
Improving the Security of MACs via

Randomized Message Preprocessing

Yevgeniy Dodis

dodis@cs.nyu.edu

New York University

Krzysztof Pietrzak

pietrzak@cwi.nl

CWI

February 5, 2007

Abstract

“Hash then encrypt” is a popular approach to message authentication: first the message is
hashed down using an ε-universal hash function, and then the resulting k-bit value is encrypted,
say with a block-cipher. The security of this scheme is proportional to εq2, where q is the
number of MACs the adversary can request. As ε is at least 2−k, the best one can hope for is
O(q2/2k) security. Unfortunately, such small ε is not achieved by simple constructions used in
practice, such as the polynomial evaluation or the Merkle-Damg̊ard construction, where ε grows
with the message length L.

The main insight of this work comes from the fact that, by using randomized message prepro-
cessing via a short random salt p, we can use the “hash then encrypt” paradigm with suboptimal
“practical” ε-universal hash functions, and still improve its exact security to optimal O(q2/2k).
Specifically, by using at most an O(log L)-bit salt p, one can always regain the optimal exact se-
curity O(q2/2k), even in situations where ε grows polynomially with L. We also give very simple
preprocessing maps for the “suboptimal” hash functions used in practice, namely polynomial
evaluation and the Merkle-Damg̊ard construction.

Our results come from a general extension of the classical Carter-Wegman paradigm, which
we believe is of independent interest. On a high level, it shows that public randomization
allows one to use the potentially much smaller “average-case” collision probability in place of
the “worst-case” collision probability ε.

1 Introduction

Hash then Encrypt. A popular paradigm to message authentication is “hash then encrypt”,
where the authentication tag for a message m is computed as f(h(m)) where h is a hash function
and f a pseudorandom permutation (say AES). This approach is appealing for several reasons: (1)
it is stateless, (2) h needs not to be a cryptographic hash function, but only ε-universal1 and (3)
the “slow” cryptographic f is then only applied on a short input (i.e. on the range of h).

As f is indistinguishable from a uniformly random permutation, everything an attacker learns
about h(m1), h(m2), . . . from the authentication tags f(h(m1)), f(h(m2)), . . . is whether there is a
collision (as f(h(mi)) = f(h(mj)) iff h(mi) = h(mj)). Since h is not cryptographic, finding such
a collision is usually enough for an adversary to come up with a forgery for a new message. If f
is over {0, 1}k (say, f is AES-128 where k = 128) then by the birthday bound the best security
we can hope for is something in the order of q2/2k where q = qmac + qforge is the number of MAC
queries and forgery attempts the adversary is allowed to make. More precisely, assuming that f
is ideal (i.e. a uniform random permutation), the probability of a successful forgery can be upper
bounded by2

ε · q2
mac + ε · qforge

As ε ≥ 1/2k the best one can hope for by the “hash then encrypt” approach is O(q2/2k) security.
In the sequel, we will call this optimal security.

Using Suboptimal Hash Functions. Unfortunately, hash functions used in practice, such as
polynomial evaluation and the cascade (aka Merkle-Damg̊ard) construction3 , do not yield optimal
security, since the value ε they achieve grows linearly with the length of the message. There are
several ways to improve the exact security with such hash functions. Most obviously, one can
increase the security parameter k. However, this does not regain the optimal security relative to
this larger k (although the absolute exact security is improved). More critically, increasing k is
typically not an option in practice, since k is tied to the block length of the block cipher which is
usually fixed (say, to 128 bits for AES) and pretty inflexible to any changes.4 Another option is to
design a different ε-universal hash function achieving optimal ε = O(1/2k). For one thing, replacing
existing and popular implementations is not so easy in practice, so this option is usually ruled out
anyway. More importantly, and this is part of the reason practical hash functions are not “optimally
universal”, O(1/2k)-universal hash functions tend to be much less efficient or convenient than their
slightly sub-optimal counter-parts. For example, achieving perfect ε = 1/2k requires a key of size
L [23], where L is the length of the message, which is very impractical. In theory, one can achieve
ε = 2/2k by composing a “practical” δ-universal hash function from L to k + ℓ bits, where ℓ is
chosen large enough to bring δ below 1/2k (typically δ = O(L)/2k+ℓ which gives ℓ = log(L)+O(1)),
with the perfectly universal hash function from k + ℓ to k bits, whose key is then only k + ℓ bits

1A family of hash functions H is ε-universal, if for any x 6= x′, Prh←H[h(x) = h(x′)] ≤ ε.
2If f is not ideal but a pseudorandom permutation, then there should also be a term counting the insecurity of f .

However, since this term is always the same and is independent of the hash component, we will omit it from all our
bounds.

3This construction uses a fixed input length shrinking function iteratively in order to get a function for arbitrary
long inputs. In this paper we always assume that the iterated function is ideal, i.e. a uniformly random function.

4Though, if one is willing to make two invocations to the block-cipher, one can use it in CBC-mode in order to
get a {0, 1}2k → {0, 1}k PRF, which can then be used instead of the block-cipher. This mode of operation shold
not be called “hash then encrypt”, as the application of the (shrinking) PRF is not invertible, i.e. not an encryption
scheme.

1

long. In practice, however, this composition is quite inconvenient to implement. Aside from the
obvious inefficiency that the key size is at least doubled compared to using practical hash functions,
the latter are usually optimized to operate on a specific value of k, and do not extend easily to
larger outputs k + ℓ, even if ℓ is very small. For example, the polynomial evaluation function with
k = 128 corresponds to performing fast field operations over GF (2128), which could be implemented
in hardware. In contrast, evaluating field operations over GF (2128+ℓ) would be much slower even
for ℓ = 1, since a 129-bit element would not fit into a register. Similarly, the cascade construction
typically uses a very specific compression function with fixed k, which is usually undefined for
larger k.

To summarize, in practice the “hash then encrypt” paradigm does not achieve optimal exact
security O(q2/2k). The question addressed in this paper is whether one can reclaim — with
little extra cost — the optimal exact security of the “hash then encrypt” MAC when using such
popular but sub-optimal ε-universal hash functions. Moreover, we would like a solution which does
not change the value of k and does not modify the internals of the underlying hash function, so
that our solution can be easily applied to existing implementations. Finally, the solution should
remain stateless. Quite surprisingly, we answer this question in the affirmative for the popular
polynomial evaluation and the cascade constructions, by using randomized message preprocessing
before applying the actual MAC. We motivate our approach below.

