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Abstract. We introduce a new cryptographic problem called time cap-

sule signature. Time capsule signature is a ‘future signature’ that be-
comes valid from a specific future time t, when a trusted third party
(called Time Server) publishes some trapdoor information associated
with the time t. In addition, time capsule signature should satisfy the
following properties:

(1) If the signer wants, she can make her time capsule signature effective
before the pre-defined time t.

(2) The recipient of ‘future signature’ can verify right away that the
signature will become valid no later than at time t.

(3) Time Server need not contact any user at any time, and in fact does
not need to know anything about the PKI employed by the users.

(4) Signatures completed by the signer before time t are indistinguish-
able from the ones completed using the Time Server at time t.

We provide the rigorous definition of time capsule signature and the
generic construction based on another new primitive of independent in-
terest, which we call identity-based trapdoor hard-to-invert relation (ID-

THIR). We also show an efficient construction of ID-THIRs (and, hence,
time capsule signatures) in the random oracle model, and a less efficient
construction in the standard model.
If the time t is replaced by a specific event, the concept of time capsule

signature can be generalized to event capsule signature.

1 Introduction

1.1 Time Capsule Signature

In an ordinary signature scheme, the validity of a signature value is determined
at the point of signature generation and never changes (unless the signer’s public
key is revoked). Users cannot generate the so-called ‘future signature’ which is
not currently valid but becomes valid from a future time t. A naive way to
achieve this is signing with a statement such as ‘the signature of message m
becomes valid from time t.’ This, however, has several drawbacks. First, and
least serious, the verifier is required to be aware of the current time. When time
is generalized to arbitrary events (i.e., ‘the signature of m becomes valid if the
event e happens’), this becomes even more problematic. More seriously, however,
in the naive solution the signer herself loses control over the validity of the future



signature, i.e., even the real signer cannot make her signature valid before time
t. This means that either the signer has to wait until time t — which could be
undesirable in certain situations (e.g., if the borrower wants to quickly repay her
debt before the actual due date to improve her credit history) — or the signer
can issue a new, independent signature of m before time t. The latter solution,
however, can also be undesirable in certain situations. First, in case the message
m carries some monetary value, the signer needs to make sure that no “double
spending” occurs (i.e., to somehow revoke the original signature, so that it does
not become valid at time t). Second, the verifier now knows whether the message
m was signed in the ‘future’ or ‘regular’ way, which seems to be unnecessary in
most situations.

Therefore, we would like a solution where the signer can issue a future sig-
nature so that at least the following properties are satisfied:

(1) At the time of creation, the recipient is sure that the signature will become
valid by time t, even if the signer refuses to cooperate after she produces the
future signature.

(2) The legal signer can make the future signature valid at any time after the
initial creation.

(3) Irrespective of whether the signer validated the signature earlier, or it be-
came “automatically valid” at time t, the resulting signatures are indistin-
guishable. In other words, the verifier after time t cannot tell the lower-level
details of how the signature became valid.

Of course, it is also crucial to specify the mechanism under which the sig-
nature can be “automatically” completed at time t (which we call “hatching”
as opposed to “pre-hatching” which can be done by the signer at any time).
As we remarked, we cannot just make it valid at time t, since this requires the
verifier to “know” the current time, and, more importantly, will not make the
hatching indistinguishable from pre-hatching. Another option would be to use
some “time-release” primitive, such as timed signature [10], where the verifier
knows that by investing some intensive computation, he can complete a future
signature within some pre-specified time, even if the signer refuses to cooperate.
However, this option is only approximate (i.e., the verifier can open the signa-
ture roughly by time t depending on its computational capabilities), and, more
importantly, forces the verifier to invest a considerable computational effort the
moment the future signature was generated.

Finally, we can follow the approach of optimistic fair exchange protocols [1,
2, 16], where an “off-line” arbitrator (a trusted third party) can complete the
signer’s partial signature into the full signature, shall the signer refuse to co-
operate. In particular, so called verifiably committed signatures of [16] seem to
be ideally suited for this task. The main drawback of this solution is that the
arbitrator, although only involved if the signer refuses to cooperate (say, be-
fore time t), has to be involved in a message-by-message manner. Thus, in our
scenario of future signatures, — where by default the signer will not pre-hatch
her signature, — the arbitrator would have to literally complete almost every
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signature separately. The latter, of course, makes the arbitrator quite “on-line”
and whole paradigm very unattractive for our application.

Instead, we introduce time capsule signatures, where the arbitrator (which
we call the Time Server)

(1) Does not ever need to contact users, know about the particular format of
their signature, or be involved in any signature resolution protocols.

(2) At the beginning of time period t, outputs a single message Zt, which auto-
matically allows anybody to complete any future signature set to hatch at
time t.

