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Abstract

We study economic incentives for influencing selfish behavior in networks. We
consider a model of selfish routing in which the latency experienced by network traffic
on an edge of the network is a function of the edge congestion, and network users are
assumed to selfishly route traffic on minimum-latency paths. The quality of a routing
of traffic is historically measured by the sum of all travel times, also called the total

latency.
It is well known that the outcome of selfish routing (a flow at Nash equilibrium) does

not minimize the total latency, and that marginal cost pricing—charging each network
user for the congestion effects caused by its presence—eliminates the inefficiency of
selfish routing. However, the principle of marginal cost pricing assumes that taxes
cause no disutility to network users; this is appropriate only when collected taxes can
be feasibly returned (directly or indirectly) to the users. If this assumption does not
hold and we wish to minimize the total user disutility (latency plus taxes paid)—the
total cost—how should we price the network edges? Intuition may suggest that taxes
can never improve the cost of a Nash equilibrium, but the famous Braess’s Paradox

shows this intuition to be incorrect.
We consider strategies for pricing network edges to reduce the cost of a Nash equi-

librium. Since levying a sufficiently large tax on an edge effectively removes it from
the network, our study generalizes previous work on designing networks for selfish
users [36]. In this paper, we prove the following results.

• In a large class of networks—including all networks with linear latency functions—
marginal cost taxes do not improve the cost of a Nash equilibrium.
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• The largest-possible benefit from taxes does not exceed that from edge removals.
In every network with linear latency functions, the benefit of taxes cannot exceed
that of removing edges. There are networks with nonlinear latency functions,
however, in which taxes are radically more powerful than edge removals.

• For every ǫ > 0, there is no (4
3−ǫ)-approximation algorithm for computing optimal

taxes, even in networks with linear latency functions (assuming P 6= NP ).

1 Introduction

1.1 Selfish Routing and Marginal Cost Pricing

We study economic incentives for influencing selfish behavior in networks. We focus on a
simple model of selfish routing, defined by Wardrop [44] and first studied in the theoretical
computer science literature by Roughgarden and Tardos [39]. In this model, we are given
a directed network in which each edge possesses a latency function describing the common
delay experienced by all traffic on the edge as a function of the edge congestion. There is a
fixed amount of traffic that wishes to travel from a source vertex s to a sink vertex t; as in
most earlier works, we assume that the traffic comprises a very large population of users, so
that the actions of a single individual have negligible impact on the network congestion. The
quality of an assignment of traffic to s-t paths is historically measured by the resulting sum
of all travel times—the total latency. We assume that each network user, when left to its
own devices, acts selfishly and routes itself on a minimum-latency path, given the network
congestion caused by the other users. In general such a “selfish” assignment of traffic to
paths (a flow at Nash equilibrium) does not minimize the total latency; put differently, the
outcome of selfish behavior can be improved upon with coordination.

The inefficiency of selfish routing motivates the introduction of economic incentives to
ensure that selfish behavior results in a socially desirable routing of traffic. An ancient idea—
discussed informally as early as 1920 [35]—is to use marginal cost pricing. The principle of
marginal cost pricing asserts that on each edge, each network user on the edge should pay a
tax equal to the additional delay its presence causes for the other users on the edge. Assuming
that all network users choose routes to minimize the sum of the latency experienced and the
taxes paid, this principle ensures that the resulting flow at Nash equilibrium achieves the
minimum-possible total latency [5]. Briefly, the inefficiency of selfish routing can always be
eradicated by pricing network edges appropriately.

The following observation motivates our work: the principle of marginal cost pricing is
single-minded in its pursuit of a minimum-latency flow, and ignores the disutility to network
users due to (possibly very large) taxes. This assumption is only appropriate when collected
taxes can be feasibly returned (directly or indirectly) to the network users, for example by
refunding taxes equally to all users (a “lump-sum refund”). In this paper, we are interested in
settings where this assumption is not reasonable. For example, refunding the collected taxes
to network users could be logistically or economically infeasible, or taxes could represent
quantities of a non-monetary, non-refundable good such as time delays.
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Figure 1: Braess’s Paradox

If we wish to minimize the total user disutility—latency plus taxes paid, a quantity we
call the cost—rather than merely the total latency, how should we price the network edges?

1.2 Braess’s Paradox and the Power of Taxes

Intuition may suggest that taxes, which can only increase the disutility incurred by users
along an s-t path, can never improve the cost of a flow at Nash equilibrium. We next
describe Braess’s Paradox [7], in a form first described by Schulman [40], which shows that
this intuition is incorrect.

Each edge of the network in Figure 1 is labeled with its latency function, giving the delay
incurred by traffic on the link as a function of the amount of traffic that uses the link. (We
assume that there is one unit of traffic overall.) In the (unique) flow at Nash equilibrium,
all traffic uses route the s → v → w → t and experiences two units of latency. On the
other hand, if at least half a unit of tax is levied on the edge (v, w), then in the flow at
Nash equilibrium half of the traffic uses each of the routes s → v → t and s → w → t. In
particular, the path s → v → w → t has latency 1 and cost at least 3/2 with respect to
this flow, and hence does not offer an attractive alternative to traffic. In this new flow at
Nash equilibrium, everyone experiences latency 3/2 and no taxes are paid. This outcome
has cost 3/2 and is clearly superior to the original flow at Nash equilibrium in the absence
of taxes.

For contrast, we next discuss the edge taxes that are dictated by the principle of marginal
cost pricing for the network of Figure 1. As we will see in Subsection 3.1, these taxes are 1/2
on the edges (s, v) and (w, t) and 0 on the other three edges. With these taxes, we obtain
the same flow at Nash equilibrium as in our previous solution with taxes, and all traffic
experiences latency 3/2. However, all traffic must also pay 1/2 unit of tax. This solution
thus has a cost of 2; evidently, the previous solution should be preferred over marginal cost
taxes in this example.

The potential power of taxes to improve the cost of a flow at Nash equilibrium, together
with the inadequacy of marginal cost pricing for this goal, motivate the questions that we
study in this paper.
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Section Problem Studied Linear Arbitrary
3 Do marginal cost taxes ever help? no yes
4 Maximum benefit of taxes 4/3 n/2
5 Are taxes more powerful than edge removals? no yes
6 Approximability of optimal taxes 4/3 [4/3, n/2]

Table 1: Contributions of this paper. All results depend on the set of allowable edge latency
functions. For simplicity, we list only results for networks with linear or arbitrary latency
functions. The benefit of taxes is measured by the ratio in Nash flow cost before and after
taxes are levied.

(1) Are marginal cost taxes ever a good idea for minimizing the cost of a flow at Nash
equilibrium?

(2) A sufficiently large edge tax effectively removes the edge from the network, and the
power of removing edges to improve a flow at Nash equilibrium is well understood [36].
Taxes are thus at least as powerful as edge removals; when are they strictly more
powerful?

(3) Can we compute or approximate optimal taxes efficiently?

1.3 Our Results

Our contributions on these three questions are proofs of the following results.

• In every network with linear latency functions, marginal cost taxes do not improve the
cost of a flow at Nash equilibrium.

• The maximum-possible benefit of taxes is no more than that of edge removals.

• For every network with linear latency functions—not merely worst-case examples—
taxes cannot decrease the cost of a flow at Nash equilibrium beyond what can be
achieved by removing edges. By contrast, there are networks with nonlinear latency
functions in which taxes can radically improve over the best subgraph solution.