Using Randomization. Recall, a hash function is ε-universal if the collision probability of two
messages is at most ε for all possible message pairs. But the actual collision probability could be
much smaller for most pairs. To illustrate this on an example, let us consider the polynomial-based
ε-universal hash function: here the message m ∈ {0, 1}Lk is viewed as a degree (L− 1) polynomial
fm over GF (2k), the secret key s is an element of GF (2k), and hs(m) is the value of the polynomial
fm at s. Given two distinct messages m1 and m2, their probability of collision is r/2k, where r is the
number of roots of the non-zero polynomial g = fm1

−fm2
. Although g can have up to (L−1) roots

for some pairs (m1, m2), Hartman and Raz [11] showed that the fraction of polynomials (of any
degree) with t roots decays proportional to 1/t!, which means that a vast majority of polynomials
have at most a constant number of roots. Thus, a vast majority of pairs (m1, m2) have collision
probability O(1/2k) rather than the worst-case bound (L− 1)/2k.

This brings up the following idea to improve the security of a MAC based on the “hash then
encrypt” paradigm: apply some randomized preprocessing function m′ = Pre(m, p) to the message
m (where p is a fresh random salt), and return (p, f(hs(m

′))) as the randomized MAC of m. The
hope is that preprocessing should thwart the attempts of the adversary to choose messages which
have a large collision probability and thus increase the security of the MAC. To put it differently,
by designing a clever randomized message preprocessing, we will try to ensure that two processed
messages cannot collide with probability more than O(1/2k), even if the worst-case ε is much larger.
Another advantage of preprocessing comes from the fact that the original “suboptimal” MAC is
used in a “black-box” manner, while suddenly becoming more secure!

Of course, there is a price we need to pay for regaining optimal exact security. It comes from
the fact that we need to tell the receiving party how we randomized the message. Thus, aside
from showing that randomized message preprocessing can always yield optimal exact security, —
which is a non-obvious statement we will prove later, — the secondary objective is to minimize the
number of random bits needed to avoid “bad” message pairs in a given ε-universal family.

The two-key Hash Function Paradigm. To capture the intuition just described, we introduce
the concept of two-key (εforge, εmac)-universal hash functions. As the name suggests, the key of such

2

a function has two parts, a “secret” part and a “public” salt. If the salt is empty, then εforge = εmac

and we have a usual ε-universal hash function with ε = εforge. Here εforge is an upper bound on
the probability (over a choice of the secret key) that the hash values of two messages collide when
the adversary can choose the messages and the public salt for both hashes, and εmac is the same
probability but where at least one of the two public salts is chosen at random (clearly we always
have εforge ≥ εmac).

From such a two-key hash function we can construct a MAC-scheme like from the usual ε-
universal hash function (i.e. “hash then encrypt”), but where for every message to be authenticated
the public salt is chosen at random and must be sent as a part of the authentication tag. As our first
result, we generalize the standard “one-key” hash then encrypt MAC and show that the generalized
MAC has security

εmac · q
2
mac + εforge · qforge

In particular, to get optimal O(q2/2k) security here it is sufficient to have εmac in the order of 1/2k,
while εforge can be considerably larger.

We also remark that the above two-key hash paradigm is strictly more general than the “ran-
domized preprocessing paradigm” advertised earlier. In particular, the latter corresponds to the
two-key hash functions of the form hs(Pre(m, p)), where Pre(m, p) is the preprocessing map. How-
ever, we find it more intuitive to state some of results for the general two-key paradigm (which also
makes them more general).

Two-Key Hash Functions with Short Salt. In this paper we propose randomized pre-
processing mechanisms for several ε-universal hash functions and show that this turns them into
(εforge, εmac)-universal ones with εforge ≈ ε and εmac = O(1/2k). Moreover, in each case we use a
very short public salt p.

Our first result is very general. We show (non-constructively) that for every balanced ε-universal
hash function (where ε = ε(L) can grow polynomially in the length of the messages L; i.e., ε(L) =
Lc/2k for some constant c) there is a randomized preprocessing using only O(log L) random bits
which gives an (εforge, εmac)-universal hash function with εforge ≈ ε and εmac = O(1/2k). Although
this result is non-constructive (i.e., the preprocessing map is inefficient and is only shown to exist),
we believe the result is interesting given its generality.

Our next results involve simple and efficient implementations of the above generic result for
popular ε-universal hash functions, such as the polynomial evaluation (denoted poly in the sequel)
and the cascade (aka. Merkle-Damg̊ard) construction. We describe these results in more details
in the following sections, but mention that in each case we manage to design extremely simple
preprocessing maps using an O(log L)-bit public salt promised by the generic existence result.
Unfortunately the construction for polynomial evaluation is only non-uniform, i.e. we prove that
maps with a succinct description (of length O(L3)) exist, but do not provide a way to find them.
Fortunately we can show that almost all such succinct descriptions yield a good map, so one can
just sample and “hardwire” a random string which will then define a good map almost certainly.

As our final result, when the hash function we use satisfies a slightly stronger property of being
ε-∆ universal [16], we also show a constructive general result stating that we can always regain the
optimal security by doing O(log L)-bit postprocessing instead of preprocessing. By this we mean
randomizing the hash value hs(m), rather than the message m, with an O(log L)-bit public salt
p. Moreover, we do not need the hash function to be balanced (which is necessary for the general
result with preprocessing).

Figure 1 summarizes our results (see future sections for some of the notation).

3

Related Work. Following the initial papers of Carter and Wegman [7, 26], foundations of
universal hash function-based authentication were laid by [23, 16, 19, 24].

The analysis of the folklore polynomial construction is well known (see [5] for some history).
The Merkle-Damg̊ard functions was analyzed as an ε-universal hash function by [2, 8], the latter
proving a bound of ε ≈ L/2k for hashing an Lb-block input using the compression function ξ :
{0, 1}k × {0, 1}b → {0, 1}k (modeled as a truly random function; here L < 2k/2).

