
On Perfet and Adaptive Seurity inExposure-Resilient CryptographyYevgeniy Dodis1, Amit Sahai2, and Adam Smith31 Department of Computer Siene, New York University, 251 Merer St, New York,NY 10012, USA. dodis�s.nyu.edu2 Department of Computer Siene, Prineton University, 35 Olden St, Prineton, NJ08540, USA. sahai�s.prineton.edu3 Laboratory for Computer Siene, Massahusetts Institute of Tehnology, 545 MainSt, Cambridge, MA 02139, USA. asmith�theory.ls.mit.eduAbstrat. We onsider the question of adaptive seurity for two re-lated ryptographi primitives: all-or-nothing transforms and exposure-resilient funtions. Both are onerned with retaining seurity when anintruder learns some bits of a string whih is supposed to be seret:all-or-nothing transforms (AONT) protet their input even given partialknowledge of the output; exposure-resilient funtions (ERF) hide theiroutput even given partial exposure of their input. Both of these prim-itives an be de�ned in the perfet, statistial and omputational set-tings and have a variety of appliations in ryptography. In this paper,we study how these notions fare against adaptive adversaries, who mayhoose whih positions of a seret string to observe on the y.In the perfet setting, we prove a new, strong lower bound on the on-strutibility of (perfet) AONT. This applies to both standard and adap-tively seure AONT. In partiular, to hide an input as short as log nbits, the adversary must see no more than half of the n-bit output. Thisbound also provides a new impossibility result on the existene of (ramp)seret-sharing shemes [6℄ and relates to a ombinatorial problem of in-dependent interest: �nding \balaned" olorings of the hyperube.In the statistial setting, we show that adaptivity adds stritly morepower to the adversary. We relate and redue the onstrution of adap-tive ERF's to that of almost-perfet resilient funtions [19℄, for whihthe adversary an atually set some of the input positions and stilllearn nothing about the output. We give a probabilisti onstrution ofthese funtions whih is essentially optimal and substantially improveson previous onstrutions of [19, 5℄. As a result, we get nearly optimaladaptively seure ERF's and AONT's. Finally, extending the statistialonstrution we obtain optimal omputational adaptive ERF's, \publi-value" AONT's and resilient funtions.1 IntrodutionReently, there has been an explosion of work [23, 9, 10, 20, 18, 7, 1, 26, 14℄ sur-rounding an intriguing notion introdued by Rivest alled the All-Or-Nothing



Transform (AONT) [23℄. Roughly speaking, an AONT is a randomized mappingwhih an be eÆiently inverted if given the output in full, but whih leaks noinformation about its input to an adversary even if the adversary obtains almostall the bits of the output. The AONT has been shown to have important rypto-graphi appliations ranging from inreasing the eÆieny of blok iphers [20,18, 7℄ to proteting against almost omplete exposure of seret keys [10℄. The�rst formalization and onstrutions for the AONT were given by Boyko [9℄ inthe Random-Orale model. However, reently Canetti et al. [10℄ were able toformalize and exhibit eÆient onstrutions for the AONT in the standard om-putational model. They aomplished this goal by reduing the task of onstrut-ing AONT's to onstruting a related primitive whih they alled an Exposure-Resilient Funtion (ERF) [10℄. An ERF is a deterministi funtion whose outputlooks random to an adversary even if the adversary obtains almost all the bitsof the input. A salient feature of the work of [10℄ is the fat that they were ableto ahieve good results for the omputational (and most ryptographially ap-pliable) versions of these notions by �rst fousing on the perfet and statistialforms of AONT's and ERF's.1.1 BakgroundWe �rst reall informally the de�nitions of the two main notions we examine inthis paper. An `-AONT [23, 9, 10℄ is an eÆiently omputable and invertible ran-domized transformation T , whih transforms any string x into a pair of strings(ys; yp), respetively alled the seret and the publi part of T . While the inverta-bility of T allows to reonstrut x from the entire T (x) = (ys; yp), we require thatany adversary learning all of yp and all but ` bits of ys obtains \no information"about x.On the other hand, an `-ERF [10℄ is an eÆiently omputable deterministifuntion f on strings suh that even if an adversary learns all but ` bits ofa randomly hosen input r, it still annot distinguish the output f(r) from arandom string. As usual, we an de�ne perfet, statistial, and omputationalversions of these notions. It is easy to see that in the perfet or statistial settings,the length of the output of an `-ERF an be at most `; whereas for perfetor statistial `-AONT's, the length of the input is at most `. To beat thesetrivial bounds, one must examine the omputational forms of ERF's and AONT's.Indeed, if we are given a pseudorandom generator, it is easy to see that byapplying the generator to the output of a perfet or statistial ERF, we anobtain ERF's with arbitrary (polynomial) output size.Canetti et al. [10℄ showed that the following simple onstrution suÆes toonstrut AONT's from ERF's. Given an `-ERF f mapping f0; 1gn to f0; 1gk,we onstrut an `-AONT T transforming k bits to n bits of seret output andk bits of publi output: T (x) = hr; f(r) � xi. Intuitively, if at least ` bits of rare missed, then f(r) \looks" random. Hene f(r) � x also looks random, thushiding all information about the input x.Appliations. The All-Or-Nothing Transform and its variants have been ap-plied to a variety of problems. In the perfet setting, it is a speial ase of a ramp



sheme [6℄, useful for sharing serets eÆiently. Its statistial variant an be usedto provide seure ommuniation over the \wire-tap hannel II", a partly publihannel where the adversary an observe almost all the bits ommuniated (butthe sender and the reeiver do not know whih) [22, 3℄. In the omputationalsetting, it also has many uses. Rivest [23℄, and later Desai [14℄, use it to enhanethe seurity of blok iphers against brute-fore key searh. Matyas et al. [20℄propose to use AONT to inrease the eÆieny of blok iphers: rather than en-rypt all bloks of the message, apply an AONT to the message and enrypt onlyone or very few bloks. The same idea is used in various forms by Jakobson etal. [18℄ and Blaze [7℄ to speed up remotely-keyed enryption. Similarly, it anbe ombined with authentiation to yield a novel enryption tehnique [24, 1℄.Several other appliations have been suggested by [9, 26℄.Another lass of appliations for (omputational) AONT's was suggested byCanetti et al. [10℄. They onsidered a situation where one of our most basiryptographi assumptions breaks down | the serey of a key an beome par-tially ompromised (a problem alled partial key exposure). [10℄ point out thatmost standard ryptographi de�nitions do not guarantee (and often violate)seurity one even a small portion of the key has been exposed. The AONT of-fers a solution to this problem. Namely, rather than store a seret key x, onestores y = T (x) instead. Now the adversary gets no information about the seretkey even if he manages to get all but ` bits of y. The problem of gradual keyexposure is also raised by [10℄, where information about a (random) private keyis slowly but steadily leaked to an adversary. In this situation, the private keyan be \renewed" using an ERF to protet it against disovery by the adversary,while additionally providing forward seurity when the \urrent" key is totallyompromised.1.2 Adaptive SeurityIn many of the appliations above, the question of adaptive seurity arises nat-urally. For example, in the problem of partial key exposure, it is natural toonsider an adversary that is able to �rst gain aess to some fration of the bitsof the seret, and then deides whih bits to obtain next as a funtion of the bitsthe adversary has already seen.Perfet AONT's and Adaptive Seurity. In the de�nition of a perfet`-AONT, we demand that any subset of all but ` bits of the output must beompletely independent of the input x.1 In this ase, it is trivial to observethat there is no di�erene between adaptive and non-adaptive seurity. Hene,if we ould onstrut good perfet AONT's, this would also solve the problem ofonstruting adaptively seure AONT's.Consider `-AONT's that transform k bits to n bits. [10℄ show how to onstrutperfet `-AONT's where ` = n( 12 + ") for any " > 0 (at the expense of smallerk = 
(n)), but were unable to onstrut perfet AONT's with ` < n=2 (i.e.perfet AONT's where the adversary ould learn more than half of the output).1 In the perfet setting, publi output is not needed (e.g., an be �xed a-priori).



