,
assuming no collisions happened in type 2 queries, the success probability of A in any one of the

n (non-adaptive) queries is at most n · (2
−γ′′

pub,q1 + 2−k). Furthermore, by the birthday bound the
probability of a collision is at most q2

h/2k. Therefore, conditionally on pub and q1, and for the

corresponding value of γ′′pub,q1
, we find that Pr[Succ | pub, q1] ≤ n · 2

−γ′′
pub,q1 + (q2

h + n) · 2−k.
The adversary’s overall probability of success is thus bounded by the expectation, over pub and

q1, of this previous quantity; that is:

Pr[Succ] = Exppub,q1
Pr[Succ | pub, q1]

≤ (q2
h + n) · 2−k + Exppub



 Pr
q1←Q1

[q1 bad | pub] +
∑

q1 good

n · 2
−γ′′

pub,q1 · Pr[Q1 = q1 | pub]



 .

Using Equation (2), we see that 2
−γ′′

pub,q1 ≤ VolMt · 2
−γ′

pub,q1 . Moreover, for good q1 we have

γ′pub,q1
≥ γpub − 1, which means that 2

−γ′′
pub,q1 ≤ 2VolMt · 2

−γpub . Finally, using Equation (1),

we have Exppub[Pr[q1 bad | pub]] ≤ 3qh · 2
−m′

. Combining all these, we successively derive:

Pr[Succ] ≤ (q2
h + n) · 2−k + 3qh · 2

−m′

+ Exppub

[

2n · VolMt · 2
−γpub · Pr

q1←Q1

[q1 good]

]

≤ (q2
h + n) · 2−k + 3qh · 2

−m′

+ 2n · VolMt · Exppub

[

2−γpub
]

≤ (q2
h + n) · 2−k + (3qh + 2n · VolMt ) · 2−m′

= ε.

As for the claimed value of m′′, we omit the details (since they follow almost the same argument
as above), only outlining the main argument. As argued above, assuming q1 is good, no collisions
happen in type 2 queries, and the adversary did not manage to guess any of the values H(w′i, pub∗i ),
the conditional min-entropy of W0 is at least γ′pub,q1

− log(n ·VolMt ) ≥ γpub− 1− log(n ·VolMt ). On
the other hand, all these bad event leading to a possibly smaller min-entropy of W0 happen with
(expected) probability (over pub) at most (q2

h + n) · 2−k + 3qh · 2
−m′

. From this, it is easy to see
that if View represents the adversary’s view in the experiment, then

H̄∞(W0|View) ≥ − log
(

((q2
h + n) · 2−k + 3qh · 2

−m′

) · 1 + 1 · Exppub

[

2n · VolMt · 2
−γpub

]

)

≥ − log
(

(q2
h + n) · 2−k + (3qh + 2n · VolMt ) · 2−m′

)

= m′ − log
(

(q2
h + n) · 2m′−k + (3qh + 2n · VolMt )

)

= m′′.
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The bounds ε and m′′ that we derive in the above proof have a nice interpretation. The sub-
expression

(

qh + n · VolMt
)

that appears (up to a small constant factor due to the analysis) in both
expressions can be viewed as the number of points in the spaceM about which the adversary has
obtained some information. The qh contribution is due to the type 1 oracle queries, each of which
only reveals information about the queried point itself. Each of the n queries to the challenger may
cover no more than VolMt candidates for w0, since in the worst case each such query eliminated one
guess for w′i (unless collisions in type 2 queries happened), which in turn eliminated up to VolMt
candidates for wi, each of which can only eliminate one candidate Rec(wi, pub∗) for w0. From there,
ε and m′′ are easily interpreted as a combination of the above with a usual birthday collision bound
arising from the random oracle and a small factor to account for the possibility that the adversary
could guess the output to the random oracle.

In practice, it is easy to pick a hash function with sufficiently many output bits so that the
expressions become simpler. In particular, the quantity max(qh, n·VolMt ) will become the dominant
factor determining the amount of the “loss” we get as compared with “non-robust” sketches.

