
Impossibility of Blak-Box Redution from Non-Adaptively toAdaptively Seure Coin-FlippingYevgeniy DodisMIT�April 26, 2000AbstratColletive Coin-Flipping is a lassial problem where n omputationally unbounded proes-sors are trying to generate a random bit in a setting where only a single broadast hannel isavailable for ommuniation. The protool is said to be b(n)-resilient if any adversary that anorrupt up to b(n) players, still annot bias the oin to some desired outome almost ertainly.The problem is extensively studied for the ase of non-adaptive adversaries who have to deidewhih players to orrupt before the protool starts. In partiular, it is well-known that the opti-mum resiliene threshold is n=2 in this ase. However, none of these protools is resilient againstan adaptive adversary who an orrupt just a single player in the ourse of the exeution. Infat, Ben-Or and Linial [BL90℄ onjetured that the adaptive adversary is muh more powerfulthan the non-adaptive adversary. More spei�ally, that the optimal resiliene threshold foradaptive adversaries is only O(pn) (whih is ahieved by a simple "majority" protool).We give strong evidene towards this onjeture by showing that no blak-box transformationfrom any statially seure oin-ipping protool an yield an adaptively seure protool toler-ating !(pn) players, so it is impossible to beat the simple majority protool in this way. Theresult is proven by reduing the question in hand to the analysis of a novel imperfet randomsoure of independent interest. This imperfet random soure generalizes and uni�es two well-known imperfet random soures: the SV-soure of S�antha-Vazirani [SV86℄ and the bit-�xingsoure of Lihtenstein-Linial-Saks [LLS89℄. While from eah of these soures it is easy to extrata "somewhat random" bit, we show this this is no longer possible for the generalized soure.
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1 Colletive Coin-FlippingThe Setting. Colletive Coin-Flipping in the full-information model is a lassial problem in-trodued by Ben-Or and Linial [BL90℄, where n omputationally unbounded proessors are tryingto generate a random bit in a setting where only a single broadast hannel is available for om-muniation. As usual, we assume that some subset of the parties an be faulty or maliious, andwe would like our protool to be \resilient" against the faulty players (whih we de�ne preiselylater). Taking the worst ase senario, we assume that all the faulty parties are oordinated by aentral adversary A, who an orrupt up to b out of n players. We all suh an adversary b-bounded.The omputation proeeds in rounds, in whih eah proessor broadasts a message to the otherproessors. The ruial ompliation is that the network is assumed to be asynhronous within around and is synhronized only in between the rounds. For example, players annot ip a oin bybroadasting a random bit and taking their exlusive OR: the last player to talk an ompletelyontrol the output. Again taking the worst ase senario, we assume that in eah round �rst Areeives all the messages broadast by the honest players, and only then deides whih messagesto send on behalf of the bad players. Finally, we assume that A never violates the protool ina manner that an be deteted (for example, if a faulty proessor has to send a random bit, hedoes so; however, the bit need no be random). The output of the protool is some pre-agreeddeterministi funtion of the messages exhanged over the broadast hannel.The Goal. As we said, the objetive of olletive oin-ipping is for the players to agree on arandom bit. Given a bit � generated by some random experiment, we de�ne its fairness  � 12 tobe the minimum of the probability that � = 0 and that � = 1, and all suh a bit -fair. Thus,onstant bit is 0-fair while a random bit is 12 -fair. When talking about oin-ipping protools,we usually talk about a family a protools parametrized by the number of players, n. Havingthis in mind, a oin-ipping protool � is said to be weakly b(n)-resilient if for any b(n)-boundedadversary � produes a oin whih is 0-fair, where 0 is a �xed (possibly very small) onstantindependent of n. Suh a oin is alled slightly random. � is said to be strongly b(n)-resilient if forany b(n)-bounded adversary � produes a (12 � o(1))-fair oin. Suh oin is alled almost random.Traditionally, the \standard" de�nition of resiliene for oin-ipping is that of weak resiliene, sothis is the notion that we will use, unless we state otherwise.1Type of Adversary. So far we have been very vague about the type of adversary that we have.The only thing we spei�ed about it, is that it oordinates the faulty players and an make themdeviate in any manner undeteted by the honest players. However, we have not talked about howand when the player beomes faulty. Most of the papers in the full-information model assume andruially use the fat that the adversary A is stati (or non-adaptive), i.e. it deides on whih bparties to orrupt before the protool starts. The honest player do not know whih b players wereseleted by A, but the resulting oin has to be slightly random for any �xed set of b players. Asomewhat more realisti and muh more powerful type of an adversary is an adaptive adversary.This adversary an listen to all the ommuniation and orrupt up to b players anywhere in theourse of the exeution. As we will see, this indeed seems to give an adaptive adversary a lot ofpower over the stati adversary.Coin-Flipping with Stati Adversaries. The ase of stati adversaries has been extensivelystudied and is understood very well by now. Historially, oin-ipping protools are divided intoone-round/one-bit protool and general (many-round/many-bit) protools.1In fat, sine our main result is an impossibility result, it will beome only stronger if we onsider strong fairness.1