Perfet AONT's | Our Contribution. In our work, we show that un-fortunately this limitation is inherent. More preisely, whenever n � 2k, theadversary must miss at least half of the output in order not to learn anythingabout the input. We prove this bound by translating the question of onstrutingperfet `-AONT's to the question of �nding \`-balaned" weighted olorings ofthe hyperube, whih is of independent ombinatorial interest. Namely, we wantto olor and weight the nodes of the n-dimensional hyperube H = f0; 1gn using = 2k olors, suh that every `-dimensional subube of H is \equi-olored" (i.e.has the same total weight for eah of the  olors). We prove our result by non-trivially extending the beautiful lower bound argument of Friedman [15℄ (whihonly worked for unweighted olorings) to our setting. Our bound also gives anew bound on ramp seret sharing shemes [6℄. In suh shemes one divides theseret of size k into n shares suh that there are two thresholds t and (t � `)suh that any t shares suÆe to reonstrut the seret but no (t� `) shares yieldany information. To our knowledge, the best known bound for ramp shemes [8,17, 21℄ was ` � k. Our results imply a muh stronger bound of ` � t=2 (wheneah share is a bit; over larger alphabets of size q we get ` > t=q).Therefore, we show that despite their very attrative perfet seurity, perfetAONT's are of limited use in most situations, and do not o�er a ompelling wayto ahieve adaptive seurity.Statistial ERF's and Adaptive Seurity. The de�nition of a perfet `-ERF (mapping n bits to k bits) states that the output, when onsidered jointlywith any subset of (n� `) bits of the input, must be truly uniform. In this ase,learly one again adaptive and non-adaptive seurity ollapse into one notion.The de�nition of a (non-adaptive) statistial `-ERF, however, allows for the thejoint distribution above to be merely lose to uniform. In this ase, the non-adaptive statistial de�nition does not imply adaptive seurity, and in partiularthe onstrution given in [10℄ of statistial ERF's fails to ahieve adaptive seu-rity.2 Intuitively, it ould be that a small subset of the input bits S1 determinessome non-trivial boolean relation of another small subset of the input bits S2with the output of the funtion (e.g., for a �xed value of the bits in S1, oneoutput bit might depend only on bits in S2). In the adaptive setting, reading S1and then S2 would break an ERF. In the non-adaptive setting, however, any �xedsubset of the input bits is very unlikely to ontain S1 [S2. (A similar disussionapplies to AONT's.) In other words, statistial onstrutions of [10℄ were able toprodue statistial `-ERF's (and `-AONT's) with nearly optimal ` = k+o(k), butfailed to ahieve adaptive seurity, while perfet ERF's ahieve adaptive seurity,but are limitted to ` > n=2 [15℄.Statistial ERF's | Our Contribution. Thus, we seek to identify notionslying somewhere in between perfet and statistial (non-adaptive) ERF's thatwould allow us to onstrut adaptively seure ERF's (and AONT's), and yetahieve better parameters than those ahievable by perfet ERF's (and AONT's).In this task, we make use of resilient funtions (RF's). These were �rst de�ned2 For more details, see Setion 2.2.



in the perfet setting by Vazirani [28℄ and �rst studied by Chor et al. [12℄ andindependently by Bennett et al. [3℄. An `-RF is idential to an `-ERF exept thatthe adversary, instead of merely observing ertain bits of the input, gets to setall but ` bits of the input.3 Note that the notions of ERF and RF are the samewhen onsidered in the perfet setting. A statistial variant of resilient funtions(no longer equivalent to ERF's) was �rst onsidered by Kurosawa et al. [19℄, whoalso gave expliit onstrutions of suh funtions (improved by [5℄).We show that the strong notion of statistial RF's introdued by Kurosawaet al. [19℄ suÆes to onstrut adaptively seure ERF's (and AONT's). Whilethe onstrution of Kurosawa et al. [19℄ already slightly beats the lower boundfor perfet ERF's, it is very far from the trivial lower bound of ` > k (in fat,it is still limited to ` > n=2). We present an eÆient probabilisti onstrutionof suh \almost-perfet" RF's ahieving optimal ` = k + o(k). While not fullydeterministi, our onstrution has to be run only one and for all, after whihthe resulting eÆient funtion is \good" with probability exponentially lose to1, and an be deterministially used in all the subsequent appliations. As aresult of this onstrution and its relation to adaptive ERF's and AONT's, weahieve essentially optimal seurity parameters for adaptive seurity by fousingon a stronger notion of almost-perfet RF's.We also take the opportunity to study several variants of statistial RF'sand (stati/adaptive) ERF's, and give a omplete lassi�ation of these notions,whih may be of additional, independent interest.Computational Setting. As we pointed out, [10℄ used their statistial (non-adaptive) onstrutions to get ERF's and AONT's in the omputational setting.We show that the same tehniques work with our adaptive de�nitions. Coupledwith our statistial onstrutions, we get nearly optimal omputational onstru-tions as well.Larger alphabets. To simplify the presentation and the disussion of theresults in this paper, as well as to relate them more losely with the previouswork, we restrit ourselves to disussing exposure-resilient primitives over thealphabet f0; 1g. However, all our notions and results an be easily generalizedto larger alphabets.1.3 OrganizationIn Setion 2, we de�ne the entral objets of study in our paper, and reviewsome of the relevant previous work of [10℄. In Setion 3 we study perfet AONT's,relate them to hypeube olorings and prove the strong lower bound on ` (show-ing the limitations of perfet AONT's). Finally, in Setion 4 we study variantsof statistial ERF's will allow us to ahieve adaptive seurity. We show that\almost-rerfet" RF's of [19℄ ahieve this goal, and exhibit a simple and almostoptimal (probabilisti) onstrution of suh funtions. In partiular, we show3 In muh of the literature about resilient funtions, suh a funtion would be alledan (n� `)-resilient funtion. We adopt our notation for onsisteny.



