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Abstract— Randomness extractors [12] allow one to obtain
nearly perfect randomness from highly imperfect sources ran-
domness, which are only known to contain “scattered” entropy.
Not surprisingly, such extractors have found numerous applica-
tions in many areas of computer science including cryptography.
Aside from extracting randomness, a less known usage of extrac-
tors comes from the fact that they hide all deterministic functions
of their (high-entropy) input [6]: in other words, extractors
provide certain level of privacy for the imperfect source that
they use. In the latter kind of applications, one typically needs
extra properties of extractors, such as invertibility, collision-
resistance or error-correction. In this abstract we survey some
of such usages of extractors, concentrating on several recent
results by the author [5], [6], [7]. The primitives we will survey
include several flavors of randomness extractors, entropically
secure encryption and perfect one-way hash functions. The main
technical tools will include several variants of the leftover hash
lemma, error correcting codes, and the connection between
randomness extraction and hiding all partial information.

Due to space constraints, many important references and
results are not mentioned here; interested reader can find those
in [5], [6], [7].

I. RANDOMNESSEXTRACTORS AND ENTROPICSECURITY

The main measure of entropy we use ismin-entropy, which
measures the difficulty of guessing a random variableA a-
priori: H∞(A) = − log(maxa Pr[A = a]) (all logarithms are
base 2 by default).A is called at-source if H∞(A) ≥ t.
The conditional min-entropy ofA given B is H̄∞(A | B)

def
=

− log(Eb←B

[

2−H∞(A|B=b)
]

). (This definition is not standard
but is “right” for cryptographic purposes [5].) We letUℓ denote
the uniform distribution on{0, 1}ℓ, and define thestatistical
differencebetween two distributionsA and B on the same
space asSD (A,B)

def
= 1

2

∑

v

∣

∣ Pr[A = v] − Pr[B = v]
∣

∣.
If E(x; I) is a probabilistic algorithm taking inputx and
using randomnessI, we will often omit I and haveE(x)
denote the random variableE(x; I), whereI is assumed to
be sampled uniformly at random from its domain. IfX is a
random variable, thenE(X) also stands forE(X; I).

DEFINITION 1 A polynomial time probabilistic functionExt :
{0, 1}n → {0, 1}ℓ with randomnessI (called theseed) is a
(n, t, ℓ, ǫ)-extractor if for all t-sourcesW on {0, 1}n, we have
SD (Ext(W ; I), Uℓ) ≤ ǫ. Ext is a (n, t, ℓ, ǫ)-strong extractor
if its extracted randomness is statistically independent from
the seedI. Namely, if Ext′(W ; I) = Ext(W ; I) ◦ I is by
itself an extractor:SD ((Ext(W ; I), I), (Uℓ, I)) ≤ ǫ. ♦

It is well known that one must haveℓ ≤ t−2 log
(

1
ǫ

)

+O(1).
On a constructive side, this bound can be achieved, and with
very short seedsI (of lengthO(log n+log

(

1
ǫ

)

)). For most of
our applications, however, minimizing the seed length willbe
of secondary importance, and the famousleftover hash lemma
(LHL), which we describe below, will be more than sufficient.

DEFINITION 2 A family H =
{

hi : {0, 1}n → {0, 1}ℓ
}

i
is

called a universal hash family if for every distinctx, y ∈
{0, 1}n we havePrI [hI(x) = hI(y)] = 2−ℓ. ♦

A simple construction of such a family for generaln and
ℓ views both the inputx and the randomnessa (defining the
index i) as elements of finite fieldGF [2max(n,ℓ)], and sets
hi(x) to be the firstℓ bits of the field producta · x. The
LHL below states that such universal hash functions (strongly)
extract all the randomness from anyt-source.

Lemma 1 ([8] Leftover Hash Lemma):If ℓ ≤ t−2 log
(

1
ǫ

)

,
then a universal familyH =

{

hi : {0, 1}n → {0, 1}ℓ
}

i
is a

(n, t, ℓ, ǫ)-strong extractor. ♦

We remark that LHL is pretty robust. For example, its
conclusions holds even if the collision probability of universal
hash functions is relaxed to roughly2−ℓ(1 + ǫ2), and also
even if the indexI choosing the functionhI itself comes
from an imperfect source [9]: ifH∞(I) ≥ |I| − c and ℓ ≤
t− c− 2 log

(

1
ǫ

)

, thenSD ((hI(W ), I), (Uℓ, I)) ≤ ǫ. It also
generalizes nicely w.r.t. conditioning [5]: ifW andS are such
thatH̄∞(W |S) ≥ t, thenSD ((hI(W ), S, I), (Uℓ, S, I)) ≤ ǫ.