It is also interesting to compare the “hash then encrypt” approach we study here with a variant
of this approach studied by [26, 16], which actually led to the introduction of ε-∆ universal hash
functions. Here one replaces a block cipher by a “fresh one-time pad”. In modern terminology, the
MAC has a tag of the form (r, hs(m) ⊕ ft(r)), where ft is a pseudorandom function with a new
key t, and r is a fresh “nonce” which is not supposed to repeat. In practice, this means that r
is either a counter, or a fresh random value. In the first case, we get perfect security (aside from
the insecurity of f).5 However, maintaining a counter introduces state, and stateful MACs are
extremely inconvenient in many situations (see [21, 15] for several good reasons). Correspondingly,
to make a fair comparison we should only consider the case when r is a fresh random salt (in which
case the MAC is indeed stateless, but r has to be part of the tag). To make such a comparison,
let us fix the output of the hash function hs to {0, 1}k, and replace the PRF by a truly random
function. Then, we get that the length of the tag in the “XOR-scheme” is |r| + k, while its
exact security is ε + O(q2/2|r|) (where the last term comes from the birthday bound measuring
collisions on r). Thus, to get to the desired overall security of O(q2/2k), this randomized MAC
must use |r| = Ω(k) random bits and increase the tag length by this amount as well. On the other
hand, we demonstrated that our randomized MACs can achieve the same level of security using
only |p| = O(log L) bits of randomness, which is asymptotically smaller than k. In other words,
although using the one-time pad has other advantages over using the block cipher,6 it is provably
inferior to our method for achieving O(q2/2k) security (via stateless MACs).

We also mention that message preprocessing has been used previously in other contexts. For
example, we already mentioned the work of Jaulmes et al. [15] on RMAC. Semanko [21] investigated
the security of iterated MACs (like the cascade or CBC construction), which are randomized by
prepending a random string. Here finding collisions does not necessarily imply a new forgery, but
Semanko showed some non-obvious forgery attacks. In particular, even when prepending up to
k/2 random bits one can find a forgery after 2k/2 queries (and not just a collision, which by the
birthday bound is trivial). Let us stress that in our case, the length of random salt is small enough
so that the above distinction between collisions and forgeries does not play any significant role.

Bellare et al. [2] also used randomness to improve the security of the cascade construction for
a (stronger than ours) task of domain extension of a pseudorandom function (in which case there
is no need to add the encryption step at the end). In particular, the message preprocessing used
there is different from ours (prepend instead of append), and the exact security is weaker as well.
The same paper also considers changing the cascade construction by appending a fixed but random
secret string t to each message (instead of choosing a fresh public t per each message). However,
this is done for a different purpose of achieving “prefix-freeness” of messages.

Recently, Halevi and Krawczyk [9] also proposed to use randomized message preprocessing in
the design of signature schemes. Their goal is to lower the computational assumptions on the
hash function used in signature schemes. In particular, they show that randomized versions of

5Bernstein [4] investigates how much security one loses when f is a permutation (like AES).
6E.g., it can go below the O(q2/2k) barrier, even when the hash function output is fixed to k.

4

some signature schemes based on hash functions only require second-preimage resistance while the
original scheme needed (the stronger) collision resistance. This works continues and optimizes the
more general direction of replacing a fixed collision-resistant hash function in the “hash then sign”
paradigm by a universal one-way hash function [13] chosen at random for each new message signed
(and appended to the message before signing). Notice, while the main goal of [9] is to reduce the
needed computational assumption on the hash function (and not the length of the salt or the actual
exact security), our setting is information-theoretic with the primary goal of improving the exact
security while simultaneously minimizing the salt length.

“Amortized” Collision Probability. Another possibility to get better bounds on the exact
security of the “hash then encrypt” paradigm is to consider “amortized” collision probability. For
any q messages x1, . . . , xq and a ε-universal hash-function, the probability that h(xi) = h(xj) for
any i 6= j is in O(εq2). This O(εq2) bound is proven by applying the union bound to all

(

q
2

)

pairs of authenticated messages, which introduces some slackness: even if there are some pairs of
messages with collision probability ε, it is not clear whether there exist q ≫ 2 messages where each
(or most) pairs collide with probability Ω(ε), and, moreover, the collision probabilities for distinct
pairs are sufficiently independent7. Thus, it is possible that the actual collision probability is much
less than O(εq2). We know of one example where this has been proven to be the case, namely
the CBC-function (based on uniformly random permutations). This function is ε-universal with
ε = Θ(L1/ ln ln L) [3], but using the amortized approach described above (assuming q ≥ L2 and
L ≤ 2k/8) one can prove [18] an optimal O(q2/2k) security bound, despite ε = ω(1/2k).

Of course, this raises the question if the other constructions we consider also already achieve
O(q2/2k) security (for a non-trivial range of parameters) without randomization. As to the cascade
construction, this is easily seen not to be the case, as there are q messages of length L where
the collision probability is Θ(Lq2/2k). As to the polynomial construction, we do not know the
answer, but conjecture that one cannot achieve the optimal security O(q2/2k) (as we do with
randomization).

2 Notation and Basic Definitions

For any integer x ≥ 0 we denote by 〈x〉k its binary representation padded with leading 0’s to length
k, e.g. 〈7〉5 = 00111. For two strings A, B we denote with A‖B their concatenation. For k ∈ N

we define Bk
def
= {0, 1}k and B≤i

k
def
= ∪j=1...iB

j
k to be the set of all strings of length at most i k-bit

blocks. For a set X we denote with x
$
←X that x is sampled uniformly at random from X .

Definition 1 (ε-almost 2-universal hash function) A hash function H : S × X → Y is ε-

almost 2-universal if for all x, y ∈ X ,x 6= y and hs(.)
def
= H(s, .)

Pr[s
$
←S; hs(x) = hs(y)] ≤ ε

To save on notation we only write “ε-universal” for “ε-almost 2-universal”. We also often consider
the case where ε = ε(X) can be a function of the message space X .

7To see why those probabilities must be independent, consider an h where either all or none of the messages
collide, then the collision probability for all q messages is only O(ε) and not O(εq2).