• For every ǫ > 0, there is no (4
3
− ǫ)-approximation algorithm for computing optimal

taxes, even in networks with linear latency functions (assuming P 6= NP ). For net-
works with linear latency functions, this hardness result is optimal.

Table 1 summarizes our results. Determining the maximum-possible benefit of taxes and
the (in)approximability of the problem of computing optimal taxes require only reasonably
straightforward extensions of existing work on network design [36]; all other results of this
paper require new constructions and proof approaches.
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1.4 Related Work

As we have noted, marginal cost pricing in selfish routing networks was first proposed by
Pigou [35]. The model of selfish routing studied in this paper was first mathematically
formalized in the 1950s by Wardrop [44] and Beckmann, McGuire, and Winsten [5], and has
been extensively studied ever since. Further discussion and many more references on both
selfish routing and related network models can be found in [38].

We make no attempt to survey the vast literature on the optimal pricing of shared
resources, and mention only a few references that can serve as a starting point for further
reading. Surveys and recent work on pricing selfish routing networks by the transportation
science community include [4, 6, 13, 14, 16, 22, 23, 41]. There have also been several recent
theoretical computer science papers on the topic [9, 17, 18, 24]. While researchers have
long realized that marginal cost taxes may cause users to pay more than is necessary (see
e.g. [6, 22]), none of the above papers incorporated the taxes paid into the definition of social
welfare as in the present work. Beyond selfish routing networks, there has been an enormous
amount of research on pricing in various network models; see [1, 8, 20, 26, 30, 31] and the
references therein for many examples.

We note that much of the aforementioned work can be interpreted in the context of
general microeconomic theory; see the survey by Mirrlees [33], for example, for discussion
and references on this point. We are not, however, aware of any work in the economics
literature that directly applies to the questions posed in this paper.

Some of the issues that we study are similar in spirit to the work on “frugal mechanisms”
pioneered by Archer and Tardos [2, 3] and studied further in [15, 25, 32, 42]. These papers
seek mechanisms (such as auctions) that solve an optimization problem in an incentive-
compatible way, but also make use of only moderate incentives.

The paper closest to the present work is that of Roughgarden [36] on designing networks
for selfish users. The central questions of [36] concern the maximum-possible benefit from
and the algorithmic complexity of removing edges from a network with selfish routing. These
questions can be viewed as special cases of some of the problems considered here, with edge
taxes restricted to be either 0 or +∞. This paper extends some of the results of [36] to the
setting of more general taxes, and in addition tackles problems that have not been previously
considered.

1.5 Organization

In Section 2 we formally define our traffic routing model and review useful results from past
works. In Section 3 we ask if marginal cost pricing can improve the cost of selfish routing,
and we resolve this question in the negative for networks with linear latency functions. In
Sections 4 and 5 we ask if the power of taxes exceeds that of edge removals. In Section 4
we adapt previous work on network design [36] to show that the largest-possible decrease
in cost due to taxes cannot exceed that due to edge removals. In Section 5 we show that
taxes never improve over the best solution achievable by removing edges in networks with
linear latency functions, but can be radically more powerful than edge removals in networks
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with arbitrary latency functions. Section 6 studies the algorithmic problem of computing
taxes to minimize the cost of a flow at Nash equilibrium. Section 7 concludes with several
suggestions for future research.

2 Preliminaries

2.1 Networks and Flows

We follow the notation and conventions of Roughgarden and Tardos [39]. We study a single-
commodity flow network, described by a directed graph G = (V,E) with a source vertex s
and a sink vertex t. We allow parallel edges but have no use for self-loops. We denote the set
of simple s-t paths by P , and we assume that this set is nonempty. A flow f is a nonnegative
vector, indexed by P . For a fixed flow f we define fe =

∑

P∈P:e∈P fP as the amount of traffic
using edge e en route from s to t. With respect to a finite and positive traffic rate r, a flow
f is said to be feasible if

∑

P∈P
fP = r.

The network G suffers from congestion effects; to model this, we assume that each edge
e possesses a nonnegative, continuous, nondecreasing latency function ℓe that describes the
delay incurred by traffic on e as a function of the edge congestion fe. The latency of a path
P in G with respect to a flow f is then given by ℓP (f) =

∑

e∈P ℓe(fe). The quality of a flow
is historically measured by its total latency L(f), defined by

L(f) ≡
∑

P∈P

ℓP (f)fP =
∑

e∈E

ℓe(fe)fe,

where the equality follows by writing ℓP (f) as a sum over edges and reversing the order of
summation. We will call a flow minimizing L(·) optimal or minimum-latency. An optimal
flow always exists, as the space of all flows is compact and L(·) is a continuous function.

Finally, we allow a set of nonnegative taxes {τe}e∈E to be placed on the edges of a network
G. We write τP =

∑

e∈P τe for the total taxes on a path P . The cost C(f, τ) of a flow f in a
network with taxes τ is the total disutility caused to network users, accounting for disutility
due to both latency and taxes:

C(f, τ) ≡
∑

P∈P

[ℓP (f) + τP ]fP =
∑

e∈E

[ℓe(fe) + τe]fe.

The functions L(·) and C(·, τ) coincide if τ = 0.1 We call a triple (G, r, ℓ) an instance, and
use the notation (G, r, ℓ + τ) to denote an instance in which taxes τ have been levied on the
edges of G.

2.2 Flows at Nash Equilibrium

We assume that noncooperative behavior results in a Nash equilibrium—a “stable point” in
which no traffic has an incentive to unilaterally alter its strategy (i.e., its route from s to t).

1In several previous papers on selfish routing (without taxes), such as [37, 39], the terms total latency
and cost were used synonymously.
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We also assume that all agents seek to minimize the sum of the latency experienced and the
tax paid.2 We therefore expect that, in a flow at Nash equilibrium, all traffic is routed on
paths with minimum-possible latency plus tax. Formally, we have the following definition.

Definition 2.1 A flow f feasible for (G, r, ℓ + τ) is at Nash equilibrium or is a Nash flow if
for all P1, P2 ∈ P with fP1

> 0,

ℓP1
(f) + τP1

≤ ℓP2
(f) + τP2

.

We next discuss several useful properties of flows at Nash equilibrium in single-commodity
networks. None of these results are new; for proofs, see the original research papers or the
book by Roughgarden [38].

First is an alternative definition of a Nash flow, which is a simple consequence of the fact
that such a flow routes traffic only on shortest paths with respect to latencies plus taxes.

Proposition 2.2 ([36]) Let f be a flow feasible for (G, r, ℓ + τ). For a vertex v in G, let
d(v) denote the length, with respect to edge lengths ℓe(fe) + τe, of a shortest s-v path in G.
Then

d(w) − d(v) ≤ ℓe(fe) + τe

for all edges e = (v, w), and f is at Nash equilibrium if and only if equality holds whenever
fe > 0.

An immediate consequence of Proposition 2.2 is that the property of being at Nash equilib-
rium is a property only of the flow vector on edges {fe} induced by a flow f , rather than on
the particular path decomposition.

Corollary 2.3 Suppose f, f̃ are flows for (G, r, ℓ + τ) with fe = f̃e for all edges e. Then f
is at Nash equilibrium if and only if f̃ is at Nash equilibrium.

We next discuss the existence and uniqueness of Nash flows.