the existene of adaptively seure AONT's and ERF's with essentially optimalparameters.2 PreliminariesLet f ǹg denote the set of size-` subsets of [n℄ = f1 : : : ng. For L 2 f ǹg, y 2f0; 1gn, let [y℄�L denote y restrited to its (n� `) bits not in L. We say a funtion�(n) is negligible (denoted by � = negl(n)) if for every onstant , �(n) = O � 1n �.We denote an algorithm A whih has orale aess to some string y (i.e., anquery individual bits of y) by Ay.2.1 De�nitions for Non-Adaptive AdversariesFor stati adversaries, the de�nitions of AONT and ERF an be stated quite eÆ-iently in terms of perfet, statistial or omputational indistinguishability (see[16℄). For onsisteny we have also provided a de�nition of RF (where adaptivitydoes not make sense, and hene the adversary an be seen as \stati").Note that for full generality, we follow the suggestion of [10℄ and allow theall-or-nothing transform to have two outputs: a publi part whih we assume theadversary always sees; and a seret part, of whih the adversary misses ` bits.De�nition 1. A polynomial-time randomized transformation T : f0; 1gk !f0; 1gs � f0; 1gp is an `-AONT (all-or-nothing transform) if1. T is polynomial-time invertible, i.e. there exists eÆient I suh that for anyx 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x. We all y1 is theseret part and y2, the publi part of T .2. For any L 2 f s̀g; x0; x1 2 f0; 1gk: hx0; x1; [T (x0)℄�Li � hx0; x1; [T (x1)℄�Li4Here � an refer to perfet, statistial or omputational indistinguishability.If p = 0, the resulting AONT is alled seret-only.De�nition 2. A polynomial time funtion f : f0; 1gn ! f0; 1gk is an `-ERF(exposure-resilient funtion) if for any L 2 f ǹg and for a randomly hosenr 2 f0; 1gn, R 2 f0; 1gk, we have: h[r℄�L; f(r)i � h[r℄�L; Ri.Here � an refer to perfet, statistial or omputational indistinguishability.De�nition 3. A polynomial time funtion f : f0; 1gn ! f0; 1gk is `-RF (re-silient funtion) if for any L 2 f ǹg, for any assignment w 2 f0; 1gn�` to thepositions not in L, for a randomly hosen r 2 f0; 1gn subjet to [r℄�L = w andrandom R 2 f0; 1gk, we have: hf(r) j [r℄�L = wi � hRi.Here � an refer to perfet, statistial or omputational indistinguishability.4 Notie, for L 2 f s̀g we have notationally that [(y1; y2)℄�L = ([y1℄�L; y2).



As an obvious note, a `-RF is also a stati `-ERF (as we shall see, this will nolonger hold for adaptive ERF; see Lemma 5).Perfet primitives. It is lear that perfet ERF are the same as perfetRF. Additionally, perfet AONT's are easy to onstrut from perfet ERF's. Inpartiular one ould use the simple one-time pad onstrution of [10℄: T (x) =hr; f(r) � xi, where r is the seret part of the AONT. However, we observe that(ignoring the issue of eÆieny) there is no need for the publi part in the perfetAONT (i.e., we an �x it to any valid setting y2 and onsider the restrition of theAONT where the publi part is always y2). Setting y2 = 0 in the one-time padonstrution implies an AONT where we output a random r subjet to f(r) = x.Thus, in the perfet setting the \inverse" of an `-ERF is an `-AONT, and we get:Lemma 1. (Ignoring issues of eÆieny) A perfet `-ERF f : f0; 1gn ! f0; 1gkimplies the existene of a perfet (seret-only) `-AONT T : f0; 1gk ! f0; 1gn.While the redution above does not work with statistial ERF (to produestatistial AONT), we will show that it works with a stronger notion of almost-perfet RF (to produe statistial AONT). See Lemma 7.2.2 De�nitions for Adaptive AdversariesAdaptively Seure AONT. In the ordinary AONT's the adversary has to\deide in advane" whih (s � `) bits of the (seret part of) the output it isgoing to observe. This is aptured by requiring the seurity for all �xed sets Lof ardinality `. While interesting and non-trivial to ahieve, in many applia-tions (e.g. partial key exposure, seret sharing, proteting against exhaustivekey searh, et.) the adversary potentially has the power to hoose whih bits toobserve adaptively. For example, at the very least it is natural to assume thatthe adversary ould deide whih bits of the seret part to observe after it learnsthe publi part. Unfortunately, the onstrutions of [10℄ do not even ahieve thisminimal adaptive seurity, invalidating their laim that \publi part requires noprotetion and an be given away for free". More generally, the hoie of whihbit(s) to observe next may partially depend on whih bits the adversary hasalready seen. Taken to the most extreme, we an allow the adaptive adversaryto read the bits of the seret part \one-bit-at-a-time", as long as he misses atleast ` of them.De�nition 4. A polynomial time randomized transformation T : f0; 1gk !f0; 1gs � f0; 1gp is a (perfet, statistial or omputational) adaptive `-AONT(adaptive all-or-nothing transform) if1. T is eÆiently invertible, i.e. there is a polynomial time mahine I suh thatfor any x 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x.2. For any adversary A who has orale aess to string y = (ys; yp) and isrequired not to read at least ` bits of ys, and for any x0; x1 2 f0; 1gk, wehave: ��Pr(AT (x0)(x0; x1) = 1)� Pr(AT (x1)(x0; x1) = 1)�� � �, where



{ In the perfet setting � = 0.{ In the statistial setting � = negl(s+ p).{ In the omputational setting � = negl(s+ p) for any PPT A.We stress that the adversary an base its queries on x0; x1, the publi part ofthe output, as well as those parts of the seret output that it has seen so far. Wealso remark that in the perfet setting this de�nition is equivalent to that of anordinary perfet `-AONT. Thus, adaptivity does not help the adversary in theperfet setting (beause the de�nition of a perfet AONT is by itself very strong!).In partiular, good perfet AONT's are good adaptive AONT's. Unfortunately,we will later show that very good perfet AONT's do not exist.Adaptively Seure ERF. In the original de�nition of ERF [10℄, the adversaryhas to \deide in advane" whih (n� `) input bits it is going to observe. This isaptured by requiring the seurity for all �xed sets L of ardinality `. However, inmany situations (e.g., the problem of gradual key exposure [10℄), the adversaryhas more power. Namely, it an deide whih (n� `) bits of the seret to learnadaptively based on the information that it has learned so far. In the mostextreme ase, the adversary would deide whih bits to observe \one-bit-at-a-time". Unfortunately, the de�nition and the onstrution of [10℄ do not satisfythis notion.There is one more partiularity of adaptive seurity for ERF's. Namely, insome appliations (like the onstrution of AONT's using ERF's [10℄) the adver-sary might observe some partial information about the seret output of the ERF,f(r), before it starts to ompromise the input r. Is it aeptable in this ase thatthe adversary an learn more partial information about f(r) than he alreadyhas? For example, assume we use f(r) as a stream ipher and the adversarylearns the �rst few bits of f(r) before it hooses whih (n� `) bits of r to read.Ideally, we will not want the adversary to be able to learn some informationabout the remaining bits of f(r) | the ones that would be used in the streamipher in the future. Taken to the extreme, even if the adversary sees either theentire f(r) (i.e., has omplete information on f(r)), or a random R, and onlythen deides whih (n� `) bits of r to read, it annot distinguish the above twoases.As we argued, we believe that a good notion of adaptive ERF should satisfyboth of the properties above, whih leads us to the following notion.De�nition 5. A polynomial time funtion f : f0; 1gn ! f0; 1gk is a (perfet,statistial or omputational) adaptive `-ERF (adaptive exposure-resilient fun-tion) if for any adversary A who has aess to a string r and is required not toread at least ` bits of r, when r is hosen at random from f0; 1gn and R is ho-sen at random from f0; 1gk, we have: jPr(Ar(f(r)) = 1)� Pr(Ar(R) = 1)j � �,where{ In the perfet setting � = 0.{ In the statistial setting � = negl(n).{ In the omputational setting � = negl(n) for any PPT A.



