
Security Amplification for Interactive

Cryptographic Primitives

Yevgeniy Dodis1, Russell Impagliazzo2, Ragesh Jaiswal3, and Valentine
Kabanets4

1
dodis@cs.nyu.edu. New York University.

2
russell@cs.ucsd.edu. University of California at San Diego and IAS.

3
rjaiswal@cs.columbia.edu. Columbia University.
4
kabanets@cs.sfu.ca. Simon Fraser University.

Abstract. Security amplification is an important problem in Cryptogra-
phy: starting with a “weakly secure” variant of some cryptographic primi-
tive, the goal is to build a “strongly secure” variant of the same primitive.
This question has been successfully studied for a variety of important
cryptographic primitives, such as one-way functions, collision-resistant
hash functions, encryption schemes and weakly verifiable puzzles. How-
ever, all these tasks were non-interactive. In this work we study security
amplification of interactive cryptographic primitives, such as message
authentication codes (MACs), digital signatures (SIGs) and pseudoran-
dom functions (PRFs). In particular, we prove direct product theorems
for MACs/SIGs and an XOR lemma for PRFs, therefore obtaining nearly
optimal security amplification for these primitives.

Our main technical result is a new Chernoff-type theorem for Dynamic

Weakly Verifiable Puzzles, which we introduce in this paper and which
is a generalization of ordinary Weakly Verifiable Puzzles.

1 Introduction

Security amplification is a fundamental cryptographic problem: given a con-
struction C of some primitive P which is only “weakly secure”, can one build
a “strongly secure” construction C ′ from C? The first result in this domain
is a classical conversion from weak one-way functions to strong one-way func-
tion by Yao [Yao82] (see also [Gol01]): if a function f is only mildly hard to
invert on a random input x, then, for appropriately chosen n, the function
F (x1, . . . , xn) = (f(x1), . . . , f(xn)) is very hard to invert. The above result
is an example of what is called the direct product theorem, which, when true,
roughly asserts that simultaneously solving many independent repetitions of a
mildly hard task is a much harder “combined task”. Since the result of Yao,
such direct product theorems have have been successfully used to argue secu-
rity amplification of several other important cryptographic primitives, such as
collision-resistant hash functions [CRS+07], encryption schemes [DNR04] and
weakly verifiable puzzles [CHS05,IJK08].

However, all the examples above are non-interactive: namely, after receiving
its challenge, the attacker needs to break the corresponding primitives without

2

any further help or interaction. This restriction turns out to be important, as
security amplification, and, in particular, direct product theorems become much
more subtle for interactive primitives. For example, Bellare, Impagliazzo and
Naor [BIN97] demonstrated that that parallel repetition does not, in general, re-
duce the soundness error of multi-round (computationally sound) protocols, and
this result was further strengthened by Pietrzak and Wikstrom [PW07]. On the
positive side, parallel repetition is known to work for the special case of three-
round protocols [BIN97] and constant-round public-coin protocols [PV07]. How-
ever, considerably less work has been done in the security amplification of more
“basic” cryptographic primitives requiring interaction, such as block ciphers,
message authentications codes (MACs), digital signatures (SIGs) and pseudo-
random functions (PRFs). For example, Luby and Rackoff [LR86] (see also
[NR99,Mye99]) showed how to improve the security of a constant number of pseu-
dorandom permutation generators by composition, while Myers [Mye03] showed
that a (non-standard) variant of the XOR lemma [Yao82,Lev87,Imp95,GNW95]
holds for PRFs. In particular, the known results for the interactive case are either
weaker or more specialized than those for the non-interactive case. The difficulty
is that, for instance in the case of MACs, the attacker has oracle access to the
corresponding “signing” and “verification” oracles, and the existing techniques
do not appear to handle such cases.

In this work we study the question of security amplification of MACs, SIGs
and PRFs, showing how to convert a corresponding weak primitive into a strong
primitive. In brief, we prove a direct product theorem for MACs/SIGs (and even
a Chernoff-type theorem to handle MACs/SIGs with imperfect completeness),
and a (regular) XOR lemma for PRFs. Before describing these results in more
details, however, it is useful to introduce our main technical tool for all these
cases — a Chernoff-type theorem for what we call Dynamic Weakly Verifiable
Puzzles (DWVPs) — which is of independent interest.

Dynamic Weakly Verifiable Puzzles. Recall, (non-dynamic) weakly verifiable
puzzles (WVPs) were introduced by Canetti, Halevi and Steiner [CHS05] to
capture the class of puzzles whose solutions can only be verified efficiently by
the party generating the instance of the puzzle. This notion includes, as spe-
cial cases, most previously mentioned non-interactive primitives, such as one-
way functions, collision-resistant hash functions, one-way encryption schemes,
CAPTCHAs, etc. To handle also interactive primitives, such as MACs and SIGs
(and also be useful later for PRFs), in Section 3 we generalize this notion to that
of dynamic WVPs (DWVPs) as follows. Just like in WVPs, one samples a pair
(x, α) from some distribution D, where α is the secret advice used to verify pro-
posed solutions r to the puzzle x. Unlike WVPs, however, each x actually defines
a set of related puzzles, indexed by some value q ∈ Q, as opposed to a single
puzzle (which corresponds to |Q| = 1). An efficient verification algorithm R for
the DWVP uses α and the puzzle index q to test if a given solution r is correct.
An attacker B has oracle access to this verification procedure. Additionally, the
attacker has oracle access to the hint oracle: given an index q, the hint oracle
returns some hint value H(α, q), presumably “helping” the attacker to solve the

3

puzzle q. The attacker wins the DWVP game if it ever causes the verification
oracle to succeed on a query q ∈ Q not previously queried to the hint oracle. As
we see, this abstraction clearly includes MACs and SIGs as special cases. It also
generalizes ordinary WVPs, corresponding to |Q| = 1. We say that the DWVP
is δ-hard, if no (appropriately bounded) attacker can win the above game with
probability more than (1− δ).

Our main technical result is the following (informally stated) Chernoff-type
theorem for DWVPs. Given n independently chosen δ-hard DWVPs on some
index set Q, the chance of solving more than (n− (1− γ)δn) DWVPs — on the
same value q ∈ Q and using less than h “hint” queries q′ 6= q — is proportional
to h · e−Ω(γ2δn); the exact statement is given in Theorem 4. Notice, the value
0 < γ ≤ 1 measures the “slackness parameter”. In particular, γ = 1 corresponds
to the direct product theorem where the attacker must solve all n puzzles (on
the same q). However, setting γ < 1 allows to handle the setting where even the
“legitimate” users, — who have an advantage over the attacker, like knowing
α or being humans, — can also fail to solve the puzzle with some probability
slightly less than (1− γ)δ.

This result generalizes the corresponding Chernoff-type theorem of Impagli-
azzo, Jaiswal and Kabanets [IJK08] for standard, non-dynamic, WVPs. However,
the new theorem involves a considerably more complicated proof. The extra dif-
ficulties are explained in Section 3.1. In essence, in order to amplify security, the
attacker B for the single DWVP must typically execute the assumed attacker A
for the “threshold” variant several times, before obtaining sufficient “confidence”
in the quality of the solutions output by A. In each of these “auxiliary” runs,
however, there is a chance that A will ask a hint query for the index q which
is equal to the one that A is going to solve in the “actual” run leading to the
forgery, making B’s forgery value q “old”. Thus, a new delicate argument has
to be made to argue security in this scenario. At a high level, the argument is
somewhat similar to Coron’s improved analysis [Cor00] of the full domain hash
signature scheme, although the details differ. See Theorem 4 for the details.

Applications to MACs, SIGs and PRFs. Our main technical result above almost
immediately implies security amplification for MACs and SIGs, even with imper-
fect completeness. For completeness, we briefly state the (asymptotic) result for
the MAC case. (The case of SIGs and the exact security version for both cases
are immediate.) We assume that the reader is familiar with the basic syntax
and the standard Chosen Message Attack (CMA) scenario for a MAC, which is
given by a tagging algorithm Tag and the verification algorithm Ver. We denote
the secret key by s, and allow the tagging algorithm to be probabilistic (but not
stateful). Given the security parameter k, we say that the MAC has completeness
error β = β(k) and unforgeability δ = δ(k), where β < δ, if for any message m,
Pr(Ver(s,m,Tag(s,m)) = 1) ≥ 1− β, and that no probabilistic polynomial-time
attacker B can forge a valid tag for a “fresh” message m with probability greater
than (1− δ) during the CMA attack.