In the one-round/one-bit protools eah player i is supposed to send a single bit xi, and theresulting oin is some deterministi funtion f(x1; : : : ; xn). Suh protools deserve suh a speialattention beause of their simpliity (they are given by a boolean funtion f : f0; 1gn ! f0; 1g) andthe onnetion to \inuene of variables" on boolean funtions [KKL89℄. If f de�nes a b(n)-resilientprotool, it itself is alled b(n)-resilient. Ben-Or and Linial [BL90℄ de�ned an \iterated majorityof 3" funtion that is resilient against 
(nlog3 2) � 
(n0:63) players. Ajtai and Linial [AL93℄ non-onstrutively showed that there exist 
(n= log2 n)-resilient funtions. Unfortunately, there is notmuh potential in improving this result, sine Kahn, Kalai and Linial [KKL89℄ used a beautifulargument to show that there are no !(n= log n)-resilient funtions.In ontrast, general (statially seure) oin-ipping protools an ahieve muh better resiliene.Historially, all suh protools �rst elet a single representative player (alled a leader), who thenips the �nal oin by itself. If the probability that the leader is non-faulty is lower bounded by aonstant 0 (independent of n) for any b(n)-bounded adversary, then the fairness of the resultingoin is at least 0=2, yielding a weakly b(n)-resilient oin-ipping protool. The intermediate leadereletion (where the players are trying to selet a non-faulty leader2) is by itself very importantand, as we said, has been typially onsidered instead of solving a seemingly easier oin-ippingproblem.3The �rst interesting leader eletion (and thus, oin-ipping) protool was given by Saks [S89℄,who designed a very simple \baton passing" algorithm whih he showed was 
(n= logn)-resilient(Ajtai and Linial [AL93℄ improved the analysis of Saks to show that baton passing is in fat strongly
(n= log n)-resilient). Saks also observed that no leader eletion and oin-ipping protool ouldbe n=2-resilient (formal proof appears in [BN℄). The question of ahieving 
(n)-resiliene wasaÆrmatively resolved by Alon and Naor [AN93℄. Using an elegant, but non-onstrutive \randomtree" protool, they showed the existene of an n=4-resilient leader eletion protool.4 Addingseveral \triks", they moved the resiliene threshold to (13�Æ)n (for any Æ > 0). However, Boppanaand Narayanan [BN℄ showed that these triks were not neessary and the \random tree" protoolby itself is (12 � Æ)n-resilient. This result showed that the optimal resiliene of stati oin-ipping(and leader eletion) is n=2.From this point on, the researh in statially seure oin-ipping and leader eletion was fousingon making onstrutive and/or more eÆient leader eletion and oin-ipping protools [ORV94,RZ98, F99℄. This ulminated in a reent paper of Feige [F99℄ who gave onstrutive, extremelysimple and eÆient (12 � Æ)n-resilient oin-ipping and leader eletion protool taking log� n +O(1=Æ) rounds with eah player sendingO(log n) bits per round (improving and simplifying previousprotools of [RZ98℄ with similar parameters).A lot is also known on the optimal dependene (b) of the fairness of the oin and the numberb of faulty players. Namely, (b) = 12 � �( bn). The upper bound (b) � 12 � 
( bn) was elegantlyshown by Ben-Or and Linial [BL90℄. The lower bound (b) � 12 � O( bn) was proved in a series ofpapers for larger and larger values of b: by Ben-Or and Linial [BL90℄ for b = O(n0:63), by Ajtaiand Linial [AL93℄ for b = O(n= log n) and, �nally, by Alon and Naor [AN93℄ for all b. Notie thatthe upper bound implies that there are no strongly 
(n)-resilient oin-ipping protools, while thelower bound implies that there is \no limit" for strongly o(n)-resilient protools. (This is one of2We notie right away that, unlike oin-ipping, leader eletion makes no sense against adaptive adversaries: theadversary an always orrupt the leader at the end of the protool.3Feige [F99℄ reently showed the \onverse", i.e. that any b(n)-resilient oin-ipping protool an be eÆientlytransformed into a b(n)-resilient leader eletion protool. Thus, in the stati setting leader eletion and oin-ippingare \equivalent".4Alon and Naor [AN93℄ and later Cooper and Linial [CL95℄ also gave very ompliated but onstrutive O(n)-resilient protools with truly tiny onstants in front of n.2