Notie that in the perfet setting this de�nition is equivalent to that of anordinary (stati) perfet `-ERF, sine for any L, the values [r℄�L and f(r) areuniform and independent. In the statistial setting, the notions are no longerequivalent: indeed, the original onstrutions of [10℄ fail dramatially under anadaptive attak. We briey mention the reason. They used so-alled randomnessextrators in their onstrution of statistial ERF's (see [10℄ for the de�nitions).Suh extrators use a small number of truly random bits d to extrat all therandomness from any \reasonable" distribution X . However, it is ruial thatthis randomness d is hosen independently from and after the distribution Xis spei�ed. In their onstrution d was part of the input r, and reading upto(n� `) of the remaining bits of r de�ned the distribution X that they extratedrandomness from. Unfortunately, an adaptive adversary an �rst read d, andonly then determine whih other bits of r to read. This alters X depending on d,and the notion of an extrator does not work in suh a senario. In fat, traingthe partiular extrators that they use, learning d �rst indeed allows an adaptiveadversary to break the resulting stati ERF.Also notie that one we have good adaptive statistial ERF's, adaptive om-putational ERF's will be easy to onstrut in same same way as with regularERF [10℄: simply apply a good pseudorandom generator to the output of anadaptive statistial ERF. Finally, we notie that the generi one-time pad on-strution of [10℄ of AONT's from ERF's extends to the adaptive setting, as long aswe use the strong adaptive de�nition of ERF given above. Namely, the hallengehas to be given �rst, sine the adversary for the AONT may hoose whih bitsof the seret part r to read when having already read the entire publi part |either f(r) � x0 or f(r)� x1 (for known x0 and x1!). Thus, we getLemma 2. If f : f0; 1gn ! f0; 1gk is an adaptive `-ERF, then T (x) = hr; x� f(r)iis an adaptive `-AONT with seret part r and publi part x� f(r).3 Lower Bound on Perfet AONTIn this setion we study perfet AONT's. We show that there exists a stronglimitation in onstruting perfet AONT's: the adversary must miss at least halfof the n-bit output, even if the input size k is as small as logn. Reall that perfetAONT's are more general than perfet ERF's (Lemma 1), and thus our boundnon-trivially generalizes the lower bound of Friedman [15℄ (see also another proofby [4℄) on perfet ERF. As we will see, the proof will follow from the impossibilityof ertain weighted \balaned" olorings of an n-dimensional hyperube, whihis of independent interest.Theorem 1. If T : f0; 1gk ! f0; 1gn is a perfet (seret-only) `-AONT, then` � 1 + n � 2k�1 � 12k � 1 = n2 +�1� n2(2k � 1)� (1)In partiular, for n � 2k we get ` > n2 , so at least half of the output of T has toremain seret even if T exponentially expands its input! Moreover, the equalityan be ahieved only by AONT's onstruted from ERF's via Lemma 1.



3.1 Balaned Colorings of the HyperubeA oloring of the n-dimensional hyperube H = f0; 1gn with  olors is any mapwhih assoiates a olor from f1; : : : ; g to eah node in the graph. In a weightedoloring, eah node y is also assigned a non-negative real weight �(y). We willoften all the nodes of weight 0 unolored, despite them having an assignednominal olor. For eah olor i, we de�ne the weight vetor �i of this olor byassigning �i(y) = �(y) if y has olor i, and 0 otherwise. We notie that for anygiven y 2 H, �i(y) > 0 for at most one olor i, and also P�i = �. A oloringwhere all the nodes are unolored is alled empty. Sine we will never talk aboutsuh olorings, we will assume that Py2H �(y) = 1. A uniform oloring has allthe weights equal: �(y) = 2�n for all y.An `-dimensional subube HL;a of the hyperube is given by a set of ` \free"positions L 2 f ǹg and an assignment a 2 f0; 1gn�` to the remaining positions,and ontains the resulting 2` nodes of the hyperube onsistent with a.De�nition 6. We say a weighted oloring of the hyperube is `-balaned if,within every subube of dimension `, eah olor has the same weight. That is,for eah L and a, Py2HL;a �i(y) is the same for all olors i.Notie, `-balaned oloring is also `0-balaned for any `0 > `, sine an `0 di-mensional subube is the disjoint union of `-dimensional ones. We study balanedolorings sine they exatly apture the ombinatorial properties of `-AONT'sand `-ERF's. We get the following equivalenes.Lemma 3. Ignoring eÆieny, the following equivalenes hold in the perfetsetting:1. `-AONT's from k to n bits() weighted `-balaned olorings of n-dimensionalhyperube with 2k olors.2. `-ERF's from n to k bits () uniform `-balaned olorings of n-dimensionalhyperube with 2k olors.Proof Sketh. For the �rst equivalene, the olor of node y 2 H orresponds tothe value if the inverse map I(y), and its weight orresponds to Prx;T (T (x) = y).For the seond equivalene, the olor of node y 2 H is simply f(y). utNotie, the lemma above also gives more insight into why perfet AONT's aremore general than perfet ERF's (and an alternative proof of Lemma 1). We nowrestate our lower bound on perfet AONT's in Theorem 1 in terms of weighted`-balaned olorings of H with  = 2k olors (proving it for general ).Theorem 2. Any (non-empty) `-balaned weighted oloring of the n-dimensionalhyperube using  olors must have ` � n2 +�1� n2(�1)�. Moreover, equality anhold only if the oloring is uniform and no two adjaent nodes of positive weighthave the same olor.We believe that the theorem above is interesting in its own right. It says thatone the number of olors is at least 3, it is impossible to �nd a -oloring (evenweighted!) of the hyperube suh that all `-dimensional sububes are \equi-olored", unless ` is very large (linear in n).



3.2 Proof of the Lower Bound (Theorem 2)In our proof of Theorem 2, we will onsider the 2n-dimensional vetor spaeV onsisting of real-valued (not boolean!) vetors with positions indexed bythe strings in H, and we will use fats about the Fourier deomposition of thehyperube.Fourier Deomposition of the Hyperube. Like the original proof ofFriedman [15℄ for the ase of uniform olorings, we use the adjaeny matrixA of the hyperube. A is a 2n � 2n dimensional 0-1 matrix, where the entryAx;y = 1 i� x and y (both in f0; 1gn) di�er in exatly one oordinate. Reallthat a non-zero vetor v is an eigenvetor of the matrix A orresponding to aneigenvalue �, if Av = �v. Sine A is symmetri, there is an orthonormal basisof R2n in whih all 2n vetors are eigenvetors of A. For two strings in x; z inf0; 1gn, let x � z denote their inner produt modulo 2 and let weight(z) be thenumber of positions of z whih are equal to 1. Then:Fat 1 A has an orthonormal basis of eigenvetors fvz : z 2 f0; 1gng, wherethe eigenvalue of vz is �z = n� 2 � weight(z), and the value of vz at position yis vz(y) = 1p2n � (�1)z�y.We will use the notation hu;vi = u>v =Pi uivi to denote the inner produtof u and v, and let kuk2 = hu;ui = Pi u2i denote the square of the Eulideannorm of u. We then get the following useful fat, whih follows as an easy exerisefrom Fat 1 (it is also a onsequene of the Courant-Fisher inequality).Fat 2 Assume fvz : z 2 f0; 1gng are the eigenvetors of A as above, and letu be a vetor orthogonal to all the vz's orresponding to z with weight(z) <t: hu;vzi = 0. Then we have: u>Au � (n� 2t) � kuk2. In partiular, for anyu we have: u>Au � n � kuk2.Exploiting Balanedness. Consider a non-empty `-balaned weighted ol-oring � of the hyperube using  olors. Let �i be the harateristi weight vetororresponding to olor i (i.e. �i(y) is the weight of y when y has olor i and 0otherwise). As we will show, the �i's have some nie properties whih apturethe balanedness of the oloring �. In partiular, we know that for any olors iand j and for any `-dimensional subube of H, the sum of the omponents of�i and of �j are the same in this subube. Hene, if we onsider the di�erene(�i��j), we get that the sum of its oordinates over any `-dimensional sububeis 0.To exploit the latter property analytially, we onsider the quantity (�i ��j)>A(�i��j), where A is the adjaeny matrix of the n-dimensional hyperube.As suggested by Fat 2, we an bound this quantity by alulating the FourieroeÆients of (�i � �j) orresponding to large eigenvalues. We get:Lemma 4. For any i 6= j, we have: (�i��j)>A(�i��j) � (2`�n�2)�k�i��jk2.