The MAC Π is said to be weak if δ(k)−β(k) ≥ 1/poly(k), for some polynomial
poly, and is said to be strong if, for sufficiently large k, β(k) ≤ negl(k) and

4

δ(k) ≥ 1 − negl(k), where negl(k) is some negligible function of k. Given an
integer n and a number γ > 0, we can define the “threshold direct product”
MAC Πn in the natural way: the key of Πn consists of n independent keys
for the basic MAC, the tag of m contains the concatenation of all n individual
tags of m, and the verification accepts an n-tuples of individual tags if at least
(n− (1− γ)δn) individual tags are correct. Then, a straightforward application
of Theorem 4 gives:

Theorem 1. Assume Π is a weak MAC. Then one can choose n = poly(k) and
γ > 0 so that Πn has completeness error 2−Ω(k) and unforgeability (1−negl(k)).
In particular, Πn is a strong MAC.

We then use our direct product result for MACs to argue the XOR lemma for the
security amplification of PRFs. Namely, in Section 4.2 we show that the XOR
of several independent weak PRFs results in a strong PRF (see Section 4.2 for
definitions). It is interesting to compare this result with a related XOR lemma
for PRFs by Myers [Mye03]. Meyers observed that the natural XOR lemma
above cannot hold for δ-pseudorandom PRFs, where δ ≥ 1

2 . In particular, a
PRF one of whose output bits is a constant for some input can potentially reach
security (almost) 1/2, but can never be amplified by a simple XOR. Because of
this counter-example, Meyers had a more complicated XOR lemma for PRFs,
where a separate pad was selected for each δ-pseudorandom PRF, and showed
that this variant worked for any δ < 1. In this work, we show that Meyers’
counter-example is the worst: the simple XOR lemma holds for δ-pseudorandom
PRFs, for any δ < 1

2 .

The PRF result generally follows the usual connection between the direct
product theorems and the XOR lemmas first observed by [GNW95], but with
a subtlety. First, it is easy to see that it suffices to consider Boolean PRFs.
For those, we notice that a δ-pseudorandom PRF is also a (1− 2δ)-unforgeable
(Boolean) MAC (this is where δ < 1

2 comes in). Then, we apply the direct
product theorem to obtain a strong (non-Boolean) MAC. At this stage, one
typically applies the Goldreich-Levin [GL89] theorem to argue that the XOR
of a random subset of (strong) MACs is a PRF. Unfortunately, as observed by
Naor and Reingold [NR98], the standard GL theorem does not work in general
for converting unpredictability into pseudorandomness, at least when the subset
is public (which will ultimately happen in our case). However, [NR98] showed
that the conversion does work when r is kept secret. Luckily, by symmetry, it is
easy to argue that for “direct product MACs”, keeping r secret or public does
not make much difference. Indeed, by slightly adjusting the analysis of [NR98]
to our setting, we will directly obtain the desired XOR lemma for PRFs.

Finally, in Section 4.1 we observe a simple result regarding the security am-
plification of pseudorandom generators (PRGs). This result does not use any
new techniques (such as our Chernoff-type theorem). However, we state it for
completeness, since it naturally leads to the (more complicated) case of PRFs
in Section 4.2 and, as far as we know, it has never explicitly appeared in the
literature before.

5

2 Preliminaries

For a natural number k, we will denote by [k] the set {1, . . . , k}.

Lemma 1 (Hoeffding bound). Let X1, . . . ,Xt be independent identically dis-
tributed random variables taking values in the interval [0, 1], with expectation µ.

Let χ = (1/t)
∑t

i=1 Xi. For any 0 < ν ≤ 1, we have Pr[χ < (1−ν)µ] < e−ν2µt/2.

Theorem 2 ([GL89]). There is a probabilistic algorithm Dec with the following
property. Let a ∈ {0, 1}k be any string, and let O : {0, 1}k → {0, 1} be any
predicate such that |Prz∈{0,1}k [O(z) = 〈a, z〉]− 1/2| ≥ ν for some ν > 0. Then,
given ν and oracle access to the predicate O, the algorithm Dec runs in time
poly(k, 1/ν), and outputs a list of size O(1/ν2) such that, with probability at
least 3/4, the string a is on the list.

Theorem 3 ([Gol01]). Let {Xn}n∈N be a distribution ensemble. If {Xn}n∈N

is δ(n)-unpredictable, then it is (n · δ(n))-pseudorandom. Also, if {Xn}n∈N is
δ(n)-pseudorandom, then it is δ(n)-unpredictable.

2.1 Samplers

We will consider bipartite graphs G = G(L∪R,E) defined on a bipartition L∪R
of vertices; we think of L as left vertices, and R as right vertices of the graph G.
We allow graphs with multiple edges. For a vertex v of G, we denote by NG(v)
the multiset of its neighbors in G; if the graph G is clear from the context, we
will drop the subscript and simply write N(v). Also, for a vertex x of G, we
denote by Ex the set of all edges in G that are incident to x. We say that G is
bi-regular if the degrees of vertices in L are the same, and the degrees of vertices
in R are the same.

Let G = G(L ∪ R,E) be any bi-regular bipartite graph. For a function λ :
[0, 1]× [0, 1]→ [0, 1], we say that G is a λ-sampler if, for every function F : L→
[0, 1] with the average value Expx∈L[F (x)] ≥ µ and any 0 < ν < 1, there are at
most λ(µ, ν) · |R| vertices r ∈ R where Expy∈N(r)[F (y)] ≤ (1− ν)µ.

We will use the following properties of samplers (proved in [IJKW08,IJK08]).
The first property says that for any two large vertex subsets W and F of a
sampler, the fraction of edges between W and F is close to the product of the
densities of W and F .

Lemma 2 ([IJKW08]). Suppose G = G(L∪R,E) is a λ-sampler. Let W ⊆ R
be any set of measure at least τ , and let V ⊆ L be any set of measure at least β.
Then, for all 0 < ν < 1 and λ0 = λ(β, ν), we have Prx∈L,y∈N(x)[x ∈ V & y ∈
W] ≥ β(1−ν)(τ−λ0), where the probability is for the random experiment of first
picking a random node x ∈ L uniformly at random, and then picking a uniformly
random neighbor y of x in the graph G.

The second property deals with edge-colored samplers. It basically says that
removing some subset of right vertices of a sampler yields a graph which (al-
though not necessarily bi-regular) still has the following property: Picking a

6

random left node and then picking its random neighbor induces roughly the
same distribution on the edges as picking a random right node and then its
random neighbor.

Lemma 3 ([IJKW08]). Suppose G = G(L ∪ R,E) is a λ-sampler, with the
right degree D. Let W ⊆ R be any subset of density at least τ , and let G′ =
G(L ∪W,E′) be the induced subgraph of G (obtained after removing all vertices
in R \W), with the edge set E′. Let Col : E′ → {red, green} be any coloring
of the edges of G′ such that at most ηD|W | edges are colored red, for some
0 ≤ η ≤ 1. Then, for all 0 < ν, β < 1 and λ0 = λ(β, ν), we have

Prx∈L,y∈N
G′ (x)[Col({x, y}) = red] ≤ max{η/((1− ν)(1− λ0/τ)), β},

where the probability is for the random experiment of first picking a uniformly
random node x ∈ L, and then picking a uniformly random neighbor y of x in the
graph G′.

We shall also need a generalization of Lemma 3 for the case of weighted
graphs, proved in [IJK08]. Here we consider bipartite graphs G = G(L ∪ R,E)
whose edges are assigned weights in the interval [0, 1] satisfying the following
property: for every right vertex y ∈ R, all the edges incident on y are assigned
the same weight. Let w0, w1, . . . be the distinct weights of the edges of G, in
decreasing order. The vertex set R of such a weighted graph is naturally parti-
tioned into subsets W0,W1, . . . , where Wi is the subset of all those vertices in R
whose incident edges have weight wi. Intuitively, such a partitioning of R defines
a new induced graph G′ where a vertex in Wi is present in G′ with probability
wi. (In the setting of Lemma 3, there are two sets W0 = W and W1 = R \W ,
with w0 = 1 and w1 = 0.)

Suppose the edges of G are partitioned into red and green edges. Let Red
denoted the set of all red edges, and, for every x ∈ L, let Redx denote the set of
all red edges incident to x.

First, consider the experiment where one picks a vertex y ∈ R with probabil-
ity proportionate to wi, where y ∈Wi, and then picks a uniformly random edge
incident to y. What is the probability of picking a red edge?