3.1 From Robust Sketches to Robust Fuzzy Extractors

In a manner exactly analogous to the above, we may define the notion of a robust fuzzy extractor.
We include the definition here since we will refer to it in the next subsection:

Definition 6 Given algorithms (Ext, Rec) and random variables W = {W0, W1, . . . , Wn} over a
metric space (M, d), consider the following game between an adversary A and a challenger: Let w0

(resp., wi) be the value assumed by W0 (resp., Wi). The challenger computes (R, pub)← Ext(w0)
and gives pub to A. Next, for i = 1, . . . , n, A outputs pubi 6= pub and is given Rec(wi, pubi) in
return. If there exists an i such that Rec(wi, pubi) 6=⊥ we say the adversary succeeds and this event
is denoted by Succ.

We say (Ext, Rec) is an (m, ℓ, n, ε, t, δ)-robust fuzzy extractor (over (M, d)) if the following hold
for all t-bounded distortion ensembles W with H∞(W0) ≥ m:

Robustness: For all adversaries A, it holds that Pr[Succ] ≤ ε.

Security: Let View denote the entire view of A at the conclusion of the above game. Then,
SD(〈R, View〉, 〈Uℓ, View〉) ≤ δ.

Error-tolerance: For all w′ with d(w0, w
′) ≤ t, we have Rec(w′, pub) = R. ♦

By applying techniques almost exactly as in [9, Lemma 3.1] (with one slight subtlety; see Ap-
pendix A), we show a conversion from any robust sketch to a robust fuzzy extractor in the standard
model. We include the details in Appendix A.

3.2 Application to Secure Authentication

The application of any robust fuzzy extractor to the problem of mutual authentication (or authen-
ticated key exchange) over an insecure channel is immediate. Given any secure protocol Π based on
a uniformly distributed random shared key of length ℓ, any (m, ℓ, n, ε, t, δ)-robust fuzzy extractor
(Ext, Rec), and any source W0 with H∞(W0) ≥ m, consider protocol Π′ constructed as follows:

Initialization The user samples w0 according to W0 (i.e., takes a scan of his biometric data) and
computes (R, pub)← Ext(w0). The user registers (R, pub) at the server.

9



Protocol execution The ith time the user wants to run the protocol, the user will sample wi

according to some distribution Wi (i.e., the user re-scans his biometric data). The server
sends pub to the user, who then computes R̂ = Ext(wi, pub). If R̂ =⊥, the user immediately
aborts. Otherwise, the user and server execute protocol Π, with the server and the user
respectively using the keys R and R̂.

Assume that W = {W0, W1, . . .} is a t-bounded distortion ensemble. Correctness of the above
protocol is easily seen to hold: if the user obtains the correct value of pub from the server then,
because d(w0, wi) ≤ t, the user will recover R̂ = R and thus both user and server will end up using
the same key R in the underlying protocol Π. Security of Π′ against an active adversary who may
control all messages sent between the user and the server (see Appendix B for formal definitions of
security) follows from the following observations:

• If the adversary forwards pub′ 6= pub to at most n different user-instances, these instances will
all abort immediately (without running Π) except with probability at most ε. Thus, roughly
speaking, the adversary is essentially limited to forwarding the correct value of pub.

• When the adversary forwards pub unchanged, the user and server run an execution of Π using
a key R which is within statistical difference δ from a uniformly distributed ℓ-bit key. Note
that this is true even when conditioned on the view of the adversary in sessions when it does
not forward pub unchanged (cf. Definition 6). Thus, assuming Π is secure, the adversary will
not succeed in “breaking” Π′ in this case either.

In terms of concrete security (informally), if the security of Π against an adversary who executes
at most n sessions with the user and the server is εΠ, then the security of Π′ is ε+ δ + εΠ. A formal
proof following the above intuition is straightforward, and will appear in the full version of this
work.

4 An Improved Solution Tailored for Mutual Authentication

As discussed in the introduction, the robust sketches/fuzzy extractors described in the previous
section provide a general mechanism for dealing with adversarial modification of the public value
pub used in the constructions of Dodis, et al. [9]. In particular, taking any protocol based on secure
sketches/fuzzy extractors which is secure when this public value is assumed not to be tampered
with, and plugging in a robust sketch/fuzzy extractor, yields a protocol secure against an adversary
who may either modify the contents of the server (e.g., if the server itself is malicious) or else
modify the value of pub when it is sent to the user.