We postpone the proof of this ruial lemma until the the end of this setion,and now just use it to prove our theorem. First, note that the lemma above onlygives us information on two olors. To simultaneously use the information fromall pairs, we onsider the sum over all pairs i; j, that is� def=Xi;j (�i � �j)>A(�i � �j) (2)We will give upper and lower bounds for this quantity (Equation (3) andEquation (4), respetively), and use these bounds to prove our theorem. We �rstgive the upper bound, based on Lemma 4.Claim. � � 2 (2`� n� 2) (� 1) �Xi k�ik2 (3)Proof. We an ignore the terms of � when i = j sine then (�i � �j) is the 0vetor. Using Lemma 4 we get an upper bound:Xi;j (�i � �j)>A(�i � �j) � (2`� n� 2) �Xi 6=j k�i � �jk2Now the vetors �i have disjoint supports (sine eah y 2 H is assigned only oneolor), so we have k�i � �jk2 = k�ik2 + k�jk2. Substituting into the equationabove, we see that eah k�ik2 appears 2(�1) times (reall that  is the numberof olors), whih immediately gives the desired bound in Equation (3). utSeond, we an expand the de�nition of � to diretly obtain a lower bound.Claim. � � �2n �Xi k�ik2 (4)Proof. Sine A is symmetri we have �>i A�j = �>j A�i. Then:Xi;j (�i � �j)>A(�i � �j) =Xi;j ��>i A�i + �>j A�j � 2�>i A�j�= 2 �Xi �>i A�i � 2 �Xi;j �>i A�jLet us try to bound this last expression. On the one hand, we know that �>i A�i �0 sine it is a produt of matries and vetors with non-negative entries. On theother hand, we an rewrite the last term as a produt:Xi;j �>i A�j =  Xi �i!>A Xi �i!



This quantity, however, we an bound using the fat that the maximum eigen-value of A is n (see Fat 2). We get: Xi �i!> A  Xi �i! � n � Xi �i2Sine the vetors �i have disjoint support (again, eah node y is assigned aunique olor), they are orthogonal and so kPi �ik2 = Pi k�ik2. Combiningthese results, we get the desired lower bound:Xi;j (�i � �j)>A(�i � �j) � 0� 2n �Xi k�ik2 = �2n �Xi k�ik2 utCombining the lower and the upper bounds of Equation (3) and Equation (4),we notie that Pi k�ik2 > 0 and an be anelled out (sine the oloring � isnon-empty). This gives us 2(2`�n� 2)(� 1) � �2n, whih exatly implies theneeded bound on `.Proof of Lemma 4. It remains to prove Lemma 4, i.e. (�i��j)>A(�i��j) �(2` � n � 2) � k�i � �jk2. By Fat 2, it is suÆient show that all the FourieroeÆients of (�i��j) whih orrespond to eigenvalues �z � 2`�n = n�2(n�`)are 0. In other words, that (�i��j) is orthogonal to all the eigenvetors vz whoseeigenvalues are at least (n � 2(n � `)), i.e. weight(z) � n � `. But reall thatby the de�nition of balanedness, on any subube of dimension at least `, theomponents of (�i � �j) sum to 0! On the other hand, the eigenvetors vz areonstants on very large-dimensional sububes of H when �z is large (see Fat 1).These two fats turn out to be exatly what we need to in order to show thathvz ; �i � �ji = 0 whenever �z � 2`� n, and thus to prove Lemma 4.Claim. For any z 2 f0; 1gn with weight(z) � n� ` (i.e. �z � 2`� n), we have:hvz ; �i � �ji = 0.Proof. Pik any vetor z = (z1; : : : ; zn) 2 f0; 1gn with weight(z) � n � `, andlet S be the support of z, i.e. S = fj : zj = 1g. Note that jSj � n�`. Also, reallthat vz(y) = 1p2n � (�1)z�y (see Fat 1). Now onsider any assignment a to thevariables of S. By letting the remaining variables take on all possible values, weget some subube of the hyperube, all it Ha.One the one hand, note that vz is onstant (either 1=p2n or �1=p2n) onthat subube, sine if y and y0 di�er only on positions not in S, we will havez �y = z �y0. Call this value Ca. On the other hand, sine the oloring is `-balanedand sine jSj � n� `, the subube Ha has dimension at least ` and so we knowthat both olors i and j have equal weight on Ha. Thus summing the values of(�i � �j) over this subube gives 0.Using the above two observations, we show that h�i � �j ;vzi = 0 by rewrit-ing the inner produt as a sum over all assignments to the variables in S:



h�i � �j ;vzi = Xy2Hvz(y)[�i(y)� �j(y)℄ = Xa2f0;1gjSj0�Xy2Ha vz(y)[�i(y)� �j(y)℄1A=Xa Ca �0�Xy2Ha �i(y)� Xy2Ha �j(y)1A =Xa Ca � 0 = 0 utEquality Conditions. We now determine the onditions on the olorings sothat we an ahieve equality in Theorem 2 (and also Theorem 1). Interestingly,suh olorings are very strutured, as we an see by traing through our proof.Namely, onsider the lower bound proved in Equation (4), i.e. that Pi;j(�i ��j)>A(�i��j) � �2nPi k�ik2. Going over the proof, we see that equality anour only if two onditions our.On the one hand, we must have �>i A�i = 0 for all olors i. An easy alulationshows that �>i A�i is 0 only when there is no edge of non-zero weight onnetingtwo nodes of olor i. Thus, this ondition implies that the oloring is in fat a-oloring in the traditional sense of omplexity theory: no two adjaent nodeswill have the same olor. On the other hand, the inequality (Pi �i)>A(Pi �i) �n � kPi �ik2 must be tight. This an only hold if the vetor � =Pi �i is parallelto (1; 1; : : : ; 1) sine that is the only eigenvetor with the largest eigenvalue n.But this means that all the weights �(y) are the same, i.e. that the oloring mustbe uniform.We also remark that Chor et al. [12℄ showed (using the Hadamard ode) thatour bound is tight for k � logn.3.3 Extension to Larger AlphabetsAlthough the problem of onstruting AONT's is usually stated in terms of bits, itis natural in many appliations (e.g., seret-sharing) to onsider larger alphabets,namely to onsider T : f0; : : : ; q � 1g ! f0; : : : ; q � 1gn. All the notions fromthe \binary" ase naturally extend to general alphabets as well, and so does ourlower bound. However, the lower bound we obtain is mostly interesting when thealphabet size q is relatively small ompared to n. In partiular, the thresholdn=2, whih is so ruial in the binary ase (when we are trying to enode morethan logn bits), beomes n=q (reall, q is the size of the alphabet). Signi�antly,this threshold beomes meaningless when q > n. This isn't surprising, sine inthis ase we an use Shamir's seret sharing [25℄ (provided q is a prime power)and ahieve ` = k. We also remark that our bound is tight if qk � n and an beahieved similarly to the binary ase by using the q-ary analog of the Hadamardode.Theorem 3. For any integer q � 2, let T : f0; : : : ; q � 1gk ! f0; : : : ; q � 1gnbe a perfet `-AONT. Then` � nq +�1� q � 1q � nqk � 1�



In partiular, ` > n=q when qk > n.Similarly to the binary ase, there is also a natural onnetion between `-AONT'sand weighted `-balaned olorings of the \multi-grid" f0; : : : ; q�1gn with  = qkolors. And again, the bound of Theorem 2 extends here as well and beomes` � nq + �1� q�1q � n�1� :The proof tehniques are essentially idential to those for the binary ase. Wenow work with the graph f0; : : : ; q�1gn, whih has an edge going between everypair of words that di�er in a single position. We think of verties in this graphas vetors in Znq . If ! is a primitive q-th root of unity in C , then a orthonormalbasis of eigenvetors of the adjaeny matrix is given by the qn-dimensionalomplex vetors vz for z 2 f0; : : : ; q� 1gn, where vz(y) = 1pqn � !z�y (here, z � yis the standard dot produt modulo q). Construting upper and lower boundsas above, we eventually get (q` � n � q)( � 1)Pi k�ik2 � �n(q � 1)Pi k�ik2whih implies the desired inequality. Equality onditions are the same.4 Adaptive Seurity in the Statistial SettingWe now address the question of adaptive seurity in the statistial setting. In-deed, we saw that both perfet ERF's and perfet AONT's have strong limita-tions. We also observed in Lemma 2 that we only need to onentrate on ERF's| we an use them to onstrut AONT's. Finally, we know that applying a reg-ular pseudorandom generator to a good adaptively seure statistial ERF willresult in a good adaptively seure omputational ERF. This leaves with the needto onstrut adaptive statistial ERF's (reall that unfortunately, the onstru-tion of [10℄ for the stati ase is not adaptively seure). Hene, in this setionwe disuss only the statistial setting, and mainly resilient funtions (exept forSetion 4.3; see below).More spei�ally, in Setion 4.1 we disuss several avors of statistial re-silient funtions, and the relation among them, whih should be of independentinterest. In partiular, we argue that the notion of almost-perfet resilient fun-tions (APRF) [19℄ is the strongest one (in partiular, stronger than adaptiveERF). In Setion 4.2 we show how to onstrut APRF's. While seemingly onlyslightly weaker than perfet RF's, we show that we an ahieve muh smaller,optimal resiliene for suh funtions: ` � k (ompare with ` � n=2 for perfetRF's). In partiular, this will imply the existene of nearly optimal statistialRF's and adaptive statistial ERF's with the same parameters. Finally, in Se-tion 4.3 we will show that APRF's an also be used to show the existene ofoptimal seret-only adaptive statistial AONT's (whih improves the one-timepad onstrution from Lemma 2 and was not known even in the non-adaptivesetting of [10℄).4.1 Adaptive ERF and Other Flavors of Resilient FuntionsThe de�nition presented in setion 2 for adaptive seurity of an ERF is only oneof several possible notions of adaptive seurity. Although it seems right for most



appliations involving resiliene to exposure, one an imagine stronger attaksin whih the seurity of resilient funtions (RF), whih tolerate even partly �xedinputs, would be desired. In this setion we relate these various de�nitions, andredue them to the stronger notion of an almost-resilient funtion [19℄, whihare of independent ombinatorial interest.There are several parameters whih one naturally wants to vary when on-sidering \adaptive" seurity of an ERF, whih is in its essene an extrator forproduing good random bits from a partially ompromised input.1. Does the adversary get to see the hallenge (output vs. a random string)before deiding how to \ompromise" the input?2. Does the adversary get to deide on input positions to \ompromise" one ata time or all at one?3. Does the adversary get to �x (rather than learn) some of the positions?Flavors of Resilient Funtions. To address the above questions, we lay outthe following de�nitions. Unless stated otherwise, f denotes an eÆient funtionf : f0; 1gn ! f0; 1gk, L 2 f ǹg, r is hosen uniformly from f0; 1gn, R is hosenuniformly from f0; 1gk. Finally, the adversary A is omputationally unbounded,and has to obtain a non-negligible advantage in the orresponding experiment.1. (Weakly) Stati ERF: (This is the original notion of [10℄.)r 2 f0; 1gn is hosen at random. The adversary A spei�es L and learnsw = [r℄�L. A is then given the hallenge Z whih is either f(r) or R. A mustdistinguish between these two ases.2. Strongly Stati ERF: (In this notion, the hallenge is given �rst).r 2 f0; 1gn is hosen at random. The adversary A is then given the hallengeZ whih is either f(r) or R. Based on Z, A spei�es L, then learns w = [r℄�L,and has to distinguish between Z = f(r) and Z = R.3. Weakly Adaptive ERF: (This is a natural notion of adaptivity for ERF.)r 2 f0; 1gn is hosen at random. The adversary A learns up to (n� `) bits ofr, one at a time, basing eah of his hoies on what he has seen so far. A isthen given the hallenge Z whih is either f(r) or R, and has to distinguishbetween these two ases.4. (Strongly) Adaptive ERF: (This is the notion de�ned in Setion 2.)r 2 f0; 1gn is hosen at random. The adversary A is then given the hallengeZ whih is either f(r) or R. Based on Z, A learns up to (n � `) bits of r,one at a time, and has to distinguish between Z = f(r) and Z = R.5. Statistial RF: (This is the extension of resilient funtions [12, 3℄ to thestatistial model, also de�ned in Setion 2.)A hooses any set L 2 f ǹg and any w 2 f0; 1gn�`. A requests that [r℄�L isset to w. The remaining ` bits of r in L are set at random. A is then givena hallenge Z whih is either f(r) or R, and has to distinguish betweenthese two ases. (Put another way, A loses if for any L 2 f ǹg and anyw 2 f0; 1gn�`, the distribution indued by f(r) when [r℄�L = w and theother ` bits of r hosen at random, is statistially lose to the uniform onf0; 1gk.)