Let wt : E → [0, 1] be the edge weight function for our graph G = G(L∪R,E),
and let D be the right degree of the graph G. For a fixed red edge e of G, the
probability of choosing this edge in the random experiment described above is

wt(e)
∑

i≥0 |Wi|wi
· 1

D
,

where wt(e)/(
∑

i≥0 |Wi|wi) is the probability of choosing the vertex y ∈ R that
is the end vertex of the edge e, and 1/D is the probability of picking one of the
D edges incident to y. The probability of picking some red edge is then simply
the sum of the probabilities of picking an edge e over all red edges e of G.

Next consider the following experiment. Pick a vertex x ∈ L uniformly at
random, then pick an edge e incident to x with probability proportionate to wt(e)

7

(i.e., the probability wt(e)/(
∑

e′∈Ex
wt(e′))). The probability ξ(x) of picking a

red edge incident to x is then the sum of the probabilities of choosing an edge e
incident to x, over all red edges e incident on x. Finally, the overall probability
of picking a red edge in this experiment is simply the average Expx∈L[ξ(x)].

The next lemma basically says that, for sampler graphs G, the probabilities
of picking a red edge in the two experiments described above are almost the
same. More precisely, we have the following.

Lemma 4 ([IJK08]). Suppose G = G(L ∪R,E) is a λ-sampler with the right
degree D. Let wt : E → [0, 1] be the weight function over the edges of G such that,
for each y ∈ R, the weights of the edges e ∈ Ey incident to y are the same. Let
w0, w1, . . . be the distinct weights of the edges of G, in decreasing order, and let
W0,W1, . . . be the partitioning of the vertex set R so that each Wi is the subset
of all those vertices in R whose incident edges have the weight wi. Suppose that
W0 has the measure at least τ in the set R.

Let Col : E → {red, green} be any coloring of the edges of G. For each
x ∈ L, let Redx be the set of all red edges incident to x, and let Red be the set
of all red edges in G. Suppose that the total weight of red edges

∑

e∈Red wt(e) is
at most ηD|R|, and let ξ(x) = (

∑

e∈Redx
wt(e))/(

∑

e∈Ex
wt(e)).

Then, for all 0 < ν, β < 1 and λ0 = λ(β, ν), we have

Expx∈L[ξ(x)] ≤ max

{

η|R|
(1− ν)(1− λ0/τ)

∑

i≥0 |Wi|wi
, β

}

.

3 Dynamic Weakly Verifiable Puzzles

We consider the following generalization of weakly verifiable puzzles (WVP) [CHS05],
which we call dynamic weakly verifiable puzzles (DWVP).

Definition 1 (Dynamic Weakly Verifiable Puzzle). A DWVP Π is defined
by a distribution D on pairs of strings (x, α); here α is the advice used to generate
and evaluate responses to the puzzle x. Unlike the case of WVP, here the string
x defines a set of puzzles, (x, q) for q ∈ Q (for some set Q of indices). There is a
probabilistic polynomial-time computable relation R that specifies which answers
are solutions for which of these puzzles: R(α, q, r) is true iff response r is correct
answer to puzzle q in the collection determined by α. Finally, there is also a
probabilistic polynomial-time computable hint function H(α, q).

A solver can make a number of queries: query hint(q) asks for H(α, q), the
hint for puzzle number q; a verification query V (q, r) asks whether R(α, q, r).
The solver succeeds if it makes an accepting verification query for a q where it
has not previously made a hint query on q.

Clearly, WVP is a special case of DWVP when |Q| = 1. A MAC is also a
special case of DWVP where α is a secret key, x is the empty string, queries
q are messages, a hint is to give the MAC of a message, and correctness is for

8

a (valid message, MAC) pair. Signatures are also a special case with α being a
secret key, x a public key, and the rest similar to the case of MACs.

We give security amplification for such weakly verifiable puzzle collections,
using direct products. First, let us define an n-wise direct product for DWVPs.

Definition 2 (n-wise direct-product of DWVPs). Given a DWVP Π with
D, R, Q, and H, its n-wise direct product is a DWVP Πn with the product
distribution Dn producing n-tuples (α1, x1), . . . , (αn, xn). For a given n-tuple
ᾱ = (α1, . . . , αn) and a query q ∈ Q, the new hint function is Hn(ᾱ, q) =
(H(α1, q), . . . ,H(αn, q)). For parameters 0 ≤ γ, δ ≤ 1, we say that the new
relation Rk((α1, . . . , αn), q, (r1, . . . , rn)) evaluates to true if there is a subset S ⊆
[n] of size at least n− (1− γ)δn such that ∧i∈SR(αi, q, ri).

A solver of the n-wise DWVP Πn may ask hint queries hintn(q), getting
Hn(ᾱ, q) as the answer. A verification query V n(q, r̄) asks if Rn(ᾱ, q, r̄), for an
n-tuple r̄ = (r1, . . . , rn). We say that the solver succeeds if it makes an accepting
verification query for a q where it has not previously made a hint query on q.1

Theorem 4 (Security amplification for DWVP (uniform version)). Sup-
pose a probabilistic t-time algorithm A succeeds in solving the n-wise direct-
product of some DWVP Πn with probability at least ǫ, where ǫ ≥ (800/γδ) · (h+

v) · e−γ2δn/40, and h is the number of hint queries 2, and v the number of verifi-
cation queries made by A. Then there is a uniform probabilistic algorithm B that
succeeds in solving the original DWVP Π with probability at least (1− δ), while
making O((h(h+ v)/ǫ) · log(1/γδ)) hint queries, only one verification query, and
having a running time

O
(

((h + v)4/ǫ4) · t + (t + ωh) · (h + v)/ǫ · log (1/γδ)
)

.

Here ω denotes the maximum time to generate a hint for a given query. The
success probability of B is over the random input puzzle of Π and internal ran-
domness of B.

Note that B in the above theorem is a uniform algorithm. We get a reduction
in running time of an algorithm for attacking Π if we allow it to be non-uniform.
The algorithm B above (as we will see later in the proof) samples a suitable hash
function from a family of pairwise independent hash functions and then uses the
selected function in the remaining construction. In the non-uniform version of
the above theorem, we can skip this step and assume that the suitable hash
function is given to it as advice. Following is the non-uniform version of the
above theorem.

1 We don’t allow the solver to make hint queries (q1, . . . , qn), with different qi’s, as
this would make the new k-wise DWVP completely insecure. Indeed, the solver could
ask cyclic shifts of the query (q1, . . . , qn), and thus learn the answers for q1 in all n
positions, without actually making the hint query (q1, . . . , q1).

2 Note that when h = 0, we’re in the case of WVPs.

9

Theorem 5 (Security amplification for DWVP (non uniform version)).
Suppose a probabilistic t-time algorithm A succeeds in solving the n-wise direct-
product of some DWVP Πn with probability at least ǫ, where ǫ ≥ (800/γδ) · (h+

v) · e−γ2δn/40, h is the number of hint queries, and v the number of verifica-
tion queries made by A. Then there is a probabilistic algorithm B that succeeds
in solving the original DWVP Π with probability at least 1 − δ, while making
O((h · (h + v)/ǫ)) · log(1/γδ)) hint queries, only one verification query, and hav-
ing the running time O ((t + ωh) · ((h + v)/ǫ) · log (1/γδ)), where ω denotes the
maximum time to generate a hint for a given query. The success probability of
B is over the random input puzzle of Π and internal randomness of B.

3.1 Intuition

We want to solve a single instance of DWVP Π, using an algorithm A for the n-
wise direct-product Πn, and having access to the hint-oracle and the verification-
oracle for Π. The idea is to “embed” our unknown puzzle into an n-tuple of
puzzles, by generating the n−1 puzzles at random by ourselves. Then we simulate
algorithm A on this n-tuple of puzzles. During this simulation, we can answer the
hint queries made by A by computing the hint function on our own puzzles and
by making the appropriate hint query to the hint-oracle for Π. We will answer all
verification queries of A by 0 (meaning “failure”). At the end, we see if A made a
verification query which was “sufficiently” correct in the positions corresponding
to our own puzzles; if so, we make a probabilistic decision to output this query
(for the position of our unknown input puzzle).

To decide whether to believe or not to believe the verification query made by
A, we count the number of correct answers it gave for the puzzles we ourselves
generated (and hence can verify), and then believe with probability inverse-
exponentially related to the number of incorrect answers we see (i.e., the more
incorrect answers we see, the less likely we are to believe that A’s verification
query is correct for the unknown puzzle); since we allow up to (1− γ)δn incor-
rect answers, we will discount these many incorrect answers, when making our
probabilistic decision.