the reasons why weak resiliene is typially onsidered.)To summarize, statially seure oin-ipping is very well understood by now, the optimal re-siliene threshold is n=2, and all the best protools (whih are quite simple and eÆient) elet asingle leader who ips the �nal oin.Coin-Flipping with Adaptive Adversaries. First we remark that all the best statially seureoin-ipping protools are not even 1-resilient against adaptive adversaries. Indeed, all of them�rst elet the leader, so orrupting the leader allows the adversary to ompletely �x the oin. Moregenerally, the whole philosophy of most statially seure protools is not appliable here, as theseprotools try to aggressively eliminate players (without signi�antly hanging the fration of faultyplayers).Adaptive adversaries were already onsidered in the original paper of Ben-Or and Linial [BL90℄.In partiular, they observed that the following simple \majority" protool ahieves �(pn)-resiliene.Eah player sends a random bit, and the �nal oin is the majority bit. Here any pn players (forsmall enough ) do not a�et the protool, sine with probability 1 � o(1) the majority will bedetermined anyway. Adaptivity does not help here sine in order to bias the oin to 1 (similarly for0) it does not really matter whom and when to orrupt. Any set B of b players will do: the optimaladversarial strategy for these players is to delare that their random bits are all 1. Surprisinglyenough, this simple protool is the best known adaptively seure oin-ipping protool! In fat,Ben-Or and Linial [BL90℄ onjetured that this protool is indeed optimal.Conjeture 1 ([BL90℄) Majority is the optimal oin-ipping protool against adaptive adver-saries. In partiular, the maximum threshold that an be tolerated is O(pn).This onjeture, if true, would imply that adaptive adversaries are muh more powerful thanstati adversaries for the problem of olletive oin-ipping. The only result addressing this onje-ture is a very nie paper by Lihtenstein, Linial and Saks [LLS89℄. By looking at another questionthat we will disuss later (for a di�erent reason), they derived along the way the following result,that seems to strongly support the onjeture above.Theorem 1 ([LLS89℄) If eah player is allowed to broadast at most 1 bit (possibly, taking nrounds overall), the most resilient adaptively-seure oin-ipping protool is indeed the majorityprotool (whih tolerates �(pn) faults).The theorem above already shows some strong separation between stati and adaptive adver-saries. Reall that the result of Ajtai and Linial [AL93℄ says that there are 
(n= log2 n)-resilientfuntions. In other words, there are 
(n= log2 n)-resilient oin-ipping protools where eah playersends one bit (even in a single round) whih are seure against stati adversaries. The above resultsays that no funtion (e.g., the funtion of Ajtai and Linial) f : f0; 1gn ! f0; 1g, even if we spreadit in any way over n rounds, an be more than O(pn)-resilient against adaptive adversaries!However, Theorem 1 supports Conjeture 1 muh less than it seems to. Indeed, restriting eahplayer to send at most 1 bit seems like a huge limitation. We saw that it was very limiting even forstatially seure protools (reall, no funtion an be more than O(n= log n)-resilient by the resultof [KKL89℄, and there are general n=2-resilient statially seure protools [BN, ORV94, RZ98, F99℄).For adaptively seure protools, sending at most one bit seems partiularly restritive sine lastplayers typially have muh more \inuene" in this ase, and it seems quite oneivable thatthis unproportional inuene an be mitigated by having players send many bits (e.g., in manyround-robin yles). 3



To summarize, adaptively seure oin-ipping is muh less understood than its stati ounter-part, there seems to be some indiation that adaptive adversaries are muh more powerful thanstati adversaries, but there is little formal evidene supporting this laim.2 Our Approah and Main Impossibility ResultBlak-Box Redutions. We look at the problem of onstruting adaptively seure oin-ippingprotools from a di�erent perspetive. Namely, assume we are given a protool � whih is knownbe \good" against stati adversaries (we will be more preise in a seond). We ask the question ifit is possible to transform � in a \blak-box" way so as to obtain a \somewhat good" adaptivelyseure protool �. To apture the intuition that we are really obtaining � from �, we do not allowthe player to send any messages outside those they send in �, but allow them to run � sequentiallyas many times as they wish. Of ourse, one might try to let the players run some sub-protools inbetween running �, but then it is very hard to say that we are really using � and do not, say, runa brand new protool in the middle and ignore everything that happens in �. Thus, � an run �any number of times times D, and get some oins x1; : : : ; xD, some of whih might not be very fairsine we ran � against an adaptive adversary. To orret against this, players in � try to applysome funtion f : f0; 1gD ! f0; 1g to x1; : : : ; xD to produe the �nal oin. This leads us to thefollowing natural de�nition.De�nition 1 Let D be any integer and f : f0; 1gD ! f0; 1g be any funtion. We let �(D; f;�)(often we omit �) be the protool where players sequentially run the protool � D times, obtainoins x1; : : : ; xD, and output f(x1; : : : ; xD) as the resulting oin. The lass f�(D; f;�) j D � 1; f :f0; 1gD ! f0; 1gg is alled the lass of blak-box transformations of �.The (False) Hope. The intuitive reason why blak-box transformations look very promising isthe following. Assume that � is b(n)-resilient and we wish to onstrut an adaptively b(n)-resilient�(D; f;�). Ignoring the question of eÆieny, we an make D arbitrarily large ompared to b(n)and n (e.g., 22n if we so wish). Assume now A an adaptively orrupt up to b(n) players. Let ustake the worst ase, and assume that whenever A orrupts even a single player in the middle of �i(the i-th run of �), he ontrols xi. But this an happen at most b(n)� D times. And if A does notorrupt a player in the middle of �, we know from the stati seurity of � that the oin is at leastslightly random. Thus, at most b� D of the xi's are really biased, the remaining