Proposition 2.4 ([5, 12]) Every instance (G, r, ℓ + τ) admits a directed acyclic flow at
Nash equilibrium.

Proposition 2.5 ([5, 12]) If f, f̃ are flows at Nash equilibrium for (G, r, ℓ + τ), then:

(a) ℓe(fe) = ℓe(f̃e) for all edges e;

(b) C(f, τ) = C(f̃ , τ).

The next proposition states that all paths used by a Nash flow have the same combined
latency and tax, and that the cost of a Nash flow is therefore expressible in a very simple
form. It follows easily from Definition 2.1 and the definition of the cost a flow.

2This assumption, while classical, is obviously quite strong. In general, we expect different agents to have
different objective functions and to trade off time and money in different ways. This objection raises several
interesting issues that were studied in a recent sequence of papers [9, 17, 18, 24].
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Figure 2: The second and third Braess graphs. Edges are labeled with their type.

Proposition 2.6 ([44]) Let f be at Nash equilibrium for the instance (G, r, ℓ + τ). Then,
there is a constant c ≥ 0 such that:

(a) ℓP (f) + τP = c whenever fP > 0;

(b) C(f, τ) = r · c.

Propositions 2.5(b) and 2.6(b) imply that the constant c in Proposition 2.6 is independent
of the chosen Nash flow f for (G, r, ℓ+ τ). We can therefore adopt the notation c(G, r, ℓ+ τ)
for the value of this constant for the instance (G, r, ℓ + τ).

Our final proposition states that, for fixed G, ℓ, and τ , the value of c(G, r, ℓ + τ) is
nondecreasing in r. This fact was first proved by Hall [21] and we will use it in Section 3.
For a combinatorial proof of the proposition, see Lin, Roughgarden, and Tardos [28].

Proposition 2.7 ([21]) The value c(G, r, ℓ + τ) is nondecreasing in r.

2.3 The Braess Graphs

In this subsection we review the “Braess graphs”. These networks were first defined by
Roughgarden [36] to show that removing edges from a network can decrease the total latency
of a Nash flow by an unbounded amount. As levying taxes can be viewed as a natural
generalization of removing edges, these networks will also play an important role in this
paper.

The kth Braess graph Bk = (V k, Ek) is defined as follows: start with a set V k =
{s, v1, . . . , vk, w1, . . . , wk, t} of 2k + 2 vertices and define Ek by {(s, vi), (vi, wi), (wi, t) : 1 ≤
i ≤ k}∪{(vi, wi−1) : 2 ≤ i ≤ k}∪{(v1, t), (s, wk)} (see Figure 2). The graph B1 is the same
as Braess’s original example (Figure 1).
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Figure 3: Proof of Proposition 2.8, when k = 3. Solid edges carry traffic in the flow at
Nash equilibrium, dashed edges do not. Edge latencies are with respect to flows at Nash
equilibrium.

To describe latency functions for and flows in Bk in a convenient way, we introduce
additional terminology. We call edges of the form (vi, wi) type A edges; edges of the form
(vi, wi−1), (v1, t), or (s, wk) type B edges; and edges of the form (s, vi) or (wi, t) type C edges
(see Figure 2). For i = 1, . . . , k, let Pi denote the path s → vi → wi → t. Finally, for
i = 2, . . . , k, let Qi denote the path s → vi → wi−1 → t; define Q1 to be the path s → v1 → t
and Qk+1 the path s → wk → t.

Braess graphs show that the latency of a Nash flow in an n-vertex network can be
improved by an ⌊n/2⌋ factor by removing ⌊n/2⌋ − 1 edges from the network.

Proposition 2.8 ([36]) For every n ≥ 2, removing edges from a network with n vertices
and arbitrary latency functions can decrease the total latency of a Nash flow by a factor
of ⌊n/2⌋.

Proof: Fix n, which we can assume is at least 4, and let k = ⌊n/2⌋ − 1. Define latency
functions ℓk on the edges of Bk as follows: type A edges have constant latency 0; type B
edges have constant latency 1; and for each i ∈ {1, 2, . . . , k}, the type C edges (wi, t) and
(s, vk−i+1) receive a continuous, nondecreasing latency function ℓk

e satisfying ℓk
e(k/(k+1)) = 0

and ℓk
e(1) = i.

Routing one unit of flow on each of the paths P1, . . . , Pk gives a flow at Nash equilibrium
for the instance (Bk, k, ℓk) in which all traffic experiences latency k + 1 (see Figure 3(a)).
Removing the type A edges from Bk produces a subgraph H, and routing k/(k + 1) units of
flow on each of the paths Q1, . . . , Qk+1 yields a flow at Nash equilibrium for (H, k, ℓk) with
all traffic incurring latency 1 (see Figure 3(b)). �

We will also study networks with edge latency functions that are degree-bounded poly-
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nomials with nonnegative coefficients. The following analogue of Proposition 2.8 holds for
such networks.

Corollary 2.9 ([36]) Removing edges from a network with latency functions that are poly-
nomials with degree at most p and nonnegative coefficients can decrease the total latency of
a Nash flow by an Ω(p/ log p) factor as p → ∞.

Corollary 2.9 can be proved with a modification of the construction used in Proposi-
tion 2.8, using the kth Braess graph with k ≈ p/ log p. The traffic rate and latency functions
are identical to those in the proof of Proposition 2.8, except that a type C edge of the form
(wi, t) or (s, vk−i+1) receives the latency function ixp.

Finally, a lower bound on the benefit achievable with edge removals in networks with
linear latency functions follows from the network in Figure 1.

Corollary 2.10 ([7, 40]) Removing edges from a network with linear latency functions can
decrease the total latency of a Nash flow by a factor of 4/3.

3 When Do Marginal Cost Taxes Help?

In this section, we study the cost of applying the principle of marginal cost pricing. In
Subsection 3.1 we formalize marginal cost taxes and the classical guarantee that they induce
the minimum-latency flow as a flow at Nash equilibrium. In Subsection 3.2, however, we
show that marginal cost taxes cannot decrease the cost of a Nash flow in a network with
linear latency functions.

3.1 Marginal Cost Taxes Minimize Latency

Recall that the principle of marginal cost pricing posits that each user should pay a tax equal
to the additional delay other users experience because of its presence. Mathematically, this
principle asserts that in a flow f feasible for the instance (G, r, ℓ), the tax τe assigned to edge
e should be τe = fe · ℓ′e(fe), where ℓ′e denotes the derivative of ℓe. (Assume for simplicity
that the latency functions are differentiable.) The term ℓ′e(fe) corresponds to the marginal
increase in latency caused by one user on the edge, and the term fe is the amount of traffic
that suffers from this increase. Marginal cost taxes come with the following guarantee, which
is classical (see [5, 12, 38] for proofs).

Proposition 3.1 Let (G, r, ℓ) be an instance with differentiable latency functions, admitting
a minimum-latency flow f ∗. Let τe = f ∗

e · ℓ
′
e(f

∗
e ) denote the marginal cost tax for edge e with

respect to f ∗. Then f ∗ is at Nash equilibrium for (G, r, ℓ + τ).