5

3 Two-Key Hashing and MACs

In this section we first review the “hash then encrypt” approach for message authentication. We
then define two-key universal hash functions, which are a randomized version of normal ε-universal
hash functions. Based on such hash functions, we propose a randomized version of “hash then
encrypt” and show that its security is mainly bounded by the “average-case” collision probability
of the two-key hash function, which can be much smaller than the “worst-case” probability which
appears in the bound of the standard hash then encrypt approach. We now define what we mean
by (the security of) a randomized MAC. Let us note that the definition given below becomes the
standard definition for (deterministic) MACs when R is a singelton set.

Definition 2 (Randomized MAC) A randomized message authentication scheme MAC is a func-
tion R× S × X → Y. R is the randomness-space, S is the key-space, X the message domain and
Y the tag-space.

We denote with FRGMAC(qmac , qforge) the advantage of any adversary A in finding an existential
forgery for MAC where A is allowed to ask for at most qmac MACs and make qforge forgery attempts.

More formally we consider the following experiment: first s
$
←S is sampled, then A may query the

MACing oracle

m→ (MAC(s, m, r), r) where r
$
←R

at most qmac times and a verification oracle

(m, a, r)→ 1 if MAC(s, m, r) = a and 0 otherwise.

at most qforge times. Now FRGMAC(qmac , qforge) is an upper bound on the probability that any A
succeeds in receiving 1 from the verification oracle on an input (m, a, r) where he did not already
receive the output (a, r) on input m from the MACing oracle. Note that the adversary may choose
the salt r when querying the verification oracle, but the MACing oracle chooses the r at random.

This definition is an information theoretic one as we did only bound the number of queries A is
allowed to make but we make no other computational assumption. We can do this as we will
consider only MACs which as a final step involve an application of a uniform random permutation.
In reality one would have to replace this uniform random permutation (URP) with a pseudoran-
dom permutation (PRP), as otherwise the construction is not practical, and to restrict the above
definition to computationally bounded adversaries (as unbounded adversaries can distinguish a
PRP from a URP). The security of such a computational MAC then can be upper bounded by
FRGMAC(qmac , qforge)+AdvPRP where AdvPRP is the distinguishing advantage for the pseudorandom
permutation of the adversary considered. From now on, we will no longer mention this simple fact.
The following proposition is well known.

Proposition 1 (Security of hash then encrypt) Let H : S × X → Y be ε-universal and f(.)
a uniform random permutation over Y.

If 1/(|Y|− qmac) ≥ ε, then the MAC scheme with secret key s
$
←S where the authentication tag

for a message m ∈ X is computed as

MAC(s, m) = f(hs(m))

has security
FRGMAC(qmac , qforge) ≤ ε · q2

mac + ε · qforge

6

We do not prove this proposition, as it is just a special case of Theorem 1 below.
We now define the concept of two-key hash functions described in the introduction.

Definition 3 ((εforge, εmac)-almost 2-universal (two-key) hash function)
A hash function H : S ×P ×X → Y is (εforge, εmac)-universal if (below x1, x2 ∈ X , p1, p2 ∈ P and

hs(., .)
def
= H(s, ., .))

εforge ≥ max
(p1,x1) 6=(p2,x2)

Pr[s
$
←S; hs(p1, x1) = hs(p2, x2)]

εmac ≥ max
p1,x1,x2

Pr[s
$
←S; p2

$
←P; hs(p1, x1) = hs(p2, x2) ∧ (p1, x1) 6= (p2, x2)]

Every ε-universal hash function is a (ε, ε)-universal two-key hash function with P = ∅. We can
now generalize the hash then encrypt paradigm to two-key hash functions.

Theorem 1 (Security of two-key hash then encrypt) Let H : S×P×X → Y be (εforge, εmac)-
universal and f(.) a uniform random permutation over Y.

If 1/(|Y|−qmac) ≥ εforge,
8 then the MAC scheme with secret key s

$
←S where the authentication

tag for a message m ∈ X is computed by first sampling p
$
←P and then setting

MAC(s, m, p) = (f(hs(p, m)), p)

has security
FRGMAC(qmac , qforge) ≤ εmac · q

2
mac + εforge · qforge

Proof : Instead of bounding FRGMAC(qmac , qforge) we bound the (larger) probability P that any
adversary A can forge a MAC or he finds a collision. By a collision we mean that two outputs
(a1, p1),(a2, p2) from the MACing oracle on two (not necessarily distinct) queries m1 and m2, satisfy
a1 = a2 and (m1, p1) 6= (m2, p2).

Let Pcol denote the probability that a collision occurs before A found a forgery, and Pfrg be
the probability that A found a forgery before any collision occurred, so P = Pcol + Pfrg. Below we
bound Pcol ≤ εmac · q

2
mac and Pfrg ≤ εforge · qforge which then proves the theorem.

We can bound Pcol ≤ εmac · q
2
mac as follows: first, we can assume that A makes no forgery

attempts (as trying to forge can only lower the probability of finding a collision before there was a
successful forgery). Now we will show that for any 1 ≤ i < j ≤ qmac , the probability that the first
collision is amongst the i’th and j’th query is at most εmac: as we are interested in the first collision,
we can assume that i = 1 and j = 2, as making any intermediate queries can only lower the success
probability (to see this, note that because of the application of the uniform random permutation,
all the adversary learns about the outputs of the hash function is whether there were collisions or
not). Next, for an adversary which makes only two queries, εmac is a trivial upper bound on the
collision probability (even if we allow A to choose the salt for the first query). Applying the union
bound we get that the probability that there are any i, j, 1 ≤ i < j ≤ qmac such that the i’th and
j’th output collide, is at most εmac · qmac · (qmac − 1)/2, which thus is an upper bound for Pcol.

8This is satisfied if the hash function is input shrinking and εforge is at least slightly bigger than the optimal
1/|Y|, which is the setting that interests us. To see that the restriction is necessary, consider a hash function which
is a permutation on P × X ≡ Y, then εforge = εmac = 0, but the forgery probability is not 0 as a random guess will
always be successful with prob. 1/|Y|.