D� b of xi's areat least slightly random (maybe even almost random). So it seems like there should not be a bigproblem to design a funtion f that would be able to \ignore" this \minisule" number b of \�xed"bits, and extrat just a single somewhat random bit from the remaining (D � b) \good" bits. Wewill show, perhaps even surprisingly, that this hope is unfortunately false for any interesting settingof parameters. In partiular, one annot beat the simple majority protool in this way.Adaptive Adversary for a Blak-Box Transformation. The de�nition of a blak-box trans-formation views the protool � as \one piee" that is simply being run several times. Even thoughgiven a partiular � (and D and f), we will end up with a partiular protool �(D; f;�) and antalk about it being adaptively b(n)-resilient, it is more natural to let the adaptive adversary A for� perform \meta-operations" on the entire run of eah � (onsistent with the stati seurity of �).Namely, (1) A an deide not to orrupt any players during the run of �, and then the fairnessof the resulting oin is what is ahieved by �, or (2) A an deide to orrupt one or more playerduring the run of �, and then we do not know anything about the resulting oin, and, therefore,have to assume the worst (i.e., A an �x the oin). We make this more formal.4



Assume that given a �xed set B of faulty players, � produes a �(B)-fair oin for any statiadversary who orrupts B at the beginning, and let �(b) = minjBj=b �(B) be the best that ab-bounded stati adversary an ahieve. Let us denote by �i the i-th run of �, and by xi theresulting oin. As before, A is alled b-bounded if he orrupts at most b players overall. However,now we assume that A (the adversary for �(D; f;�)) has the following apabilities:(A) If at the beginning of �i the set of orrupted players is B and A deides not to orrupt newplayers during �, the resulting oin xi is �(B)-fair, but A an set the probability of xi = 0anywhere in the interval [�(B); 1� �(B)℄.(B) If A deides to orrupt at least one new player during the exeution of �i, he an set theresulting oin xi to any value.We justify assumptions (A) and (B) in two ways. First of all, we are talking about blak-boxredutions. In other words, we do not know and do not want to assume anything more about �than what is given to us by the funtion �(B). Thus, if A does not orrupt new players inside�i, we know that Pr(xi = 0) 2 [�(B); 1 � �(B)℄, but we annot assume anything more, so weassume that A an set Pr(xi = 0) anywhere in this interval. Similarly, one A orrupts a playerinside �i, nothing an be said about the behavior of the resulting oin, so we again have to assumethe worst ase.The other justi�ation omes from the fat that all best non-adaptively seure oin-ippingprotools (e.g., [AN93, ORV94, RZ98, F99℄) essentially satisfy both of these assumptions.5 As-sumption (B) beause they always elet the leader, so orrupting the leader allows the adversaryto ontrol the oin. And assumption (A) beause these protools are atually symmetri in 0 and1 and by making faulty players be \less and less faulty", they an indeed ahieve essentially anyprobability inside the spei�ed interval.Main Result. Our main result is the following theorem, whih states that using blak-box re-dutions one annot signi�antly beat the simple majority protool, giving further support toConjeture 1.Theorem 2 For any family of oin-ipping protools �, there is no blak-box transformation re-sulting in an adaptively !(pn)-resilient family of protools �(D; f;�).We also remark that the adaptive adversaries we will use to prove this result satisfy onsiderablyweaker assumptions than (A) and (B). For example, we will only use the extremes �(B) and(1� �(B)) (even for some partiular B) for assumption (A).6 As for assumption (B), we will onlyuse the fat that if A wants to ompletely ontrol the oin, he an do so by orrupting just some(rather than any) one player. Some further relaxations will be lear from the proof we present, butthe point we are making is that our main result is somewhat surprising and ertainly non-trivialeven without any of these relaxations. Indeed, in our informal intuition above (of why blak-boxredutions look very promising), assumptions (A) and (B) did not seem to reate any problems, soeven with these assumptions it is quite interesting to see why the intuition was wrong.5In fat, it is easy to hek that our main Theorem 2 holds on a \onrete level" if we replae � with any of theseprotools.6Essentially, we are just ruling out the possibility that the stati adversary an inuene the bit towards 0, butannot do (almost) the same for 1. 5