In words, marginal cost taxes induce the minimum-latency flow as a flow at Nash equilibrium.
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3.2 Marginal Cost Taxes Increase Cost

Proposition 3.1 shows how to minimize the total latency of a Nash flow with edge taxes. But
how effective are marginal cost taxes when we also account for the disutility to traffic due to
taxes? We have already seen, in Subsection 1.2, that marginal cost taxes need not minimize
the cost of a flow. Our next theorem identifies a reasonably large class of networks—networks
in which all latency functions are linear, with the form ℓ(x) = ax + b—in which marginal
cost taxes are guaranteed to be unnecessary, if not detrimental. This result illustrates the
dangers of marginal cost pricing when minimizing latency is not the sole goal.

Theorem 3.2 Let f ∗ and f be minimum-latency and Nash flows, respectively, for an in-
stance (G, r, ℓ) with linear latency functions. Let τ denote the marginal cost taxes with respect
to f ∗. Then,

C(f, 0) ≤ C(f ∗, τ).

Proof: Let (G, r, ℓ) be an instance with linear latency functions, with ℓe(x) = aex + be for
each edge e (with ae, be ≥ 0). Let f ∗ and f be minimum-latency and Nash flows, respectively,
for (G, r, ℓ). The principle of marginal cost pricing dictates that τe = f ∗

e · ℓ′e(f
∗
e ) = aef

∗
e for

each edge e.
Define the modified latency function ℓ∗e by ℓ∗e(x) = 2aex + be. The functions ℓ + τ and ℓ∗

are not identically equal, but the identity

ℓ∗e(f
∗
e ) = 2aef

∗
e + be = ℓe(f

∗
e ) + τe

holds for every edge e. Proposition 3.1 thus guarantees that f ∗ is at Nash equilibrium not
only for the instance (G, r, ℓ + τ), but also for the instance (G, r, ℓ∗). Moreover, in the
notation of Proposition 2.6,

c(G, r, ℓ∗) = c(G, r, ℓ + τ). (1)

We next claim that f/2 is at Nash equilibrium for (G, r/2, ℓ∗) with

c(G, r/2, ℓ∗) = c(G, r, ℓ). (2)

To see why, we note that since ℓe(x) = aex+be and ℓ∗e(x) = 2aex+be, edge and path latencies
with respect to f/2 in (G, r/2, ℓ∗) and with respect to f in (G, r, ℓ) are identical. That f is
a Nash flow for (G, r, ℓ) then implies that f/2 is at Nash equilibrium for (G, r/2, ℓ∗), with
c(G, r/2, ℓ∗) = c(G, r, ℓ).3

Combining (1) and (2) with Proposition 2.7, we obtain

c(G, r, ℓ) = c(G, r/2, ℓ∗) ≤ c(G, r, ℓ∗) = c(G, r, ℓ + τ).

The theorem now follows immediately from Proposition 2.6. �

Remark 3.3 Theorem 3.2 concerns only networks with linear latency functions, but it can
easily be extended to networks in which, for some fixed p ≥ 0, every edge e has a latency
function of the form aex

p + be with ae, be ≥ 0.

3The essence of this proof first appeared in [39].
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Remark 3.4 There are networks with nonlinear latency functions in which marginal cost
taxes can decrease the cost of a Nash flow. For example, it is possible to define such an
example using the network in Figure 1. The latency functions employed in this example
are non-convex, and are similar to step functions. The details are somewhat tedious and we
omit them. We do not view this example as a positive result for marginal cost taxes (as the
example is contrived), but rather as justification for restricting the network latency functions
in Theorem 3.2. We leave open the question of whether the negative result of Theorem 3.2
can be proved under significantly weaker assumptions on the latency functions.

4 How Powerful Are Arbitrary Taxes?

In this section we study the following question: how much can the cost of a Nash flow
decrease after levying taxes on the edges? As we will see, a precise answer to this question
follows easily from previous work on the power of edge removals [36].

The maximum-possible benefit from taxes will depend crucially on the allowable network
latency functions. This dependence is characteristic of much of the work on selfish routing
(see e.g. [38]). Indeed, we have already seen a glimpse of such a dependence in the previous
section, where marginal cost pricing can decrease the cost of a Nash flow, but not in networks
with linear latency functions.

Our first two upper bounds on the maximum-possible reduction in cost due to taxes
are consequences of previous work on the price of anarchy [27, 34]. The price of anarchy
of a set of selfish routing instances is the largest ratio between the total latency of a Nash
flow of an instance and that of a minimum-latency flow for the instance. The price of
anarchy is a function of the set of allowable latency functions, and this dependence is by
now well understood. For example, the following statements are known (see [10, 37] for
further examples).

Proposition 4.1 ([39]) The price of anarchy in networks with linear latency functions
is 4/3.

Proposition 4.2 ([37]) The price of anarchy in networks with latency functions that are
polynomials with degree at most p and nonnegative coefficients is asymptotically Θ(p/ log p)
as p → ∞.

Upper bounds on the price of anarchy directly translate to upper bounds on the largest
decrease in cost achievable with taxes: at best, taxes replace the Nash flow in the original
network with the minimum-latency flow, while causing no additional disutility to network
users. We therefore have the following corollaries.

Corollary 4.3 Let (G, r, ℓ) be an instance with linear latency functions and τ a tax on edges.
Let f and f τ be Nash flows for (G, r, ℓ) and (G, r, ℓ + τ), respectively. Then

L(f) ≤
4

3
· C(f τ , τ).
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Corollary 4.4 There is a constant c1 > 0 such that the following statement holds for all
p ≥ 2. If (G, r, ℓ) is an instance with polynomial latency functions with degree at most p and
nonnegative coefficients, τ is a tax on edges, and f and f τ are Nash flows for (G, r, ℓ) and
(G, r, ℓ + τ), respectively, then

L(f) ≤ c1
p

log p
· C(f τ , τ).

In Subsection 2.3 we reviewed the Braess graphs, which give lower bounds on how much
deleting edges can decrease the total latency of a Nash flow. As we have noted, sufficiently
large taxes can simulate edge deletions, so these lower bounds carry over to the present
setting. In particular, Corollary 2.10 implies that the bound of Corollary 4.3 is the best
possible, and Corollary 2.9 demonstrates that Corollary 4.4 is optimal up to a constant
factor.

In networks with arbitrary latency functions, the price of anarchy is unbounded, even
in two-node, two-link networks [39]. While this might suggest that no finite upper bound
on the largest-possible benefit of taxes is possible in such networks, a bounded price of
anarchy is only a sufficient (and not necessary) condition for such a bound. Indeed, with
no assumptions whatsoever on the network latency functions, we can still obtain an upper
bound that is a function of the network size.

Theorem 4.5 Let (G, r, ℓ) be an instance with n vertices and τ a tax on edges. Let f and
f τ be Nash flows for (G, r, ℓ) and (G, r, ℓ + τ), respectively. Then

L(f) ≤
⌊n

2

⌋

· C(f τ , τ).

The proof of Theorem 4.5 is a straightforward extension of an argument from [36, Theo-
rem 4.1], which proves the weaker statement that deleting edges from a network can reduce
the total latency of a Nash flow by at most an ⌊n/2⌋ factor. We give the proof in Appendix A
for completeness. Proposition 2.8 implies that the bound of Theorem 4.5 is the best possible.

5 Are Taxes More Powerful Than Edge Removals?

In Section 4, we saw that there is a strong connection between the power of taxes and the
power of edge removals. Specifically, we found that for several natural classes of networks,
the maximum-possible reduction in cost achievable by levying taxes on edges is the same as
that by removing edges from the network. However, we have not resolved whether or not
there exist any networks in which taxes can improve upon the best solution obtainable by
removing edges. In other words, is the power of taxes no greater than that of edge removals
even on an instance-by-instance basis? We study this question in this section.