7

We will now prove the bound Pfrg ≤ εforge · qforge . For any j, 1 ≤ j ≤ qforge , let Pj denote the
probability that the j’th forgery query is the first successful forgery and there was no collision before
this forgery attempt. We will show Pj ≤ εforge, this proves Pfrg ≤ εforge ·qforge as Pfrg =

∑qforge
j=1 Pj .

To upper bound Pj we can assume that A skips the j − 1 first forgery attempts (this can only
increase the success probability of the considered forgery attempt to be the first successful forgery).
Moreover we allow A to chose all the salts for his (up to qmac) MACing queries he can ask before
his forgery attempt. Again, this can only increase his success probability.

So we must upper bound (by εforge) the probability of any A winning the following game: A
gets σi = f−1(hs(xi)) for i = 1, . . . , k (with k ≤ qmac) and xi’s of his choice. Then he must come
up with a σ, x (where x 6= xi for all 1 ≤ i ≤ k). He wins if f−1(hs(x)) = σ and σi 6= σj for all
1 ≤ i < j ≤ k.

If A chooses a σ where σ 6= σi for all i = 1, . . . , k, then the success probability (even conditioned
on all σi being distinct), is at most 1/(|Y| − k) ≤ 1/(|Y| − qmac) ≤ εforge (the last step by
assumption), as then Pr[f(hs(x)) = σ] ≤ Pr[f(hs(x)) = σ|∀i, 1 ≤ i ≤ k : hs(xi) 6= hs(x)] =
1/(|Y| − k), here the first step used that if hs(xi) = hs(x), then σ = σi, and the second used that
f is a uniform random permutation and thus if hs(x) is new, then f−1(hs(x)) is uniformly random
over Y \ {σi, . . . , σk}.

Now consider the other case, i.e. when A chooses a σ where for some i : σ = σi. From this
A we construct an adversary A′ which has at least the same probability of winning as follows. A′

runs A and answers each of A’s queries x1, . . . , xk with uniformly random but distinct σ′1, . . . , σ
′
k.

When now A outputs his forgery attempt (σ = σ′i, x), A′ makes the single MACing query xi, gets
σi and outputs the forgery attempt (σ = σi, x). It’s not hard to verify that A′ success probability
is at least the one of A (it can be larger as A′ will never lose the game due to collisions amongst
the σ1, . . . , σk, as he only asks one for each σi). Moreover A′’s success probability is at most εforge

as A′ just chooses two values x, xi before even using any oracle, and then wins if hs(x) = hs(xi). �

4 A Generic Construction

In this section we show that for every balanced ε-universal hash function H, where ε can even grow
polynomially in the message length L, there exists a preprocessing using only O(log L) random bits,
which makes the hash function (εforge, εmac)-universal where εforge ≈ ε and εmac is of the smallest
possible order.

Let H : S × {0, 1}∗ → {0, 1}k be ε(.)-almost 2-universal, by this we mean that for all x1, x2 ∈

{0, 1}∗ where x1 6= x2, ℓ = max{|x1|, |x2|} and hs(.)
def
= H(s, .)

Pr[s
$
←S; hs(x1) = hs(x2)] ≤ ε(ℓ)

Definition 4 A hash function H as above is balanced if for all ℓ ≥ k, s ∈ S and y ∈ {0, 1}k

Pr[x
$
←{0, 1}ℓ; hs(x) = y] = 2−k

The following lemma states that from any such hash function H which is ε(.)-almost 2-universal
and balanced we can get (non-constructively) a (εforge, εmac) two-key hash function (with domain
{0, 1}L for any L > k) where εmac = O(2/2k) and εforge = ε(L + r). Here r is the length of the
public salt and if ε(L) = O(Lc/2k) we will get r ≈ (2c + 1) log(L).

8

The construction is very simple, the two-key hash function with key s ∈ S, salt p ∈ {0, 1}r and
message x is computed as hs(g(p‖x)) for some permutation g (we show that a random permutation
is appropriate with high probability).

Lemma 1 Let H : S × {0, 1}∗ → {0, 1}k be a balanced ε(.)-almost 2-universal hash function. Fix
some integer L ≥ k and let r be the smallest integer satisfying

2r ≥
22k · ε(L + r)2 · (2L + r)

log(e)
(1)

then there exists a permutation g over {0, 1}L+r s.t. the two-key hash function H ′ : S×P×{0, 1}L →
{0, 1}k with P = {0, 1}r defined as

H ′(s, p, m)
def
= H(s, g(p‖m))

is (εforge, εmac)− universal with εforge = ε(L + r) εmac = 2/2k.

Proof: Let R
def
= 2r and gi(m)

def
= g(i‖m). The bound on εforge is straightforward:

εforge = max
x1,x2∈{0,1}L,p1,p2∈{0,1}r ,(p1,x1) 6=(p2,x2)

Pr[s
$
←S; hs(gp1

(x1)) = hs(gp2
(x2))]

= max
y1,y2∈{0,1}L+r ,y1 6=y2

Pr[s
$
←S; hs(y1) = hs(y2)]

= ε(L + r)

Above we used that (p1, x1) 6= (p2, x2) implies y1 6= y2 which holds as y1 = g(p1‖x1) and y2 =
g(p2‖x2) and g is a permutation.

The proof for εmac is by the probabilistic method. We will show that a permutation g chosen
at random has the desired property with probability > 0. For any a, b ∈ {0, 1}L and i, j ∈ {0, 1}r

let Ci,j,a,b denote the random variable (the probability is over g)

Ci,j,a,b = Pr[s
$
←S; hs(gi(a)) = hs(gj(b))]

As hs is balanced we have for any (i, a) 6= (j, b) : E[Ci,j,a,b] ≤ 1/2k, and as hs is ε(.)-almost
2-universal and |gi(a)| = |gj(b)| = L + r

Ci,j,a,b ≤ ε(L + r)

Let
Ci,a,b =

∑

j∈{0,1}r ,(i,a) 6=(j,b)

Ci,j,a,b (2)

As the sum ranges over R terms (resp. R − 1 if a = b) we have E[Ci,a,b] ≤ R/2k. We can apply
Hoeffding’s inequality (see Appendix A), for the case a 6= b (then the sum in eq.(2) has exactly R
terms, if a = b then we have only R−1 terms and can use the same bound as proven below) we get