More specifically, time capsule signature is a ‘future signature’ that becomes
valid from a specific future time t, when a trusted third party (called Time
Server) publishes some trapdoor information associated with the time t. When
Alice gives Bob her time capsule signature σ′

t for a future time t, Bob can verify
that Alice’s time capsule signature will become valid from the time t. In addition,
if Alice wishes, she can make her time capsule signature effective before the pre-
defined time t. The assumption on Time Server is minimal, in that Time Server
only publishes some information at the beginning of each time period and need
not contact any user at any time. Finally, the concept of time capsule signature
can be generalized to event capsule signature, where Event Server issues the
notification information of specific events. The event capsule signature becomes
valid if a specific event happens or the signer makes valid before the event occurs.

1.2 Our Contribution

We provide the rigorous definition of time (or event) capsule signature and the
generic construction based on another new primitive of independent interest,
which we call identity-based trapdoor hard-to-invert relation (ID-THIR). Intu-
itively, ID-THIR is given by a family R of relations Rid, where (1) it is easy to
sample a random pair (c, d) ∈ Rid and verify if the pair (c, d) belongs to Rid;
(2) for each identity id, there exists a trapdoor tdid, which allows one to com-
pute a random d corresponding (w.r.t. Rid) to any given c (The trapdoor tdid’s
can be efficiently computed from a single “master key” mtdR); (3) without the
trapdoor tdid, it is hard to find a matching d corresponding (w.r.t. Rid) to a ran-
domly sampled c, even if one knows many trapdoors corresponding to identities
id′ 6= id.

Our construction of time (or event) capsule signatures from ID-THIR is very
natural: the future signature of m is (Sig(m||c||t), c), while the full hatched
signature is (Sig(m||c||t), c, d), where ‘Sig’ is any ordinary signature, ‘m’ a mes-
sage, ‘‖’ the concatenation and (c, d) a random lock/proof pair corresponding to
the “identity” equal to time t (or event e). The legal signer would sample (c, d)
and remember d for pre-hatching, while the Time (or Event) Server would pe-
riodically publish the trapdoors tdt (or tde) which would allow anyone to hatch
the signature by computing the corresponding d from c. Moreover, hatching and
pre-hatching would look the same, by the security properties of the ID-THIR

scheme.
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Finally, we give a generic construction of ID-THIR (and, therefore, time/event
capsule signature). In the standard model, the construction is mainly of theo-
retical interest, as it relied on non-interactive witness indistinguishable proofs of
knowledge. Nevertheless, it shows that our primitives exist if trapdoor one-way
permutations exist. On a practical front, we give several very efficient implemen-
tations of ID-THIR in the random oracle model. Generically, we show that in the
random oracle model one can construct our primitives from mere one-way func-
tions. Concretely, we show very efficient instantiations based on RSA or discrete
log in the Gap Diffie-Hellman groups [26, 8].

1.3 Related Work

As we pointed out, there are two main lines of work related to time capsule
signature, depending on whether or not the trusted third party is involved.

The first approach, which is that of timed-release cryptography, is to en-
sure that the encryption, commitment or signature can be opened in a brute
force way by solving some time-consuming, but computationally feasible prob-
lem. For example, Dwork and Naor [17] used such moderately hard functions in
order to deter abuse of resources, such as spamming. Bellare and Goldwasser [3,
4] suggested “(verifiable) time capsules”1 for key escrowing in order to deter
widespread wiretapping. There, the main issue is the verification at escrow time
that the right key will be recovered. Rivest, Shamir and Wagner [29] suggested
“time-lock puzzle,” where the goal is to design “inherently sequential puzzles”
which are resistant to parallel attacks. However, they did not address verifiability
at escrow time. The latter was formally addressed by Boneh and Naor [10], who
defined (verifiable) timed commitments. As one of their applications, they get
an analog of our time capsule signature (termed “timed signature”), where the
future signature can either be opened by the signer, or by the recipient — the
latter if the recipient solves a moderately hard problem. More recent advances
were made by [21, 22].

The second approach, based on the trusted third party, has two main flavors:
optimistic fair exchange of digital signatures, and identity-based future encryp-
tion. In the former case, the server needs to resolve all individual signatures
where the signer refused to validate the signature (say, by a given time t).2 Rep-
resentative examples include [1, 2, 11, 16]. In contrast, in our model we insist that
users do not communicate ever with the trusted server.

In the case of future encryption [7, 6, 27], the main problem addressed was
that the sender wants to ensure that the message would remain hidden before
the Time Server would publish the corresponding trapdoor. However, this is
orthogonal to our model, where we want to “encrypt” a signature on a public
message. Thus, we do not need to hide the message (and can even leak partial

1 Which should not be confused with our time capsule signatures, which are totally
different.

2 In fact, in some of the solutions the clients additionally need to either register their
keys with the server, or have an interactive resolution protocol.
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information about the full signature, as long as the full signature is hidden). On
the other hand, we have to resolve two crucial complications not present in the
above scenario: (1) the future signature has to be verifiable right away, to ensure
the recipient it will be successfully completed at time t; (2) the sender can pre-
hatch the signature in a manner indistinguishable from the regular hatching at
time t. Not surprisingly, the solutions above all utilized some kind of identity-
based encryption, and do not seem to be useful for our time-capsule signatures.