ENTROPIC SECURITY. Entropic security first appeared in
specific contexts of entropically secure encryption [13] and
perfectly one-way hash functions (POWHF) [3]. Here we
define the general concept following [6].

DEFINITION 3 ([6]) The probabilistic mapY () hides all
functions of W with leakageǫ if for every adversaryA,
there exists an adversaryA∗ such that for all functionsf :
{0, 1}∗ → {0, 1}∗,

∣

∣ Pr[A(Y (W )) = f(W )]− Pr[A∗() = f(W )]
∣

∣ ≤ ǫ.

The mapY () is called(t, ǫ)-entropically secureif Y () hides
all functions ofW , for all t-sourcesW . ♦

Intuitively, entropic security ofY states that as long as
the random variableW has high-enough min-entropy, it is



nearly as hard to predictf(W ) given Y as it is withoutY ,
regardless of the adversary’s computing power. We remark
that it should not be confused with a much stronger notion of
Shannon security, where we say thatY and W are (almost)
statistically independent. Entropic security only statesthat Y
does not help in predictingf(W ), for any functionf specified
in advance. For example, it is entirely possible that after
seeing any particular realizationy of Y , one might learn many
functionsfy of W (although no particular functionf is likely
to be one of them for an averagey). Another unfortunate
possibility is thatY1 andY2 could be individually entropically
secure, and yetW can be completely recovered fromY1(W )
and Y2(W ) (see [6]). Nonetheless, the information-theoretic
guarantee of entropic security is still pretty strong and useful,
and we will see examples where it can be applied, despite the
fact that Shannon’s security is not even achievable!

A seemingly weaker definition is that of(t, ǫ)-
indistinguishability [6]: a (probabilistic) mapY () is
(t, ǫ)-indistinguishableif for all pairs of t-sourcesW1, W2,
the distributionsY (W1) andY (W2) areǫ-close. In particular,
all such distributions areǫ-close to a fixed distribution
Ỹ = Y (Un). Notice that whenỸ is equal (or at least close)
to the uniform distribution, then we retrieve the definitionof
a randomness extractor! In particular, extractors fort-sources
are trivially (t, ǫ)-indistinguishable. The following, perhaps
surprising but very useful, result states that entropic security
is essentially equivalent to indistinguishability.

Theorem 2 ([6]): If Y () is (t, ǫ)-entropically secure, then
it is (t− 1, 4ǫ)-indistinguishable. Conversely, ifY () is (t, ǫ)-
indistinguishable, then it is(t + 2, 8ǫ)-entropically secure.♦

Corollary 3: Extractors for min-entropyt hide all functions
for sources of min-entropyt + 2. ♦

The above connection states that, to design an entropically
secure map satisfying some special functionality, it is sufficient
to design a “special purpose” randomness extractor having
this functionality. From a different perspective, a randomness
extractor with some special property immediately gives an
entropically secure map with the same property.

II. A DDING INVERTIBILITY : ENTROPICALLY SECURE

ENCRYPTION

As a first special property, let us considerinvertible extrac-
tors: namely, the extractor’s inputW should be reproducible
from its outputExt(W ; I) and the seedI by some (efficient)
procedureInv(·, ·). Notice that invertibility of the extractors
and the fact thatI is independent fromW imply that the
output lengthℓ of the extractor must be at leastn. Since these
ℓ ≥ n bits are (nearly) uniform, andW has only t bits of
entropy, we see that the remaining at leastn − t bits of the
entropy must come from the seedI. In fact, the lower bound
on extractors easily implies that|I| ≥ n−t+2 log

(

1
ǫ

)

−O(1).
We will shortly see how we can match this bound.

Also notice that an invertible extractorcannot be strong.
Indeed, in this case the valueW should be obtainable from
an almost uniform stringExt(W ; I) ◦I, which means thatW

should be close to a fixed distributionInv(Uℓ, I). However,
this is impossible, sinceW could be any distribution of min-
entropy t (and we assumet < n). However, some partIp

of the indexI = (Is, Ip) could indeed independent from the
output. (We call such extractors“semi-strong”.) Unfortunately,
an extension of the previous argument still implies that the
“secret part”Is of the seed must be long:|Is| ≥ n − t +
2 log

(

1
ǫ

)

−O(1). However, having the public partIp we enable
us to achieve simpler constructions.