Such a “soft” decision algorithm for testing if an n-tuple is good has been
proposed in [IW97], and later used in [BIN97,IJK08]. Using the machinery
of [IJK08], we may assume, for the sake of intuition, that we can decide if a
given verification query (q, r̄) made by A is correct (i.e., is correct for at least
n− (1− γ)δn of ri’s in the n-tuple r̄).

Since A is assumed to succeed on at least ǫ fraction of n-tuples of puzzles,
we get from A a correct verification query with probability at least ǫ (for a
random unknown puzzle, and random n − 1 self-generated puzzles). Hence, we
will produce a correct solution to the input puzzle of Π with probability at least
ǫ.

To improve this probability, we would like to repeatedly sample n−1 random
puzzles, simulate A on the obtained n-tuple of puzzles (including the input puzzle
in a random position), and check if A produces a correct verification query. If

10

we repeat for O(log 1/δ)/ǫ) iterations, we should increase our success probability
for solving Π to 1− δ.

However, there is a problem with such repeated simulations of A on different
n-tuples of puzzles: in some of its later runs, A may make a successful verification
query for the same q for which it made a hint query in an earlier run. Thus, we
need to make sure that a successful verification query should not be one of the
hint queries asked by A in one of its previous runs. We achieve this by randomly
partitioning the query space Q into the “attack” queries P , and “hint” queries.
Here P is a random variable such that any query has probability 1

2(h+v) of falling

inside P . We will define the set P by picking a random hash function hash from
Q to {0, 1, . . . , 2(h + v)− 1}, and setting P = Phash to be the preimages of 0 of
hash.

We say that the first success query for A is the first query where a successful
verification query without a previous hint query is made. A canonical success for
attacker A with respect to P is an attack so that the first successful verification
query is in P and all earlier queries (hint or verification) are not in P .

We will show that the expected fraction of canonical successes for Phash is at
least ǫ

4(h+v) . We will also give an efficient algorithm (the Pick-hash procedure

below) that finds a hash function hash so that the fraction of canonical successes
for Phash is close to the expected fraction. Then we test random candidates for
being canonical successes with respect to Phash.

Due to this extra complication (having to separate hint and verification
queries), we lose on our success probability by a factor of 8(h + v) compared
to the case of WVPs analyzed in [IJK08]. The formal proof of the theorem is
given in the following subsection.

3.2 Proof of Theorem 4 and 5

For any mapping hash : Q→ {0, ..., 2(h+v)−1}, let Phash denote the preimages
of 0. Also, as defined in the previous section, a canonical success for an attacker
A with respect to P ⊆ Q is an attack so that the first successful verification
query is in P and all earlier queries (hint or verification) queries are not in P .
The proof of Theorems 4 and 5 follows from the following two lemmas.

Lemma 5. Let A be an algorithm which succeeds in solving the n-wise direct-
product of some DWVP Πn with probability at least ǫ while making h hint
queries, v verification queries and have a running time t. Then there is a proba-
bilistic algorithm which runs in time O(((h+v)4/ǫ4) · t) and with high probability
outputs a function hash : Q→ {0, ..., 2(h+v)−1} such that the canonical success
probability of A with respect to the set Phash is at least ǫ

8(h+v) .

Lemma 6. Let hash : Q → {0, ..., 2(h + v) − 1} be a function. Let A be an
algorithm such that the canonical success probability of A over an n-wise DWVP
Πn with respect to Phash is at least ǫ′ = (100/γδ) · e−γ2δn/40. Furthermore,
let A makes h hint queries and v verification queries and have a running time

11

t. Then there is a probabilistic algorithm B that succeeds in solving the orig-
inal DWVP Π with probability at least 1 − δ, while making O((h(h + v)/ǫ) ·
log(1/γδ)) hint queries, only one verification query, and having the running time
O ((t + ωh) · (h/ǫ) · log (1/γδ)), where ω denotes the maximum time to generate
a hint for a given query.

In the remaining subsection, we give the proof of Lemmas 5 and 6. Note that
the proof of Lemma 6 is very similar to the analysis of WVPs in [IJK08].

Proof (proof of Lemma 5). Let H be a pairwise independent family of hash
functions mapping Q into {0, ..., (2(h + v)− 1)}. First note that for a randomly

chosen function hash
$← H, Phash is a random variable denoting the partition

of Q into two parts which satisfies the following properties:

∀q1, q2 ∈ Q, Pr[q1 ∈ Phash | q2 ∈ Phash] = Pr[q1 ∈ Phash] =
1

2(h + v)
(1)

For any fixed choice of ᾱ = (α1, ..., αn), let qᾱ
1 , ..., qᾱ

h denote the hint queries
of A and let (qᾱ

h+1, r̄
ᾱ
h+1), ..., (q

ᾱ
h+v, r̄ᾱ

h+v) denote the verification queries of A.
Also, let (qᾱ

j , r̄ᾱ
j) denote the first successful verification query, in the case A

succeeds, and let it denote any arbitrary verification query in the case A fails.
Furthermore, let Eᾱ denote the event that qᾱ

1 , ..., qᾱ
h , qᾱ

h+1, ..., q
ᾱ
j−1 /∈ Phash and

qᾱ
j ∈ Phash. We bound the probability of the event Eᾱ as follows.

Lemma 7. For each fixed ᾱ, we have PrPhash
[Eᾱ] ≥ 1

4(h+v) .

Proof. We have

PrPhash
[Eᾱ] = Pr[qᾱ

j ∈ Phash & ∀i < j, qᾱ
i /∈ Phash]

= Pr[qᾱ
j ∈ Phash] ·Pr[∀i < j, qᾱ

i /∈ Phash | qᾱ
j ∈ Phash].

By (1), we get that the latter expression is equal to 1
2(h+v) · (1−Pr[∃i < j, qᾱ

i ∈
Phash | qᾱ

j ∈ Phash]), which, by the union bound, is at least

1

2(h + v)
·

1−
∑

i<j

Pr[qᾱ
i ∈ Phash | qᾱ

j ∈ Phash]

 .

Finally, using the pairwise independence property (1), we conclude that

Pr[Eᾱ] ≥ 1

2(h + v)
·

1−
∑

i<j

Pr[qᾱ
i ∈ Phash]

 ≥ 1

4(h + v)
,

as required. ⊓⊔

Let T denote the “good” set corresponding to A’s attack, that is,
T = {ᾱ : A′s attack succeeds}. We have Pr[ᾱ ∈ T] ≥ ǫ. Consider the following

12

random variable: GPhash
= {ᾱ | ᾱ ∈ T and Eᾱ}. So, GPhash

contains those ᾱ’s
for which A has canonical success.

Since ∀ᾱ ∈ G,PrPhash
[Eᾱ] ≥ 1

4(h+v) , using linearity of expectation we get

ExpPhash
[Prᾱ[ᾱ ∈ GPhash

]] ≥ ǫ
4(h+v) . Hence, by averaging, we get that with

probability at least ǫ
8(h+v) over the randomness of Phash, there is at least ǫ

8(h+v)

chance that a randomly chosen ᾱ ∈ GPhash
. Let us call such Phash’s “good”.

The subroutine Pick-hash (see figure 2) uses the natural sampling technique
and runs in time O(((h + v)4/ǫ4) · t) to return a mapping hash such that Phash

is good.

Pick-hash

00. Let H be a pairwise independent family of hash functions
which maps Q into {0, 1, ..., (2h− 1)}.

01. Repeat lines (2− 15) at most 64(h + v)2/ǫ2 times:

02. hash
$
← H

03. Let Phash denote the subset of all queries q such that hash(q) = 0
04. count← 0
05. Repeat for at most 64(h + v)2/ǫ2 times:
06. Pick ᾱ = (α1, ..., αn) randomly
07. Execute A
08. When A asks a hint query q
09. If (q ∈ Phash), then abort A and continue with step 5
10. Let (r1, ..., rn) be hints to query q for puzzle sets x1, ..., xn

11. return (r1, ..., rn) to A
12. When A asks a verification query (q, r̄)
13. If (Rn(ᾱ, q, r̄) = 1) and q ∈ Phash then
14. increase count by 1 and continue at step 5
15. If (count ≥ 4(h + v)/ǫ) then return hash

Figure 1: Algorithm for picking a good hash function

⊓⊔

Proof (Proof of Lemma 6).
Figure (2) gives the formal description of the algorithm B which uses the

algorithm A.
For any fixed ᾱ, let qᾱ

1 , ..., qᾱ
h denote the hint queries made by A and

(qᾱ
h+1, r

ᾱ
h+1), ..., (qᾱ

h+v, rᾱ
h+v) denote the verification queries. Let j ∈ [h+v] be the

first query such that qᾱ
j ∈ Phash. For all simulations of A, B correctly answers

every hint query of A by itself making a hint query with respect to the DWVP
Π which it is trying to solve (lines 10–13). Note that for a single simulation of
A (lines 6–25), the simulation is aborted if j ≤ h (line 9). Otherwise, B makes
a “soft” decision using (qᾱ

j , r̄ᾱ
j) to produce its verification query (lines 19–24).