2 Primitives

2.1 Σ-protocol

A Σ-protocol [15] is an efficient 3-round two-party protocol between the prover
and the verifier on a common input x ∈ LR, where LR is a language for an NP

relation R. Besides x, a valid NP-witness w for x is also given to the prover as
a private input. The prover first sends a commitment message a to the receiver.
After receiving the commitment message a, the verifier sends a challenge message
b to the prover. Finally, the prover sends a response message z to the verifier who
decides to output 1 (accept) or 0 (reject) based on the input x and the transcript
π = {a, b, z}. The transcript π is valid if the verifier outputs 1 (accept). A binary
Σ-protocol is a special case of Σ-protocol where the challenge message takes only
a binary value (0 or 1).

A Σ-protocol should satisfy three properties: correctness, special soundness,
and special (honest-verifier) zero-knowledge. Correctness property states that
for all x ∈ LR and all valid witnesses w for x, if the prover and the verifier fol-
low the protocol honestly, the verifier must output 1 (accept). Special soundness
property says that there is an efficient extraction algorithm (called a knowl-
edge extractor) Ext that on input x ∈ LR and two valid transcripts π1, π2 with
the same commitment message outputs z such that (x, z) ∈ R. Special zero-
knowledge property says that there is an efficient simulation algorithm (called
a simulator) Sim that on input x ∈ LR and any challenge message b, outputs a
valid transcript π′ = {a′, b, z′}. Moreover, the distribution of (a′, z′) is computa-
tionally indistinguishable from the corresponding distribution on (a, z) produced
by the prover knowing a valid witness w for x and the verifier. This is true even
if the distinguisher knows the witness w.

A function f : {0, 1}∗→ {0, 1}∗ is a one-way function, if there exists a poly-
nomial time algorithm which computes f(x) correctly for all x and the following
probability is negligible for all PPT (Probabilistic Polynomial Time) algorithm
A: Pr(f(x′) = y | x← {0, 1}k; y = f(x); x′ ← A(y, 1k)). It is known that any lan-
guage in NP has a Σ-protocol if one-way functions exist [23, 18]. Of course, spe-
cific languages can have much more efficient Σ-protocols. A Σ-protocol can also
be transformed into a signature scheme by using the Fiat-Shamir heuristic [20].
To sign a message m, the legal signer produces a valid transcript π = {a, b, z} of
the Σ-protocol, where b = H(a, m) and H(·) is a cryptographic hash function
modelled as a random function. The signature scheme obtained by applying the
Fiat-Shamir heuristic to the Σ-protocol is secure in the random oracle model [5,
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31]. It is also known that the Fiat-Shamir heuristic gives a non-interactive proof
of knowledge in the random oracle model (i.e., the witness can be extracted by
rewinding the adversary).

If there are two Σ-protocols, i.e., Σ1 for R1 and Σ2 for R2, we can con-
struct another Σ-protocol ΣOR (called OR-proof) [15] which allows the prover
to show that given two inputs x1, x2, he knows w such that either (x1, w) ∈ R1

or (x2, w) ∈ R2 without revealing which is the case (called the witness indistin-
guishability property [19]). By applying the Fiat-Shamir heuristic to the OR-
proof ΣOR, we get a signature scheme (called OR-signature) secure in the ran-
dom oracle model such that a valid signature can be generated by the signer
who knows a valid witness w corresponding to either of the two inputs x1, x2.
It is known that the Fiat-Shamir heuristic does not affect the witness indistin-
guishability property of the Σ-protocol.

2.2 Identity-Based Trapdoor Hard-to-Invert Relation

A (binary) relation R is a subset of {0, 1}∗×{0, 1}∗ and the language LR is the
set of α’s for which there exist β such that (α, β) ∈ R, i.e., LR = {α | ∃β [(α, β) ∈
R]}. We assume that (1) there is an efficient algorithm to decide whether α ∈ LR

or not, (2) if (α, β) ∈ R, then the length of β is polynomially bounded in |α|,
and (3) there exists a short description DR which specifies the relation R.

We also assume that the membership in f(X) can be efficiently determined
for a (trapdoor) one-way function f : X → Y .

Definition 1. An identity-based trapdoor hard-to-invert relation (ID-THIR) is
a set of relations R = {Rid | id ∈ IR}, where each relation Rid is trapdoor
hard-to-invert relation (i.e., sampling a random lock/proof pair (c, d) ∈ Rid is
easy but finding a proof for a given lock is difficult without knowing the trapdoor
tdid) and there is a master trapdoor mtdR for extracting the trapdoor tdid of
each relation Rid. ID-THIR can also be specified by 5-tuple of PPT algorithms
(Gen, Sample, Check, Extract, Invert) such that:

– Gen. This algorithm is used to generate R = {Rid | id ∈ IR}, where IR is
a finite set of indices. Gen(1k) returns DR (the description of R) and mtdR

(the master trapdoor).
– Sample. This sampling algorithm takes (DR, id) as input and SampleDR

(id)
returns a random lock/proof pair (c, d) ∈ Rid.