3 Redution to Imperfet Random SouresWe redue the proof of Theorem 2 to the analysis of a novel imperfet random soure (IRS). Assume�(D; f;�) is adaptively 2b(n)-resilient. We onstrut the following 2b(n)-bounded adversary for� satisfying properties (A) and (B). Let b = b(n),  = �(b) and let B be the set of playersof ardinality b ahieving �(B) = �(b) = . Before �1 starts, A orrupts all the players inB. Therefore, from now on in eah of the D invoations of �, A an set the 0-probability of xianywhere in at least the interval [; 1 � ℄. As A will later orrupt more players, this interval anonly expand, but our partiular A will not use it.7 If A deides to follow rule (B), he will orrupta single player and set the orresponding bit xi to the value he wants. Therefore, sine � laims tobe 2b-resilient, A an use rule (B) exatly b times.Hene, we redued the behavior of A to the following. For i = 1 : : : D, the adversary A angenerate xi given x1; : : : ; xi�1 using one of the following rules:(A') Set xi to 0 with any probability inside the interval [; 1� ℄.(B') Set xi to any value A desires. However, this rule an be used at most b times.Thus, we an view our adversary A as an imperfet random soure that emits D history depen-dent weakly random bits aording to rules (A') and (B'), and an view our funtion f : f0; 1gD !f0; 1g as the bit-extration proedure trying to extrat a single slightly random bit for any suhsoure A.De�nition 2 Call any A obeying rules (A') and (B') above a (; b;D)-imperfet random soure,or (; b;D)-IRS. Given f : f0; 1gD ! f0; 1g, we let� q(; b;D; f;A) be the fairness of the oin f(x), where x = x1; : : : ; xD was produed by A.� q(; b;D; f) = minA q(; b;D; f;A) (taken over all (; b;D)-IRS A).� q(; b;D) = maxf q(; b;D; f) (taken over all f : f0; 1gD ! f0; 1g).Thus, q(; b;D) is the best fairness of a oin that an be extrated from any (; b;D)-IRS. Similarto olletive oin-ipping, we say that one an extrat a slightly random bit if q(; b;D) = 
(1),and an almost perfet bit if q(; b;D) = 12 � o(1).We will talk more about the relation of our IRS to two lassial IRS of [SV86, LLS89℄, but letus right away state one of our main impossibility results for our IRS.Theorem 3 q(; b;D) � 2(2� 2)b (1)In partiular, if b � (12 � ) = !(1), then q(; b;D) = o(1), i.e. it is impossible to extrat a slightlyrandom bit.The amazing fat about Equation (1) is that it does not depend on the number of generatedbits D! In other words, more generated bits do not help for a given  and b. Traing bak to theadaptive oin-ipping, one we deided to ahieve adaptive 2b(n)-resiliene, there is fundamentallimitation on how fair we an make the resulting oin, irrespetive of how many times we run theblak-box protool �. In other words, our informal intuition was wrong, when we laimed that we7In fat, A that we onstrut will always set the 0-probability of xi to either , or to (1� ), and no other values.6



should be able to \overome" any number b of ompletely biased bits when having an overwhelmingmajority of (D � b) slightly random bits.Before moving bak to our imperfet random soure, we right away apply Theorem 3 to establishthe impossibility of blak-box redutions given by Theorem 2. Reall that we onluded that itis impossible to obtain a weakly adaptively 2b-resilient �(b;D;�) if it is impossible to extrat aslightly random bit from a (; b;D)-IRS, where  = �(b). From the upper bound of Ben-Or andLinial [BL90℄ that we mentioned in Setion 1, we know that for any oin-ipping protool � and anyb, some b players an bias the oin to have fairness at most 12 �
( bn). Thus,  = (b) � 12 �
( bn),i.e. b(12 � ) = 
(b2=n). By Theorem 3, it is impossible to extrat a slightly random bit wheneverb2=n = !(1), i.e. b = !(pn), establishing Theorem 2.84 Analysis of the Imperfet Random SoureIn the remainder of the paper, we disuss our new random soure, relate it to earlier imperfet ran-dom soures, and analyze its properties (in partiular, prove Theorem 3), whih are of independentinterest.4.1 Bit-Fixing Soure of Lihtenstein, Linial and Saks [LLS89℄Lihtenstein, Linial and Saks [LLS89℄ onsidered the ase of  = 12 , i.e. essentially A an only userule (B'). Thus, there is a sequene of D truly random bits, b of whih an be deterministially�xed by A. This soure is alled bit-�xing. As usual, the question is whether we an extrat atleast one slightly random random bit from this soure. Notie, that if we let f to be the majorityfuntion, we an tolerate b = O(pD) sine any pD bits (for small enough onstant ) do notinuene the resulting majority with probability 1� o(1). Remarkably enough, Lihtinstein, Linialand Saks [LLS89℄ atually showed that this is the best bit extration possible. Namely,Theorem 4 ([LLS89℄) q(12 ; 1pD;D) = 12 � o(1), while q(12 ; 2pD;D) = o(1) (for some 1 and2). Moreover, majority is the best bit-extration funtion f .Notie that this result implies Theorem 1 we mentioned earlier. Indeed, in the oin-ippingprotools honest player send truly unbiased oin ips, while dishonest players send arbitrary bits.Thus, we have exatly the soure in the above theorem, exept adversary A annot make arbitraryinterventions, he an only intervene if the player is faulty. However, when eah player sends atmost 1 bit (i.e, n bits are sent overall) A an indeed intervene arbitrarily and we get Theorem 1.Unfortunately, the reasoning does not extend when players send more than 1 bit. Thus, usingompletely di�erent reasoning, our approah and that of [LLS89℄ oinidentally redued di�erentproblems at hand about adaptive oin-ipping to similar looking IRS.As a side note, a random funtion f : f0; 1gD ! f0; 1g is a terrible bit-extration funtion forthe bit-�xing soure even for b = !(1), sine with high probability the �rst (D � b) bits do not �xf , so A an simply wait and set the last b bits to �x f to either 0 or 1. Another terrible funtion(even for b = 1) is any parity funtion: A an �x it by �xing the last bit of this parity.To summarize, when  = 12 we an tolerate b = O(pD), and the majority is the best suhfuntion. However, a random funtion will not do the job even if b = !(1).8If we want to extrat almost random bit, it is impossible to do it if b = 
(pn).