Pr [Ci,a,b ≥ 2 · E[Ci,a,b]] < exp

(

−
2 · (R/2k)2

R · ε(L + r)2

)

≤ exp

(

−
R

22k · ε(L + r)2

)

≤ 2−2L−r

9

Where in the last step we used (1) (recall that R
def
= 2r). So there is a g such that Ci,a,b ≤

2 · E[Ci,a,b] ≤ 2R/2k for all i ∈ {0, 1}r and a, b ∈ {0, 1}L, for this g

εmac = max
i∈{0,1}r ,a,b∈{0,1}L

Pr[j
$
←{0, 1}r; s

$
←S; hs(gi(a)) = hs(gj(b)) ∧ ((i, a) 6= (j, b))]

= max
i∈{0,1}r ,a,b∈{0,1}L

R−1
∑

j∈{0,1}r ,(i,a) 6=(j,b)

Ci,j,a,b

= R−1 max
i∈{0,1}r ,a,b∈{0,1}L

Ci,a,b

≤ 2−k+1

�

5 poly: Hashing by Polynomial Evaluation.

A popular way of ε-almost universal hashing is to parse the message into coefficients of a polynomial
over some field (we will use GF (2k)) and evaluate it on a random point. We propose a simple
randomized preprocessing for this hash function: just set the constant coefficient at random. If
this coefficient is set uniformly at random, this gives a two-key hash function with an optimal
εmac = 1/2k. We then show that one can also sample the coefficient from a small set, thus using
fewer randomness, and still achieve an almost optimal εmac ≤ 2/2k. We will come back to this
construction later in Section 7, where we prove some generic results which imply Lemma 3 and
Lemma 4 from this section (though with somewhat worse parameters).

Definition 5 For M = (M1, . . . , Mm) (each Mi ∈ GF (2k) ∼= Bk) we denote with fM (.) the poly-
nomial of degree m− 1 over GF (2k) given by

fM (x) =
m

∑

i=1

Mi · x
i−1

Definition 6 With poly we denote the hash function which on input M ∈ GF (2k)
∗ ∼= B∗k with key

s
$
←GF (2k) is computed as polys(M) = fM (s).

Lemma 2 (see [22]) poly with domain B≤L
k is ε-almost universal with ε = (L− 1)/2k.

Definition 7 polyGF (2k) is the two-key hash function with secret key part s
$
←GF (2k) and public

salt p
$
←GF (2k) which on input M ∈ B∗k is computed as

polyGF (2k)
s,p (M) = f(p,M)(s)

Lemma 3 polyGF (2k) with domain B≤L
k is (εforge, εmac)-universal where

εforge = L/2k (3)

εmac = 1/2k (4)

The bound on εforge follows from Lemma 2, and the bound on εmac is obvious. We now consider

another two-key version of the poly hash function which is similar to polyGF (2k) but where the
public salt is not chosen from the whole of GF (2k) but only from a subset P ⊂ GF (2k).

10

Definition 8 For any P ⊂ GF (2k) we denote with polyP the two-key hash function with secret key

part s
$
←GF (2k) and public salt p

$
←P which on input M ∈ GF (2k)

∗ ∼= B∗k is computed as

polyPs,p(M) = f(p,M)(s)

We will show (constructively, but “non-uniformly”) that there is a “small” P such that the con-
struction is (εmac, εforge)-universal with εmac = 2/2k. Namely, a random “small” P works with all
but negligible probability (in particular, once such P is chosen once, it can be fixed forever and
“hardwired” into the implementation). The proof of the following Lemma is given in Appendix B.

Lemma 4 For any L ∈ N and a random subset P ⊂ GF (2k) of size |P| = k(L+2)L2

log(e) , with probability

1− 2−k (over the choice of P) the hash function polyP with domain B≤L
k is (εforge, εmac)-universal

with

εforge = L/2k (5)

εmac = 2/2k (6)

6 Cascade Construction

In his section we consider the Merkle-Damg̊ard construction. Here a preprocessing which simply
appends a few random bits to the message gives a two-key hash function with good parameters.

For a function ξ : {0, 1}k × {0, 1}b → {0, 1}k we denote with MDξ : B∗b → Bk the cascade
(aka. Merkle-Damg̊ard) construction based on ξ which on input M = M1‖ . . . ‖Mm, each Mi ∈ Bb,
outputs Xm which is recursively defined as X0 = 0k, and Xi = ξ(Xi−1, Mi).

Definition 9 (MDR) For k, b, L ∈ N where b ≥ log(L) we denote with MDRL : BL−1
b → Bk the

two-key hash function whose secret key part is a uniformly random function ξ : {0, 1}k × {0, 1}b →

{0, 1}k and the public salt is r
$
←{0, 1}⌈log(L)⌉. The randomized hash value on input M ∈ B∗b is

computed as
MDRL(M) = MDξ(M‖〈r〉b)

Lemma 5 MDRL : BL−1
b → Bk is (εforge, εmac)-universal with

εmac =
2

2k
+ O(L3/22k) (7)

εforge =
L

2k
+ O(L3/22k) (8)

Proof: The proof follows almost directly form Propositions 1 and 2 from [8]. Proposition 2 from
[8] states that for a random ξ and any M 6= M ′ ∈ BL

b

Prξ[MDξ(M) = MDξ(M
′)] ≤ L/2k + O(L3/22k)

which directly gives the bound (8) on εforge. Proposition 1 from [8] states that if M and M ′ differ
in the last b-bit block, then an even better bound

Prξ[MDξ(M) = MDξ(M
′)] ≤ 1/2k + O(L2/22k)

11

applies. To bound εmac we can use that MDR adds a random last block r
$
←{0, 1}⌈log(L)⌉ to the

message, which then will be equivalent to the last block of the other message with prob. at most
φ ≤ 1/L and we get

εmac ≤ (1− φ) ·
1

2k
+ φ ·

L

2k
+ O(L3/22k) ≤

2

2k
+ O(L3/22k).