APPLICATION: ENTROPICALLY SECURE ENCRYPTION. As-
sume now that the sourceW is the message, the seedI is
the shared secret key, and the extracted randomnessC =
Ext(W ; I) is the ciphertext. By invertibility of our extractor,
the recipient can indeed recover the messageW from the
ciphertext C and the secret keyI. What about security?
Corollary 3 immediately implies that ifExt is a (t−2)-source
extractor, then the ciphertextC hides all functions about the
messageW , as long asW has min-entropyt. This is exactly
the notion of (t, ǫ)-entropically secure encryption [13], [6]!
Once again, this notion is weaker than that of Shannon’s
security, but it also allows us to have shorter secret keys than
what is possible in the latter setting. While Shannon’s famous
impossibility results requires a secret key of length at least n,
here we will achieve keys of length slightly more than(n−t).

In fact, there is a nice connection between Shannon’s
security and entropic security: by considering a distribution
Wm whose first(n − t) bits are fixed to some messagem
and the remainingt bit are chosen uniformly at random, it is
easy to see that entropic security ofn-bit t-sourceWm implies
Shannon’s security of(n− t)-bit messagem (which is indeed
recoverable from any possible value in the support ofWm).
This connection also implies that entropically-secure schemes
must have secret keys of length at least(n− t).

We also remark that “semi-strong” invertible extractors with
seed(Is, Ip) corresponds toprobabilistic encryption, where
the parties only share the “secret part”Is, while the “public
part” Ip is sent together with the ciphertextExt(W ; (Is, Ip)).
Thus, here we only care about minimizing the secret partIs.

CONSTRUCTIONS. The idea of [6] is to construct invertible
extractors from good expander graphs, which in fact mix in
one step! They call such graphs“extractor graphs”. A bit
more formally, assume we have ad-regular expander graph
G on 2n verticesV with the property that for any subsetT
of 2t vertices, picking a random vertexw of T and taking a
random neighborv, we obtain an almost uniform distribution
on V (say, within distanceǫ from Un). Since anyt-sourceW
is known to be a convex combination of uniform distributions
on some subsetsT of size2t, it is obvious that such extractor
graphs immediately yeild a(n, t, ℓ = n, ǫ)-extractor, where the
sourceW defines the original vertexv and the seedI specifies
which neighborv of w to take. To see the invertibility of this
scheme, we need to ensure that it is possible to label the edges
of G in such a way that knowing the indexi and thei-th
neighborv of a vertexw uder this labeling, we can recoverw
back. We call such natural labelingsinvertible. Luckily, Hall’s



marriage theorem implies that everyd-regular graph has an
invertible labeling, although this labeling does not have to
be efficient. In all our examples, however, the corresponding
labeling will indeed be efficient.

It remains to construct such extractor with the smallest
degreed, since log d will translate to the length of the seed
(i.e., the secret key). [6] give three such contructions, whose
properties are stated below and then explained in more detail.

Theorem 4:There exists (three different) invertible
(n, t, n, ǫ)-extractors with the following properties:

1) Optimal: The seed length|I| = n−t+2 log
(

1
ǫ

)

+O(1).
2) “Sparse One-Time Pad”: The seed length|I| = n− t +

2 log
(

1
ǫ

)

+ 2 log n + O(1), where the seedI consists
of a random points in some “special” setS ⊂ {0, 1}n,
andExt(W ; s) = s⊕W .

3) “LHL-based semi-strong extractor”: the seedI consists
of a secret partIs of lengthk = n−t+2 log

(

1
ǫ

)

+O(1),
which is just a random pointx ∈ {0, 1}k, and a
public partIp, which samples a random hash function
hJ from any family H =

{

hj : {0, 1}k → {0, 1}n
}

j
of XOR-universal hash functions. The extractor is
Ext(W ; (X,J )) = hJ (X)⊕W . ♦

The first of these extractors is obtained by using (optimal)
Ramanujan expander graphs, which indeed havelog d =
n− t + 2 log

(

1
ǫ

)

+ O(1). However, the constructions of such
optimal graphs is relatively complex. A simpler and much
more intutive second construction (with only marginally worse
parameters) results if we consider graphs induced by the so
called δ-biased spaces [11]. A setS in {0, 1}n is δ-biased
if for all nonzero α ∈ {0, 1}n, the binary inner product
α⊙ s is nearly balanced fors drawn uniformly inS: namely,
Prs←S [α⊙ s = 0] ∈

[

1−δ
2 , 1+δ

2

]

. Alon et al. [1] gave explicit
constructions ofδ-biased sets in{0, 1}n with sizeO(n2/δ2).
Given such a setS, we can construct a graphsGS where two
nodesx, y ∈ {0, 1}n are connected if and only ifx⊕ y ∈ S.
It is well known (see [6]) that such graphs will be(t, ǫ)-
expander graphs providedδ ≤ ǫ2(n−t−2)/2. Coupled with
optimal constructions ofδ-biased spaces, we get graphs with
log d = n− t+2 log

(

1
ǫ

)

+2 log n+O(1). Also notice that the
encryption/decryption procedure here is indeed a “very sparse”
one-time pad: a random neigbor ofW is simply W ⊕ s.