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4.2 Slightly-Random Soure of S�antha and Vazirani [SV86℄S�antha and Vazirani [SV86℄ looked at the ase b = 0, i.e. A an only use rule (A'). Thus, A anset Pr(xi = 0 j x1 : : : xi�1) anywhere within [; 1 � ℄. This soure is sometimes referred to as theslightly-random soure or also SV -soure.On a negative side, S�antha and Vazirani showed that one annot extrat ~-nontrivial bits forany ~ > . Thus, the adversary A an always make sure that the resulting bit f(x1; : : : ; xD) is notbetter than any of the individual bits xi. On the positive side, there are many f 's that produe-fair bits, for example f(x1; : : : ; xD) = xi (for any i), or, more generally, any non-trivial parityfuntion of the input bits. Thus,Theorem 5 ([SV86℄) q(; 0;D) = . Thus, one an extrat a slightly random bit i�  = 
(1).Notie, similarly to our Theorem 3, the number of bits D does not help. However, it is om-pletely trivial to extrat a slightly random bit (just output x1) if  = 
(1). In fat, Boppana andNarayanan [BN96℄, following the ideas of Alon and Rabin [AR89℄ and elegantly extending theirtehniques, showed muh more.Theorem 6 ([AR89, BN96℄) For any (onstant)  > 0 there exists a onstant 0 > 0 suhthat with probability exponentially lose to 1, a random funtion f : f0; 1gD ! f0; 1g satis�esq(; 0;D; f) � 0.Thus, a vast majority of funtions extrat a slightly random bit from any SV -soure. Un-fortunately, majority is not one of these funtions. Indeed, if the adversary always sets the 1-probability of the next bit to be 1 � , the resulting bit will be 1 with probability 1 � o(1). Infat, Alon and Rabin [AR89℄ showed that majority is the worst bit-extrating funtion. Namely,q(; 0;D;majority) � q(; 0;D; f), for any f .Hene, if b = 0, a random funtion is a good bit extrator, while the majority is the worst.4.3 Our Combined SoureWe see that (; b;D)-soure generalizes both of the bit-�xing and the SV-soures (whih roughlyorrespond to using only one of rules (A') or (B')). While for the interesting settings of parameters(e.g., b = O(pD) for bit-�xing, and onstant Æ > 0 for SV), we an extrat slightly random bitsfrom both of these soures, the funtions ahieving this are drastially di�erent. For the bit-�xingsoure the best funtion was majority, and a random funtion (or any parity funtion) was terrible,while for the SV-soure a random funtion was good (and any parity funtion is optimal), whilethe majority was the worst. So best extrator beomes the worst and vie versa! One may wonderif it is indeed possible to ombine \the best of two worlds" and extrat a slightly random bit fromour ombined soure. Unfortunately, Theorem 3 says that this is impossible for essentially anyinteresting setting of parameters. The most striking suh setting, perhaps, is b = !(1) and anyonstant  < 12 . If we interpret b = !(1) as b!1, this says that no matter how large we make D(given b), it is still impossible to extrat even a single slightly random bit when  < 12 .We now state our results more preisely. In what follows from here on,  will never hange, sowe omit it from all the notation. Note that given the extration funtion f , the optimal adversarydoes the following. First A tries (in his mind) to minimize the probability that the resulting oin� = 0, then he does the same with � = 1, and then hooses the smaller of the above. Therefore, itis more onvenient for us to analyze A that, given f , tries to avoid a partiular �, say � = 0. Inthis ase, however, the suess of A will ruially depend on how biased towards 1 the funtion f8



is: if f � 0, nothing ould be done, while if f � 1, nothing needs to be done. This motivates thefollowing de�nition.De�nition 3 Given f : f0; 1gD ! f0; 1g, denote by Ones(f) = jfx 2 f0; 1gD s.t. f(x) = 1gj. Welet p(t;D; b) = maxf minA Pr(f(x) = 0)where the maximum is taken over all f : f0; 1gD ! f0; 1g with Ones(f) = t, and the minimum istaken over all adversaries A produing x = x1 : : : xD and satisfying rules (A') and (B'). In otherwords, we restrit ourselves to extrating funtions having t preimages of 1, and see how biasedtowards 1 the adversary of our soure an make the resulting oin.In the terminology of [LLS89℄, we an de�ne the language L assoiated with f as L = fx jf(x) = 1g. Then we an view our adversary as trying to fore x 2 L. The quantity p(t;D; b) tellsus how the probability of failure (x 62 L, i.e. f(x) = 0) of the adversary over the worst possiblelanguages L (over D-bit strings) of ardinality t.Theorem 7 p(t;D; b) � 2Dt � 1(2� 2)b (2)We notie that t=2D is simply the fration of x suh that f(x) = 1. Thus, Equation (2) says forany f : f0; 1gD ! f0; 1g, we an upper bound the probability of adversary's failure to �x f(x) = 1by a funtion depending only on the density(f) def= Ones(f)=2D, i.e. only the fration of \ones" off matters! Sine any funtion either