Lemma 5 tells that there are at least ǫ′ fraction of ᾱ’s such that (qᾱ
j , r̄ᾱ

j) is a
correct verification query for A(these are ᾱ’s on which A has canonical success).
So, intuitively there is a fair chance that B produces a correct verification query.

13

B(x)
00. Let ρ = (1− γ/10) and Θ = (1− γ)δn
01. Let hash denote the function as in Lemma 5. For Theorem 4, hash is chosen
using

the subroutine Pick-hash. For Theorem 5, we can assume that hash is given as
advice.
02. Let Phash denote the subset of all queries q such that hash(q) = 0
03. Repeat lines (4− 23) for at most timeout = O(((h + v)/ǫ) · log (1/γδ)) steps:

04. Pick i
$
← [1..n]

05. Pick (n− 1) α’s randomly. Let (α1, ..., αi−1, αi+1, ..., αn) denote
these α’s and let (x1, ..., xi−1, xi+1, ..., xn) denote the puzzle sets
corresponding to these α’s.

06. Sv ← ∅
07. Execute A(x1, ..., xi−1, x, xi+1, ..., xn)
08. When A asks its hint query q
09. If q ∈ Phash then return ⊥ to A and halt the current simulation of A
10. B makes a hint query q to get the answer r
11. Let (r1, ..., ri−1, ri+1, ..., rn−1) be the hints for query q for

puzzle sets (x1, ..., xi−1, xi+1, ..., xn)
12. r̄ ← (r1, .., ri−1, r, ri+1.., rn)
13. return r̄ to A
14. When A asks a verification query (q, r̄)
15. If q /∈ Phash then return 0 to A
16. else

17. Parse r̄ as (r1, . . . , rn)
18. m← |{j : R(αj , q, rj) = 1, j 6= i}|
19. If (m ≥ n−Θ) then
20. with probability 1, B makes a verification query (q, ri) and halts
21. else

22. with probability ρm−Θ, B makes a verification query (q, ri) and
halts
23. Halt the current simulation of A and continue at line (03)
25. return (⊥,⊥)

Figure 2: Algorithm for solving Π

14

Let Good denote the set of ᾱ’s on which A succeed canonically. From the
assumption of the Lemma we know that Good contains at least ǫ′ fraction of ᾱ’s.
The remaining task is to argue that this is sufficient to show that B succeeds with
high probability. The rest of the analysis, apart from minor details, is similar
to the proof of the Direct Product theorem for WVPs from [IJK08], essentially
arguing that the lines 17–22 of the algorithm B act as a decision procedure for
the set Good. Next we give details of these arguments.

Consider the following bipartite graph G = G(L∪R,E): the set of left vertices
L is the set of α’s; the right vertices R are all n-tuples ᾱ = (α1, ..., αn); for every
y = (u1, . . . , un) ∈ R, there are n edges (y, u1), . . . , (y, un) ∈ E. Using Lemma 1,

we see that this graph is a λ-sampler for λ(µ, ν) = e−ν2µk/2.
For an unknown secret key α, let ᾱ = (α1, . . . , αi−1, α, αi, . . . , αn−1) be the n-

tuple of secret keys that corresponds to the n-tuple of puzzles (x1, . . . , xn) that B
will feed to A in line 7. Let qᾱ

1 , ..., qᾱ
h be the A’s hint queries and (qᾱ

h+1, r̄
ᾱ
h+1),,

(qᾱ
h+v, r̄ᾱ

h+v) be the verification queries. Let j ∈ [h + v] be the first index such
that qᾱ

j ∈ Phash. Let (qᾱ, r̄ᾱ) denote (qᾱ
j , r̄ᾱ

j) in case j > h and (⊥,⊥) otherwise.
In the case (qᾱ, r̄ᾱ) 6= (⊥,⊥), B makes a probabilistic decision about using

(qᾱ, r̄ᾱ) to produce its verification queries. It does that by verifying the answers
to the query at all positions other than position i where the unknown α has been
planted. Let (qᾱ, rᾱ) denote the verification query made by the algorithm B in
this simulation of A. If no verification query is made or if (qᾱ, r̄ᾱ) = (⊥,⊥), then
(qᾱ, rᾱ) = (⊥,⊥). Let (qB , rB) denote the single verification query made by B.

First we bound the probability of timeout of B or in other words the prob-
ability that (qᾱ, rᾱ) = (⊥,⊥) in all iterations of B. If ᾱ ∈ Good, then lines
7–23 will return a verification query with probability 1. Hence, the probability
of timeout is at most the probability that B never samples a neighbor ᾱ ∈ Good
of α in the graph G.

Consider the set H of all those left vertices α of G such that α has less than
ǫ′/4 fraction of its neighbors falling into the set Good. These are precisely those
α’s for which B is likely to time out. The next lemma shows that the set H is
small.

Lemma 8. The set H has density at most γδ/5.

Proof. Suppose that the density of H is greater than β = γδ/5. Let H ′ ⊆ H
be any subset of H of density exactly β. By our assumption, we have that
Prα∈L,w∈N(α)[α ∈ H ′ & w ∈ Good] < βǫ′/4. On the other hand, by Lemma 2
we get that the same probability is at least β(ǫ′−λ0)/3 for λ0 = λ(β, 2/3). This
is a contradiction if λ0 ≤ ǫ′/4. ⊓⊔

Lemma 9. For every α 6∈ H, we have Pr[B timeouts] ≤ γδ/20, where the
probability is over the internal randomness of B.

Proof. By the definition of H, we get that the probability of timeout on any
given α 6∈ H is at most (1− ǫ′/4)4 ln(20/γδ)/ǫ′ ≤ γδ/20. ⊓⊔

Next, we need to show that the probability of R(α, qB , rB) = 0 conditioned on
the event that (qB , rB) 6= (⊥,⊥), is small. Note that this conditional probability

15

remains the same across all the simulations of A in lines 4–23. Consider any
fixed simulation of A (lines 8–23) such that (qᾱ, r̄ᾱ) 6= (⊥,⊥). Let err be the
number of incorrect answers in r̄ᾱ for the query qᾱ. Then if err ≤ (1−γ)δn, then
lines 7 − 25 of B produces a verification query with probability 1. Otherwise a
verification query is produced with probability that decreases exponentially (by
a factor of ρ) as err increases.

For each edge ((α1, . . . , αn), αi) of the graph G, we color this edge green if
the ith answer in r̄ᾱ is the correct for the query qᾱ, and we color it red otherwise.

Consider the following random experiment E :
“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in
G, for ᾱ containing α in position i ∈ [n]. Let err be the number of
incorrect answers in r̄ᾱ for the query qᾱ in positions other than i, and
let ∆ = err−(1−γ)δn. If ∆ ≤ 0, output the edge e. Otherwise, output e
with probability ρ∆ (for ρ = (1− γ/10)), and output ⊥ with probability
1− ρ∆.”

For each α, we have

Pr[R(α, qB , rB) = 0 | (qB , rB) 6= (⊥,⊥)] =

Pr[E outputs red edge incident to α | E outputs some edge incident to α],(2)

where the first probability is over internal randomness of B, and the second
probability is over the random choices of E for the fixed α (i.e., over the random
choice of an edge e incident to α, and the random choice whether e is output).

Rather than analyzing the experiment E , however, we will consider another
experiment that is the same as E except that err is defined as the total number
of incorrect answers of qᾱ in r̄ᾱ in all positions (i.e., including the position i).
That is, we consider the following experiment E ′:

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in
G, for ᾱ containing α in position i ∈ [n]. Let err be the number of
incorrect answers in r̄ᾱ in all positions, and let ∆ = err − (1− γ)δn. If
∆ ≤ 0, output the edge e. Otherwise, output e with probability ρ∆ (for
ρ = (1− γ/10)), and output ⊥ with probability 1− ρ∆.”

The following lemma is immediate.

Lemma 10. For each edge e of G, we have

Pr[E ′ outputs e] ≤ Pr[E outputs e] ≤ 1

ρ
·Pr[E ′ outputs e].

As a corollary of Lemma 10, and by the definition of conditional probability,
we get the following.

Lemma 11. For each α, we have that

Pr[Eoutputs red edge incident to α | E outputs some edge incident to α] ≤
1

ρ
·Pr[E ′ outputs red edge incident to α | E ′ outputs some edge incident to α].