Still, δ-biased sets are relatively non-trivial to construct. To
get a very simple construction, the last construction builds
much simpler “semi-strong” extractors with optimally short
secret partIs and relatively short public part. In the graph
terminology, we construct a family ofd-regular graphs{Gj}
(for optimally small d) which are good “average-case” ex-
panders: for any setT of size 2t, a random graphGJ
will be a good extractors graph forT , as discussed above.
However, it is much easier to understand this last construction
directly, since it is very related to the LHL. First, as a slightly
generalization of universal hash functions from Definition2,
we say that a familyH =

{

hj : {0, 1}k → {0, 1}n
}

j
is called

a XOR-universalif for every distinctx, y ∈ {0, 1}n and every
∆ ∈ {0, 1}n we havePrJ [hJ (x) ⊕ hJ (y) = ∆] = 2−n.

In particular, restricting∆ to 0n gives the usual definition of
universal hash functions, but thea ·x construction of universal
hash functions described earlier is in fact XOR-universal
already. The following variant of the LHL was proven in [6].

Lemma 5 ([6] LHL′: One-Time Pad Extractor):If H =
{

hj : {0, 1}k → {0, 1}n
}

j
is XOR-universal andX and W

are two independent distributions on{0, 1}k and {0, 1}n,
respectively, satisfyingH∞(X)+H∞(W ) ≥ n+2 log

(

1
ǫ

)

+1,
thenSD ((J , hJ (X)⊕W ), (J , Un)) ≤ ǫ. ♦

The last construction of Theorem 4 follows from this result
by takingk = n−t+2 log

(

1
ǫ

)

+1 and havingX to be uniform
on {0, 1}k. Applied to thea · x XOR-universal family, we
get the following very simple entropically-secure encryption
scheme: viewGF [2k] as a subset ofGF [2n] (where XOR co-
incides with field addition) and encrypt messagew by sending
(a, a · x + w), wherea ∈ GF [2n] is a public randomizer, and
x ∈ GF [2k] is the secret key.

III. A DDING COLLISION-RESISTANCE: PERFECTLY

ONE-WAY HASH FUNCTIONS

The next special property we consider is (computational)
collision-resistance. We say that an extractorExt is collision-
resistant, if it is (computationally) infeasible to find twoinputs
(w, i) 6= (w′, i′) such thatExt(w; i) = Ext(w′; i′). A small
technicality here is that the definition of collision-resistance
against non-uniform adversaries requires an extra keyk to be
generated at the beginning of the game, so we will do the
same: i.e., our extractor will also have “collision-resistant”
key k, in addition to its seedi. Also, we will consider only
strong extractors, which output their seedi as part of their
output. This means that: (a) an output(z, i) can be verified by
presentingw alone (by checking ifz = Extk(w; i)); and (b)
the definition of collision resistance states that, for a random
key k, it is hard to findw 6= w′ and a seedi such that
Extk(w; i) = Extk(w′; i). Combined, this means that the value
(z, i) is a “commitment” tow, which can be “opened” by
presentingw alone!

Of course, the price we pay for such a nice decommitment
procedure comes from a weaker privacy guarantee: since
extractors are entropically secure, we can only say that the
“commitment” value(z, i) hides all functions ofw (for any
key k, but for random seedi), as long asw has high entropy.
Thus, publishing(z, i) allows anybody to test (without either
false positives or false negatives!) whether or not some input
w′ is equal to the “correct” secret inputw, and yet without
leaking any particular function ofw. We also notice that
entropic security/indistinguishability is all we need in this ap-
plication (i.e., we do not care if the extractor’s output is close
to the uniform as opposed to some otherfixeddistribution). We
call such(t, ǫ)-indistinguishable (but not necessarily extractor)
collision-resistant maps(t, ǫ)-privately binding.