In Subsection 5.1 we show that the answer is “yes” in networks with linear latency
functions: in every such network, taxes cannot decrease the cost of a Nash flow more than
edge removals can. By contrast, in Subsection 5.2 we show that in general networks, taxes
can reduce the cost of a Nash flow far beyond what is achievable by merely deleting edges
from the network.
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5.1 The Power of Edge Removals in Networks with Linear Latency
Functions

5.1.1 Overview

In this subsection we consider only networks with linear latency functions. Our main result
is that taxes are never more powerful than edge removals in these networks. To state this
formally, we will say that a set τ of taxes for the instance (G, r, ℓ) is 0/∞ if, for some Nash
flow f τ for (G, r, ℓ + τ), τe = 0 or f τ

e = 0 for each edge e. We note that 0/∞ taxes are no
more powerful than edge removals, since if τ is 0/∞ then c(G, r, ℓ + τ) = c(H, r, ℓ), where
H is the subgraph of G comprising the edges with zero tax.

We abuse notation and, with respect to an instance (G, r, ℓ), write C(τ) to denote
C(f τ , τ), where f τ is at Nash equilibrium for (G, r, ℓ + τ). The function C(τ) is well defined
by Proposition 2.5(b). A tax vector τ ∗ is optimal for an instance (G, r, ℓ) if C(τ ∗) ≤ C(τ) for
all nonnegative tax vectors τ . Because there are an infinite number of possible tax vectors, it
is not even obvious that every instance admits an optimal set of taxes. The following result
establishes the stronger statement that every instance (with linear latency functions) admits
an optimal tax vector that is 0/∞.

Theorem 5.1 An instance with linear latency functions admits an optimal set of taxes that
is 0/∞.

The proof of Theorem 5.1 is fairly involved. To avoid considering an arbitrary network
with linear latency functions, we will argue by contradiction and study a minimal counterex-
ample. As we will see, minimal counterexamples possess several convenient properties that
facilitate the proof.

Precisely, a counterexample is an instance (G, r, ℓ) with linear latency functions that
admits no optimal 0/∞ tax. A counterexample is minimal if no other counterexample has
fewer edges. A tax τ is good for (G, r, ℓ) if C(τ) < C(τ̂) for all 0/∞ taxes τ̂ . If (G, r, ℓ)
admits a good tax, then it is clearly a counterexample. We are not yet claiming that a
counterexample (G, r, ℓ) admits an optimal tax; conceivably, the value inf{C(τ) : τ ≥ 0}
is not attained by any tax. However, since the set {C(τ) : τ is 0/∞} is finite, every
counterexample admits a good tax.

To achieve the desired contradiction, we will also need a tax that is in some sense minimal.
Formally, we will call a tax minimal for an instance if it is an optimal tax and minimizes
∑

e∈E τe among all optimal taxes τ . Once we establish that minimal taxes exist for minimal
counterexamples, the proof of Theorem 5.1 will be relatively short. Our key lemma is thus
the following.

Lemma 5.2 A minimal counterexample admits a minimal tax.

5.1.2 Properties of Minimal Counterexamples

The proof of Lemma 5.2 makes use of several properties of minimal counterexamples. We
establish these next.
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First, minimal counterexamples are directed acyclic networks, with every good tax in-
ducing a flow at Nash equilibrium that routes flow on every edge.

Lemma 5.3 Let (G, r, ℓ) be a minimal counterexample, τ a good tax, and f τ a flow at Nash
equilibrium for (G, r, ℓ + τ). Then f τ

e > 0 for all edges e of G.

Proof: If f τ
e = 0 for some edge e of G, then deleting e from G yields a counterexample with

fewer edges. �

Corollary 5.4 If (G, r, ℓ) is a minimal counterexample, then G is directed acyclic.

Proof: The corollary follows immediately from Proposition 2.4 and Lemma 5.3. �

Our next lemma states that Nash flows in minimal counterexamples are unique, up to
the path decomposition of the induced flow on edges (cf., Corollary 2.3).

Lemma 5.5 If (G, r, ℓ) is a minimal counterexample, τ is a tax, and f τ is a Nash flow for
(G, r, ℓ + τ), then f is a Nash flow for (G, r, ℓ + τ) if and only if fe = f τ

e for all edges e.

Proof: The “if” direction is Corollary 2.3. For the “only if” direction, suppose for contra-
diction that f is a Nash flow for (G, r, ℓ + τ) with fe 6= f τ

e for some edge e. Put ze = fe − f τ
e

for each edge e. Since f and f τ are flows at the same traffic rate, z is a (signed) circulation:
for each vertex v, with edges δ+(v) having tail v and edges δ−(v) having head v,

∑

e∈δ+(v)

ze =
∑

e∈δ−(v)

ze.

By Proposition 2.5(a), ze is non-zero only when e has a constant latency function.
Since (G, r, ℓ) is a counterexample, it admits a good tax τ̂ . (Recall τ need not be good.)

Let f τ̂ be a Nash flow for (G, r, ℓ+τ̂). Since f τ̂
e > 0 for all edges e by Lemma 5.3, {f τ̂

e +λze}e∈E

is a nonnegative vector for λ sufficiently near zero (positive or negative). In this case, it
corresponds (after a path decomposition) to a flow fλ feasible for (G, r, ℓ + τ̂). Moreover,
since ze is non-zero only when e possesses a constant latency function, Proposition 2.2 implies
that fλ is at Nash equilibrium for (G, r, ℓ + τ̂). Since we assumed that some ze is non-zero,
some choice of λ yields a Nash flow fλ for (G, r, ℓ + τ̂) with fλ

e = 0 for some edge e. This
contradicts Lemma 5.3. �

Finally, we strengthen Proposition 2.6(a) for minimal counterexamples.

Lemma 5.6 Let (G, r, ℓ) be a minimal counterexample, τ a good tax, and f τ a Nash flow
for (G, r, ℓ + τ). Then there is a constant c such that

ℓP (f τ ) + τP = c

for every s-t path P of G.

Proof: By Lemma 5.3, we can choose a path decomposition f of {f τ
e }e∈E with fP > 0

for all paths P ∈ P. Corollary 2.3 implies that f is at Nash equilibrium for (G, r, ℓ + τ);
Proposition 2.6(a) implies that all s-t paths have a common latency plus tax. �
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5.1.3 Proof of Lemma 5.2

Recall that our key lemma, Lemma 5.2, asserts that a minimal counterexample admits
a minimal tax. Our proof of this result requires two technical lemmas, which will allow
us to prove the existence of optimal and minimal taxes for minimal counterexamples via
compactness arguments. The first lemma states that bounded taxes suffice to minimize the
cost of a Nash flow in a minimal counterexample.

Lemma 5.7 Let (G, r, ℓ) be a minimal counterexample and τ a good tax. Let G have n
vertices and define ℓmax = maxe∈E ℓe(r). There is a tax τ̃ with maxe τ̃e ≤ nℓmax and

C(τ̃) ≤ C(τ).

Proof: Let τ be a good tax for (G, r, ℓ), with f τ at Nash equilibrium for (G, r, ℓ + τ). We
next show how to decrease taxes while leaving f τ at Nash equilibrium.

