
On the Power of Claw-Free PermutationsYevgeniy Dodis� Leonid ReyzinyAugust 2, 2002AbstratProbabilisti Signature Sheme (PSS), Full Domain Hash (FDH) and several of their variants arewidely used signature shemes, whih an be formally analyzed in the random orale model. Theseshemes output a signature of the form 
f�1(y); pub�, where y somehow depends on the messagesigned (and pub) and f is some publi trapdoor permutation (typially RSA). Interestingly, all thesesignature shemes an be proven asymptotially seure for an arbitrary trapdoor permutation f ,but their exat seurity seems to be signi�antly better for speial trapdoor permutations like RSA.This leads to two natural questions: (1) an the asymptoti seurity analysis be improved withgeneral trapdoor permutations?; and, if not, (2) what general ryptographi assumption on f |enjoyed by spei� funtions like RSA | is \responsible" for the improved seurity?We answer both these questions. First, we show that if f is a \blak-box" trapdoor permutation,then the poor exat seurity is unavoidable. More spei�ally, the \seurity loss" for generaltrapdoor permutations is 
(qhash), where qhash is the number of random orale queries made by theadversary (whih ould be quite large). On the other hand, we show that all the seurity bene�tsof the RSA-based variants ome into e�et one f omes from a family of law-free permutationpairs. Our results signi�antly narrow the urrent \gap" between general trapdoor permutationsand RSA to the \gap" between trapdoor permutations and law-free permutations. Additionally,they an be viewed as the �rst seurity/eÆieny separation between these basi ryptographiprimitives. In other words, while it was already believed that ertain ryptographi objets anbe build from law-free permutations but not from general trapdoor permutations, we show thatertain important shemes (like FDH and PSS) provably work with either, but enjoy a muh bettertradeo� between seurity and eÆieny when deployed with law-free permutations.
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1 IntrodutionFDH-like Signature Shemes. In 1993, Bellare and Rogaway [BR93℄ formalized the well-known\hash-and-sign" paradigm for digital signature shemes by using the random orale model. Spei�-ally, they showed that if f is a trapdoor permutation and RO is a random funtion from f0; 1g� tothe domain of f , then signing a message m via f�1(RO(m)) is seure. This signature sheme wassubsequently alled \Full-Domain-Hash" or FDH.In 1996, Bellare and Rogaway [BR96℄ pointed out that no tight seurity redution from breakingFDH to inverting f was known. The best known seurity redution lost a fator of qhash + qsig inseurity (qhash and qsig represent the number of queries the forger makes to RO and to the signingorale, respetively). This meant that the inverter ould invert f with muh lower probability thanthe probability of forgery. This in turn required one to make a stronger assumption on f , potentiallyinreasing key size and losing eÆieny.To overome this problem in ase the trapdoor permutation is RSA (or Rabin), [BR96℄ proposedto hash the message with a random seed and format the result in a partiular way (to �t it into thedomain) before putting it through the permutation. The resulting sheme was thus probabilisti evenwhen RO was �xed; it was termed PSS for \Probabilisti Signature Sheme." The seurity redutionfor PSS (analyzed with RSA) is essentially lossless.A natural question thus arose: was PSS neessary? In other words, ould it be that a lossless seurityredution for RSA-FDH was simply overlooked? In 2000, Coron [Cor00℄ found a better redutionfor RSA-FDH that lost a fator of qsig (instead of (qhash + qsig)), suggesting that perhaps furtherimprovements were possible. However, in 2002 Coron [Cor02℄ answered the question by showing thatany blak-box redution for RSA-FDH had to lose a fator of at least qsig, thus justifying the neessityof PSS. In the same paper, he also introdued a sheme alled PFDH (for \Probabilisti Full-DomainHash"), whih signsm by omputing 
RSA�1(RO(mkr)); r� for a random r. This sheme is essentiallyPSS without the ompliated formatting (and hene with slightly longer outputs), but with the sametight seurity.From Generi Assumption to RSA. While in 1993 [BR93℄ FDH was introdued to work withany trapdoor permutation, in 1996 [BR96℄ PSS, and in 2002 [Cor02℄ PFDH were onsidered only forRSA. Moreover, in 2002 [Cor00℄ the improved seurity redution for FDH was only shown with RSA aswell. This shift from generi assumptions to spei� ones, while motivated by pratial appliationsof the onstrutions, obsured what it was exatly about RSA that made PSS and PFDH redutionsnearly tight, and aounted for the better seurity redution for FDH. It is bene�ial to onsiderwhih properties of RSA are ruial here, and whih are merely inidental. Among other potentialinsights to be gained from suh a onsideration, is the possibility of using FDH, PSS or PFDH withother permutations. To emphasize this point and to avoid further onfusion, we will denote by FDH,PFDH and PSS the signature shemes above onsidered with general trapdoor permutation f , and byRSA-FDH, RSA-PFDH, RSA-PSS the spei� variants with f being RSA.Our Contribution. We onsider the question of identifying the general ryptographi assumptionsthat make the aforementioned eÆient seurity redutions possible. Beause all these shemes an beeasily proven asymptotially seure with any trapdoor permutation f , it is natural to onsider whethertrapdoorness of f is the only seurity assumption neessary for a tight seurity redution. The answeris \no": we show that a tight seurity redution is impossible for FDH, PFDH, PSS, and in fat anysheme that onsists of applying f�1 to the result of applying the random orale to the message(possibly formatted with some randomness), if the sheme is to be analyzed with a general \blak-box" trapdoor permutation f . Moreover, any blak-box seurity redution for suh shemes has to losea fator of qhash with a generi blak-box trapdoor permutation f : thus, the urrent seurity analysis1