For specific problems of interest, however, it remains important to explore solutions which
might improve upon the “general-purpose” solution described above. In this section, we show that
for the case of mutual authentication/authenticated key exchange an improved solution is indeed
possible. As compared to the generic solution based on robust fuzzy extractors (cf. Section 3.2 and
Appendix A), the solution described here has the advantages that: (1) it is provably secure in the
standard model, and (2) it achieves improved bounds on the “effective entropy loss”. We provide
an overview of our solution now.

Given the proof of Theorem 1, the intuition behind our current solution is actually quite straight-
forward. As in that proof, letW = {W0, . . .} be a sequence of random variables where W0 represents
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the initial recorded value of the user’s biometric and Wi denotes the ith scanned value of the bio-
metric. Given a well-formed secure sketch (SS∗, Rec∗) and a value pub∗i 6= pub∗ = SS∗(W0) chosen

by the adversary, let W ′
i

def
= Rec(Wi, pub∗i ) and define the min-entropy of W ′

i as in the proof of The-
orem 1. At a high level, Theorem 1 follows from the observations that (1) the average min-entropy
of W ′

i is “high” for any value pub∗i ; and (2) since the adversary succeeds only if it can also output a
value hi = H(W ′

i , pub∗i ) and H is a random oracle, the adversary is (essentially) unable to succeed
with probability better than 2−H∞(W ′

i
) in the ith iteration. Essential to the proof also is the fact

that, except with “small” probability, the value h = H(W0, pub∗) does not reduce the entropy of
W0 “very much” (again using the fact that H is a random oracle with a limited number of queries).

The above suggests that another way to ensure that the adversary does not succeed with
probability better than 2−H∞(W ′

i
) in any given iteration would be to have the user run an “equality

test” using its recovered value W ′
i . If this equality test is “secure” (in some appropriate sense we

have not yet defined) then the adversary will effectively be reduced to simply guessing the value of
W ′

i , and hence its success probability in that iteration will be as claimed. Since we have already
noted above that the average min-entropy of W ′

i is “high” (regardless of the value pub∗i chosen by
the adversary) when any well-formed secure sketch is used, this will be sufficient to ensure security
of the protocol overall.

Thinking about what notion of security this “equality test” should satisfy, one realizes that it
must be secure for arbitrary distributions on the user’s secret value, and not just uniform ones.
Also, the protocol must ensure that each interaction by the adversary corresponds to a guess of (at
most) one possible value for W ′

i . Finally, since the protocol is meant to be run over an insecure
network, it must be “non-malleable” in some sense so that the adversary cannot execute a man-in-
the-middle attack when the user and server are both executing the protocol. Finally, the adversary
should not gain any information about the user’s true secret W0 (at least in a computational sense)
after passively eavesdropping on multiple executions of the protocol. With the problem laid out in
this way, it becomes clear that one possibility is to use a password-only authenticated key exchange
(PAK) protocol [4, 1, 6] as the underlying “equality test”.

Although the above intuition is appealing, we remark that a number of subtleties arise when
trying to apply this idea to obtain a provably secure solution. In particular, we will require the
PAK protocol to satisfy a slightly stronger definition of security than that usually considered for
PAK (cf. [1, 6, 12]); informally, the PAK protocol should remain “secure” even when: (1) the
adversary can dynamically add clients to the system, with (unique) identities chosen by the ad-
versary; (2) the adversary can specify non-uniform and dependent password distributions for these
clients; and (3) the adversary can specify such distributions adaptively at the time the client is
added to the system. Luckily, it is not difficult to verify that existing solutions (e.g., [1, 16, 11])
satisfy6 a definition of this sort. We provide a brief review of definitions for PAK, as well as the
stronger definition of security required for our application, in Appendix C. Our definition may be
of independent interest.