– Check. This algorithm is used to check the validity of the proof. If (c, d) ∈ Rid,
then CheckDR,id(c, d) returns 1 (accept). Otherwise, it returns 0 (reject).

– Extract. This algorithm is used to extract the trapdoor of each relation by
using mtdR. ExtractmtdR

(id) returns the trapdoor tdRid
of the relation Rid.

– Invert. This algorithm is used to find a proof d for a given c ∈ LRid
by using

the trapdoor tdRid
. If c ∈ LRid

, then InverttdRid
(c) returns a proof d such that

(c, d) ∈ Rid.

Let (c, d) ← SampleDR
(id) and d̃ ← InverttdRid

(c). Correctness property states

that CheckDR,id(c, d) = 1 and CheckDR,id(c, d̃) = 1, and ambiguity property
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states that (c, d) and (c, d̃) are computationally indistinguishable, even if the
distinguisher knows the master key mtdR. Let OExtract be the oracle simulating
the trapdoor extraction procedure Extract and Query(A, OExtract) the set of
queries an algorithm A asked to OExtract. One-wayness property states that the
following probability is negligible for all PPT algorithm A = (A1, A2):

Pr[ CheckDR,id(c, d̂) = 1 ∧ id 6∈ Query(A, OExtract) | (DR, mtdR) ←

Gen(1k); (id, h)← AOExtract

1 (DR); (c, d)← SampleDR
(id); d̂← AOExtract

2 (DR, c, h)]

Soundness property states that the following probability is negligible for all
algorithm B:

Pr [ Rid ∈ R ∧ c ∈ LRid
∧ CheckDR,id(c, d̃) = 0 | (DR , mtdR) ←

Gen(1k); (c, id)← B(DR); tdRid
← ExtractmtdR

(id); d̃← InverttdRid
(c) ]

If ID-THIR satisfies these four properties, we say that ID-THIR is secure.

Construction. Each trapdoor hard-to-invert relation Rid in ID-THIR R =
{Rid | id ∈ IR} looks like a trapdoor one-way function. However, there is an
important difference: we can sample a random lock/proof pair (c, d) ∈ Rid but
may not necessarily be able to compute a lock c for a given proof d. Therefore,
we can show that a trapdoor one-way function implies a trapdoor hard-to-invert
relation but cannot prove the reverse direction. While the concept of ID-THIR

also seems very general, the construction is not trivial. For example, it is not
obvious whether identity-based encryption (IBE) [35, 7] implies ID-THIR or not,
since IBE does not automatically guarantee the ambiguity property of ID-THIR.3

Now, we provide our general construction of ID-THIR.

Theorem 1. If there is a one-way function, there exists a secure ID-THIR in
the random oracle model.

Proof: Assume that there is a one way function f : X → Y . We can build
a secure signature scheme (Set, Sig, Ver) from the one-way function f , since
secure signatures exist if and only if one-way functions exist [32]. Let ΣSig be
the Σ-protocol for the knowledge of a signature value Sig(m) on a common
input m ∈ M and Σf for the knowledge of a pre-image of a common input
f(x) ∈ f(X). If we denote by ΣOR the OR-proof for ΣSig or Σf , we can obtain

an OR-signature scheme (SetOR, SigOR, VerOR) by applying the Fiat-Shamir
heuristic to ΣOR. The OR-signature is secure in the random oracle model and
SetOR can be implicitly defined by ΣSig and Σf .

Now, we define the identity-based trapdoor hard-to-invert relation ROR =
{Rm |m ∈M} where Rm = {(y, π) | y = f(x) for x ∈ X, π is an OR-signature on
m‖f(x) for the knowledge of a pre-image of f(x) or Sig(m)} and the algorithms

3 The decryption algorithm of IBE does not necessarily recover the temporary random
number used in the encryption algorithm. For example, see [7].
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(Gen, Sample, Check, Extract, Invert) as follows; Gen chooses (pk, sk)← Set(1k)
and outputs DROR

= pk, mtdROR
= sk (technically, DROR

should also contain
the one-way function f). We assume that message space M is known implicitly.
On input id = m, Sample randomly chooses x ∈ X and generates an OR-
signature π for the knowledge of a pre-image of f(x) or Sig(m). Sample outputs
a lock/proof pair (c, d) = (f(x), π). For a given (id, c, d) = (m, f(x), π), Check

verifies whether π is a valid OR-signature for a pre-image of f(x) or Sig(m).
Extract takes as input id = m and outputs tdRm

= Sig(m). On input (id, c) =
(m, f(x)), Invert knowing tdRm

= Sig(m) generates an OR-signature π for the
knowledge of a pre-image of f(x) or Sig(m).