for generi FDH, PFDH and PSS annot be improved.We also show that the general ryptographi assumption that makes the seurity proof for PSS/PFDHtight, and the improved seurity proof for FDH [Cor00℄ work, is the assumption of law-free permuta-tions. In other words, while all three shemes are asymptotially seure with any trapdoor permutationf , the exat seurity is dramatially improved one f omes from a family of law-free permutations(and the bounds are exatly the same as one gets with RSA)! We remark that from a tehnial point,the proof of seurity with general law-free permutations is going to be almost ompletely idential tothe orresponding proof with RSA. Indeed, we are not laiming that we found a new proof. Instead, ourgoal is to �nd an elegant general assumption on f so that essentially the same (in fat, oneptuallysimpler!) proof works.1Claw-Free vs. Trapdoor. Our results also shed new light on the relationship between law-freeand trapdoor permutations. So far, it was already believed that the existene of law-free permuta-tions is a stritly stronger omplexity assumption than the existene of trapdoor permutations. Forexample, it is known how to onstrut ollision-resistant hash funtions (CRHF) [Dam87℄ and (non-interative) trapdoor ommitments [KR00℄ based on law-free permutations, but no suh onstrutionsfrom trapdoor permutations seem likely. In fat, Simon [Sim98℄ showed a blak-box separation be-tween the existene of one-way permutations and the existene of CRHF's, and his result seems toextend to trapdoor permutations. Coupled with the above-mentioned onstrution of CRHF fromlaw-free permutations, we get a plausible separation between the existene of law-free permutationsand trapdoor permutations.Our results provide another, quite di�erent way to separate law-free permutations from trapdoorones. Namely, instead of showing that something onstrutible with law-free permutations (e.g.,CRHF) is not onstrutible with trapdoor ones, we show that law-free permutations an be provablymore eÆient (or, equivalently, more seure) for some onstrutions (e.g., those of FDH-like signatureshemes) than trapdoor ones. In other words, a stronger assumption provides better exat seu-rity/eÆieny than a weaker one, even though both of them work asymptotially. To the best of ourknowledge, this is the �rst separation of the above form, where a stronger primitive is provably shownto improve seurity of a sheme already working with a slightly weaker primitive.A Word on Blak-Box Lower Bounds. We briey put our blak-box separation in relationto existing blak-box lower bounds. Originating with the work of Impagliazzo and Rudih [IR89℄,several works (e.g., [Sim98, GMR01℄) showed impossibility of onstruting one primitive from another.In ontrast, several other works (e.g. [KST99, GT00, GGK02℄) showed the eÆieny limitationsof onstruting one ryptographi primitive from another. On the other hand, the reent work ofCoron [Cor02℄ showed that the existing seurity analysis of a ertain useful sheme annot be improved,if the redution aesses the adversary in a blak-box way. In our work, we show that the existingseurity analysis annot be improved when based on a general omplexity assumption, even though itan be improved in (quite general, but still) speial ases.Organization. In Setion 2 we give the neessary bakground about trapdoor and law-free permu-tation families, and the \FDH-like" signature shemes we onsider. In Setion 3 we show that law-freepermutations give all the advantages of RSA in terms of exat seurity and eÆieny. In Setion 4 weexplain the \blak-box model" and show that poor exat seurity of FDH-like signatures is inevitable1A good analogy ould be to look at the famous Cauhy-Shwartz inequality in mathematis stating kak � kbk � ha; bi.This inequality was originally proved for the ase of real vetors under eulidean norm. However, one one generalizesthis proof to arbitrary Hilbert spaes, the proof atually beomes more transparent, sine one does not get distrated bythe spei�s of real numbers, onentrating only on the essential properties of inner produt spaes.2



when the seurity redution treats the trapdoor permutation f and the adversary in a blak-box man-ner. In Setion 5 we show several onstrutions of law-free permutation families based on strongerkinds of trapdoor permutations, further losing the \gap" between general law-free permutations andthe spei� ones like RSA.2 De�nitionsWe let PPT stand for probabilisti polynomial time, and negl(k) refer to some negligible funtion inthe seurity parameter k. The random orale model assumes the existene of a publily aessibletruly random funtion RO : f0; 1g� ! f0; 1g. Using trivial enoding triks, however, we an alwaysassume that RO(�) will return as many truly random bits as we need in a given appliation.2.1 Trapdoor and Claw-free PermutationsDe�nition 1 A olletion of permutations F = ffi : Di ! Di j i 2 Ig over some index set I � f0; 1g�is said to be a family of trapdoor permutations if:� There is an eÆient sampling algorithm TD-Gen(1k) whih outputs a random index i 2 f0; 1gk\Iand a trapdoor information TK.� There is an eÆient sampling algorithm whih, on input i, outputs a random x 2 Di. We writex Di as a shorthand for running this algorithm.� Eah fi is eÆiently omputable given index i and input x 2 Di.� Eah fi is eÆiently invertible given the trapdoor information TK and output y 2 Di. Namely,using TK one an eÆiently ompute (unique) x = f�1i (y).� For any probabilisti algorithm A, de�ne the advantage of A asAdvFA(k) = Pr[x0 = x j (i;TK) TD-Gen(1k); x Di; y = fi(x); x0  A(i; y)℄ (1)A is said to (t(k); "(k))-break F , if A runs in time at most t(k) and AdvFA(k) � "(k). F is saidto be (t(k); "(k))-seure if no adversary A an (t(k); "(k))-break it. In the asymptoti setting, werequire that the the advantage of any PPT A is negligible in k. Put di�erently, fi is hard toinvert without the trapdoor TK.A lassial example of a trapdoor permutation family is RSA, where TD-Gen(1k) piks two randomk=4-bit primes p and q, sets n = pq, '(n) = (p � 1)(q � 1), piks random e 2 Z�'(n), sets d =e�1 mod '(n) and outputs i = (n; e), TK = d. Here Di = Z�n, fi(x) = xe mod n, f�1i (y) = yd mod n.The RSA assumption states that this F is indeed a trapdoor permutation family.Remark 1 When things are lear from the ontext, we will abuse the notation (in order to \simplify"it) and write: f for fi, D or Df for Di, A(f; : : :) for A(i; : : :); f  F for (i  I \ f0; 1gk ; f = fi),and (f; f�1) TD-Gen(1k) for (i;TK) TD-Gen(1k). Also, we will sometimes say that f by itself isa \trapdoor permutation".De�nition 2 A olletion of pairs of funtions C = f(fi : Di ! Di; gi : Ei ! Di) j i 2 Ig over someindex set I � f0; 1g� is said to be a family of law-free permutations if:� There is an eÆient sampling algorithm CF-Gen(1k) whih outputs a random index i 2 f0; 1gk\Iand a trapdoor information TK.� There are eÆient sampling algorithms whih, on input i, output a random x 2 Di and a randomz 2 Ei. We write x Di, z  Ei as a shorthand.3