6In fact, it is already stated explicitly in [16, 11] that the given protocol(s) remain secure even under conditions (1)
and (2), and it is not hard to see that they remain secure under condition (3) as well. We have not verified whether
the protocols of, e.g., [6, 12] remain secure under the stated conditions but we expect that they do.
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4.1 Our Construction

With the above in mind, we now describe our construction. Let Π be a PAK protocol and let
(SS, Rec) be a well-formed secure sketch. Construct a modified protocol Π′ as follows:

Initialization A user U samples w0 according to W0 (i.e., takes a scan of his biometric data) and
computes pub← SS(w0). The user registers (w0, pub) at the server S.

Protocol execution (server) The server sends pub to the user. It then executes protocol Π
under the following parameters: it sets its own “identity” (within Π) to be S‖pub, its “partner
identity” to be pid = U‖pub, and the “password” to be w0.

Protocol execution (user) The ith time the user executes the protocol, the user first samples
wi according to distribution Wi (i.e., the user re-scans his biometric data). The user also
obtains a value pub′ in the initial message it receives, and computes w′ = Rec(wi, pub′). If
w′ =⊥ then the user simply aborts. Otherwise, the user executes protocol Π, setting its own
“identity” to U‖pub′, its “partner identity” to S‖pub′, and using the “password” w′.

It is easy to see that correctness holds, since if the user and the server interact without any
interference from the adversary then: (1) the identity used by the server is equal to the partner
ID of the user; (2) the identity of the user is the same as the partner ID of the server; and (3) the
passwords w0 and w′ are identical.

Before discussing the security of this protocol, we need to introduce a slight relaxation of the
notion of a t-bounded distortion ensemble in which the various random variables in the ensemble
are (efficiently) computable:

Definition 7 Let (M, d) be a metric space. An explicitly computable t-bounded distortion en-
semble is a sequence of boolean circuits W = {W0, . . .} and a parameter ℓ such that, for all i, the
circuit Wi computes a function from {0, 1}ℓ to M and, furthermore, for all r ∈ {0, 1}ℓ we have
d(W0(r), Wi(r)) ≤ t. ♦

In our application W will be output by a ppt adversary, ensuring both that the ensemble contains
only a polynomial number of circuits and that each such circuit is of polynomial size (and hence
may be evaluated efficiently). We remark that it is not necessary for our proof that it be possible to
efficiently verify whether a given W satisfies the “t-bounded” property or whether the min-entropy
of W0 is as claimed, although the security guarantee stated below only holds ifW does indeed satisfy
these properties.7 With the above in mind, we now state the security achieved by our protocol
(see Appendix B for a review of definitions of security for mutual authentication/authenticated key
exchange protocols):

Theorem 2 Let Π be a secure PAK protocol (with respect to the definition given in Appendix C)
and let A be a ppt adversary. If (SS, Rec) is a well-formed (m, m′, t)-secure sketch over a metric
space (M, d), and W = {W0, . . .} is an explicitly-computable t-bounded distortion ensemble (output
by A) with H∞(W0) ≥ m, then the success probability of A in attacking protocol Π′ is at most
qs · 2

−m′′
+ negl(κ), where qs is the number of Send queries made by the adversary (cf. Appendix B)

and m′′ = m′ − log VolMt .

7As to whether the adversary can be “trusted” to output a W satisfying these properties, recall that W anyway
is meant to model naturally occurring errors. Clearly, if a real-world adversary has the ability to, e.g., introduce
arbitrarily large errors then only weaker security guarantees can be expected to hold.
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Due to space limitations, the proof is given in Appendix D.

Specific instantiations. As noted earlier, a number of PAK protocols satisfying the required
definition of security are known. If one is content to work in the random oracle model then the
protocol of [1] — which is among the most efficient — may be used (note that this still represents
an improvement over the solution based on robust fuzzy extractors since the “effective key size”
will be larger, as we discuss in the next paragraph). To obtain a solution in the standard model
which is only slightly less efficient, the PAK protocols of [16, 11] could be used.8 Note that although
these protocols were designed for use with “short” passwords, they can be easily modified to handle
“large” passwords without much loss of efficiency; we discuss the specific case of the protocol by
Katz, et al. [16] in Appendix E.