�

7 A Generic Construction from ǫ-∆ Universal Hash Functions.

In this section we consider hash functions which are not only ε-universal, but satisfy the stronger
notion of ε-∆ universality.

Definition 10 (ε-∆ universal hash function [16]) A hash function H : S × X → Y, where Y
is an additive Abelian group, is ε-∆ universal if for all x, y ∈ X ,x 6= y and c ∈ Y

Pr[s
$
←S; hs(x)− hs(y) = c] ≤ ε

It is easy to see (and stated as Proposition 2 below) that adding a value chosen uniformly at random
to the output of a ε-∆ universal hash function gives a (εforge, εmac)-universal hash function with
εforge = ε and an optimal εmac = 1/|Y|.

The main result of this section is a theorem which states that for every ε-∆ universal hash
function, there always exists a randomized postprocessing, which only uses a logarithmic number
of random bits and makes the hash function (εforge, εmac)-universal where εforge = ε and εmac is
close to optimal. By postprocessing we mean that only the hash value of the message, but not the
message itself, must be randomized.

Let us remark that the polynomial construction from Section 5 is L/2k-∆ universal if the
constant coefficient (i.e. the first message block) is fixed, say 0k. With this observation Lemma 3
follows directly from Proposition 2, and Lemma 4 (with somewhat worse parameters) follows from
Theorem 2 we prove below.

Definition 11 ((εforge, εmac)-∆ universal hash function)
For an ε-∆ universal hash function H : S×X → Y and a set P ⊆ Y we say that HP is (εforge, εmac)-
∆ universal if for any p1, p2 ∈ P, x1, x2 ∈ X where (p1, x1) 6= (p2, x2)

εforge ≥ Pr[s
$
←S; hs(x1) + p1 = hs(x2) + p2]

and
εmac ≥ Pr[s

$
←S; p

$
←P; hs(x1) + p1 = hs(x2) + p ∧ (p1, x1) 6= (p, x2)]

Proposition 2 If H : S × X → Y is ε-∆ universal, then HY is (ε, 1/|Y|)-∆ universal.

Theorem 2 If H : S × X → Y is ε-∆ universal, then there exists a P ⊂ Y of size m = |P| such
that

m ≤ ln(|X |2 ·m) · |Y|2 · ε2 (9)

and HP is (ε, 2/|Y|)-∆ universal.

12

The proof of this Theorem is given in Appendix C. To get an intuition what eq. (9) means,
assume we start with a hash function which maps L bits strings to k bit strings and which is
Lc/2k-∆ universal for some c > 0, so |X | = 2L and |Y| = 2k. Now (9) means

m ≤
(2 · L + log m) · L2c

log e

or assuming log(m) ≤ L

log(m) ≤ log 3− log e + (2c + 1) log L < 2 + (2c + 1) log L (10)

The assumption log(m) ≤ L holds for all L ≥ 2+(2c+1) log L, thus for such L also (10) is satisfied.
So to sample from P we need O(1) + (2c + 1) log L random bits.

References

[1] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authen-
tication. In CRYPTO, pp. 1–15, 1996.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In FOCS, pp. 514–523, 1996.

[3] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Analyses for CBC
MACs. In Advances in Cryptology — CRYPTO ’05, August 2005.

[4] Daniel J. Bernstein, Stronger Security Bounds for Wegman-Carter-Shoup Authenticators. In
EUROCRYPT, pp. 164–180, 2005.

[5] Daniel J. Bernstein, The Poly1305-AES Message-Authentication Code. In FSE, pp. 32–49,
2005.

[6] Antoon Bosselaers and Bart Preneel, editors. Integrity Primitives for Secure Information
Systems, Final Report of RACE Integrity Primitives Evaluation RIPE-RACE 1040, volume
1007 of Lecture Notes in Computer Science. Springer, 1995.

[7] Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences (JCSS), 18:143–154, 1979.

[8] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Random-
ness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In CRYPTO,
pages 494–510, 2004.

[9] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized hashing. In
CRYPTO, 2006.

[10] G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Oxford University Press,
1980.

[11] Tzvika Hartman and Ran Raz. On the distribution of the number of roots of polynomials and
explicit weak designs. Random Struct. Algorithms, 23(3):235–263, 2003.

13

[12] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc., vol. 58:13–30, 1963.

[13] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In STOC, pages 33–43, 1989.

[14] Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Graphs. Wiley, 2000.

[15] Éliane Jaulmes and Antoine Joux and Frédéric Valette, On the Security of Randomized CBC-
MAC Beyond the Birthday Paradox Limit: A New Construction. In FSE, pp. 237–251, 2002.

[16] Hugo Krawczyk. LFSR-Based Hashing and Authentication. In CRYPTO, pp. 129–139, 1994.

[17] Erez Petrank and Charles Rackoff. Cbc mac for real-time data sources. Journal of Cryptology,
pages 315–338, 2000.

[18] Krzysztof Pietrzak. A tight bound for emac. In ICALP (2), pages 168–179, 2006.

[19] Phillip Rogaway. Bucket Hashing and Its Application to Fast Message Authentication. In
CRYPTO, pp. 29–42, 1995.

[20] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.. J. ACM,
27(4):701–717, 1980.

[21] Michael Semanko. L-collision Attacks against Randomized MACs. In CRYPTO, pp. 216–228,
2000.

[22] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2005.

[23] Douglas R. Stinson. Universal Hashing and Authentication Codes. Designs, Codes and Cryp-
tography, 4:369–380, 1994.

[24] Douglas R. Stinson. On the connections between universal hashing, combinatorial designs and
error-correcting codes. In Congressus Numerantium 114:7–27, 1996.

[25] Douglas R. Stinson. Personal Communication, 2005.

[26] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences (JCSS), 22(3):265–279, 1981.