� Eah fi (resp. gi) is eÆiently omputable given index i and input x 2 Di (resp. z 2 Ei).� Eah fi is a permutation whih is eÆiently invertible given the trapdoor information TK andoutput y 2 Di. Namely, using TK one an eÆiently ompute (unique) x = f�1i (y).� Eah gi indues a uniform distribution over Di when z  Ei and y = gi(z) is omputed.� For any probabilisti algorithm B, de�ne the advantage of B asAdvCB(k) = Pr[fi(x) = gi(z) j (i;TK) CF-Gen(1k); (x; z) B(i)℄ (2)B is said to (t(k); "(k))-break C, if B runs in time at most t(k) and AdvCB(k) � "(k). C is saidto be (t(k); "(k))-seure if no adversary B an (t(k); "(k))-break it. In the asymptoti setting, werequire that the the advantage of any PPT B is negligible in k. Put di�erently, it is hard to �nda \law" (x; z) (meaning fi(x) = gi(z)) without the trapdoor TK.We remark that the usual de�nition in fat assumes that Ei = Di, eah gi is also a permutation, andthe generation algorithm also outputs a trapdoor TK0 for gi. We do not need this extra funtionalityfor our appliation, whih is why we use our slightly more general de�nition.We also remark that a law-free permutation family C = f(fi; gi)g immediately implies that theorresponding family F def= ffig is a trapdoor permutation family. Indeed, an inverter A for Fimmediately implies a law-�nder B for C who feeds A a random hallenge y = gi(z), where z  Ei:�nding x = f�1i (y) then implies that fi(x) = gi(z). Moreover, the redution is tight: AdvCB = AdvFA .We will say that the resulting trapdoor permutation family F = F(C) is indued by C.Several examples of law-free permutations will be given in Setion 5. We briey mention just oneexample based on RSA. CF-Gen(1k) runs TD-Gen(1k) to get (n; e; d), also piks a random y 2 Z�n,sets i = (n; e; y), TK = d and fi(x) = xe mod n, gi(z) = yze mod n. Finding a law (x; z) impliesy = (x=z)e mod n, whih implies inverting RSA on a random input y. Thus, this family is law-freeunder the RSA assumption. Notie, the indued trapdoor permutation family is exatly the regularRSA family.Remark 2 When things are lear from the ontext, we will abuse the notation (in order to \simplify"it) and write: f=g for fi=gi, D=E or Df=Eg for Di=Ei, A(f; g; : : :) for A(i; : : :); (f; g)  C for(i  I \ f0; 1gk ; f = fi; g = gi), and (f; f�1; g)  CF-Gen(1k) for (i;TK)  CF-Gen(1k). Also, wewill sometimes say that f by itself is a \law-free permutation", and (f; g) is a \law-free pair".2.2 Full Domain Hash and Related Signature ShemesWe �rst de�ne the notion of a signature sheme and its seurity, and then desribe the spei� shemesonsidered in this paper.Syntax. A signature sheme onsists of three eÆient algorithms: S = (Sig-Gen;Sig;Ver). Sig-Gen(1k),where k is the seurity parameter, outputs a pair of keys (SK;VK). SK is the signing key, whih iskept seret, and VK is the veri�ation key whih is made publi. The randomized signing algorithmSig takes as input a key SK and a message m from the assoiated message spae M, internally ipssome oins and outputs a signature �; we write �  SigSK(m). We will usually omit SK and write�  Sig(m). The deterministi veri�ation algorithm Ver takes as input the message m, the signature�, the publi key VK, and outputs the answer a whih is either sueed (signature is valid) or fail(signature is invalid). We require that Ver(m;Sig(m)) = sueed, for any m 2M.In ase a signature sheme (like most of the shemes onsidered in this paper) is build in the randomorale model, we allows both Sig and Ver to use the random orale RO.4



Seurity of Signatures. The seurity of signatures addresses two issues: what we want to ahieve(seurity goal) and what are the apabilities of the adversary (attak model). In this paper we will talkabout the the most ommon seurity goal: existential unforgeability [GMR88℄, denoted by UF. Thismeans that any PPT adversary C should have a negligible probability of generating a valid signatureof a \new" message. To larify the meaning of \new", we will onsider the following two attak models.In the no message attak (NMA), C gets no help besides VK. In the hosen message attak (CMA), inaddition to VK, the adversary C gets full aess to the signing orale Sig, i.e. C is allowed to querythe signing orale to obtain valid signatures �1; : : : ; �n of arbitrary messages m1; : : : ;mn adaptivelyhosen by A (notie, NMA orresponds to n = 0). C is onsidered suessful only if it forges a validsignature � of a message m not queried to signing orale: m 62 fm1 : : : mng. We denote the resultingasymptoti seurity notions by UF-NMA and UF-CMA, respetively. Quantitively, we de�neAdvSC(k) = Pr[VerVK(m;�) = sueed j (SK;VK) Sig-Gen(1k); (m;�) CSigSK(�)(VK)℄ (3)(where m should not be queried to the signing orale Sig(�)). Of ourse, in the random orale modelthe adversary is also given aess to the random orale RO.De�nition 3 The adversary C is said (t(k); qhash(k); qsig(k); "(k))-break S, if C runs is time at mostt(k), makes at most qhash(k) hash queries to RO, qsig(k) signing queries to Sig(�), and AdvSC(k) � "(k).S is said to be (t(k); qhash(k); qsig(k); "(k))-seure, if no adversary C an (t(k); qhash(k); qsig(k); "(k))-break it. In asymptoti terms, S is UF-CMA-seure if AdvSC(k) = negl(k) for any PPT C, andUF-NMA-seure if AdvSC(k) = negl(k) for any PPT C whih does not make any signing queries.FDH-like Shemes. The random orale based signatures we will onsider all have the followingsimple form. The veri�ation key will be the desription of some trapdoor permutation f , the seretkey is the orresponding inverse f�1. To sign a message m, the signer �rst transforms m into a pair(y; pub) T (m) (where pub ould be empty). This transformation T only utilizes the random orale(and possibly some fresh randomness), but not anything related to f or f�1. It also has the propertythat one an easily verify the validity of the triple (m; y; pub). Then the signer omputes x = f�1(y)and returns � = (x; pub). On the verifying side, one �rst omputes y = f(x) and then veri�es thevalidity of the triple (m; y; pub). Of ourse, for the resulting signature to be seure, the transformationT should satisfy some additional properties. Intuitively, the value y should be random (sine f is hardto invert on random inputs) for every m, and also \independent" for di�erent m's (more