6. Almost-Perfet RF (APRF): (This is the notion of [19℄.)A hooses any set L 2 f ǹg and any w 2 f0; 1gn�`. A requests that [r℄�L isset to w. The remaining ` bits of r in L are set at random and Z = f(r)is evaluated. A wins if there exists y 2 f0; 1gk suh that Pr(Z = y) in thisexperiment does not lie within 2�k(1� �), where � is negligible.5Note that for eah of the �rst �ve notions above, we an de�ne the \error pa-rameter" � as the advantage of the adversary in the given experiment (for thesixth notion, � is already expliit).Let us begin by disussing the notion we started with | adaptive ERF. First,it might seem initially like the notion of weakly adaptive ERF is all that we need.Unfortunately, we have seen that to onstrut adaptive AONT's from ERF's viaLemma 2, we need strong adaptive ERF's. Seond, the \algorithmi" adaptivebehavior of the adversary is diÆult to deal with, so it seems easier to deal witha more ombinatorial notion. For example, one might hope that a statistial RFis by itself an adaptive ERF (notie, suh RF is learly a stati ERF), and thenonentrate on onstruting statistial RF's. Unfortunately, this hope is false, asstated in the following lemma.Lemma 5. There are funtions whih are statistial RF but not statistial adap-tive (or even strongly stati!) ERF.Proof Sketh. Let n be the input size. Let f 0 be an statistial RF from n0 = n2 bitsto k0 = n6 bits suh that `0 = n4 . Suh funtions exist, as we prove in Setion 4.2.De�ne f as follows: on an n-bit input string r, break r into two parts r1 andr2 both of length n2 . Apply f 0 to r1 to get a string s of length n6 . Now divide sinto n6(log n�1) bloks of size log n2 , whih an be interpreted as a random subsetS from f1; : : : ; n2 g with n6(log n�1) elements. LetLS be the parity of the bits in[r2℄S . The output of f is the pair hs;LSi. Thus k � n6 .Now let ` = n � n6(logn�1) . Clearly, an adversary who sees the hallenge�rst, an (non-adaptively) read the bits [r2℄S and hek the parity (giving himadvantage at least 1=2 over the random string). Thus, f is not an adaptivelyseure ERF. On the other hand, an adversary who an �x only (n�`) � n=6 log(n)input bits an still not learn anything about the output of f 0 and thus is unlikelyto know the value of all the bits in S. Suh an adversary will always havenegligible advantage. Hene f is a statistial RF. utSine the opposite diretion (from adaptive ERF's to statistial RF's) is obvi-ously false as well, we ask if some notion atually an simultaneously ahieve bothadaptive seurity for ERF, and statistial seurity for RF. Fortunately, it turnsthat by satisfying the stronger ondition of an almost-perfet resilient funtion(APRF) [19℄, one obtains an adaptive ERF. Sine APRF's will play suh a ruialrole in our study, we give a separate, more formal de�nition.5 Note that in [19℄ the error parameter was measured slightly di�erently: they de�ne� as the maximum absolute deviation. Our onvention makes sense in the rypto-graphi setting sine then the adversary's advantage at distinguishing f(r) fromrandom in any of the above experiments is omparable �, as opposed to �2k.



De�nition 7. A polynomial time funtion f : f0; 1gn ! f0; 1gk is `-APRF(almost-perfet resilient funtion) if for any L 2 f ǹg, for any assignment w 2f0; 1gn�` to the positions not in L, for a randomly hosen r 2 f0; 1gn and forsome negligible � = negl(n), we have:Pr(f(r) = y ��� [r℄�L = w) = (1� �)2�k (5)While it is obvious that any APRF is a statistial RF (by summing over 2kvalues of y), the fat that it is also an adaptive ERF is less lear (espeiallyonsidering Lemma 5), and is shown below.Theorem 4. If f is an APRF, then f is a statistial adaptive ERF.Proof. By assumption, f is an `-APRF with error �: for every set L 2 f ǹg andevery assignment w to the variables not in L, Equation (5) above holds whenr is hosen at random. Now suppose that we have an adaptive adversary Awho, given either Z = f(r) or Z = R and (limited) aess to r, an distinguishbetween the two ases with advantage �0. We will show that �0 � �.At �rst glane, this may appear trivial: It is tempting to attempt to proveit by onditioning on the adversary's view at the end of the experiment, andonluding that there must be some subset L and appropriate �xing w whihalways leads to a good hane of distinguishing. However, this argument failssine the adversary A may base his hoie of L on the partiular hallenge hereeives, and on the bits he onsiders.So we use a more sophistiated argument, although based on a similar intu-ition. First, we an assume w.l.o.g. that the adversaryA is deterministi, beausethere is some setting of his random oins onditioned on whih he will distin-guish with advantage at least �0, and so we may as well assume that he alwaysuses those oins.Following the intuition above, we onsider the adversary's view at the end ofthe experiment, just before he outputs his answer. This view onsists of two om-ponents: the input hallenge Z and the (n� `) observed bits w = w1; : : : ; wn�`(whih equal [r℄�L for some set L of size at least `). Signi�antly, L need not beexpliitly part of the view: sine A is deterministi, L is a funtion of Z and w.Denote by View(Z)A the view of A on hallenge Z. When Z = R, it is easy toevaluate the probability that A will get a given view. Sine the values r 2 f0; 1gnand R 2 f0; 1gk are independent, we havePr hView(R)A = (y; w)i = 2�(n�`+k)On the other hand, when Z = f(r), we have to be areful. If L is the subsetorresponding to A's hoies on view (y; w), then we do indeed have:Pr hView(f(r))A = (y; w)i = Pr hf(r) = y ^ [r℄�L = wiThis last equality holds even though the hoie of L may depend on y. In-deed, A is deterministi and so he will always hoose the subset L when [r℄�L = w,



regardless of the other values in r. Thus, we an in some sense remove the adver-sary from the disussion entirely. Now this last probability an be approximatedby onditioning and using Equation (5):Pr hf(r) = y ^ [r℄�L = wi = Pr hf(r) = y ��� w = [r℄�LiPr hw = [r℄�Li= (1� �)2�k � 2�(n�`)= (1� �)2�(n�`+k)We an now expliitly ompute the adversary's probability of suess in eahof the two experiments we are omparing. Let A(y; w) = 1 if A aepts on view(y; w) and 0 otherwise. Then:�0 = ���Pr hAr(f(r)) = 1i� Pr hAr(R) = 1i���= �����Xy;w �Pr hView(f(r))A = (y; w)i � Pr hView(R)A = (y; w)i� �A(y; w)������Xy;w ���(1� �)2�(n�`+k) � 2�(n�`+k)��� � �Thus �0 � �, and so f is a statistial adaptive ERF. utClassifiation of Resilient Funtions. In fat, we an ompletely relateall the six notions of resilient funtions that we introdued:
Almost−Perfect RFStatic ERF

Static ERF
Strongly

Weakly

Adaptive ERF

Statistical RFAdaptive ERFThis diagram is omplete: if there is no path from notion A to notion B, thenthere is a funtion whih satis�es A but not B. We notie that exept for thetwo proofs above, only one non-trivial proof is needed in order to omplete thediagram: the separation between weakly adaptive ERF's and stati ERF's (otherimpliations and separations are easy exerises). However, this separation followsfrom the stati onstrution of Canetti et al. [10℄, whih, as we mentioned, neednot yield a weakly adaptive ERF.We also remark that while the diagram above is useful from a strutural pointof view, in the next setion we show how to build APRF's | the strongest of theabove notions | ahieving l � k, whih is nearly optimal even for stati ERF's| the weakest of the above notions. Thus, all the above notions are almostthe \same" in terms of the optimal parameters they ahieve (whih are alsosubstantially better than those possible in the perfet setting).