Comparing our two solutions. It is somewhat difficult to compare the security offered by our
two solutions (i.e., the one based on robust fuzzy extractors and the one described in this section)
since an exact comparison depends on a number of assumptions and design decisions. However,
the most significant advantage of the present construction is that it avoids the need to apply a
(standard) randomness extractor, and thus does not lose an additional 2 log δ−1 bits of entropy.
Since a likely value in practice is δ ≤ 2−64, this results in a “savings” of at least 128 bits of entropy.
Further discussion, along with a more detailed comparison, will appear in the full version.
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A Constructing Robust Fuzzy Extractors

A.1 Preliminaries

Before showing the construction of a robust fuzzy extractor, we need to introduce some unfortunate
additional notation. First, we define the notion of a labeled sketch:

Definition 8 An (m, m′, t)-labeled sketch over a metric space (M, d) is a family of algorithms
{(SSL, RecL)}L∈Λ such that for any L ∈ Λ the pair (SSL, RecL) is an (m, m′, t)-secure sketch. We
say this family is well-formed if (SSL, RecL) is well-formed for all L ∈ Λ. ♦
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The definition of a robust labeled sketch is largely similar to that of Definition 5, except that we
now additionally take the label L ∈ Λ into account. Specifically:

Definition 9 Given the family {(SSL, RecL)}L∈Λ and random variables W = {W0, . . . , Wn} over
a metric space (M, d), consider the following game between an adversary A and a challenger: Let
w0 (resp., wi) be the value assumed by W0 (resp., Wi). The challenger chooses a random L ∈ Λ,
computes pub ← SSL(w0), and gives (pub, L) to A. Next, for i = 1, . . . , n, the challenger and A
proceed as follows: A outputs (pubi, Li) 6= (pub, L) and is given RecLi

(wi, pubi) in return. If there
exists an i such that RecLi

(wi, pubi) 6=⊥, we say that the adversary succeeds and this event is
denoted by Succ.

We say {(SSL, RecL)}L∈Λ is an (m, m′′, n, ε, t)-robust labeled sketch (over (M, d)) if it is a well-
formed (m, ·, t)-labeled sketch and: (1) for all t-bounded distortion ensemblesW with H∞(W0) ≥ m
and all adversaries A we have Pr[Succ] ≤ ε; and (2) the average min-entropy of W0 — conditioned
on the entire view of A throughout the above game — is at least m′′. ♦

Our construction of a robust labeled sketch from any well-formed secure sketch (SS∗, Rec∗) is
essentially the same as that given in Section 3, except that we now include the label L as one of
the arguments to the random oracle. That is:

SSL(w)

pub∗ ← SS∗(w)
h = H(w, pub∗, L)
return pub = 〈pub∗, h〉

RecL(w, pub = 〈pub∗, h〉)

w′ = Rec∗(w, pub∗)
if w′ =⊥ output ⊥
if H(w′, pub∗, L) 6= h output ⊥
otherwise, output w′

The appropriate analogue of Theorem 1 holds, following exactly the same proof.

Theorem 3 If (SS∗, Rec∗) is a well-formed (m, m′, t)-secure sketch over a metric space (M, d)
and H is a random oracle with k bits of output, then {(SSL, RecL)}L∈Λ is an (m, m′′, n, ε, t)-robust
labeled sketch over the same metric space for any adversary making at most qh ≪ 2−k/2 queries to
the random oracle, where

ε = (q2
h + n) · 2−k + (3qh + 2n · VolMt ) · 2−m′

m′′ = m′ − log
(

(q2
h + n) · 2m′−k + (3qh + 2n · VolMt )

)

.

If k ≥ m′+log qh, this simplifies to ε ≤ (4qh +2n ·VolMt ) ·2−m′
and m′′ ≥ m′− log(4qh +2n ·VolMt ).

A.2 Construction

With the above in place, we now construct a robust fuzzy extractor from any robust labeled sketch
in a manner exactly following [9, Lemma 3.1]. Let {(SS∗L, Rec∗L)}L∈Λ denote an (m, m′, n, ε, t)-
robust labeled sketch over metric space (M, d) such that Λ indexes a family {HL}L∈Λ of pairwise-
independent hash functions HL : M → {0, 1}ℓ with ℓ = m′ − 2 log δ−1. Construct (SS, Rec) as
follows:

Ext(w)

L← Λ
pub∗ ← SS∗L(w)
R = HL(w); pub = 〈pub∗, L〉
return (R, pub)

Rec(w, pub = 〈pub∗, L〉)

w′ = Rec∗L(w, pub∗)
if w′ =⊥ output ⊥
otherwise, output HL(w′)
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It is not too difficult to see that:

Theorem 4 If {(SS∗L, Rec∗L)}L∈Λ is an (m, m′, n, ε, t)-robust labeled sketch over a metric space
(M, d), then (Ext, Rec) is an (m, ℓ, n, ε, t, δ)-robust fuzzy extractor over the same space.