or less, thisway the inverse of y(m) should not give any information about the inverse of y(m0)). TransformationsT satisfying the above informally stated properties do not seem to exist in the standard model, butare very easy to ome up with in the random orale model.Below we desribe three very popular signature shemes of the above form: Full Domain Hash (FDH[BR93℄), Probabilisti Full Domain Hash (PFDH [Cor02℄), and Probabilisti Signature Sheme (PSS[BR96℄). We remark that another family of similar shemes is desribed in [MR02℄. These signaturesutilize the \swap" method, and are designed for the purpose of improving the exat seurity of severalFiat-Shamir based signature shemes [FS86, GQ88, OS90, Mi94℄. However, one an observe that theresulting signature shemes an be all viewed as less eÆient and more ompliated variants of thePFDH sheme, so we do not desribe them. In the following, f is a trapdoor permutation with domainD, publi key is f and seret key is f�1.FDH: Sig(m) returns � = f�1(RO(m)), and Ver(m;�) heks if f(�) = RO(m) (we assume that ROreturns a random element of D, by impliitly running the orresponding sampling algorithmwith the randomness returned by RO). 5



PFDH: This signature is parameterized by the length parameter k0. Sig(m) piks a random r 2 f0; 1gk0and returns � = 
f�1(RO(mkr)); r�, and Ver(m;�) heks if f(�) = RO(mkr) (again, weassume that RO returns a random element of D). Notie that FDH is a speial ase withjrj = k0 = 0. In general, we will see that the length of \salt" r plays a ruial role in the exatseurity of PFDH.PSS: This signature is parameterized by two length parameters k0 and k1. For onveniene, we willassume that it takes between n� 1 and n bits to enode an element of D, so that every (n� 1)-bit number is a valid element of D (this is not ruial, but makes the desription simpler).We also syntatially split the random orale RO into three independent random orales H :f0; 1g� ! f0; 1gk1 , G1 : f0; 1gk1 ! f0; 1gk0 and G2 : f0; 1gk1 ! f0; 1gn�k0�k1�1. Then, Sig(m)piks a random salt r 2 f0; 1gk0 , omputes w = H(mkr), r� = G1(w) � r and returns � =f�1(0kwkr�kG2(w)). The veri�ation Ver(m;�) omputes y = f(�) 2 D, splits y = bkwkr�k,reovers r = G1(w)� r�, and aepts if H(mkr) = w, G2(w) =  and b = 0.We remark that all these shemes makes sense for arbitrary trapdoor permutation families. Toemphasize a spei� family F , we sometimes write F -FDH, F -PFDH, F -PSS. In partiular, whenF = RSA, we get 3 spei� shemes RSA-FDH, RSA-PFDH, RSA-PSS.Seurity of FDH-like Signatures. All the FDH-like signatures above an be shown asymptoti-ally UF-CMA-seure for arbitrary trapdoor permutation family F . Unfortunately, in terms of exatseurity, the situation is not entirely satisfatory. Spei�ally, if F is (t0; "0)-seure, then one an show(t; qhash; qsig; ")-seurity of any of the above signature shemes where roughly t � t0 and " � "0qhash.Put di�erently, in all three shemes above, the \generi" analysis loses a very large fator qhash in termsof exat seurity. Intuitively, the seurity redution has to \guess" whih of the qhash random oralequeries made by the hypothetial signature breaker is \relevant" for the �nal forgery, and respondto this query in a manner that will help inverting the trapdoor permutation f on a hallenge y. Inase this guess is unsuessful, the forgery of the breaker is useless. Unfortunately, we will show inSetion 4 that this large seurity loss is inevitable when dealing with arbitrary trapdoor permutations.On the other hand, the situation is muh better for the RSA-based examples of the above threeshemes. Spei�ally, for RSA-FDH we one an get t � t0 and " = O("0qsig) [Cor00℄ (and [Cor02℄showed that this analysis annot be improved for RSA). Namely, even though the redution is still nottight (i.e., "� "0), the seurity loss is only a fator qsig � qhash. On the other hand, RSA-PFDH andRSA-PSS are tight, i.e. t � t0 and " � "0 (provided the salt length is somewhat larger than the verymoderate quantity log qsig [Cor02℄), whih dramatially improves on the the generi seurity loss ofqhash.To summarize, generi bounds for FDH, PFDH and PSS are muh worse than the spei� boundswhen F = RSA. One of the main objetives of this paper was to try �nding a general reason for thisgap. Namely, to �nd a very general ondition of F , so that all the bene�ts of RSA ome into e�etwith any F satisfying this ondition. As we show next in Setion 3, the needed ondition is that Fis indued by some family C of law-free permutations. Indeed, we saw in Setion 2.1 that RSA ouldbe viewed as being indued by the some natural law-free family, whih explains muh tighter exatseurity.3 Claw-Free Permutations Yield Improved SeurityWhy law-free permutations seem useful. The preise reason why law-free permutationsare very useful for FDH-like shemes will be obvious from the proof we present later. Here, however,6



we give some preliminary observations why law-freeness seems to be relevant. First, assume we arenot working in the random orale model. The most basi signature sheme that omes to mind is� = f�1(m), where f is a trapdoor permutation. Unfortunately, it is trivially forgeable sine every� is a valid signature of m = f(�). The next �x would be to utilize some funtion g and to output� = f�1(g(m)). Notie, �nding a forgery (m;�) for this signature is equivalent to �ndingm and � suhthat f(�) = g(m), whih exatly amounts to �nding a law (�;m) for the funtion pair (f; g). Thus,the above signature sheme is UF-NMA-seure i� (f; g) omes from a pair of law-free permutations!In fat, the �rst UF-CMA signature sheme [GMR88℄ was based on law-free permutations (and a verynon-trivial extension of the simple observation above), before more general UF-CMA onstrutionswere obtained [BM88, NY89, Rom90℄.Alternatively, let us return to the random orale model and onsider the FDH sheme (in fat,even more general PFDH sheme). The adversary C suessfully forges a signature of some messageif it an ome up with � and � = mkr, suh that f(�) = RO(�). In other words, C has to �nda law (�; �) for the funtion pair (f;RO)! Of ourse, the family f(f;RO)g is not a regular familyof law-free permutations, sine the random orale is not a regular funtion.2 In the seurity proof,however, we may (and will in a seond) simulate the random orale by piking a random z and settingRO(�) = g(z). In this ase, any forgery �; � by C will result in a law (�; z) for a \regular" law-freepair (f; g).Our Result. We show