16

Finally, we prove the following.

Lemma 12. Prα[R(α, qB , rB) = 0 | (qB , rB) 6= (⊥,⊥)] ≤ δ − γδ/4.

Proof. By (2) and Corollary 11, we get that Prα[R(α, qB , rB) = 0 | (qB , rB) 6=
(⊥,⊥)] is at most

1

ρ
·Expα∈L[Pr[E ′outputs red edge incident to α | E ′ outputs some edge incident to α]].

(3)
To upperbound the conditional probability of getting a red edge in the exper-

iment E ′, we assign weights to the edges of our graph G = G(L∪R,E) as follows:
An edge (α, ᾱ) ∈ E between α ∈ L and ᾱ ∈ R gets the weight wt(e) = ρ∆, where
∆ is as in the definition of the experiment E ′.

For each α ∈ L, let Redα denote the set of all red edges incident to α, and
let

ξ(α) =

∑

e∈Redα
wt(e)

∑

e∈Eα
wt(e)

,

where Eα denotes the set of all edges incident to α. The expectation in (3) is
exactly µ = Expα∈L[ξ(α)].

Let Red be the set of all red edges in G, and let η = (1/n|R|)
∑

e∈Red wt(e).
Let us partition the set of ᾱ’s into the subsets Goodi, for i ≥ 0, where Good0 =
Good, and for each i ≥ 1, Goodi contains all those ᾱ ∈ R such that there are
exactly ((1− γ)δn + i) incorrect answers.

Apply Lemma 4 to G, the partitioning R = ∪i≥0Goodi with the correspond-
ing weights ρ0, ρ1, . . . , and the measure τ of Good0 being at least ǫ′. We get that
µ is at most the maximum of β and the following expression:

|R|η
(1− ν)(1− λ0/ǫ′)

∑

i≥0 |Goodi|ρi
, (4)

where λ0 = λ(β, ν).
By the definition of the sets Goodi, we get that η ≤ (1/n|R|)

∑

i≥0 |Goodi|((1−
γ)δn + i)ρi. Using this bound on η, we can upperbound the expression in (4) by

∑

i≥0 |Goodi|((1− γ)δ + (i/n))ρi

(1− ν)(1− λ0/ǫ′)
∑

i≥0 |Goodi|ρi
. (5)

For t = γδn/4, let us split the sum in the numerator of (5) into two sums: for
0 ≤ i ≤ t and for i > t. We can bound each of these two sums as follows:

t
∑

i=0

|Goodi|((1− γ)δ + (i/n))ρi ≤ ((1− γ)δ + t/n)

t
∑

i=0

|Goodi|ρi

≤ (1− 3γ/4)δ
∑

i≥0

|Goodi|ρi,

17

and
∑

i>t |Goodi|((1 − γ)δ + (i/n))ρi ≤ ρt|R|. Plugging these bounds into (5),
and recalling that |Good0| ≥ ǫ′|R|, we upperbound (5) by

1

(1− ν)(1− λ0/ǫ′)

(

(1− 3γ/4)δ +
ρt|R|

∑

i≥0 |Goodi|ρi

)

≤ (1− 3γ/4)δ + ρt/ǫ′

(1− ν)(1− λ0/ǫ′)
.

Finally, by (3), we get

Prα[R(α, qB , rB) = 0 | (qB , rB) 6= (⊥,⊥)] ≤ max

{

(1− 3γ/4)δ + ρt/ǫ′

ρ(1− ν)(1− λ0/ǫ′)
,
β

ρ

}

,

which is at most δ − γδ/4, for ρ = 1 − γ/10, β = (27/40)δ, ν = (3/10)γ,
λ0/ǫ′ ≤ γ/20 and ρt/ǫ′ ≤ γδ/100. ⊓⊔

Now we finish the proof of Lemma 6. Let V denote the set of all α’s. We have

Prα[R(α, qB , rB)) = 0] =
1

|V |
∑

α∈H

Pr[R(α, qB , rB) = 0]

+
1

|V |
∑

α6∈H

Pr[R(α, qB , rB) = 0]. (6)

The first term on the right-hand side of (6) is at most γδ/5 by Lemma 8. For
the second term, we upperbound Pr[R(α, qB , rB) = 0] by Pr[R(α, qB , rB) = 0 |
(qB , rB) 6= (⊥,⊥)]+Pr[(qB , rB) = (⊥,⊥)]. We know by Lemma 9 that, for each
α 6∈ H, Pr[(qB , rB) = (⊥,⊥)] ≤ γδ/20. Thus we get that Prα[R(α, qB , rB) = 0]
is at most

γδ/5 + γδ/20 +
1

|V |
∑

α6∈H

Pr[R(α, qB , rB) = 0 | (qB , rB) 6= (⊥,⊥)]

≤ γδ/4 + Prα[R(α, qB , rB) = 0 | (qB , rB) 6= (⊥,⊥)],

which is at most δ by Lemma 12.
The bound on the running time and number of queries follows from the

description of the algorithm B. ⊓⊔

4 XOR Lemmas for PRGs and PRFs

In this section, we show how to amplify security of pseudorandom (function) gen-
erators, using Direct Products (old and new) and the Goldreich-Levin decoding
algorithm from Theorem 2.

4.1 Amplifying PRGs

We start with looking at the definition of PRGs.

18

Definition 3 (PRGs). Let G : {0, 1}k → {0, 1}ℓ(k) be a polynomial-time com-
putable generator, stretching k-bit seeds to ℓ(k)-bit strings, for ℓ(k) > k, such
that G is δ(k)-pseudorandom. That is, for any probabilistic polynomial-time al-
gorithm A, and all sufficiently large k, we have |Prs[A(G(s)) = 1]−Prx[A(x) =
1]| ≤ δ(k), where s is chosen uniformly at random from {0, 1}k, and x from
{0, 1}ℓ(k).

Definition 4 (Weak and Strong PRGs). We say that a PRG G is weak if
it is δ-pseudorandom for a constant δ < 1/2. We say that a PRG G is strong if
it is δ(k)-pseudorandom for δ(k) < 1/kc for any constant c > 0 (i.e., negligible).

For the rest of this subsection, let n > ω(log k) and let n′ = 2n. We show
that any weak PRG Gweak of stretch ℓ(k) > kn can be transformed into a strong
PRG Gstrong as follows:

Gstrong: “The seed to Gstrong is a n-tuple of seeds to Gweak, and the out-
put of Gstrong(s1, . . . , sn) is the bit-wise XOR of the n strings Gweak(s1), . . . , Gweak(sn).”

Theorem 6 (Security amplification for PRGs). If Gweak is a weak PRG
with stretch ℓ(k) > kn, then the generator Gstrong defined above is a strong PRG,
mapping nk-bit seeds into ℓ(k)-bit strings.

Let Gweak be δ-pseudorandom for δ < 1/2. We will need the following lemmas
for the proof of the above theorem.

Lemma 13 (pseudorandomness implies unpredictability). Let G : {0, 1}k →
{0, 1}ℓ(k) be a generator which is δ-pseudorandom for some δ < 1/2. Then for
any probabilistic-polynomial time algorithm, and all sufficiently large k, the prob-
ability that A computes the (i + 1)th bit of G(s) (for random s) given the first i
bits of G(s), is at most (1/2 + δ).

Proof. The proof follows from Theorem 3. ⊓⊔

Lemma 14 (bit-wise direct product lemma). Let G : {0, 1}k → {0, 1}ℓ(k)

be a pseudorandom generator such that for any probabilistic t-time algorithm A
we have for all i ≤ ℓ(k):

Pr
[

A(1k, G(s)[1, ..., (i− 1)]) = G(s)[i]
]

≤ 1/2 + δ.

Then for any probabilistic t′-time algorithm A′ we have for all i ≤ ℓ(k):

Pr
[

A′(1kn′

, G(s1)[1, ..., (i− 1)], ..., G(sn′)[1, ..., (i− 1)]) = G(s1)[i], ..., G(sn′)[i]
]

≤ ǫ.

Here ǫ = e−(δn′)/c0 and t′ = t/poly(ǫ), for some constant c0.