Correctness property is obvious and ambiguity property results from the fact
that the OR-proof ΣOR is witness indistinguishable. Now, consider the one-
wayness property. The attacker A against ROR gets DROR

= pk as input and
has access to the signing oracle OSig. A wins if it comes up with m which was
not queried to OSig such that for a given lock f(x) ∈ LRm

, A can find an OR-
signature π for the knowledge of a pre-image of f(x) or Sig(m). However, the
Fiat-Shamir proof is actually proof of knowledge and the ability to come up with
a valid proof implies that we can extract a valid witness which is either a new
signature value or a pre-image of the one-way function. Therefore, if A succeeds,
we can either forge an ordinary signature or invert the one-way function, both
of which easily lead to contradiction to the security of the underlying signature
scheme and one-way function. Finally, the soundness property can be checked
from the correctness property of the OR-proof ΣOR.

Remark 1. (Σ-protocols) The Σ-protocol Σf for the knowledge of a pre-
image of a one-way function and ΣSig for the knowledge of a signature value
can be constructed in generic ways [18]. However, there exist very efficient Σ-
protocols for specific cases. For example, Σ-protocol in [24] can be used for the
RSA function or the FDH signature scheme [5], and Σ-protocol in [34] can be
applied to the discrete logarithm function or the BLS signature scheme [8]. While
efficient Σ-protocols for the knowledge of a signature value in [24, 34] require
the random oracle model, relatively efficient Σ-protocols for the knowledge of a
signature value without the random oracle model can be founded in [12, 13, 9].

Remark 2. (Alternative to the Fiat-Shamir proof – I) Notice that
the proof of Theorem 1 only requires the following properties from the Fiat-
Shamir proof: (1) witness indistinguishability and (2) proof of knowledge. There-
fore, we can use the straight-line extractable WI proof [28] instead of the Fiat-
Shamir proof. Like the Fiat-Shamir proof, the construction of the straight-line
extractable WI proof starts with Σ-protocol but the length of the resulting proof
is much longer. However, non-programmable random oracle can be used and
better exact security is obtained. Therefore, the choice depends on the tradeoff
between efficiency and exact security.

Remark 3. (Alternative to the Fiat-Shamir proof – II) Instead of
the Fiat-Shamir proof, we can also use non-interactive witness indistinguishable
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proofs of knowledge (for ‘I know the pre-image of f(x)’ or ‘I know the signature
value Sig(m)’). In this case, we do not need the random oracle and can use
instead a common reference string (which can be included in the public key pk).
However, the best known way of constructing non-interactive witness indistin-
guishable proofs of knowledge requires the existence of trapdoor one-way per-
mutations [33] and is extremely inefficient. Nevertheless, this observation leads
to the following corollary.

Corollary 1. If there is a trapdoor one-way permutation, there exists a secure
ID-THIR in the standard model.

3 Time Capsule Signature

3.1 Definition

Definition 2. A time capsule signature scheme is specified by an 8-tuple of
PPT algorithms (SetupTS, SetupUser, TSig, TVer, TRelease, Hatch, PreHatch, Ver)
such that:

– SetupTS. This setup algorithm is run by Time Server. It takes a security pa-
rameter as input and returns a public/private time release key pair (TPK, TSK).

– SetupUser. This seup algorithm is run by each user. It takes a security pa-
rameter as input and returns the user’s public/private key pair (PK, SK).

– TSig. The time capsule signature generation algorithm TSig takes as input
(m, SK, TPK, t), where t is the specific time from which the signature becomes
valid. It outputs a time capsule signature σ′

t.
– TVer. The time capsule signature verification algorithm TVer takes as input

(m, σ′
t, PK, TPK, t) and outputs 1 (accept) or 0 (reject).

– TRelease. The time release algorithm TRelease is run by Time Server and
takes as input (t, TSK). At the beginning of each time period t, Time Server
publishes Zt = TRelease(t, TSK). Note that Time Server dose not contact
any user at any time and need not know anything about the users.

– Hatch. This algorithm is run by any party and is used to open a valid time
capsule signature which became mature. It takes as input (m, σ′

t, PK, TPK, Zt)
and returns the hatched signature σt.

– PreHatch. This algorithm is run by the signer and used to open a valid time
capsule signature which is not mature yet. It takes as input (m, σ′

t, SK, TPK, t)
and returns the pre-hatched signature σt.

– Ver. This algorithm is used to verify a hatched (or pre-hatched) signature.
Ver takes as input (m, σt, PK, TPK, t) and returns 1 (accept) or 0 (reject).

Correctness property states that

– TVer(m, TSig(m, SK, TPK, t), PK, TPK, t) = 1 and
– Ver(m, σt, PK, TPK, t) = 1, where σt = Hatch(m, TSig(m, SK, TPK, t), PK,

TPK, Zt) or σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK, t).
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Ambiguity property states that

– The “hatched signature” σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Zt)
is computationally indistinguishable from the “pre-hatched signature” σt

= PreHatch(m, TSig(m, SK, TPK, t), SK, TPK, t), even if the distinguisher
knows TSK.