We note that in the random oracle model it is clearly trivial to construct a robust fuzzy extractor
from a robust sketch. The point of the above conversion is that it preserves robustness without
requiring random oracles.

B Definitions for Authenticated Key-Exchange Protocols

We use the standard notions of security for authenticated key exchange and mutual authentication
as proposed by Bellare and Rogaway [3] and later improved by Bellare, Pointcheval, and Rogaway
[1]. We provide a brief review of the model and definitions here with a focus on protocols for
authenticated key exchange; see [3] for a discussion of mutual authentication.9

We assume for simplicity that the relevant honest players include only a single client and a
single server, who share some long-term information in advance, which need not necessarily be a
uniformly-distributed key. (Security holds also for the more general case when there are multiple
parties who may share keys in an arbitrary manner: indeed, we will explicitly consider such a
setting in Appendix C.) In the real world, a protocol determines how principals behave in response
to signals from their environment. In the model, these signals are sent by the adversary. Each
principal can execute the protocol multiple times; this is modeled by allowing each principal an
unlimited number of instances with which to execute the protocol. We denote instance i of user
U as Πi

U . A given instance may be used only once. Each instance Πi
U has associated with it the

variables statei
U , termi

U , acci
U , usedi

U , sidi
U , pidi

U , and ski
U ; the important ones for our purposes

are the session ID sidi
U which is simply taken to be the concatenation of all messages sent and

received by the instance, the partner ID pidi
U which reflects the party with whom Πi

U intends to
communicate, and the session key ski

U whose computation is the goal of the protocol.
The adversary is assumed to have complete control over all communication in the network.

An adversary’s interaction with the principals in the network (more specifically, with the various
instances) is modeled by the following oracles:

• Send(U, i, M) — This sends message M to instance Πi
U , and outputs the reply generated

by this instance. We allow the adversary to prompt the unused instance Πi
U to initiate the

protocol with partner U ′ via the oracle call Send(U, i, 〈initiate, U ′〉).

• Execute(U, i, U ′, j) — This executes the protocol between the (unused) instances Πi
U and Πj

U ′ ,
and outputs the transcript of the execution.

• Reveal(U, i) — This outputs session key ski
U for a terminated instance Πi

U .

• Test(U, i) — This query does not correspond to any real-world action of the adversary, but
instead enables a definition of security. A random bit b is generated; if b = 1 the adversary
is given ski

U , and if b = 0 the adversary is given a random session key. This query is allowed
only once, at any time during the adversary’s execution.

9In any case, it is well known how to convert any authenticated key exchange protocol (with, say, implicit authen-
tication) to a protocol which achieves (explicit) mutual authentication.
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Send queries correspond to active attacks, while Execute queries correspond to passive (eavesdrop-
ping) attacks. Although an Execute query may be simulated by multiple Send queries, including
the Execute query in the model potentially enables a tighter concrete security analysis.

Before defining a notion of security, we must first define the notion of partnering. We say
terminated instances Πi

U and Πj
U ′ (with U 6= U ′) are partnered iff (1) pidi

U = U ′; (2) pid
j
U ′ = U ;

and (3) sidi
U = sid

j
U ′ . For correctness, we require that any two partnered instances which accept

should output the same session key. The notion of partnering allows us to define the notion of
freshness. We say a terminated instance Πi

U is fresh unless the adversary has queried Reveal(U, i)

or Reveal(U ′, j) where Πi
U is partnered with Πj

U ′ . Note that once an instance Πi
U is no longer fresh,

the adversary already “knows” the value of ski
U and therefore should not “succeed” by correctly

identifying it.
Finally, we say that event Succ occurs if the adversary queries the Test oracle on a fresh instance

and correctly guesses the value of the bit b used in answering this query. The advantage of adversary

A in attacking protocol Π is defined as AdvA,Π(k)
def
= |Pr[Succ] − 1

2 |. We informally refer to the
“security” of a protocol as the maximum advantage of any adversary running in some (implicit)
time bound T . Formally, a protocol is secure if the advantage of any ppt adversary A is negligible
in some security parameter κ (where both the information shared between the parties as well as
the protocol itself may depend on κ).