that all the seurity (and eÆieny) bene�ts of RSA-FDH, RSA-PFDH andRSA-PSS over using general trapdoor permutation family F ome into e�et one F is indued by afamily C of law-free permutations. In partiular, the seurity loss for FDH beomes only O(qsig), whilethe redutions for PFDH and PSS are essentially tight (one the salt length is at least log qsig). Foronreteness of the disussion, we onentrate on a representative ase of PFDH. Very similar disussionholds for FDH and PSS. The theorem below ontrasts our proof with law-free permutations with amuh looser (yet inevitably so) proof with general trapdoor permutations.Theorem 1 (Seurity of PFDH)(a) Assume C is a law-free permutation whih is (t0; "0)-seure, and let F = F(C) be the induedtrapdoor permutation family. Then F-PFDH with salt length3 k0 � log qsig is (t; qhash; qsig; ")-seure, where4 t = t0 � (qhash + qsig + 1) � poly(k) and " = "0=(1 � qsig2�k0), so that " � "0 (upto a small onstant fator) when k0 > log qsig.(b) In ontrast, if F is a general (t0; "0)-seure family of trapdoor permutations, then for any saltlength k0, F-PFDH is only (t; qhash; qsig; ")-seure, where t = t0�(qhash+qsig+1)�poly(k) and " ="0(qhash + 1).Proof: We start with more interesting part (a). Let C be the forger for F -PFDH whih (t; qhash; qsig; ")-breaks it. We onstrut a law-�nder B for C. B gets the funtion pair (f; g) as an input. It makes fthe publi key for PFDH and gives it to C, keeping g for itself. It also prepares qsig random elementsr1 : : : rqsig 2 f0; 1gk0 | these will be the salts of the messages it will sign for C. We all this initial listL (this list will shrink as we move along).2We ould extend the notion of law-free permutations to the random orale model, where we allow the funtion g(as well as the adversary) to depend on the random orale. In this setting, for any trapdoor permutation f , the seurityof PFDH indeed implies that the pair (f;RO) results in a family of suh \orale law-free permutations" (again, with alarge \seurity loss" qhash). This is to be ontrasted with the regular model, where the existene of trapdoor permutationsis unlikely to imply the existene of law-free permutations.3As shown in [Cor02℄, the analysis an be extended even to k0 < log qsig , but the redution stops being tight.4Here poly(k) is a �xed polynomial depending on the time it takes to evaluate f and g in C.7



To respond to a hash query m0kr0, we distinguish three ases. First, if the value is already de�ned,we return it. Else, if r0 2 L, B piks and remembers a random x0, and returns RO(m0kr0) = f(x0) toC. Finally, if r0 62 L, B piks and remembers a random z0, and returns RO(m0kr0) = g(z0) to C.If the forger makes a signature query mi, we pik the next element ri from the urrent list, and seeif RO(mikri) is de�ned. If so, it is equal to f(xi) for some xi, so we return hxi; rii as the signature ofmi. Else, we pik a random xi, de�ne RO(mikxi) = f(xi) and return hxi; rii to C. In either ase, weremove ri from the list L.Eventually, (with probability ") C will output a forgery hx; ri of some message m. Without loss ofgenerality we assume that C asked the hash query mkr before (if not, B an do it for C; this inreasesthe number of hash queries by one). If the answer was g(z), we get that f(x) = g(z), so B outputsthe law (x; z). Otherwise (the answer was f(x)), we did not learn anything, so B fails.We see that the probability "0 that B �nds a law is "Pr(E), where E is the event that theforgery orresponded to g(z) rather than to f(x), so that B does not fail. It remains to show thatPr(E) � 1 � qsig2�k0 . We notie, however, that the only way that B will fail is if the value r wasstill in the list L at the time the hash query mkr was asked. But at this point C has no informationabout at most qsig totally random elements in L (remember, an element is disarded from L after eahsigning query). So the probability that r 2 L is at most qsig2�k0 , ompleting the proof.Finally, we very briey sketh the proof of (b). This proof is essentially from [BR93℄, and is givenmainly for the purposes of ontrasting it with the proof of (a) above. From the signature forger C,we need to onstrut an inverter A for F . A piks a random index ` 2 f1 : : : qhash + 1g, hoping thatthe `-th hash query will be on a new value (not de�ned in a previous hash query or signature query),and that C will forge a signature based on it (note that if C is suessful, suh ` has to exist). Forall hash queries j exept for the `-th one, A responds by piking a random x0 and returning f(x0)(unless the value is already de�ned, in whih ase this value is returned). For the `-th one, A respondswith its hallenge y (unless the hash value is already de�ned through a previous hash or signingquery, in whih ase A fails). To answer a signing query mi, A piks a random ri and xi and de�nesRO(mikri) = f(xi) (unless it was already de�ned, in whih ase it uses the orresponding answer).It then returns hxi; rii as the signature of mi. Finally, C returns a forgery hx; ri for some messagem with probability ". If the `-th hash query happens to be exatly mkr, x is the orret preimageof the hallenge y. Otherwise, A fails. It is easy to see that A's simulation of the random orale isperfet and reveals no information about `. Thus, A orretly guesses ` with probability 1=(qhash+1),obtaining a total probability of "=(qhash + 1) of inverting y.Notie, the proof of part (a) is indeed idential to the the orresponding proof for RSA [Cor02℄, exeptwe abstrat away all the spei�s about RSA. As before, the fat that k0 > log qhash ensures that we antell apart the hash queries related to qsig signing queries from those maybe related to the forgery. Butwe see the ruial way the proof uses the law-freeness of C: the \signing-related" queries get answeredwith f(x), while the \forging-related" queries get answered with g(z) (where x and z are random toensure a random answer). In partiular, there is no need to guess in advane a single \forging-related"query whih atually happens to be the one we need: no matter whih of these queries will resultin the forgery x, one still gets a law (x; z) suh that f(x) = g(z). This should be ontrasted withthe standard proof of part (b), where we have to guess this query in advane in order to embed ourhallenge y in the answer. As we show in the next setion, the seurity loss of qhash is optimal forgeneral trapdoor permutations, so the above \guessing" argument annot be improved.