4.2 Obtaining Nearly Optimal Almost-Resilient FuntionsGiven the disussion of the previous setion, it is natural to try to onstrutgood APRF's. These were �rst de�ned and studied by Kurosawa et al. [19℄.Using tehniques from oding theory, they onstrut6 `-APRF suh that ` �n+k2 +2 log � 1� �. Although this beats the lower bound on perfet ERF of [15, 4℄, itis very far from the trivial lower bound ` � k, espeially when k = o(n). Thus, itis natural to ask whether this is a fundamental limitation on APRF's, or whetherindeed one an approah this simplisti lower bound.As a �rst step, we an show that if f is piked at random from all thefuntions from f0; 1gn to f0; 1gk, it is very likely to be a good APRF (we omitthe proof sine we subsume it later). However, this result is of little pratialvalue: storing suh a funtion requires k �2n bits. Instead, we replae the randomfuntion with a funtion from a t-wise independent hash family [11℄ for t roughlyon the order of n. Funtions in some suh families (e.g., the set of all degree t�1polynomials over the �eld GF (2n)) require as little as tn bits of storage, and areeasy to evaluate.Using tail-bounds for t-wise independent random variables, one an showthat with very high probability we will obtain a good APRF:Theorem 5. Fix any n, ` and �. Let F be a family of t-wise independent fun-tions from n bits to k bits, where t = n= logn andk = `� 2 log�1��� O(logn)Then with probability at least (1 � 2�n) a random funtion f sampled from Fwill be an `-APRF (and hene adaptive `-ERF and statistial `-RF) with error �.Corollary 1. For any ` = !(logn), there exists an eÆient statistial adaptive`-ERF f : f0; 1gn ! f0; 1gk with k = `� o(`).The proof of Theorem 5 uses the following lemma, whih is used (impliitly)in the onstrutions of deterministi extrators of [27℄. Reall that a distributionX over f0; 1gn has min-entropy m, if for all x, Pr(X = x) � 2�m.Lemma 6. Let F be a family of t-wise independent funtions (for even t � 8)from n to k bits, let X be a distribution over f0; 1gn of min-entropy m, and lety 2 f0; 1gk. Assume for some � > 0k � m��2 log 1� + log t+ 2�� : (6)Let f be hosen at random from F and x be hosen aording to X. ThenPrf2F�����Prx (f(x) = y)� 12k ���� � � � 12k� � 2��t (7)6 This result looks (but is not) di�erent from the one stated in [19℄ sine we measure� di�erently.



In other words, for any y 2 f0; 1gk, if f is hosen from F then with overwhelmingprobability we have that the probability that f(X) = y is 12k (1� �).Theorem 5 follows trivially from this lemma. Indeed, set � = 3 logn, t =n= logn. Notie that for any L 2 f ǹg and any setting w of bits not in L, therandom variable X = hr j [r℄�L = wi has min-entropy m = `. Then k given inTheorem 5 indeed satis�es Equation (6). Now we apply Lemma 6 and take theunion bound in Equation (7) over all possible �xings of some (n� `) input bits,and over all y 2 f0; 1gn. Overall, there are at most �ǹ�2n�`2k � 22n termsin the union bound, and eah is less than 2��t = 2�3n, �nishing the proof ofTheorem 5.For ompleteness, we give a simple proof of Lemma 6. We will make use ofthe following \tail inequality" for sums of t-wise independent random variablesproven by Bellare and Rompel [2℄. There they estimate Pr[jY � Exp[Y ℄j > A℄,where Y is a sum of t-wise independent variables. We will only be interested inA = � � Exp[Y ℄, where � � 1. In this ase, traing the proof of Lemma 2.3 (andLemma A.5 that is used to prove it) of [2℄, we get the following:Theorem 6 ([2℄). Let t be an even integer, and assume Y1; : : : ; YN are t-wiseindependent random variables in the interval [0; 1℄. Let Y = Y1 + : : : + YN ,� = Exp[Y ℄ and � < 1. ThenPr(jY � �j � ��) � Ct �� t�2��t=2 (8)where the onstant Ct < 3 and in fat Ct < 1 for t � 8.Now we an prove Lemma 6:Proof. Let px denote the probability that X = x, and let q denote the randomvariable (only over the hoie of f) whih equals to the probability (over thehoie of x given f) that f(x) = y, i.e.q = Xx2f0;1gn px � Iff(x)=ygwhere Iff(x)=yg is an indiator variable whih is 1 if f(x) = y and 0 other-wise. Sine for any x the value of f(x) is uniform over f0; 1gk, we get thatExpf [Iff(x)=yg℄ = 2�k, and thus Expf [q℄ = 2�k. Notie also that the variablesIff(x)=yg are t-wise independent, sine f is hosen at random from a family oft-wise independent funtions. And �nally notie that sine X has min-entropym, we have that all px � 2�m.Thus, if we let Qx = 2m � px � Iff(x)=yg, and Q = Px2f0;1gn Qx = 2mq, weget that the variables Qx are t-wise independent, all reside in the interval [0; 1℄,and Exp[Q℄ = 2mExp[q℄ = 2m�k. Now we an apply the tail inequality given inTheorem 6 and obtain:



Prf �����q � 12k ���� � � � 12k � = Prf ���Q� 2m�k�� � � � 2m�k�� � t�2 � 2m�k�t=2 = � 12m�k�2 log 1��log t�t=2� 2��twhere the last inequality follows from Equation (6). ut4.3 Adaptively Seure AONTWe already remarked that that the onstrution of optimal adaptive statistialERF's implies the onstrution of adaptive omputational ERF's. Combined withLemma 2, we get optimal onstrutions of AONT's as well. We notie also thatthe publi part of these AONT onstrution is k. In the statistial setting, wherewe ahieved optimal ` = k+o(k), we ould then ombine the publi and the seretpart of the AONT to obtain a seret-only adaptive AONT with ` = 2k + o(k).One may wonder if there exist statistial seret-only AONT's with ` = k + o(k),whih would be optimal as well. Using our onstrution of almost-perfet resilientfuntions, we give an aÆrmative answer to this question. Our onstrution is noteÆient, but the existential result is interesting beause it was not known evenin the stati setting.Lemma 7. Ignoring the issue of eÆieny, there exist adaptive statistial seret-only `-AONT T : f0; 1gk ! f0; 1gn with ` = k + o(k).Proof. Reall, Lemma 1 used an inverse of a perfet RF (or ERF, whih is thesame) to onstrut perfet seret-only AONT. We now show that the same on-strution an be made to work in the statistial setting provided we use APRFrather than weaker statistial RF. In partiular, let f : f0; 1gn ! f0; 1gk be an`-APRF. We know that we an ahieve ` = k + o(k). We de�ne T (x) to be arandom r 2 f0; 1gn suh that f(r) = x. (This is well-de�ned sine APRF's aresurjetive.)Now take any distingusher A, any x 2 f0; 1gk and any possible view of Ahaving orale aess to T (x) = r. Sine we an assume that A is deterministi,this view an be spei�ed by the (n�`) values w thatA read from r (in partiular,the subset L is also determined from w). Now, we use Bayes law to estimatePr(View(T (x))A = w). Notie, sine r = T (x) is a random preimage of x, weould assume that r was hosen at random from f0; 1gn, and use onditioning
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