APPLICATION: PERFECTLY ONE-WAY HASH FUNCTIONS.
(t, ǫ)-privately binding maps immediately give a construction
of (t, ǫ)-perfectly one-way hash functions(POWHFs) [3], [6]



(here we give a slightly stronger than usual definition, since
it is simpler to state and we will be able to achieve it):

DEFINITION 4 ([3]) An ensemble of keyed randomized
functionsH = {Hk}k∈Kn,n∈N

with domain {0, 1}n (where
n is the security parameter), key spaceKn and randomness
spaceRn is (t, ǫ)-perfectly one-wayif there is a polynomial-
time verification algorithmVer such that
• For all keysk ∈ Kn, inputs w ∈ {0, 1}n, and strings

i ∈ Rn, Ver(k,w,Hk(w; i)) = ACC.
• For any efficient adversaryA, the probability overk ∈

Kn thatA(k) outputs(w,w′, y) satisfyingw 6= w′ and
Ver(k,w, y) = Ver(k,w′, y) = ACC is negligible inn.

• For all keys k ∈ Kn, the randomized mapW 7→
Hk(W ; I) is (t, ǫ)-entropically secure: for allt-sources
W , the valueHk(W ; I) hides all functions ofW with
leakageǫ, whenI is chosen at random fromRn. ♦

As we can see from Theorem 2, a(t+2, ǫ)-privately binding
map E is (t, ǫ)-entropically secure, and thus immediately
gives a (t, ǫ)-POWHF H of the following form: Hk(w; i)
outputs(Ek(w; i), i), andVer(k,w, (z, i)) accepts if and only
if Ek(w; i) = z.

CONSTRUCTION. Here we present a simple construction from
[6], which slightly improves and simplifies the analysis of the
original construction from [3]. We start from a yet another
variant of the leftover hash lemma. It states that combining
a pairwise independent hash functionh with an arbitrary
functionf (of small enough output domain) yields an indistin-
guishable map: that is, the output may not be look random, but
it will look the same for all input distributions of sufficiently
high entropy.

Lemma 6 ([7] LHL′′: Composing with arbitrary function):
Let f : {0, 1}N → {0, 1}ℓ be an arbitrary function.
If H =

{

hi : {0, 1}n → {0, 1}N
}

i
is a family of

pairwise independent hash functions andW is a t-
source over{0, 1}n with t ≥ ℓ + 2 log

(

1
ǫ

)

+ 1, then
SD ((I, f(hI(W ))), (I, f(UN ))) ≤ ǫ. ♦

Contrary to intuition, this statement doesnot follow directly
from the usual LHL (Lemma 1), since the hash functionhI
might be length-increasing (i.e., there is no constraint onN ),
and thus the intermediate distributionhI(W ) might not be
close to uniform. On the other hand, we do need a slightly
stronger assumption on our hash family that universality:pair-
wise independence. Namely, for anyx 6= y, the valuehI(x)
andhI(y) should be truly random and independent from each
other (i.e.,(hI(x), hI(y)) ≡ (UN , UN )). Constructively, one
can turn thea ·x construction of universal hash functions into
that of pairwise independent hash function, by also sampling
a randomb ∈ GF [2max(n,N)] together witha (i.e., i = (a, b)),
and settinghi(x) to be the firstN bits of a · x + b.

We can now apply this lemma as follows. The functionf
will be a (computationally) collision-resistant hash function
Ck whose output lengthℓ ≤ t − 2 log

(

1
ǫ

)

− 1 (and whose
choice will fix the collision-resistant keyk). As for the family
of pairwise independent hash functions, we will take a family

of pairwise independentpermutations: herehI(x) andhI(y)
look like a par of randomdistinct elements. Although they are
technically not pairwise independentfunctions, they are2−n-
close to them, which will not affect Lemma 6. In thea ·x+ b
construction, this is achieved by restrictinga to be non-zero.

We now get the following construction of a(t, ǫ)-
privately binding map:Ek(w, i) = Ck(hi(w)). Its (t, ǫ)-
indistinguishability follows directly from Lemma 6, whileits
collision-resistance follows from that ofCk and the fact that
hi is apermutation, for anyi. Also notice that if the collision-
resistant functionCk is regular, i.e.Ck(UN ) ≡ Uℓ, then we
indeed get a collision-resistant randomness extractor. See [3]
for a construction of such regular collision-resistant functions.