8



4 Trapdoor Permutations Cannot Yield Better SeurityIn this setion we explain our \blak-box" model and the limitations of proving tighter seurity resultsfor FDH-like shemes based on general trapdoor permutations. Spei�ally, our argument will showthat the seurity loss of 
(qhash) is inevitable for FDH, PFDH, PSS, showing the tightness of thekind of analysis we used in part (b) of Theorem 1. In order to unify our argument, we onsider anysignature sheme of the form 
f�1(y); pub�, where (y; pub)  T (m) is obtained from the message musing a onstant (in our shemes, one or two) number of random orale alls, possibly some additionalrandomness, but without utilizing f or f�1. The only thing we require from T in our proof is thatfor any distint messages m1 : : : mq, setting hyj ; pubji  T (mj) will result in all distint yj's with allbut negligible probability (over the hoies of the random orale, for any q polynomial in the seurityparameter). In the following, we will all any signature sheme S (of the above form) utilizing suh\ollision-resistant" mapping T legal. Certainly, FDH, PFDH and PSS are all legal.Assume now that one laims to have proven a statement of the form: \if F is (t0; "0)-seure, thensome partiular legal S is (t; qhash; qsig; ")-seure, for any trapdoor permutation family F ." We remarkthat our lower bound will apply even for proving muh weaker UF-NMA seurity (i.e., disallowing theadversary to make any signing queries), so will assume throughout that qsig = 0 and denote q = qhash.A natural proof for suh a statement will give a redution R from any adversary C whih (t; q; 0; ")-breaks the unforgeability of S in the random orale model, to a forger A whih (t0; "0)-breaks theone-wayness of f in the standard model. Intuitively, this redution R (whih we sometimes identifywith A sine the goal of R is to onstrut A) is blak-box if it only utilizes the fats that: (1) f is atrapdoor permutation, but the details of f 's implementation are unimportant; (2) C (t; q; 0; ")-breaksS whenever it is given orale aess to a true random orale (whih has to be \simulated" by R), butthe details how C does it are unimportant. In other words, there are two objets that a \natural"redution R (or inverter A) utilizes in a \blak-box" manner: the trapdoor permutation f and theforger C. We explain our modeling of eah separately.4.1 Modeling Blak-Box Trapdoor Permutation Family FFollowing previous work [GT00, GGK02℄, we model blak-box aess to a trapdoor permutation F bythree orales (G;F; F�1), available to all the partiipants of the system. For simpliity, we will assumethat the domain of all our funtions is D = f0; 1gk, both the index i and the trapdoor TK also rangeover f0; 1gk , and are in one-to-one orrespondene with eah other. F is the forward evaluation orale,whih takes the index i of our trapdoor permutation fi and the input x, and simply returns the valueof fi(x). G takes the trapdoor value TK and returns the index i of the funtion fi whose trapdoor isTK (informally, knowing the trapdoor one also knows the funtion, but not vie versa). Finally, F�1takes the trapdoor TK and the value y and returns f�1i (y), where i = G(TK). Intuitively, any hoieof the orales G;F; F�1 will yield a trapdoor permutation as long as:(a) G(�) is a permutation over f0; 1gk .(b) F (i; �) is a permutation over f0; 1gk for every index i.() F�1(TK; �) is a permutation over f0; 1gk for every trapdoor TK.(d) F�1(TK; F (G(TK); x)) = x, for any x;TK 2 f0; 1gk .(e) For any A, letAdvFA(k) = Pr[x0 = x j x;TK f0; 1gk ; i = G(TK); y = F (i; x); x0  AG;F;F�1(i; y)℄ (4)9



Then we want to require that for any A making polynomial in k number of queries to G;F; F�1,we have AdvFA(k) = negl(k). For exat seurity, we say that F is (qG; qF ; qF�1 ; ")-seure, ifAdvFA � ", for any A making at most qG queries to G, qF queries to F and qF�1 queries to F�1.5Put di�erently, we simply rewrote De�nition 1, exept the eÆient omputation of fi and f�1i (thelatter with the trapdoor) are replaed by orale aess to the orresponding orales, and the notion of\polynomial time" beame \polynomial query omplexity".6 In partiular, any hoie of (G;F; F�1)satisfying onditions (a)-(e) above forms a valid \blak-box" trapdoor permutation family. And,therefore, our blak-box redution from forger C to inverter A for F should work with any suh blak-box trapdoor permutation. We hoose a spei� very natural blak-box trapdoor permutation forthis purpose. G is simply a random permutation, and so is F (i; �) (for any i, and independently fordi�erent i's). Finally, F�1(TK; y) is de�ned in an obvious way so as to satisfy (d) (in partiular, it isalso a random permutation for any value of TK).With respet to this family, we an ompute the expeted advantage of any inverter A (taken overthe random hoie of G;F; F�1). For that, assume that A(i; y) makes qG queries to G, qF queries toF and qF�1 to F�1. In fat, for future use7 we will also allow A to make q ~F�1 queries to the neworale ~F�1(i0; y0) def= F�1(G�1(i0); y0), with the obvious restrition that this orale annot be alled oninput (i; y). Without loss of generality, let us assume that A never makes a all to F�1(TK0; �) before�rst inquiring about G(TK0). In this ase, sine F�1(TK0; �) is totally random for every TK0, there isno need for A to ever all the inverse orale F�1(TK0; y0) more than one: unless G(TK0) = i, suhall is useless for inverting y, and if the equality holds, alling F�1(TK0; y) immediately inverts y. Sowe may assume that qF�1 = 0, and A wins if it ever makes a all G(�) with the \orret" trapdoorTK = G�1(i), and addition to when it orretly inverts y. Then, naturally extending the de�nition ofAdvFA in Equation (4) to also aount for querying ~F�1 on inputs di�erent from (i; y), we showLemma 1 E[AdvFA(k)℄ � qG2k + qF2k�q ~F�1 .In partiular, with all but 2�
(k) probability, AdvFA(k) = 2�
(k), for any PPQ adversary A.Proof: The �rst term qG=2k is the probability that A alls G on TK = G�1(i). Assuming that thisdid not happen, the best strategy of A is to perform q ~F�1 arbitrary queries to ~F�1(i; �) (with no seondinput equal to y). This will eliminate q ~F�1 values of x as possible preimages of y, so that there is noneed to query F (i; x) for these values of x. Finally, the probability that qF queries to F will hit oneof (2k � q ~F�1) equally likely possibilities for the needed F�1(TK; y) is at most the seond term.Intuitively, the above result says that a truly random family of permutations forms a family of trapdoorpermutations with very high probability, sine there is no way to invert a random permutation otherthan by sheer luk.4.2 Modeling Blak-Box Forger CLet us now turn our attention to the blak-box way the redution R an utilize some signature forgerC when onstruting the inverter A. (From now on, we identify R and A.) Reall, R is given an index5In the blak-box model, the notion of \time" is somewhat less important, sine the eÆieny onditions for ertainfuntionalities are replaed by having orale aess to these funtionalities. So query omplexity is a more naturalomplexity measure in this setting.6For this setion, we let PPQ stand for \probabilisti polynomial query omplexity".7Intuitively, this orale will orrespond to the forgeries returned to A by C.10