The security of time capsule signatures consists of ensuring three aspects:
security against the signer Alice, security against the verifier Bob, and security
against Time Server. In the following, the oracle simulating the time capsule
signature generation algorithm TSig is denoted by OTSig, the oracle simulating
the time release algorithm TRelease by OTR, and the oracle simulating PreHatch

by OPreH. The oracle OTSig takes (m, t) as input and returns Alice’s time capsule
signature σ′

t.
4 The oracle OPreH takes (m, t, σ′

t) as input and returns Alice’s pre-
hatched signature σt.

Security against Alice. We require that any PPT adversary A succeeds
with at most negligible probability in the following experiment.

SetupTS(1k)→ (TPK, TSK)

(m, t, σ′

t, PK)← AOTR(TPK)

Zt ← TRelease(t, TSK)

σt ← Hatch(m, σ′

t, PK, TPK, Zt)

success of A = [TVer(m, σ′

t, PK, TPK, t)
?

= 1 ∧ Ver(m, σt, PK, TPK, t)
?

= 0]

In other words, Alice should not be able to produce a time capsule signature σ′

t,
where σ′

t looks good to Bob but cannot be hatched into Alice’s full signature by
the honest Time Server.

Security against Bob. We require that any PPT adversary B succeeds
with at most negligible probability in the following experiment.

SetupTS(1k)→ (TPK, TSK)

SetupUser(1k)→ (PK, SK)

(m, t, σt)← BOTSig ,OTR,OPreH(PK, TPK)

success of B = [Ver(m, σt, PK, TPK, t)
?

= 1 ∧ t 6∈ Query(B, OTR)

∧ (m, t, ·) 6∈ Query(B, OPreH)]

where Query(B, OTR) is the set of queries B asked to the time release oracle OTR,
and Query(B, OPreH) is the set of valid queries B asked to the oracle OPreH (i.e.,
(m, t, σ′

t) such that TVer(m, σ′
t, PK, TPK, t) = 1). In other words, Bob should

not be able to open a pre-mature time capsule signature without help of the
singer or Time Server. Notice that Bob can make any time release query to

4 We assume that the adversary attacks an honest user Alice. The adversary can
collude with all other (dishonest) users.
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OTR except the target time t. Therefore, the above experiment requires strong
security guaranteeing both forward and backward secrecy.

Security against Time Server. We require that any PPT adversary C
succeeds with at most negligible probability in the following experiment.

SetupTS∗

(1k)→ (TPK, TSK∗)

SetupUser(1k)→ (PK, SK)

(m, t, σt)← COTSig ,OPreH(PK, TPK, TSK∗)

success of C = [Ver(m, σt, PK, TPK, t)
?

= 1 ∧ (m, ·) 6∈ Query(C, OTSig)]

where SetupTS∗

denotes the run of SetupTS with a dishonest Time Server (run
by C), TSK∗ is C’s state after this run, and Query(C, OTSig) is the set of queries
C asked to the time capsule signature generation oracle OTSig (i.e., (m, t′) 6∈
Query(C, OTSig) for all t′). In other words, Time Server should not be able to
produce a valid hatched or pre-hatched signature on m of Alice without explicitly
asking Alice to produce a time capsule signature on m.

3.2 Generic Construction Based on ID-THIR

The scheme. Let (Set, Sig, Ver) be an ordinary signature scheme and (Gen,
Sample, Check, Extract, Invert) be the procedures for ID-THIR.

– SetupTS. Time Server chooses (DR, mtdR) by running Gen(1k) and sets
(TPK, TSK) = (DR, mtdR).

– SetupUser. Each user chooses (pk, sk) by running Set(1k) and sets (PK, SK) =
(pk, sk).

– TSig. To generate a time capsule signature on a message m for time t, the
signer gets a random lock/proof pair (c, d) from SampleDR

(t) and computes
s = Sigsk(m||c||t). The time capsule signature value σ′

t is (s, c) and the
signer stores the proof d for later use.

– TVer. For a given time capsule signature σ′
t = (s, c), the verifier checks that

c ∈ LRt
and s is a valid signature on m||c||t by running Verpk(m||c||t, s).

– TRelease. For a given time value t, Time Server computes tdRt
= ExtractmtdR

(t)
and publishes Zt = tdRt

.
– Hatch. To open a mature time capsule signature σ′

t = (s, c), a party computes

d̃ = InverttdRt
(c) and returns the hatched signature σt = (s, c, d̃).

– PreHatch. To open a valid pre-mature time capsule signature σ′

t = (s, c), the
signer returns the pre-hatched signature σt = (s, c, d) where the proof d is a
stored value in the stage of TSig.

– Ver. For a given hatched (or pre-hatched) signature σt = (s, c, d), the verifier
checks the lock/proof pair by running CheckDR,t(c, d). Then, he verifies that
s is a valid signature on m||c||t by running Verpk(m||c||t, s).

The correctness property and the ambiguity property of the scheme are obvious
from the properties of ID-THIR. We now analyze its security.