By Corollary 5.4, G is directed acyclic and we can therefore order the vertices of G so
that all edges of G travel forward. Since f τ

e > 0 on all edges of G (Lemma 5.3), s is the
first vertex in the ordering and t is the last. Beginning with the penultimate vertex and
proceeding backward in the ordering, we perform the following operation for each vertex
v 6= s: let τv ≥ 0 denote the minimum tax on an edge with tail v, subtract τv from the tax of
every edge with tail v and add τv to the tax of every edge with head v. This operation leaves
the total tax of all s-t paths and the cost of all feasible flows unchanged. In particular, the
flow f τ remains at Nash equilibrium. When the source s is reached, subtract τs from the
tax on all edges with tail s; f τ remains at Nash equilibrium and its cost can only decrease.
Call the new set of taxes τ̃ . We have already argued that C(τ̃) ≤ C(τ); it remains to show
that maxe τ̃e ≤ nℓmax.

We first observe that the tax-reducing operations iteratively enforce the following prop-
erty: every vertex other than t has an outgoing edge with zero τ̃ -tax. This property implies
that some s-t path, say P0, has zero τ̃ -tax. Since C(τ̃) ≤ C(τ), τ̃ is a good tax. Since f τ is
at Nash equilibrium for (G, r, ℓ + τ̃), Lemma 5.6 implies that

ℓP (f τ ) + τ̃P = ℓP0
(f τ )

for every path P ∈ P. Since ℓP0
(f τ ) ≤ nℓmax and every edge of G lies on some s-t path (by

Lemma 5.3), no edge tax in τ̃ can exceed nℓmax. The proof is complete. �

The second technical lemma asserts continuity of the map τ 7→ C(τ).

Lemma 5.8 Let (G, r, ℓ) be a minimal counterexample. Then the corresponding map τ 7→
C(τ) is continuous.

Proof: Lemma 5.5 ensures that the map τ 7→ {f τ
e }e∈E is well defined. Lemma 5.5 and a

result of Dafermos and Nagurney [11, Theorem 3.1] imply that this map is continuous. The
lemma then follows easily. �

We are finally prepared to prove Lemma 5.2.
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Proof of Lemma 5.2: We first show that a minimal counterexample (G, r, ℓ) admits an optimal
tax—that infτ≥0 C(τ) is attained by some tax. Let B denote the taxes with all components
bounded by nℓmax, where n is the number of vertices of G and ℓmax = maxe∈E ℓe(r). Since
(G, r, ℓ) is a counterexample, the value infτ≥0 C(τ) is approached by good taxes. Since
(G, r, ℓ) is minimal, Lemma 5.7 implies that infτ≥0 C(τ) is approached by good taxes in B:

inf
τ∈B

C(τ) = inf
τ≥0

C(τ).

Since B is a compact subset of RE and C is continuous by Lemma 5.8, these infima are
attained by some tax (in B).

Let O denote the (non-empty) set of optimal taxes for (G, r, ℓ). We will show that
infτ∈O

∑

e τe is attained by some optimal tax. By Lemma 5.7, there is an optimal tax τ ∈ O
with

∑

e∈E τe ≤ mnℓmax, where m is the number of edges of G. Since O is the inverse image
of a closed set under a continuous map (write O = C−1(C(τ)) for some τ ∈ O), it is a
closed subset of RE. Restricting O to taxes with sum of all components at most mnℓmax,
we obtain a nonempty compact subset S ⊆ O of optimal taxes. Since τ 7→

∑

e τe is a
continuous function, it attains a minimum on S; this is also its minimum on O, and the
proof is complete. �

5.1.4 Proof of Theorem 5.1

With Lemma 5.2 in hand, we can now prove Theorem 5.1 by a perturbation argument.

Proof of Theorem 5.1: To derive a contradiction, let (G, r, ℓ) be a minimal counterexample,
τ a minimal (and hence good) tax, and f τ a Nash flow for (G, r, ℓ + τ). Since (G, r, ℓ) is a
counterexample,

∑

e τe > 0. By Lemma 5.6, there is a constant cτ such that ℓP (f τ )+τP = cτ

for all s-t paths P of G.
Write ℓe(x) = aex + be for each edge e of G. The equations

∑

e∈P

[aefe + be + τe] = c

for all P ∈ P, together with the standard flow conservation constraints for f , form a system
of equations linear in the m + 1 variables {fe}e∈E and c (where m is the number of edges of
G). By Lemma 5.5, ({f τ

e }, c
τ ) is the unique solution to this system, with flow nonnegativity

constraints automatically satisfied (indeed, strictly by Lemma 5.3). Choosing m+1 linearly
independent constraints with at least one constraint corresponding to a path with nonzero
tax, there is a square linear system

A

[

f
c

]

= d

for which ({f τ
e }, c

τ ) is the unique solution, namely A−1d.
Let τẽ > 0 be a positive edge tax appearing in this linear system (as part of the right-hand

side d). Consider perturbing this tax by subtracting a small number ǫ > 0. This translates
to a perturbation of adding ǫ to the right-hand side of all constraints corresponding to paths
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that include the edge ẽ, resulting in the new right-hand side d̃. Since f τ
e > 0 for every edge e,

the new Nash flow is given by
({f̃e}, c̃) = A−1d̃

for sufficiently small perturbations. Since τ is an optimal tax minimizing
∑

e τe, subtracting
ǫ > 0 from τẽ produces a non-optimal tax. By Proposition 2.6, it follows that cτ < c̃. By
linearity, however, the opposite perturbation of adding ǫ to τẽ has the opposite effect, pro-
ducing a tax τ̄ that induces a solution ({f̄e}, c̄) with c̄ < cτ . This contradicts the optimality
of τ , and the proof is complete. �

5.2 The Power of Taxes in General Networks

The previous subsection showed that in every network with linear latency functions, taxes
cannot improve over the best solution attainable by removing edges from the network. We
now demonstrate that this result does not extend to networks with nonlinear latency func-
tions. In fact, for each value of n ≥ 2, there is an n-node network in which arbitrary
nonnegative taxes can improve upon 0/∞ taxes by an ⌊n/2⌋ factor. With this result, we will
have a good understanding of the relationship between taxes and edge removals in general
networks. Briefly, removing edges can improve the cost of a Nash flow by an ⌊n/2⌋ factor
(Proposition 2.8); taxes can improve the cost of a Nash flow by an ⌊n/2⌋ factor beyond what
is achievable by removing edges (Theorem 5.9 below); but taxes (or edge removals) cannot
improve the cost of a Nash flow by more than an ⌊n/2⌋ factor (Theorem 4.5).

Theorem 5.9 For each integer n ≥ 2, there is an instance (G, r, ℓ) with c(H, r, ℓ) ≥ ⌊n/2⌋
for all subgraphs H of G but c(G, r, ℓ + τ) = 1 for some tax τ ≥ 0.

Proof: The construction is similar to that in an inapproximability result for network de-
sign [36, Theorem 4.3]. We can assume that n is even and at least 4. (For n odd, add an
isolated vertex or subdivide an edge.) We will work with the Braess graph Bk for which
2k + 2 = n. (See Subsection 2.3 for notation and terminology.)

We define latency functions ℓk on the graph Bk as follows.

(A) Type A edges receive the latency function ℓk(x) = 0.