14

Construction ε length length of domain

εforge εmac hash key public salt

(εforge, εmac)-universal hash functions from ε-universal ones

Generic: for each balanced H(.) as below there is a permutation g(.) such that

H(.) Lc/2k key for H − {0, 1}L

⋆ H(g(.)) (L + ℓ)c/2k 2/2k key for H ℓ ≈ (2c+1) log(L) {0, 1}L

Construction based on polynomial evaluation over GF (2k)

poly (L−1)/2k k − ({0, 1}k)≤L

polyGF (2k) L/2k 1/2k k k ({0, 1}k)≤L

⋄ polyP L/2k 2/2k k 3 log(L)+log(k) ({0, 1}k)≤L

Merkle-Damg̊ard based on function func : {0, 1}k+b → {0, 1}k

MD L/2k key for func − {0, 1}bL

MDR (L + 1)/2k 2/2k key for func log(L) {0, 1}bL

(εforge, εmac)-∆ universal hash functions from ε-∆ universal ones

Generic: for each H(.) as below there is a “small” set P such that

H(.) Lc/2k key for H − {0, 1}L

⋄ generic HP(.) (L + ℓ)c/2k 2/2k key for H ℓ ≈ (2c+1) log(L) {0, 1}L

Figure 1: Parameters for the hash functions considered in this paper. A leading ⋆ denotes a
non-constructive, and a leading ⋄ a non-uniform result. The bounds for the Merkle-Damg̊ard
construction assume that func is a uniform random function, also the higher order terms that
appear in the bounds for this construction are omitted in this table.

A Hoeffding Bound

Let X1, . . . , Xn be independent random variables. Further assume the Xi are bounded, i.e. for
each i = 1, . . . , n there are ai, bi such that

Pr[ai ≤ Xi ≤ bi] = 1

then for the sum S = X1 + . . . Xn we have for any t ≥ 0

Pr[S − E[S] ≥ nt] ≤ exp

(

−
2n2t2

∑n
i=1(bi − ai)2

)

We will only use the case where the Xi are identically distributed such that 0 ≤ Xi ≤ ε and are
only interested in the probability that S ≥ 2E[S], so if γ is an upper bound on E[S] we use

Pr[S ≥ 2 · E[S]] ≤ Pr[S − E[S] ≥ γ] ≤ exp

(

−
2 · γ

n · ε2

)

(11)

In our applications the Xi’s are not completely independent, but chosen at random from some
finite set without repetition. Fortunately the Hoeffding bound also applies in this case as proven in
section 6 of the original paper [12] (see also Theorem 2.10 of [14]).

15

B Proof of Lemma 4

The bound (5) on εforge follows from Lemma 2 (and holds for any P).
To prove the bound (6) on εmac we must show that a P chosen at random has the claimed

property with probability 1− 2−k. For a polynomial f over GF (2k) we denote with z(f) = |{x ∈
GF (2k) : f(x) = 0}| the number of zeros of f . Let f be any polynomial over GF (2k) of degree at
most L and (for some m to be defined) let P = (p1, . . . , pm) denote a subset of GF (2k) sampled
uniformly at random (with repetition).

Xi denotes the random variable z(fi) where fi is f + pi (i.e. f with pi added to the constant
coefficient). As pi is random we have Pr[fi(x) = 0] = 1/2k for any x ∈ GF (2k) and thus

E[Xi] =
∑

x∈GF (2k)

Pr[fi(x) = 0] = 1

and as any polynomial of degree L has at most L roots

0 ≤ Xi ≤ L

Let S = X1 + X2 + . . . + Xm, we have E[S] = m and by the Hoeffding bound [12]

Pr[S − E[S] ≥ m] = Pr[S ≥ 2m] ≤ exp

(

−
m2

m · L2

)

(12)

which for m = k(L+2)L2

log(e) is less than 2−k(L+2). Taking the union bound over all 2k(L+1) polynomials

of degree ≤ L, we get the probability that (12) is not satisfied for at least one of them is at most
2−k(L+2) · 2k(L+1) = 2−k.

To conclude the proof we must still show that any P which satisfies (12) for all polynomials of

degree ≤ L also satisfies (6). εmac is the maximum over M ∈ GF (2k)
L+1

(with the first element

from P, but we will not use that) and M ′ ∈ GF (2k)
L

of

εmac ≥ Pr
s

$
←GF (2k),p

$
←P

[fM (s) = f(p,M ′)(s)]

Which for f = f(0k,M ′) − fM and fi = f + pi we can write as

Pr
s

$
←GF (2k),p

$
←P

[f(s) + p = 0] =
m

∑

i=1

Pr[p = pi]z(fi)/2k ≤ 2/2k

In the last step we used that we chose our P such that
∑m

i=1 z(fi) ≤ 2m for all f and Pr[p = pi] =
1/m. �

C Proof of Theorem 2

The proof is by the probabilistic method. We show that a random subset P = {p1, . . . , pm} of Y
of size m which satisfies (9) has the claimed property with probability > 0 and thus exists.

For i, j : 1 ≤ i, j ≤ m and a, b ∈ X where (i, a) 6= (j, b) let let Ci,j,a,b denote the random variable
(the probability is over the choice of P)

Ci,j,a,b = Pr[s
$
←S; h(a) + pi = h(b) + pj]

16

and for (i, a) = (j, b) we set Ci,j,a,b = 0. Clearly for (i, a) 6= (j, b)

E[Ci,j,a,b] = 1/|Y|

Now consider the random variable
Ci,j,b =

∑

j∈X

Ci,j,a,b

We have E[Ci,a,b] ≤ m/|Y| and for a 6= b we get by the Hoeffding bound (see Appendix A) an upper
bound for the probability that Ci,a,b is more that twice its expected value (for a = b the bound is
even slightly better)

Pr [Ci,a,b ≥ 2 · E[Ci,a,b]] < exp

(

−
2 · (m/|Y|)2

m · ε2

)

≤ exp

(

−
m

|Y|2 · ε2

)

≤
1

|X |2 ·m

So there is a P such that Ci,a,b ≤ 2 · E[Ci,a,b] ≤ 2 ·m/|Y| is satisfied for all i ∈ [m] and a, b ∈ X .
For this P we get

εmac = max
i∈[m],a,b∈X

Pr[j
$
← [m]; s

$
←S; hs(a) + pi = h(b) + pj) ∧ ((pi, a) 6= (pj , b))]

= m−1 max
i∈[m],a,b∈X

∑

j∈[m]

Ci,j,a,b

= m−1 max
i∈[m],a,b∈X

Ci,a,b

≤ 2/|Y|

�

17