IV. A DDING ERROR-CORRECTION: FUZZY EXTRACTORS

AND SECURESKETCHES

Fuzzy extractors were introduced in [5] to cope with keys
derived from biometrics and other noisy measurements. The
idea is to extract a random keyR from the biometricW
together with the error-correction informationP , such thatR is
random even givenP , but R can be recovered from any noisy
variant W ′ of W usingP . Equivalently, it gives a one-round
secret key agreement protocol over a public channel, where
the transmission ofP allows the communicating parties to
agree on the same keyR, despite initially receiving different
versions of some noisy data. Formally, assumingW lives in a
metric spaceM equipped with a distance functiondist(·, ·),

DEFINITION 5 ([5]) An (M, t, ℓ, τ, ǫ)-fuzzy extractor is a
given by two efficient procedures(Gen,Rep).

1) Gen is a probabilistic generation procedure, which on
input w ∈M outputs an “extracted” stringR ∈ {0, 1}ℓ

and a public stringP , such that for anyt-sourceW , if
(R,P )← Gen(W ), thenSD ((R,P ), (Uℓ, P )) ≤ ǫ.

2) Rep is a deterministic reproduction procedure which
allows one to recoverR from the corresponding public
stringP and any vectorw′ close tow: for all w,w′ ∈M
satisfyingdist(w,w′) ≤ τ , if (R,P ) ← Gen(w), then
we haveRep(w′, P ) = R.

The entropy lossof a fuzzy extractor is defines ast− ℓ. ♦

While the above definition is general enough to deal with
arbitrary metricsM, in the following we will restrict ourselves
with M = Fn, whereF is a finite set equipped with the
usual Hamming metric:dist(w,w′) is the number of positions
i where wi 6= w′i. (See [5] for constructions over different
metrics.) In this case we call the corresponding extractor
(n, t, ℓ, τ, ǫ)-fuzzy. The binary caseF = {0, 1} will be of
special importance.

SECURESKETCH. Notice that in the “error-free” case (τ = 0)
strong extractors achieve this functionality, by settingP = I.
A natural way to extend strong extractors into fuzzy extractors
is to publish, as part ofP , some “error-correction information”
S aboutW , which will allow to recoverW from W ′ andS,
after which we can apply a strong extractor to this recovered
W . A formalization of this idea leads to a new primitive of
independent interest calledsecure sketch[5].



DEFINITION 6 ([5]) A (n, t, t′, τ)-secure sketch(overF) is a
pair of efficient (possibly randomized) mapsS : Fn → {0, 1}∗

andRec : {0, 1}∗ → Fn such that:

• For all pairs of stringsw,w′ of distance at mostτ , we
haveRec(w′, S(w)) = w with probability 1.

• For all t-sourcesW , we haveH̄∞(W | S(W )) ≥ t′.

The entropy lossof a sketch is defined ast− t′. ♦

Intuitively, a secure sketch allows one to correct errors in
W while giving up the smallest amount of entropy about
W (which is exactly the entropy losst − t′). Also notice
that the most direct way to bound the entropy loss is to
make the output length of the sketch as small as possible:
indeed, it is easy to see thatt − t′ ≤ |SS(W )|. Bounding
the length of the sketch is also important from the perspective
of communication complexity forinformation reconciliation:
if Alice wants to transmit her stringW to Bob (who knows
some noisy versionW ′ of W ), sending a shorter sketch will
result in a more communication-efficient protocol.

CODE-OFFSET CONSTRUCTION. The following well known
construction builds secure sketches for the Hamming space
Fn, whereF is a field. Recall that a linear[n, k, d]-code
consists of ak-dimensional subsetC of the vector spaceFn,
with the property that any two distinct vectorsx, y ∈ C have
Hamming distance at leastd (called theminimal distanceof
C). A parity-check matrixH for C is any matrix whose rows
generate the orthogonal spaceC⊥. Fixing such a matrix, for
any v ∈ Fn we can define thesyndromeof v w.r.t. C as
synC(v)

def
= Hv. I.e., the syndrome of a vector is its projection

onto subspace that is orthogonal to the code, and can thus be
intuitively viewed as the vector modulo the code. Note that
v ∈ C ⇔ synC(v) = 0. Note also thatH is an (n − k) × n
matrix, and thussynC(v) is (n−k) field-elements long. Also,
it is well known that any error vectore of Hamming weight
less thand/2 is (in principle) uniquely determined from its
syndromesynC(e). Moreover, efficiently decodable codes can
recover thise in polynomial time from its syndrome.