Proof. This follows from the direct product theorem for weakly verifiable puz-
zles (Theorem 1.1, [IJK08]). We model the above problem as a weakly verifiable
puzzle as follows: the secret string α for the WVP is the seed s for the pseudo-
random generator, the puzzle x is the string G(s)[1, ...(i − 1)] and the relation
R is defined as R(s,G(s)[1, ..., (i− 1)], y) = 1 iff G(s)[i] = y. ⊓⊔

19

Lemma 15 (direct product theorem implies xor lemma). Let G : {0, 1}k →
{0, 1}ℓ(k) be a pseudorandom generator such that for any probabilistic t-time al-
gorithm A we have for all i < ℓ(k):

Pr
[

A(1k, G(s)[1, ..., (i− 1)]) = G(s)[i]
]

≤ 1/2 + δ.

Then for any probabilistic t′-time algorithm A′ we have for all i < ℓ(k):

Pr
[

A′(1nk, G(s1)[1, ..., (i− 1)], ..., G(sn)[1, ..., (i− 1)]) = G(s1)[i]⊕ ...⊕G(sn)[i]
]

≤ 1/2 + ǫ. (7)

Here ǫ = e−(δn)/c1 and t′ = t/poly(ǫ), for some constant c1.

Proof. For the sake of contradiction, assume that there is an algorithm A′ such
that (7) does not hold. Consider the following algorithm A′′ for computing

〈(G(s1), ..., G(sn′)), r〉

given a randomly chosen r ∈ {0, 1}n′

and G(s1)[1, ..., i−1], ..., G(sn′)[1, ..., i−1].

A′′: Given inputs r and G(s1)[1, ..., i−1], ..., G(sn′)[1, ..., i−1], A′′ outputs
a random bit if the number of 1’s in the string r is not equal to n = n′/2.
Otherwise it outputs A′(1nk, G(sl1)[1, ..., i− 1]⊕ ...⊕G(sln)[1, ..., i− 1])
where l1, ..., ln are the indices such that ∀lj , r[lj] = 1.

Note that the string r has exactly n 1’s with probability θ(1/
√

n). This implies
that the probability that A′′ computes the above inner product is at least (1/2+
ǫ′), where ǫ′ = θ(ǫ/

√
n)). Using averaging, we get that with probability at least

ǫ′/2 over the choice of s1, ..., sn′ , A′′ computes the inner product with a randomly
chosen r with probability at least 1/2 + ǫ′/2. Now using the Goldreich-Levin
Theorem (Theorem 2), we get that there is an algorithm A′′′ which for at least
ǫ′/2 fraction of s1, ..., sn′ computes G(s1), ..., G(sn′) with probability at least
θ((ǫ′)2). This implies that there is an algorithm which computes G(s1), ..., G(sn′)
with probability Ω((ǫ/

√
n)3) which gives us a contradiction from Lemma 14. ⊓⊔

Lemma 16 (unpredictability implies pseudorandomness). Let G : {0, 1}r →
{0, 1}ℓ(r) be a generator such that for any probabilistic polynomial time algorithm
A, the probability that A computes G(s)[i] (for random s) given G(s)[1...i − 1]
is at most (1/2 + δ). Then G is (δ · ℓ(r))-pseudorandom.

Proof. The proof follows from Theorem 3. ⊓⊔

Proof (proof of Theorem 6). Given the above Lemmas, we use the following
sequence of arguments to prove the Theorem.

1. We use Yao’s “pseudorandom implies unpredictable” reduction in Lemma 13
to argue that, for a random seed s, each output bit Gweak(s)[i] (for i ∈ [ℓ(k)])
is computable from the previous bits Gweak(s)[1..(i− 1)] with probability at
most 1/2 + δ, which is some constant α < 1 since δ < 1/2 (this is where we
need that δ < 1/2).

20

2. We use the Direct-Product Lemma 14 to argue that, for each i ∈ [ℓ(k)],
computing the direct-product (Gweak(s1)[i], ..., Gweak(sn′)[i]) from
(Gweak(s1)[1..(i−1)], ..., Gweak(sn′)[1..(i−1)]) for independent random seeds
s1, . . . , sn′ can’t be done better than with probability ǫ ≤ e−Ω(n′), which is
negligible.

3. We use Lemma 15 to argue that, for each i ∈ [ℓ(k)], computing the XOR
Gweak(s1)[i]⊕ · · · ⊕Gweak(sn)[i] (i.e., Gstrong(s1, . . . , sn)[i]) from the given
bit-wise XOR of Gweak(s1)[1..(i − 1)], ..., Gweak(sn)[1..(i − 1)] (i.e., from
Gstrong(s1, . . . , sn)[1..(i−1)]), for independent random seeds s1, . . . , sn, can’t
be done better than with probability 1/2+poly(ǫn), which is negligibly better
that random guessing.

4. Finally, we use Yao’s “unpredictable implies pseudorandom” reduction in
Lemma 16, to conclude that Gstrong is (ℓ(k)·poly(ǫn))-pseudorandom, which
means that Gstrong is δ′(k)-pseudorandom for negligible δ′(k), as required.

⊓⊔

4.2 Amplifying PRFs

Here we would like to show similar security amplification for pseudorandom
function generators (PRFs).

First we recall the definition of a PRF. Let {fs}s∈{0,1}∗ be a function fam-

ily, where, for each s ∈ {0, 1}∗, we have fs : {0, 1}d(|s|) → {0, 1}r(|s|). This
function family is called polynomial-time computable if there is polynomial-time
algorithm that on inputs s and x ∈ {0, 1}d(|s|) computes fs(x). It is called δ(k)-
pseudorandom function family if, for every probabilistic polynomial-time oracle
machine M , and all sufficiently large k, we have

|Prs[M
fs(1k) = 1]−Prhk

[Mhk(1k) = 1]| ≤ δ(k),

where s is chosen uniformly at random from {0, 1}k, and hk is a uniformly
random function from {0, 1}d(k) to {0, 1}r(k). Finally, we say that a PRF is weak
if it is δ-pseudorandom for some constant δ < 1/2, and we say a PRF is strong
if it is δ(k)-pseudorandom for some δ(k) < 1/kc for any constant c > 0.

Let {fs}s be a weak PRF. By analogy with the case of PRGs considered
above, a natural idea for defining a strong PRF from {fs}s is as follows: For
some parameter n, take n independent seeds s̄ = (s1, . . . , sn), and define gs̄(x)
to be the bit-wise XOR of the strings fs1

(x), . . . , fsn
(x).

We will argue that the defined function family {gs̄}s̄ is a strong PRF. Rather
than proving this directly, we find it more convenient to prove this first for the
case of weak PRF {fs}s of Boolean functions fs, and use a simple reduction to
get the result for general weak PRFs.

For the rest of this subsection, let n > ω(log k) and let n′ = 2n.

Theorem 7 (XOR Lemma for Boolean PRFs). Let {fs}s be a δ-pseudorandom
Boolean function family for some constant δ < 1/2. Let s̄ = (s1, . . . , sn) be a

21

n-tuple of k-bit strings. Then, for some constant c0 dependent on δ, the following
function family {gs̄}s̄ is ǫ-pseudorandom for ǫ ≤ poly(k) · e−(δn)/c0 :

gs̄(x) = fs1
(x)⊕ · · · ⊕ fsn

(x).

Proof. The idea is to view {fs} also as a MAC, which is a special case of a
DWVP and hence we have a direct-product result (our Theorem 4). We will
argue that if gs̄ is not a strong PRF, then one can break with non-negligible
probability the direct product of MACs (fs1

, . . . , fs
n′

) for independent random
seeds s1, . . . , sn′ , and hence (by Theorem 4), one can break a single MAC fs

with probability close to 1. The latter algorithm breaking fs as a MAC will also
be useful for breaking fs as a PRF, with the distinguishing probability δ′ > δ,
which will contradict the assumed δ-pseudorandomness of the PRF {fs}s.

In more detail, suppose that A is a polynomial-time adversary that dis-
tinguishes gs̄ from a random function, with a distinguishing probability ǫ >
poly(k) · e−Ω(δn). Using a standard hybrid argument, we may assume that the
first query m of A is decisive. That is, answering this query with gs̄(m) and all
subsequent queries mi with gs̄(mi) makes A accept with higher probability than
answering this query randomly and all subsequent queries mi with gs̄(mi). Let
δ1(k) ≥ ǫ/poly(k) be the difference between the two probabilities.

Since gs̄ is a Boolean function, we can use Yao’s “distinguisher-to-predictor”
reduction [Yao82] to predict gs̄(m) with probability 1/2 + δ1(n) over random
n-tuples s̄, and for the same fixed input m (since m is independent from the
choice of s̄).