(B) Type B edges are given a (continuous, nondecreasing) latency function ℓk satisfying
ℓk(x) = 1 for x ≤ 1/(k + 1) and ℓk(x) = n/2 for x ≥ 1/(k + 1) + ǫ, where ǫ > 0 is a
sufficiently small constant.

(C) For each i ∈ {1, . . . , k}, the type C edges (wi, t) and (s, vk−i+1) receive a latency
function ℓk satisfying ℓk(x) = 0 for x ≤ 1+1/(k +1), ℓk(1+1/k) = i, and ℓk(x) = n/2
for x ≥ 1 + 1/k + ǫ.

If a type B edge carries at least 1/(k + 1) + ǫ units of flow or a type C edge carries at least
1 + 1/k + ǫ units of flow, we will say that the edge is oversaturated. A simple but important
observation is that if a Nash flow oversaturates an edge in (H, r, ℓk) for some subgraph H of
Bk, then c(H, r, ℓk) ≥ n/2.
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(a) Latencies plus taxes in a Nash flow
for (Bk, k + 1, ℓk + τ)

v
1

v
2

v
3

w
1

w
2

w
3

s t

1

1

1

1
1

2

3

3

2

1

0

0

0

(b) Latencies in a Nash flow for
(Bk, k + 1, ℓk)

Figure 4: Proof of Theorem 5.9 when k = 3. Solid edges carry traffic in the flow at Nash
equilibrium, dashed edges do not. Edges are labeled with their cost (sum of latency and
tax), where latencies are with respect to flows at Nash equilibrium.

First, let τ be the tax vector equal to 1 on type A edges and 0 elsewhere. The following
flow is then at Nash equilibrium for (Bk, k + 1, ℓk + τ): route 1 unit of flow on each of
P1, P2, . . . , Pk and 1/(k + 1) units of flow on each of Q1, Q2, . . . , Qk+1. Type A edges then
each have zero latency and one unit of tax, type B edges each have zero tax and one unit
of latency, and type C edges have zero latency and tax (see Figure 4(a)). This Nash flow
proves that c(Bk, k + 1, ℓk + τ) = 1.

To finish the proof, we need to show that c(H, k + 1, ℓk) ≥ n/2 for every subgraph H of
Bk; this requires a bit of case analysis. If H is all of Bk, then c(H, k + 1, ℓk) = n/2 because
routing 1 + 1/k units of traffic on each of P1, P2, . . . , Pk provides a flow at Nash equilibrium
(see Figure 4(b)). Similarly, c(H, k + 1, ℓk) = n/2 if H omits only type B edges.

Next, suppose H omits some type C edge and ǫ > 0 is sufficiently small. If edge (s, vi)
is not in H, then every flow feasible for (H, k + 1, ℓk) oversaturates some edge incident to s.
Thus c(H, k + 1, ℓk) ≥ n/2 if H omits a type C edge incident to s. A symmetric argument
applies to subgraphs H that omit a type C edge incident to t.

Finally, suppose H omits some type A edge, say (vi, wi). The vertex vi then has at most
one outgoing edge in H, which must be a type B edge. If this edge is not oversaturated,
then the edge (s, vi) carries at most 1

k+1
+ ǫ units of flow; as in the previous paragraph, this

implies that some edge incident to s is oversaturated. In either case, c(H, k + 1, ℓk) ≥ n/2
and the proof is complete. �
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6 The Complexity of Computing Optimal Taxes

In this section, we study the optimization problem of minimizing the cost of a Nash flow by
taxing the network edges, and extend an existing hardness result for network design [36] to
this problem.

By an α-approximation algorithm for a minimization problem, we mean an algorithm
that runs in polynomial time and returns a solution no more than α times as costly as an
optimal solution. We will call the value α the approximation ratio or performance guarantee
of the algorithm.

The maximum-possible benefit achievable with taxes, as determined in Section 4, has im-
mediate consequences for the performance guarantee of the trivial algorithm—the algorithm
that assigns all edges zero tax. In particular, Corollary 4.3 implies the following.

Corollary 6.1 The trivial algorithm is a 4
3
-approximation algorithm for the problem of tax-

ing edges to minimize the cost of a Nash flow in networks with linear latency functions.

Roughgarden [36] gave several inapproximability results for the problem of removing
edges from a network to minimize the total latency of a Nash flow. We next extend one of
them to the problem of computing optimal taxes in networks with linear latency functions.

Theorem 6.2 For every ǫ > 0, there is no (4
3
− ǫ)-approximation algorithm for the problem

of taxing edges to minimize the cost of a Nash flow in networks with linear latency functions
(unless P = NP ).

Corollary 6.1 and Theorem 6.2 imply that, in networks with linear latency functions, no
polynomial-time algorithm has approximation ratio better than that of the trivial algorithm
(assuming P 6= NP ).

The reduction used to prove Theorem 6.2 is identical to one in [36], and is from a disjoint
paths problem. However, the proof of Theorem 6.2 is slightly more involved than that of its
analogue in [36], due to the extra power of taxes beyond that of edge removals. In particular,
proving that “no” instances of a disjoint paths problem give instances in which all possible
taxes induce a costly Nash flow is harder than showing that all possible subgraphs of these
instances have costly Nash flows.

For completeness, we prove Theorem 6.2 in Appendix B.

Remark 6.3 For the problem of removing edges from a network to minimize the total
latency of a Nash flow, Roughgarden [36] also gave inapproximability results for networks
with different types of nonlinear latency functions. These showed that the trivial algorithm
is an optimal approximation algorithm for the problem in these classes of networks. We
believe that most (if not all) of these hardness results should carry over to the problem of
computing optimal taxes in networks with nonlinear latency functions, but we have been
unable to verify the details.
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7 Directions for Further Research

We have undertaken the first study of using edge taxes to minimize the cost—latency plus
taxes paid—of a Nash flow. While we have answered several basic questions, some obvious
gaps in our results remain. We next list three of the more glaring ones.

(Q1) Suppose we consider restricted latency functions that need not be linear, such as convex
functions or degree-bounded polynomials with nonnegative coefficients. Can marginal
cost taxes improve the cost of a Nash flow? Can levying taxes decrease the cost of a
Nash flow beyond what is achievable with edge removals?

(Q2) Is the trivial algorithm an optimal approximation algorithm for the problem of com-
puting optimal taxes in networks with nonlinear latency functions?

(Q3) Which results of this paper remain true in multicommodity flow networks, with mul-
tiple sources and destinations? (See Lin et al. [29] for some very recent work on this
question.)

A broader research issue is to study other approaches to simultaneously minimizing both
the total latency and the taxes paid by traffic. For example, Hearn and Ramana [22] show
how to efficiently compute, among all tax vectors that induce a minimum-latency flow as a
flow at Nash equilibrium, the tax vector minimizing the amount of tax paid by the traffic.
(Of course, even the best such tax vector might require traffic to pay exorbitant taxes.) A
different objective is to minimize the total latency of traffic, subject to a fixed budget on the
amount of taxes that can be paid. Are there non-trivial algorithmic results for this problem?
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A Proof of Theorem 4.5

Proof of Theorem 4.5: Let (G, r, ℓ) be an instance in which G has n vertices, and let τ be
a tax on the edges. Let f be a directed acyclic Nash flow for (G, r, ℓ) (see Proposition 2.4),
and f ∗ a Nash flow for (G, r, ℓ + τ). Let d and d∗ be the corresponding distance labels of
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Proposition 2.2. In the notation of Proposition 2.6, we need to prove that D ≡ d(t) =
c(G, r, ℓ) is at most ⌊n/2⌋ times D∗ ≡ d∗(t) = c(G, r, ℓ + τ).