i for F and a random element y to invert. It is natural to assume that is sets the same publi key ifor C, and then simply runs C(i) one or more times (possibly oasionally \rewinding" the state of C,but always leaving i as the publi key for S). Of ourse, R has to simulate for C the q = qhash randomorale queries, sine there is no random orale in the \world of A".8 Finally, somewhere in the lattersimulation, A will utilize the hallenge y, so that the forgery returned by C will help A to invert y.We see that the only thing about C that this kind of redution is onerned about is the upperbound q on the number of hash queries made by C, and the forged signature returned by C. Inother words, from R's perspetive, there are q + 1 rounds of interation between between R and C:q responses to C's hash queries, followed by a forgery (m;�; pub) returned by C. Hene, it is verynatural to measure the omplexity of the redution (or the inverter A) as the number of rounds ofinteration it makes with C.9 We will all this omplexity qR.On the other hand, R should sueed in inverting y with the laimed probability "0 for any (q; ")-valid forger C. This means that C is guaranteed to output a forgery to S with probability " bymaking at most q hash queries to R, provided R answers them in a manner \indistinguishable" for atrue random orale. On the other hand, it is not important (and the suess of R should depend onit) how C managed to obtain the forgery, why it asks some partiular hash query, how long it takesC to deide whih next hash query to ask, et. Therefore, in partiular, R should sueed even whenwe give (as we will do in our proof below) to C orale aess to the ~F�1 orale, whih an invert any~y that C wishes (this allows C to trivially forge any signature it wants).Also, we will assume that C an hoose randomness in a manner not ontrollable by R (wlog, Chooses all the randomness it needs at the very beginning of its run). This requires a bit of justi�ation.Indeed, it seems natural to give our redution the ability to run C with di�erent random tapes. Butonsider a deterministi C with some partiular �xed random tape. In this ase, R should not be ableto \know" this �xed tape given only orale aess to C, but should still work with this C. But nowtaking an average over all suh C's with a �xed tape, we e�etively get that R should work with aforger who hooses its random tape at the beginning, without R \knowing" this hoie.Summary. We are almost done with our modeling, whih we now summarize. C is allowed to:(1) hoose some arbitrarily large random tape at the beginning (possibly of exponential size sineR should work even with omputationally unbounded C); (2) have orale aess to ~F�1, allowing itto forge arbitrary signatures; (3) make at most q hash queries to R. On the other hand, providedR answers these queries in a manner indistinguishable from the random orale, C has to output aforgery (m;x; pub) (i.e., (m;F (i; x); pub) should pass the veri�ation test) with probability at least ".Similarly, R an: (1) interat with C for at most qR rounds; (2) all F at most qF times; (3) all Gat most qG times; (4) rewind C to any prior point in C's run; (5) start a new opy of C where C willhoose fresh randomness. Finally, R has to: (1) \properly" answer hash queries of C; (2) invert thehallenge y with probability at least "0. Our objetive is to prove an upper bound on "0 as a funtionof qR; qF ; qG; q; " in the blak-box model outlined above. We do it in the next setion.4.3 Our BoundTheorem 2 For any legal signature sheme S analyzed in the blak-box model with general trapdoorpermutations, we have "0 � �qG2k + qF2k � (2qR=q)�+ 4 � qRq � "q (5)8Reall, to get a stronger result we assume that C makes no signing queries.9Of ourse, we should also remember the quantities qG and qF , having to do with the blak-box aess to a trapdoorpermutation. We will return to those later. 11



In partiular, for any PPQ redution R running C at most a onstant number of times (i.e., qR =O(q)), we have "0 = O("=q), so the redution loses at least a fator 
(qhash) in seurity.Proof: We desribe a partiular (q; ")-legal forger C for S. Reall, to sign m, our signature �rstgets (y; pub)  T (m), and then returns (x; pub), where x = ~F�1(i; y). We also assumed that thetransformation T is suh that: (1) it alls the random orale at most a onstant number of times (inthe proof, we assume this number is 1; the large number will only a�et onstant 4 in Equation (5));and (2) when invoked with distint mj 's, with all but negligible probability all the yj's are distint.First, C hooses a truly random funtionH from q=2-tuples of elements of f0; 1gk to a random index` 2 f1 : : : q=2g. This funtion will ontrol the index of a forgery that C will ompute later. Next, Cuses q hash query alls to obtain (yj ; pubj)  T (mj) (if needed, using some additional randomnessprepared separately from the funtion H) for q arbitrary, but distint and �xed messages m1 : : : mq.If any of the answers yj are the same, C rejets, sine we assumed that with a true random oralesuh ollision does not happen with all but negligible probability (i.e., that S is legal). Otherwise, ifall of them are distint, C omputes ` = H(y1 : : : yq=2), and then, with probability ", outputs a forgedsignature D ~F�1(i; y`); pub`E of m`.Clearly, this C is (q; ")-legal, so our redution R should be able to invert y with this C, withprobability at least "0. Before arguing that this "0 must satisfy Equation (5), we observe the following.The number of times R has to interat with C between any two suessive distint forgeries is at leastq=2. Indeed, unless any of the values y1 : : : yq=2 hange, C will return exatly the same forgery toR, sine the funtion H is �xed by now. So R has to either start a new opy of C and wait for qsteps, or rewind one of the urrent opies of C to at least some query j � q=2, somehow hange thevalue yj by returning a di�erent random orale answer, and then run C for another q� j � q=2 steps.In partiular, R never sees more than N def= 2qR=q di�erent forgeries (in fat, the atual number isroughly "N , but this is not important).Let us now estimate the suess probability of R. Let E denote the event that C ever returnsthe inverse of y to R, i.e. it happens that y` = y for one of the forgeries returned by C. Clearly,Pr(R sueeds) � Pr(E) + Pr(R sueeds j E) def= p1 + p2. We start with estimating p2. Notie,sine E did not happen, we get that C never alled ~F�1(i; y). Thus, ombining R and C into one\super-inverter" A0, we get that A0 made qG alls to G, qF alls to F and at most N alls to ~F�1 oninputs di�erent from (i; y). By Lemma 1, we get that p2 � qG2k + qF2k�N .As for p1, reall that the number of di�erent forgeries that C an return is at most the numberof times it evaluates H on a di�erent q=2-tuple of values, whih in turn is at most N , as we justargued. Indeed, the input to H predetermines the forgery that C an return, so these inputs shouldbe di�erent for di�erent forgeries, and it takes R at least q=2 steps to \hange" the input to H. Takeany one of these (at most) N times with the input to H being y1 : : : yq=2. Sine C will never proeedwith a forgery if at least two of the yj's are the same, at most one of the �rst q=2 values of yj an beequal to y. Sine H is truly random funtion, the probability that it will return ` suh that y` = yis at most 2=q. Moreover, even if this event happened, the probability it inverts this y is ", giving anoverall probability of at most 2"=q of inverting y, eah time C might output a new forgery. By theunion bound, the overall probability of the event E is p1 � N � 2"=q. Combining the bounds we gotfor p1 and p2, we get Equation (5).Intuitively, the argument above said that the redution must guess the \relevant" hash query whereit an give the answer dependent on the hallenge y. And it an do it for only one query sinethe signature S is legal and there is no \struture" to a random trapdoor permutation whih would12