Given an efficiently decodable[n, k, d]-code, whered =
2τ + 1, we now defineS(w) = synC(w). As for the recovery
procedure, notice that ifdist(w,w′) ≤ τ < d/2, thenw − w′

defines a vectore of Hamming weights less thand/2. More-
over,synC(e) = synC(w)−synC(w′) = S(w)−synC(w′) can
be recovered fromS(w) andw′. By efficient decodability of
the code, this means we can recovere, and thusw = w′ + e.
Overall, we obtain a secure sketch forFn with entropy loss
at most|S(w)| = (n− k) log |F|. (This loss was shown to be
nearly optimal in [5].) For example, in case|F| ≥ n, we can
use Reed-Solomon codes which havek = n−d+1 = n−2τ ,
obtaining (optimal) entropy loss2τ log |F|.

FUZZY EXTRACTORSFROM SECURESKETCHES. As noticed
by [5], secure sketches naturally combine with the leftover
hash lemma (more generally, with any strong extractor) to
yield nearly optimal fuzzy extractors, whose entropy loss is
that of the secure sketch plus2 log

(

1
ǫ

)

.

Lemma 7 (Fuzzy Extractors from Sketches [5]):Assume
(S,Rec) is an (n, t, t′, τ)-secure sketch, and letExt be the
(n, t′, ℓ, ǫ)-strong extractor based on universal hashing (in
particular,ℓ = t′ − 2 log

(

1
ǫ

)

). Then the following(Gen,Rep)
is a (n, t, ℓ, τ, ǫ)-fuzzy extractor:

• Gen(w; (r, i)): setP = (S(w; r), i) andR = Ext(w; i).
• Rep(w′, (s, i)): outputR = Ext(Rec(w′, s), i). ♦

V. CORRECTINGERRORSWITHOUT LEAKING PARTIAL

INFORMATION

We now combine the notions of error-correction and en-
tropic security. For a motivation, we saw that secure sketches
allow one to correct errors inW without significantly lowering
its entropy. They do, however, leak information aboutW :
for example, the syndrome construction revealed the entire
syndrome ofW . Can we build secure sketches which leak
no information aboutW? Unfortunately, we know that secure
sketches must leak “Shannon information” aboutW [2];
i.e., the entropy ofW must drop givenS(W ). Surprisingly
enough, it was shown in [7] that (for the Hamming distance)
it is nevertheless possible for the secure sketches to hide all
functions ofW ; i.e., to be entropically secure! Put differently,
it is possible tocorrect errors inW without revealing a-priori
information aboutW .

Theorem 8 ([7]): (Binary Alphabet) There exist efficient
(n, t, t′, τ)-secure sketches for inputs in{0, 1}n which are also
(t, ǫ)-entropically secure, such that

1) the tolerated errorτ and residual entropyt′ areΩ(n);
2) the information leakageǫ is exponentially small inn,

whenever the original min-entropyt is linear in n. That is,
whenevert = Ω(n), we can find entropically secure sketches
whereτ , t′ and log

(

1
ǫ

)

areΩ(n).
(Large Alphabet) If |F| = q > n and t > 2τ log(q),

there exist efficient(n, t, t′, τ)-entropically secure sketches
with leakageǫ over Fn such thatt′ = t − 2τ log(q) and
ǫ = O(2−t′/2). Both of these parameters are optimal. ♦

A few comments are in place. First, if an(n, t, t′, τ)-secure
sketch is also(t, ǫ)-entropically secure, thent′ is bounded
below bylog

(

1
ǫ

)

(roughly), since by the definition of entropic
security the adversary’s probability of predicting the identity
function f(W ) = W is at mostǫ + 2−t ≈ ǫ. Thus, good
entropic security automatically gurantees high residual min-
entropyt′. Second, by Corollary 3, to demonstrate Theorem 8
it suffices to constructrandomness extractorswhich are si-
multaneously secure sketches! In fact, [7] even constructed
a strong randomness extractor (whose output included the
seed) with this property. Namely, they constructed a strong
extractorExt such thatw can be recovered fromExt(w; i),
the seedi and anyw′ close tow. Unlike the standard rational
for extractors, however, the objective of such “secure-sketch
extractors” is tominimizetheir output length, since this length
corresponds to the length of the secure sketch, which directly
bounds the entropy loss of the sketch. In other words, the
purpose of this extractor is the recovery ofw using the minimal



amount of information, and not the randomness extraction
(which only serves as a convenient tool to argue privacy).

Finally, it is also instructive to compare such invertible
extractors with the invertible extractors studied in Section II.
There we could also recoverw from Ext(w; i) and the seedi,
but without the stringw′ close tow. As a consequence, the
output length such extractors had to be at leastn. Here, by
also giving a stringw′ close tow, the objective is to push the
output length down as much as possible: not only belown,
but also significantly below the min-entropyt!