An ordering of the vertices of G is good if it satisfies the following two properties.

(P1) All f -flow travels forward in the ordering.

(P2) The d-values of vertices are nondecreasing in the ordering.

There is at least one good ordering. To see why, first topologically sort the vertices of G
according to the (directed acyclic) flow f to ensure property (P1). An ordered pair (u, v)
of vertices is bad if d(v) < d(u) in spite of v following u in the ordering. Property (P2) is
equivalent to the absence of bad vertex pairs.

If there is a bad vertex pair, there is one such pair (v, w) with v and w adjacent in the
ordering. We would like to transpose v and w. By Proposition 2.2 and the nonnegativity of
latency functions, d-values cannot decrease across an edge e with fe > 0. Hence, there is no
flow-carrying edge from v to w. Transposing v and w therefore does not violate property (P1)
and strictly decreases the number of bad vertex pairs. Finitely many such transpositions
yields a good ordering.

Place a good ordering on the vertices of G and label them v0, v1, . . . , vn−1 accordingly.
We can assume that v0 = s. Call an edge e of G light if fe ≤ f ∗

e with f ∗
e > 0, and heavy

otherwise. We can finish the proof by establishing two claims (see also Figure 5).

(1) If vj precedes t in the good ordering, then there is a path of light edges beginning in
{v0, v1, . . . , vj} and terminating in {t, vj+2, vj+3, . . . , vn−1}.

(2) If there is a path of light edges from u to v, then d(v) ≤ d(u) + D∗.

Since d(s) = 0 and d-values are nondecreasing in the good ordering, applying these two
claims inductively to the sets {v0, . . . , v2i} gives d(v2i) ≤ i ·D∗ for v2i equal to or preceding t.
If t = v2i for an integer i, the theorem follows immediately. If t = v2i+1, then d(v2i) ≤ i · D∗

and the theorem follows from one further application of the two claims (to {v0, . . . , v2i}).

s

l(f) < L* l(f) < L*

v tv v1 2 3

d=0 d < 2Ld < L * *

Figure 5: Proof of Theorem 4.5. If f is the flow sending one unit of flow on the four-hop
path and f ∗ is the flow sending half a unit of flow on each of the other two paths, then the
dashed edges are light.

To prove the first claim, let vj precede t in the good ordering. By property (P1) of good
orderings, no f -flow enters the s-t cut S = {v0, . . . , vj}. Since the net f -flow and f ∗-flow

25



escaping any s-t cut is precisely r (see e.g. [43, Lemma 8.1]), at least one light edge escapes
S. If some such edge has its head in {t, vj+2, . . . , vn−1}, we are done. If not, all such light
edges terminate at a vertex vj+1 that precedes t in the ordering. By the above argument,
some light edge e escapes {v0, . . . , vj+1}. Since all light edges emanating from S end at vj+1,
e begins at vj+1. Thus, its concatenation with any light edge escaping S provides the desired
path of light edges.

For the second claim, let P be a path of light edges from u to v. Since taxes are
nonnegative and latency functions are nondecreasing, ℓe(fe) ≤ ℓe(f

∗
e ) + τe for every edge e

in P . Since f ∗
e > 0 for all edges e of P , Proposition 2.2 implies that

d(v) − d(u) ≤
∑

e∈P

ℓe(fe) ≤
∑

e∈P

[ℓe(f
∗
e ) + τe] = d∗(v) − d∗(u).

Similarly,
0 ≤ d∗(u) ≤ d∗(v) ≤ D∗

and hence d(v) − d(u) ≤ d∗(v) − d∗(u) ≤ D∗. This completes the proof of the claim and
hence the theorem. �

B Proof of Theorem 6.2

Proof of Theorem 6.2: As in [36, Theorem 3.3], our reduction will proceed from the problem
2 Directed Disjoint Paths (2DDP): given a directed graph G = (V,E) and distinct
vertices s1, s2, t1, t2 ∈ V , are there si-ti paths Pi for i = 1, 2 such that P1 and P2 are vertex-
disjoint? Fortune, Hopcroft, and Wyllie [19] showed that this problem is NP-complete. We
will show how a (4

3
− ǫ)-approximation algorithm for minimizing the cost of a Nash flow with

taxes in a network with linear latency functions can be used to distinguish “yes” and “no”
instances of 2DDP in polynomial time.

Let I = (G = (V,E), s1, s2, t1, t2) be an instance of 2DDP. Augment the vertex set V
by a source s, a sink t, and directed edges (s, s1), (s, s2), (t1, t), and (t2, t) (see Figure 6).
Denote the new network by G′ = (V ′, E ′). We give the edges of E ′ the following (linear)
latency functions: all edges of E receive the latency function ℓ(x) = 0, edges (s, s2) and
(t1, t) are given the latency function ℓ(x) = x, and edges (s, s1) and (t2, t) are endowed with
the latency function ℓ(x) = 1.

Following the notation of Subsection 5.1, we will write C(τ) for the cost of a Nash flow
in (G′, 1, ℓ + τ). To complete the proof, we need only show the following two statements:

(i) if I is a “yes” instance of 2DDP, then there is a set τ of taxes with C(τ) = 3/2;

(ii) if I is a “no” instance, then C(τ) ≥ 2 for all nonnegative taxes τ .

To prove (i), let P1 and P2 be vertex-disjoint s1-t1 and s2-t2 paths in G, respectively.
Assign zero taxes to edges in E ′ \ E, P1, and P2. Set taxes τe on all other edges e to be
sufficiently large. Then, routing half a unit of flow on each of P1 and P2 yields a flow at
Nash equilibrium proving that C(τ) = 3/2.
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Figure 6: Proof of Theorem 6.2. In a “no” instance of 2DDP, s1-t1 and s2-t2 paths must
share a vertex.

For (ii), consider taxes τ and a Nash flow f τ for (G′, 1, ℓ + τ). Let d denote the distance
labels of Proposition 2.2. Since there is one unit of traffic, (ii) is tantamount to showing that
d(t) ≥ 2.

First, if f τ routes all flow through a single si-tj pair, then the latency of all flow paths is
2 and hence d(t) ≥ 2. We can thus assume that f τ routes flow through at least two distinct
si-tj pairs. Similarly, we can assume that no flow path contains both s1 and t2.

Now suppose f τ routes flow on a path P1 containing s1 and t1 and also on a path P2

containing s2 and t2. Since I is a “no” instance of 2DDP, P1 and P2 share an internal vertex
v (see Figure 6). Since P1 is a flow path of the Nash flow f τ that contains v and the edge
(s, s1), Proposition 2.2 implies that d(v) ≥ 1. Similarly, since P2 is a flow path containing v
and the edge (t2, t), Proposition 2.2 implies that d(t) ≥ d(v) + 1 ≥ 2.

The final case arises when all flow paths contain a single si or a single ti (but not
both). If all flow paths contain a single si, then all flow uses edge (s, si), so d(si) ≥ 1. As
in the previous paragraph, since there is a flow path of f τ containing si and edge (t2, t),
Proposition 2.2 implies that d(t) ≥ d(si) + 1 ≥ 2. A similar argument proves that d(t) ≥ 2
if all flow paths of f τ contain a single ti. �
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