allow to use random but \related" values of y for the other hash queries. So this guess is orretwith probability only 1=q. Finally, we remark that the term qR=q in Equation (5) an be roughlyinterpreted as the number of times our redution ran C. Not surprisingly, running C from srathqR=q times will improve the hanes of suess by a fator proportional to qR=q, whih is indeed thebehavior we see in Equation (5). For qR=q = O(1), however, we see that we lose the fator 
(q).5 Some Construtions of Claw-free PermutationsSine we know so few number-theoreti onstrutions of trapdoor permutations (essentially RSA, Rabinand Paillier [Pai99℄), we know very few onstrutions of law-free permutations as well. Lukily, everyurrent trapdoor permutation we know in fat yields some natural law-free permutation. On the otherhand, we mentioned that this impliation from trapdoor to law-free permutations is very unlikely tohold in general. Therefore, in this setion we give several general onditions on trapdoor permutations(enjoyed by urrently known trapdoor permutations), whih suÆe to imply the existene of law-freepermutations (in fat, via very eÆient onstrutions). These onditions an be viewed as narrowingthe gap between the general law-free permutations and the very spei� ones based on trapdoorpermutations like RSA. We also point out at the end of this setion that that not all known law-freepermutations atually follow the general onstrutions we present below.Claw-Free Permutations from Homomorphi Trapdoor Permutations. This is the mostnatural generalization of the RSA-based onstrution presented in Setion 2.1. Assume we have a familyF of trapdoor permutations with two group operations + and � so that eah f 2 F is homomorphiwith respet to these operations: f(a + b) = f(a) � f(b). We an onstrut the following law-freepermutation family C out of F . CF-Gen(1k) runs (f; f�1) TC-Gen(1k), also piks a random y 2 D,sets gy(b) = y � f(b), and outputs (f; f�1; gy). Now �nding a law (a; b) implies that f(a) = y � f(b)whih means that f(a� b) = y, whih means that a� b = f�1(y), so we manage to invert a trapdoorpermutation f on a random point y.Claw-Free Permutations from Random-Self-Reduible Trapdoor Permutations. Thisis a further generalization of the previous onstrution. Assume, there are eÆient funtions I and Owhih satisfy the following onditions. For any output value y 2 D, piking a random b and applyingO(y; b) results in a random point z 2 D (notie, O(y; �) does not have to be a permutation or tobe invertible). Then, if one �nds out the value a = f�1(z), applying I(y; a; b) will result in �ndingthe orret value x = f�1(y). So one e�etively redues the worst-ase task of inverting y to anaverage-ase task of inverting a random z. We say that suh f is random-self-reduible (RSR) if O andI satisfying the above onditions exist. Notie, homomorphi f is RSR via z = O(y; b) def= y � f(b)(whih is atually f(x+ b)). Then a = f�1(z) = x+ b, so we an de�ne I(y; a; b) def= a� b.We an onstrut the following law-free permutation family C out of any RSR trapdoor permutationfamily F . CF-Gen(1k) runs (f; f�1)  TC-Gen(1k), also piks a random y 2 D, sets gy(b) = O(y; b),and outputs (f; f�1; gy). Now, �nding a law (a; b) implies that f(a) = O(y; b) whih means thatI(y; a; b) = f�1(y) = x. Thus, we inverted a trapdoor permutation f on a random point y.An ad ho law-free permutation. Any of the above onstrutions an be applied to trapdoorpermutations like RSA, Rabin and Paillier. However, we know of some ad ho onstrutions of law-free permutations whih do not follow the above methodology. One suh example (based on fatoringBlum-Willams integers) is the original law-free permutation family of [GMR88℄. Here n = pq, wherep � 3 mod 4, q � 7 mod 8, and QR(n) stands for the group of quadrati residues modulo n. Then we13



set our domain D = QR(n), and f(a) = a2 mod n, g(b) = 4b2 mod n. If f(a) = g(b) for a; b 2 QR(n),then (a� 2b) is divisible by p or q, but not n, whih allows one to fator n.Referenes[ACM89℄ Proeedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle,Washington, 15{17 May 1989.[BM88℄ Mihir Bellare and Silvio Miali. How to sign given any trapdoor funtion. In Goldwasser[Gol88℄, pages 200{215.[BR93℄ Mihir Bellare and Phillip Rogaway. Random orales are pratial: A paradigm for de-signing eÆient protools. In Proeedings of the 1st ACM Conferene on Computerand Communiation Seurity, pages 62{73, November 1993. Revised version appears inhttp://www-se.usd.edu/users/mihir/papers/rypto-papers.html.[BR96℄ Mihir Bellare and Phillip Rogaway. The exat seurity of digital signatures:How to sign with RSA and Rabin. In Ueli Maurer, editor, Advanes inCryptology|EUROCRYPT 96, volume 1070 of Leture Notes in Computer Siene,pages 399{416. Springer-Verlag, 12{16 May 1996. Revised version appears inhttp://www-se.usd.edu/users/mihir/papers/rypto-papers.html.[Cor00℄ Jean-S�ebastian Coron. On the exat seurity of full domain hash. In Mihir Bellare, edi-tor, Advanes in Cryptology|CRYPTO 2000, volume 1880 of Leture Notes in ComputerSiene, pages 229{235. Springer-Verlag, 20{24 August 2000.[Cor02℄ Jean-S�ebastian Coron. Optimal seurity proofs for PSS and other signature shemes. In LarsKnudsen, editor, Advanes in Cryptology|EUROCRYPT 2002, Leture Notes in ComputerSiene, pages 272{287. Springer-Verlag, 28 April{2 May 2002.[Dam87℄ Ivan Damg�ard. Collision-free hash funtions and publi-key signature shemes. In DavidChaum and Wyn L. Prie, editors, Advanes in Cryptology|EUROCRYPT 87, volume 304of Leture Notes in Computer Siene. Springer-Verlag, 1988, 13{15 April 1987.[FS86℄ Amos Fiat and Adi Shamir. How to prove yourself: Pratial solutions to identi�ation andsignature problems. In Andrew M. Odlyzko, editor, Advanes in Cryptology|CRYPTO '86,volume 263 of Leture Notes in Computer Siene, pages 186{194. Springer-Verlag, 1987,11{15 August 1986.[GGK02℄ Rosario Gennaro, Yael Gertner, and Jonathan Katz. Bounds on the eÆienyof enryption and digital signatures. Tehnial Report 2002-22, DIMACS: Centerfor Disrete Mathematis and Theoretial Computer Siene, 2002. Available fromhttp://dimas.rutgers.edu/TehnialReports/2002.html.[GMR88℄ Sha� Goldwasser, Silvio Miali, and Ronald L. Rivest. A digital signature sheme seureagainst adaptive hosen-message attaks. SIAM Journal on Computing, 17(2):281{308,April 1988.[GMR01℄ Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoorfuntions on trapdoor prediates. In 42nd Annual Symposium on Foundations of ComputerSiene, Las Vegas, Nevada, Otober 2001. IEEE.14
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