CONSTRUCTION. The secure sketch/strong extractor construc-
tion of [7] used a special family{Ci}i of [n, k, d = 2τ + 1]-
codes (for “appropriate”k), and setS(w; i) = (i, synCi

(w)).
The challenge was to obtain the largest possible dimension
k suth that, for a random codeCI and for anyt-sourceW ,
(I, synCI

(W )) is close to uniform. We refer to [7] for the de-
tails on how to build such codes in order to prove Theorem 8,
here only stating (without proof) the actual construction for
the large alphabet case. We start from a fixed codeC equal
to the [n, n−2τ, 2τ +1]-Reed-Solomon code. Given an index
i = (a1, . . . an) consisting ofnon-zeroelements ofF , we
defineCi = {(a1 · c1, . . . , an · cn) ∈ Fn | (c1, . . . , cn) ∈ C}.
(Restricting aj ’s to be non-zero ensures that eachCi still
has minimal distance2τ + 1.) The resulting family is
{

C(a1,...,an) | a1 6= 0, . . . , an 6= 0
}

. Theorem 8 states that the
resulting secure skecth matches the entropy loss of the regular,
“entropically insecure” sketch presented in Section IV!

APPLICATION: PRIVATE FUZZY EXTRACTORS. A
(n, t, ℓ, τ, ǫ1)-fuzzy extractor (see Definition 5) is called
(t, ǫ)-private, if its generation procedureGen(W ) → (R,P )
is (t, ǫ)-indistinguishable (and, thus,(t+2, O(ǫ))-entropically
secure). Such extractors imply that no a-priori information
aboutW is leaked both from the extracted randomnessR and
the public valueP . Even stronger, such an extractor is called
(t, ǫ)-uniform if SD

(

(R,P ), (U|R|, U|P |)
)

≤ ǫ. Namely, in
the latter caseGen(W ) → (R,P ) by itself could be viewed
as a randomness extractor, whose first part of the outputR
could be the recovered from the second (independent!) part
P and any stringW ′ close to the sourceW .

It is easy to see that applying the construction from
Lemma 7 to any(t, ǫ2)-indistinguishable sketchS gives an
(t, ǫ1 + ǫ2)-private fuzzy extractor. And if the sketch by itself
is an extractor, we get a(t, ǫ1 + ǫ2)-uniform fuzzy extractor!
Assumingt = Ω(n) and applying now the construction from
Theorem 8, we get a(t, ǫ)-uniform fuzzy extractor all of whose
parameters are optimal up to a constant factor:ℓ, τ, log

(

1
ǫ

)

=
Ω(n), and |P | = O(n). Moreover, this fuzzy extractor is
“strong” in a sense thatP contains (together with other data)
all the randomnessI used byGen.

APPLICATION: FUZZY POWHFS. It was also observed in
[7] that entropically secure sketches compose well with any
ordinary POWHFs (see Definition 4), as long as the residual
min-entropy of the secret given the sketch is higher than the
min-entropy requirement for the POWHF. As a result, using
the same notation as it Definition 4, [7] obtained a family of

what we call(t, τ, ǫ)-fuzzy perfectly one-wayhash functions,
satisfying the following three conditions:
• For all keys k ∈ Kn, inputs w,w′ ∈ {0, 1}n satis-

fying dist(w,w′) ≤ τ , and stringsi ∈ Rn, we have
Ver(k,w′,Hk(w; i)) = ACC.

• For any efficient adversaryA, the probability overk ∈
Kn that A(k) outputs a triple (w,w′, y) such that
dist(w,w′) > 2τ and Ver(k,w, y) = Ver(k,w′, y) =
ACC is negligible inn.

• For all keys k ∈ Kn, the randomized mapW 7→
Hk(W ; I) is (t, ǫ)-entropically secure.

Thus, publishingHk(w, i) allows anybody to test (without
either false positives or false negatives!) whether or not some
input w′ is close to the “correct” secret inputw, and yet
without leaking any particular function ofw. Taking now
the specific construction of entropically secure sketches from
Theorem 8 and the construction of POWHFs from Section III,
we obtain, for any entropy levelt = Ω(n), a (t, τ, ǫ)-fuzzy
POWHF where bothτ and log

(

1
ǫ

)

areΩ(n).

APPLICATION: KEY REUSE IN THENOISY BSM. Perhaps as
the most surprising application of entropically secure sketches,
[7] showed that they can be used to simultaneously achieve
error correction, key reuse and “everlasting security” in the so
called bounded storage model (BSM) [10]. This resolved the
main open problem of [4]. We refer to [7] for more details
and references regarding this application.
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