C Definitions of Security for PAK Protocols

To define the security of a password-only authenticated key exchange (PAK) protocol, we use the
same basic framework as in Appendix B but modify the definition of security. The definition given
here is based on the definitions used in [1, 16, 11] except that, as discussed in Section 4.1, we define a
stronger notion of security in which the adversary may choose (in an adaptive manner) non-uniform
and dependent password distributions for the various clients. We model this in the following way:
at the beginning of the experiment a random value r ← {0, 1}poly(κ) is chosen (and not revealed to
the adversary), where κ again represents the security parameter. Some number i of clients/servers
may be initialized with the password of the ith such party set to W init

i (r) for some (poly-size)
circuit(s) {Ŵi} known to the adversary. The adversary is furthermore allowed to make queries (at
any time) to an oracle Initialize with the following functionality: on query Initialize(client, C, W )
a new client with name C is initialized with password W (r), where W here is taken to be a
circuit mapping {0, 1}poly(κ) to the space of possible passwords. (The query Initialize(server, S, W )
is defined similarly.) In case C (resp., S) corresponds to the name of an existing client or server,
the password is updated as requested (as discussed in [17], however, an instance which is already
running must use the same password throughout even if the password changes). Note that this
allows for arbitrary password distributions as well as arbitrary dependencies among the passwords
used by various clients/servers.

Partnering, freshness, and the event Succ are defined exactly as in Appendix B. As for security,
for a given adversary we say that passwords have entropy m if H̄∞(W init

i ) ≥ m for all i (where this
is the average min-entropy conditioned on the initial view of the adversary before it makes any
oracle queries) and also for all queries of the form Initialize(∗, ∗, W ) made by the adversary it is the
case that H̄∞(W ) ≥ m (where the entropy of a distribution sampled by a circuit is defined in the
natural way). In other words, the min-entropy of any password in the system is at least m. We
stress that it is not essential to be able to efficiently determine the entropy of any given circuit —
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all that is required is that the stated entropy bound hold. We say a PAK protocol Π is secure if
for all m and all ppt adversaries A for which passwords have entropy m we have10:

|2 · PrA,Π[Succ]− 1| ≤ Q/2m + negl(κ),

where Q denotes a bound on the number of “on-line” attacks made by the adversary (which is at
most the number of Send queries). Note that when the passwords for each client/server are chosen
uniformly and independently from a dictionary of size |D| we recover the definitions of [1, 16, 11].

We remark that if the adversary is required to make all his Initialize queries at the beginning
of the game, then this model was considered implicitly (without any formal definitions or proofs of
security) in [16, 11]. For our application, we need to allow the adversary to adaptively query the
Initialize oracle at any point during the experiment.

D Proof of Theorem 2

Given adversary A′ attacking Π′, we construct an adversary A attacking the PAK protocol Π.
Relating the success probabilities of these adversaries gives the desired result.

We assume for simplicity that the first message in Π is sent by the client. Given explicitly
computable t-bounded distribution ensemble W = {W0, . . .} with H∞(W0) ≥ m, and (m, m′, t)-
secure sketch (SS, Rec), and adversary A′, we construct adversary A attacking Π as follows:

1. The system is initialized by choosing r ← {0, 1}poly(κ), sampling w0 according to W0(r),
computing pub ← SS(w0), creating a client named U |pub with password w0, and creating
a server named S|pub with the same password. Adversary A is given pub. (Note that
H̄∞(W0|pub) ≥ m′.)

2. The adversary A then runs A′, answering its oracle queries as follows (recall that for A′

attacking Π′, there are only the two users with names U and S):

• When A′ makes a query of the form Execute(U, i, S, j), adversary A simply makes the
query Execute(U |pub, i, S|pub, j), obtains transcript T , and returns to A′ the transcript
pub|T .