11



Theorem 2. The time capsule signature scheme presented above is secure if the
underlying ordinary signature scheme and the ID-THIR are secure.

Proof: We prove the security against Alice, Bob, and Time Server.

Security against Alice. Security against Alice follows unconditionally. A
valid time capsule signature σ′

t = (s, c) satisfies that c ∈ LRt
and Verpk(m||c||t, s)

= 1. If Time Server releases tdt = ExtractmtdR
(t), any party can obtain a proof

d̃ = Inverttdt
(c) for the lock c ∈ LRt

. By the correctness property of ID-THIR,

CheckDR,t(c, d̃) = 1 always holds. Therefore, the hatched signature σt = (s, c, d̃)
passes the verification algorithm Ver.

Security against Bob. To show security against Bob, we convert any at-
tacker B that attacks our time capsule signature scheme into an inverter Inv
of ID-THIR. Recall that Inv gets DR as input and has access to the trapdoor
extraction oracle OExtract. Inv wins if it comes up with id which was not queried
to OExtract s.t. for a given lock c ∈ LRid

, Inv can find a proof d for c. On the other
hand, B expects (PK, TPK) as input and has access to OTSig, OTR, OPreH. B wins
if it forges a hatched (or pre-hatched) signature σt of some message m without
asking t to OTR or (m, t, σ′

t) to OPreH. Let (mB , tB, σtB
) be the successful forgery

of the attacker B. We can assume that B obtained the corresponding time cap-
sule signature σ′

tB
from OTSig , since the underlying ordinary signature scheme

(Set, Sig, Ver) is existentially unforgeable against chosen message attacks.
When Inv receives DR from an ID-THIR challenger C, it begins simulating

the attack environment of B. Inv picks a random public/private key pair (pk, sk)
by running Set(1k), sets PK = pk, SK = sk, TPK = DR, and gives (PK, TPK) to
B. Inv manages a list L = {(mi, ti, si, ci, di)} to answer B’s queries to OPreH. Let
qTSig be the total number of OTSig queries made by B and r be a random number
chosen by Inv in the interval of {1, 2, · · ·, qTSig}. Now, Inv knowing SK = sk
responds to the i-th OTSig query (mi, ti) of B as follows;

– If i = r, Inv outputs tr to the challenger C and receives a random lock c ∈ Rtr

from the challenger. Inv sets cr = c and computes sr = Sigsk(mr ||cr||tr).
Inv returns σ′

tr
= (sr , cr) to B and stores the element (mr , tr, sr, cr,⊥) in

the list L.
– If i 6= r, Inv picks a random lock/proof pair (ci, di) from SampleDR

(ti) and
computes si = Sigsk(mi||ci||ti). Inv returns σ′

ti
= (si, ci) to B and stores

the element (mi, ti, si, ci, di) in the list L.

To simulate OTR to the query ti of B, Inv simply asks ti to its own trapdoor
extraction oracle OExtract and gets tdRti

. If ti = tr, Inv abort. Otherwise, Inv
returns Zti

= tdRti
to B.

To simulate OPreH to the query (mi, ti, si, ci), Inv checks whether the query is
in the list L or not (by considering only the first four components of an element
in L). If (mi, ti, si, ci) is in the list L and equal to (mr , tr, sr, cr), Inv aborts.
If (mi, ti, si, ci) is in the list L and not equal to (mr , tr, sr, cr), Inv obtains a
proof di from the list L and give a pre-hatched signature σti

= (si, ci, di) to
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B. If (mi, ti, si, ci) is not in the list L (i.e., the time capsule signature was not
generated by Inv and therefore the query is invalid with very high probability),
Inv answers randomly to B.

The probability that Inv does not abort during the simulation is at least
1/qTSig, since r ∈ {1, · · · , qTSig} is randomly chosen and a secure ID-THIR satisfies
the ambiguity property. When B outputs the forgery (mB , tB, sB, cB, dB), Inv
verifies that the forgery passes the verification algorithm Ver and (mB , tB, sB, cB)
= (mr , tr, sr , cr). If so, Inv outputs the proof dB. Otherwise, Inv chooses a proof
dInv randomly and outputs dInv. Therefore, if B forges with a probability ǫ, Inv
succeeds in breaking the one-wayness of ID-THIR with a probability ǫ′ ≥ ǫ/qTSig.

Security against Time Server. To show security against Time Server,
we convert any attacker C that attacks our time capsule signature scheme into
a forger F for the underlying ordinary signature. Recall that F gets pk as an
input, and has access to the signing oracle OSig. On the other hand, C expects
(PK, TPK, TSK) as input and has access to OTSig and OPreH. C wins if it forges
a hatched (or pre-hatched) signature σt of some message m without obtaining a
time capsule signature on m from OTSig.