has a majority of \ones" or \zeros", by replaing, if neessary,0 and 1 we an assume that Ones(f) � 2D�1, i.e. 2D=t � 2. This immediately implies Theorem 3.In fat, to make the oin not "-fair, it suÆes for the adversary to have the number of interventionsb = O( 11�2 ) � log(1" ). We now prove Theorem 7.Proof: The statement is true for  = 12 or b = 1, sine p(�; �; �) � 1 � 2D=t, so assume  < 12 andb � 1. Let a = t=2D be the fration of \ones" of f , and de�ne g(a; b) = 1a(2�2)b . We need to showthat p(t;D; b) � g(a; b) for any D � 1, 1 � b � D and 0 � t � 2D. We prove this by indution onD. For D = 1, p(0; 1; b) = 1 < 1 = g(0; b), and p(1; 1; b) = p(2; 1; b) = 0 � g(a; b) (here we usedb � 1, so that we an take the branh leading to 1). Assume now the laim is true for (D� 1) andwe want to show it for D.Take any f suh that Ones(f) = t. Let f0 : f0; 1gD�1 ! f0; 1g be the restrition of f whenx0 = 0. Similarly for f1. Let ` = Ones(f0) and r = Ones(f1). Clearly, `+ r = t. Without loss ofgenerality assume ` � r (if not, we reverse ` and r everywhere in the proof). Given suh f , ourpartiular adversary A will onsider two options: either he will use rule (B') (he an do it sinewe assumed b � 1) and �x x0 = 0, reduing the question to that of analyzing the funtion f0 withOnes(f0) = ` on D � 1 variables and also reduing b by 1, or he will use rule (A') making the0-probability of x0 equal to 1 �  and leaving the same b. By the de�nition of funtion p(t;D; b),we know that in the �rst ase the failure probability of A will be at most p(`;D � 1; b� 1), and inthe seond ase it will be at most  � p(r;D � 1; b) + (1� ) � p(`;D� 1; b). Given f , our adversarywill hoose the best (i.e., the smallest) of these two quantities. Sine the hoie of ` � r suh that`+ r = t is outside of our ontrol, we will take the maximum over all suh hoies and obtain thefollowing reurrene.p(t;D; b) � max0�r�t=2`=t�r min [p(`;D � 1; b� 1) ;  � p(r;D � 1; b) + (1� ) � p(`;D � 1; b)℄ (3)9



Let `=2D�1 = a(1 + �) and r=2D�1 = a(1 � �), where 0 � � � min(1; 1=a � 1) � 1 (sine`+ r = t = a � 2D and ` � r). Using our indutive assumption on (D � 1), we getp(t;D; b) � max0���1min (g(a(1 + �); b� 1); g(a(1 � �); b) + (1� )g(a(1 + �); b)) ?� g(a; b) (4)Realling the de�nition of g, it thus suÆes to show thatmax0���1min� 1a(1 + �)(2 � 2)b�1 ; a(1� �)(2� 2)b + 1� a(1 + �)(2 � 2)b� � 1a(2� 2)b() max0���1min�2� 21 + � ; 1� � + 1� 1 + �� � 1To show the last equation, we see when it is the ase that 2�21+� = 1�� + 1�1+� , i.e. the expressionsunder the min are equal. It is not hard to see that this happens when � = (1 � 2). We nowonsider two ases.� Case 1. Assume � � 1 � 2. Then min�2�21+� ; 1�� + 1�1+�� = 2�21+� and it suÆes to showthat 2�21+� � 1. But it is easy to see that the latter is exatly equivalent to our assumption on�, so it holds.� Case 2. Assume � � 1 � 2. Then min�2�21+� ; 1�� + 1�1+�� = 1�� + 1�1+� and it suÆes toshow that 1�� + 1�1+� � 1. But this is again exatly equivalent to our assumption on �, so itholds.4.4 Expeted Number of Interventions to Fix the OutomeFinally, we analyze another property of our IRS. Assume that rather than having at most b applia-tions of rule (B') and trying to minimize the fairness of the oin, the adversary tries to �x the ointo some value he desires (with probability 1) and wants to minimize the expeted number of \in-terventions", i.e. appliations of rule (B') (while rule (A') an be used \for free"). In other words,given an extration funtion f , A omputes the expeted number of interventions to fore 0, thandoes the same for 1, and hooses the smaller of the two. We let v(;D) be this smallest expetednumber of interventions taken over the worst possible extration funtion f : f0; 1gD ! f0; 1g.Theorem 8 v(;D) � O� 11� 2� (5)In partiular, if  < 12 , a onstant expeted number of interventions suÆe irrespetive of D!We again see a similar trend to Theorem 5 and Theorem 3: large number of repetitions D doesnot help. In other words, our \ombined" random soure gives muh more power to the adversarythan one would imagine: if (onstant)  < 12 and no matter how large is D, a super-onstantnumber of interventions b makes it impossible to extrat a slightly random bit, and a onstantexpeted number of interventions suÆes to �x the bit no matter what extration funtion we use.We also remark that Theorems 3 and 8 about our IRS are omplimentary to eah other (i.e. onedoes not imply the other), even though both suÆe to establish our main Theorem 2. Indeed, wealready saw that Theorem 2 follows from the laim that b(12 �) = !(1)) q(; b;D) = o(1) (whihwas immediate from Theorem 3). But this laim also follows from Theorem 8 by applying Markov's10