By a standard argument, we get an algorithm A′ for computing the following
inner product

〈fs1
(m) . . . fs

n′
(m), z〉, (8)

for random s1, . . . , sn′ and a random z ∈ {0, 1}n′

, whose success probability is
at least 1/2 + δ2(k) ≥ 1/2 + Ω(δ1(k)/

√
n′); the idea is that a random n′ = 2n-

bit string z is balanced with probability Ω(1/
√

n′), in which case we run the
predictor for n-XOR, and otherwise (for non-balanced z) we flip a fair random
coin. Next, by averaging, we get that, for at least δ2(k)/2 fraction of n′-tuples
s1, . . . , sn′ , our algorithm A′ correctly computes the inner product in (8) for at
least 1/2 + δ2(k)/2 fraction of random z’s.

Applying the Goldreich-Levin algorithm from Theorem 2 to our algorithm
A′, we get an algorithm A′′ that, for each of at least δ2(k)/2 fraction of n′-tuples
s1, . . . , sn′ , computes (fs1

(m), . . . , fs
n′

(m)) with probability at least poly(δ2(k)).
Hence, this algorithm A′′ computes (fs1

(m), . . . , fs
n′

(m)) for a non-negligible
fraction of n′-tuples s1, . . . , sn′ .

Next, we view A′′ as an algorithm breaking the n′-wise direct-product of the
MAC fs, with non-negligible probability. Using Theorem 4, we get from A′′ an
algorithm B that breaks the single instance of the MAC fs with probability at
least 1 − δ′ for δ′ ≤ O((log(poly(k)/δ2(k)))/n), which can be made less than
1/2 − δ for n > ω(log k) and sufficiently large constant c0 in the bound on ǫ
in the statement of the theorem (this is where we need the assumption that
δ < 1/2).

22

Note the algorithm B has 1− δ′ > 1/2 + δ probability over a secret key s to
compute a correct message-tag pair (msg, tag) such that fs(msg) = tag. Also
note that the algorithm B makes some signing queries fs(qi) =? for qi 6= msg,
but no verification queries (other than its final output pair (msg, tag)). We can
use this algorithm B to distinguish {fs}s from random in the obvious way:
simulate B to get (msg, tag) (using the oracle function to answer the signing
queries of B); query the oracle function on msg; if the answer is equal to tag,
then accept, else reject.

Clearly, the described algorithm accepts with probability 1/2 on a random
oracle, and with probability greater than 1/2 + δ on a pseudorandom function
fs. This contradicts the assumption that {fs}s is δ-pseudorandom. ⊓⊔

As a corollary, we get the following.

Theorem 8 (Security amplification for PRFs). Let {fs}s be a weak PRF.
For a parameter n > ω(log k), take n independent seeds s̄ = (s1, . . . , sn), and
define gs̄(x) to be the bit-wise XOR of the strings fs1

(x), . . . , fsn
(x). The obtained

function family {gs̄}s̄ is a strong PRF.

Proof. Note that given a non-Boolean weak PRF {fs}s, we can define a Boolean
function family {f ′

s}s where f ′
s(x, i) = fs(x)i, i.e., f ′

s treats its input as an input
x to fs and an index i ∈ [r(|s|)], and outputs the ith bit of fs(x). Clearly, if
{fs}s is δ-pseudorandom, then so is {f ′

s}s.
Then we amplify the security of {f ′

s}s, using our XOR Theorem for PRFs
(Theorem 7). We obtain a strong PRF {g′s̄}s̄, where s̄ = (s1, . . . , sn) and g′s̄(x, i) =
f ′

s1
(x, i)⊕ · · · ⊕ f ′

sn
(x, i).

Finally, we observe that our function gs̄(x) is the concatenation of the values
g′s̄(x, i) for all 1 ≤ i ≤ r(|k|). This function family {gs̄}s̄ is still a strong PRF,
since we can simulate each oracle access to gs̄ with d(|s|) oracle calls to g′s̄. ⊓⊔

5 Conclusions

We have established security amplification theorems for several interactive cryp-
tographic primitives, including message authentication codes, digital signature
and pseudorandom functions. The security amplifications for MACs and SIGs
follow the direct product approach and work even for the weak variants of these
primitives with imperfect completeness. For δ-pseudorandom PRFs, we have
shown that the standard XOR lemma works for any δ < 1

2 , which is optimal,
complementing the non-standard XOR lemma of [Mye03], which works even for
1
2 ≤ δ < 1.

Of independent interest, we abstracted away the notion of dynamic weakly
verifiable puzzles (DWVPs), which generalize a variety of known primitives, in-
cluding ordinary WVPs, MACs and SIGs. We have also shown a very strong
Chernoff-type security amplification theorem for DWVPs, and used it to estab-
lish our security amplification results for MACs, SIGs and PRFs.

23

Acknowledgments: Yevgeniy Dodis was supported in part by NSF Grants 0831299,
0716690, 0515121, 0133806. Part of this work was done while the author was vis-
iting the Center for Research on Computation and Society at Harvard Univer-
sity. Russell Impagliazzo was supported in part NSF Grants 0716790, 0835373,
0832797, and by the Ellentuck Foundation. Ragesh Jaiswal was supported in
part by NSF Grant 0716790, and completed part of this work while being at the
University of California at San Diego.

References

[BIN97] M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower
the error in computationally sound protocols? In Proceedings of the Thirty-

Eighth Annual IEEE Symposium on Foundations of Computer Science, pages
374–383, 1997.

[CHS05] R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly ver-
ifiable puzzles. In Theory of Cryptography, Second Theory of Cryptography

Conference, TCC 2005, pages 17–33, 2005.
[Cor00] J.S. Coron. On the exact security of full domain hash. In Advances in Cryp-

tology - CRYPTO 2000, Twentieth Annual International Cryptology Confer-

ence, pages 229–235, 2000.
[CRS+07] R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan, and H. Wee. Am-

plifying collision resistance: A complexity-theoretic treatment. In Advances

in Cryptology - CRYPTO 2007, Twenty-Seventh Annual International Cryp-

tology Conference, pages 264–283, 2007.
[DNR04] C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from

decryption errors. In Advances in Cryptology - EUROCRYPT 2004, Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 342–360, 2004.
[GL89] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions.

In Proceedings of the Twenty-First Annual ACM Symposium on Theory of

Computing, pages 25–32, 1989.
[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Elec-

tronic Colloquium on Computational Complexity, TR95-050, 1995.
[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-

versity Press, New York, 2001.
[IJK08] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product

theorems. Journal of Cryptology, 2008. (published online September 2008);
preliminary version in CRYPTO’07.

[IJKW08] R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson. Uniform direct-
product theorems: Simplified, optimized, and derandomized. In Proceedings

of the Fortieth Annual ACM Symposium on Theory of Computing, pages
579–588, 2008.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In
Proceedings of the Thirty-Sixth Annual IEEE Symposium on Foundations of

Computer Science, pages 538–545, 1995.
[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential cir-

cuits: Derandomizing the XOR Lemma. In Proceedings of the Twenty-Ninth

Annual ACM Symposium on Theory of Computing, pages 220–229, 1997.

24

[Lev87] L.A. Levin. One-way functions and pseudorandom generators. Combinator-

ica, 7(4):357–363, 1987.
[LR86] M. Luby and C. Rackoff. Pseudorandom permutation generators and cryp-

tographic composition. In Proceedings of the Eighteenth Annual ACM Sym-

posium on Theory of Computing, pages 356–363, 1986.
[Mye03] S. Myers. Efficient Amplification of the Security of Weak Pseudo-Random

Function Generators. In J. Cryptology, 16(1):1–24, 2003.
[Mye99] S. Myers. On the development of block-ciphers and pseudorandom func-

tion generators using the composition and XOR operators. Master’s thesis,
University of Toronto, 1999.

[NR98] M. Naor and O. Reingold. From unpredictability to indistinguishability: A
simple construction of pseudo-random functions from MACs. In Advances

in Cryptology - CRYPTO 1998, Eigtheenth Annual International Cryptology

Conference, pages 267–282, 1998.
[NR99] M. Naor and O. Reingold. On the construction of pseudorandom permuta-

tions: Luby-Rackoff revisited. Journal of Cryptology, pages 29–66, 1999.
[PV07] R. Pass and M. Venkitasubramaniam. An efficient parallel repetition the-

orem for Arthur-Merlin games. In Proceedings of the Thirty-Ninth Annual

ACM Symposium on Theory of Computing, pages 420–429, 2007.
[PW07] K. Pietrzak and D. Wikstrom. Parallel repetition of computationally sound

protocols revisited. In Theory of Cryptography, Fourth Theory of Cryptog-

raphy Conference, TCC 2007, pages 86–102, 2007.
[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings

of the Twenty-Third Annual IEEE Symposium on Foundations of Computer

Science, pages 80–91, 1982.