• When A′ makes a query of the form Send(S, j, M), adversary A simply makes the query
Send(S|pub, j, M). (The only exception is when A′ requests S to initiate execution of
the protocol, in which case A simply returns pub.)

• WhenA′ makes a query of the form Send(U, i, M) which is the first Send query to instance
Πi

U , then M will be of the form pubi. There are two sub-cases to consider: (1) if pubi =
pub then A requests U |pub to initiate execution of the protocol and returns the response
to A′. On the other hand, if (2) pubi 6= pub then A first calls Initialize(client, U |pubi, W

′
ℓ),

where W ′
ℓ = Rec(Wℓ, pubi) and this is the ℓth Send query directed byA′ to the user. Next,

A request U |pubi to initiate execution of the protocol, and returns the response to A′.

• For any other queries of the form Send(U, i, M) made by A′, the appropriate Send query
(i.e., to the appropriate instance) is made by A and the response is given to A′.

• Similarly, for any Reveal or Test query made by A′, the appropriate Reveal or Test query
(i.e., to the appropriate instance) is made by A and the response is given to A′.

10In fact, a tighter definition is possible but will not be required for our application.
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3. Finally, A outputs whatever A′ outputs.

It is not hard to see that A provides a perfect simulation to A′. The only thing that needs to
be verified is that any instance which is fresh in Π′ corresponds to a fresh instance in Π, but this
follows easily from the following observations: if an instance Πi

U |pub′
is not fresh in Π this means

that a Reveal query was made to either this instance or to a partnered instance. In the former case,
it is immediate that the corresponding instance in Π′ is not fresh. In the latter case, this means
that a Reveal query was made to an instance of the form Πj

S|pub′
with sid

j
S|pub′

= sidi
U |pub′

. But

then the sessions IDs of the corresponding instances in Π′ also match, and hence the corresponding
instances are partnered in Π′ as well. Thus, PrA,Π[Succ] = PrA′,Π′ [Succ].

To complete the proof, we need only observe that, in the above execution of Π, passwords have
entropy m′′. (For the case of H̄∞(W0|pub) this follows from the facts that (SS, Rec) is an (m, m′, t)-
secure sketch and m′ > m′′; for the case of W ′

ℓ the fact that H̄∞(W ′
ℓ|pub) ≥ m′′ for all ℓ follows

from the same arguments as in the proof of Theorem 1.) This completes the proof of Theorem 2.

E Instantiating Our Solution Using the KOY Protocol

We assume here that the reader is familiar with the KOY protocol [16]. In that protocol, the length
of the password is limited to be at most the length of the order of the subgroup in which the DDH
assumption is considered. I.e., if the subgroup under consideration is the set of quadratic residues
in Z

∗
p (where p = 2q+1 and p, q are prime), then passwords must fall in the range {1, . . . , q}. While

this does not present a problem when “short” passwords are used, it may be problematic when
“longer” passwords are used as in this work. Of course, one can always solve the problem by using
larger values of p, q (whose lengths will still be polynomial in the security parameter) but this may
be inefficient in practice.

Luckily, for the case of the KOY protocol (as well as the protocols of [11]), better solutions
are possible. Without going in to the full details, the idea is to modify the “Cramer-Shoup”
encryption [7] used within the KOY protocol so as to allow for encryption of more than a single
group element (with the rest of the KOY protocol modified accordingly). Thus, whereas the original
KOY protocol uses a Cramer-Shoup “encryption” of the value pw′ of the form

gr
1, gr

2, hr
1g

pw′

1 , (cdα)r,

where α is computed as a hash of the first three components and g1, g2, h1, c, d make up the public
key, we may, for example, encrypt the (longer) value pw = pw1|pw2 as follows:

gr
1, gr

2, hr
1g

pw1

1 , hr
2g

pw2

1 , (cdα)r,

where α is computed now as a hash of the first four components and h2 is additionally included in
the public key. Whereas the former limits pw′ to be of length |q|, the latter allows pw to be twice
as long with only minimal added computation. Extensions to longer values of pw′ are possible,
following the same approach.
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