inequality and getting that b = O(1=("(1 � 2)) suÆes to make q(; b;D) � ", whih gives theneeded b(12 � ) = !(1)) q(; b;D) = o(1).Similarly to the proof of Theorem 3, it is more onvenient to analyze A that always fores apartiular outome (say, 1) with probability 1 and tries to minimize the number of interventions b.We again onsider extration funtions f with Ones(f) = t and omit  from the notation below.De�nition 4 We let e(t;D) = maxf minA E[b℄where the maximum is taken over all f : f0; 1gD ! f0; 1g with Ones(f) = t, the minimum istaken over all adversaries A following rules (A') and (B') and neessarily produing x = x1 : : : xDsatisfying f(x) = 1, and E[b℄ stands for the expeted number of appliations of rule (B') by A(taken over the random hoies involved in using rule (A')). In other words, we restrit ourselvesto extrating funtions having t preimages of 1, and see how many interventions A needs on averageto ensure f(x) = 1.In the terminology of [LLS89℄, we an de�ne the language L assoiated with f as L = fx jf(x) = 1g. Then we an view our adversary as trying to ensure that x 2 L with the smallestnumber of interventions. The quantity e(t;D) tells us this expeted number of interventions that Aover the worst possible languages L (over D-bit strings) of ardinality t. In order to state a boundon e(t;D), we need the following easily veri�ed analytial lemma.Lemma 1 For any 0 <  < 12 the equationz 1 + 1 = 2 � z 1�1 (6)has a unique solution z 2 (1; 2). In addition, z is a ontinuous dereasing funtion of  suh thatlim!0 z = 2, lim! 12 z = 1, log2 z = �(1 � 2), and for all 1 � w � z we have w1= + 1 �2 � w1=�1.Theorem 9 e(t;D) � logz �2Dt � = log2(2D=t)log2 z = O� 11� 2� � log(2D=t) (7)Again, Equation (7) says for any f : f0; 1gD ! f0; 1g, we an upper bound the expeted numberof interventions to fore f(x) = 1 by a funtion depending only on the density(f) = Ones(f)=2D,i.e. only the fration of \ones" of f matters! Sine any funtion either has a majority of \ones"or \zeros", by replaing, if neessary, 0 and 1 we an assume that Ones(f) � 2D�1, i.e. 2D=t � 2.This immediately implies Theorem 8. We now prove Theorem 9 using almost the same tehniquewe used in Theorem 7.Proof: Let a = t=2D be the fration of \ones" of f , z = z and de�ne h(a) = logz(1=a). Weneed to show that e(t;D) � h(a) for any D � 1 and 0 � t � 2D. We prove this by indution on D.For D = 1, e(0; 1) =1 = h(0), and e(1; 1) = 1 � logz 2 = h(12 ) (sine z � 2, and here a = 12) ande(2; 1) = 0 = h(1). Assume now the laim is true for (D � 1) and we want to show it for D.Let f , f0, f1, r, ` have the same meaning they had in the proof of Theorem 7. In fat, ouradversary A will be the same as well! In other words, he will onsider spending one intervention toset x0 = 0 versus saving the intervention and making the 0-probability of x0 equal to 1 � . Theonly di�erene is that in the setting of Theorem 7 A ould \run out" of his b interventions and also11



minimized a di�erent quantity p(t;D; b) with di�erent initial onditions, while in our ase A willuse an extra intervention if this pays o�. We get the following reurrene.e(t;D) � max0�r�t=2`=t�r min [e(`;D � 1) + 1 ;  � e(r;D � 1) + (1� ) � e(`;D � 1)℄ (8)= max0�r�t=2`=t�r ( e(`;D � 1) + min [ 1 ;  � fe(r;D � 1)� e(`;D � 1)g ℄ ) (9)Let `=2D�1 = a(1 + �) and r=2D�1 = a(1 � �), where 0 � � � min(1; 1=a � 1) � 1 (sine`+ r = t = a � 2D and ` � r). Using our indutive assumption on (D � 1), we gete(t;D) � max0���1 ( h(a(1 + �)) + min [ 1 ;  � fh(a(1 � �))� h(a(1 + �))g ℄ ) ?� h(a) (10)Realling the de�nition of h, it thus suÆes to show thatmax0���1� logz 1a(1 + �) + min� 1 ;  � logz 1 + �1� � � � � logz 1aIt will now be onvenient to make a hange of variable and let � = �1+1 for some  � 1 (this is alwayspossible beause 0 � � � 1). Notiing that logz(1=a) anels, 1�� = 2=(+1), 1+� = 2=(+1),(1 + �)=(1 � �) =  and 1 = logz z, we get that it suÆes to show thatmax�1 � logz + 12 +min [ logz z ;  � logz  ℄ � � 0 ()max�1 � + 12 �min [z;  ℄ � � 1We now make the �nal hange of variable, letting  = w1= . Then it suÆes to show thatmaxw�1  w1= + 12w1= �min [z; w℄ ! � 1 (11)To show the last equation, we onsider two ases.� Case 1. Assume w � z. Then min[z; w℄ = w and it suÆes to show w1= + 1 � 2w1=�1,whih follows from Lemma 1 sine 1 � w � z by our assumption.� Case 2. Assume w � z. Then min[z; w℄ = z and it suÆes to show (w1= + 1)z � 2w1= ,whih is the same as w1= � z=(2� z). But sine z = z is the solution to Equation (6), it iseasy to see that z=(2� z) = z1= , so it suÆes to show w1= � z1= , whih is the same as ourassumption w � z.To summarize the properties of our \ombined" imperfet random soure, we have shown thatit gives too muh power to the adversary, perhaps more than one would expet.5 ConlusionsWe have seen that Theorems 1 and 2 give very di�erent evidenes in support of Conjeture 1.However, the status of oin-ipping with adaptive adversaries is still open and it would be veryinteresting to resolve it. 12
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