So here is how F simulates the run of C. To choose ID-THIR, F runs Gen(1k)
and obtains (DR, mtdR). Then, F gives (PK, TPK, TSK) = (pk, DR, mtdR) to C.
F can respond to OTSig queries (mi, ti) of C by choosing a random lock/proof pair
(ci, di) from SampleDR

(ti) and getting an ordinary signature si on mi||ci||ti from
its own signing oracle OSig. F stores (mi, ci, di, ti) in the list L = {(mi, ci, di, ti)}
to answer C’s queries to OPreH. To simulate OPreH to the queries (mi, ti, si, ci),
F verifies that si is a valid signature on mi||ci||ti.

– If si is a valid signature on mi||ci||ti, F checks whether (mi, ci, ti) is in the
list L or not. If it is in the list, F can give the corresponding proof di from the
list L. Otherwise, si is a new signature value and F succeeds in producing a
new forgery si on mi||ci||ti. F stops the simulation.

– If si is not a valid signature on mi||ci||ti, F answers randomly.

When C outputs the forgery (m̂, t̂, σ̂t) where σ̂t = (ŝ, ĉ, d̂), F outputs an ordinary
signature ŝ on a message m̂||ĉ||t̂. Therefore, if C succeeds with a probability ǫ,
F succeeds in producing a new forgery with a probability ǫ′ ≥ ǫ.

Theorem 3. If there is a one-way function, there exists a secure time capsule
signature scheme in the random oracle model.

Proof: Secure signatures exist if and only if one-way functions exist [32]. To-
gether with Theorem 1 and Theorem 2, we obtain Theorem 3.

Theorem 4. If there is a trapdoor one-way permutation, there exists a secure
time capsule signature scheme in the standard model.

Proof: Secure signatures exist if and only if one-way functions exist [32]. To-
gether with Corollary 1 and Theorem 2, we obtain Theorem 4.
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Remark 4. (Event Capsule Signature) In the definition and construction
of time capsule signature, we did not use any characteristic of the real time.
Actually, t need not be a time value and any index works for t. Therefore, the
definition and construction of time capsule signature can be efficiently converted
to those of event capsule signature.

4 On Trapdoor Hard-to-Invert Relation

A trapdoor hard-to-invert relation (THIR) is a specific elementary relation Rid

in ID-THIR R = {Rid | id ∈ IR}. The definition of THIR can be derived from
that of ID-THIR and the construction becomes even simpler as a signature on
one identity is simply a one-way function. Notice that THIR is also very easily
constructed without the random oracle model (unlike ID-THIR) if trapdoor one-
way permutations exist (for details, refer to Appendix A).

However, it is interesting to ask whether THIR (primitive simpler than ID-

THIR) can be built from one-way functions (or even one-way permutations) in
the standard model. We leave this as an open problem. However, we comment
that it is highly unlikely that a special case of THIR — so called deterministic
THIR where only one proof d exists for a given lock c — can be constructed
from one-way permutations. Indeed, one can easily see that the existence of a
deterministic THIR implies that of a secure key agreement scheme.5 However, it
is known that there exists no block-box reduction from one-way permutations
to secure key agreement schemes [25].
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5 Alice first sends Bob a randomly generated DR while the corresponding trapdoor tdR

is kept secret. After receiving DR, Bob samples a random lock/proof pair (c, d) ∈ R
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c. For secure communication, Alice and Bob can use d as a secret key (or derive a
secure key from d).
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Appendix A. Trapdoor Hard-to-Invert Relation

Definition 3. A trapdoor hard-to-invert relation (THIR) is a relation R, where
sampling a random lock/proof pair (c, d) ∈ R is easy but finding a proof for a
given lock is difficult without knowing the trapdoor. THIR can be specified by a
4-tuple of PPT algorithms (Gen, Sample, Check, Invert) such that:

– Gen. This algorithm is used to generate a relation R and the trapdoor infor-
mation. Gen(1k) returns DR (the description of R) and tdR (the trapdoor).

– Sample. This sampling algorithm takes as input DR and returns a random
lock/proof pair (c, d) ∈ R.

– Check. This algorithm is used to check the validity of the proof. If (c, d) ∈ R,
then CheckDR

(c, d) returns 1 (accept). Otherwise, it returns 0 (reject).
– Invert. This algorithm is used to find a proof d for c ∈ LR by using tdR. If

c ∈ LR, then InverttdR
(c) returns a proof d such that (c, d) ∈ R.

Let (c, d)← Sample(DR) and d̃ ← InverttdR
(c). Correctness property states that

CheckDR
(c, d) = 1 and CheckDR

(c, d̃) = 1, and ambiguity property states that

(c, d) and (c, d̃) are computationally indistinguishable, even if the distinguisher
knows tdR. One-wayness property states that the following probability is negligible
for all PPT algorithm A:

Pr[CheckDR
(c, d̂) = 1 | (DR, tdR)← Gen(1k); (c, d)← Sample(DR); d̂← A(DR, c, 1k)]

Soundness property states that the following probability is negligible for all algo-
rithm B:

Pr[c ∈ LR ∧ CheckDR
(c, d̃) = 0 | (DR, tdR)← Gen(1k); c← B(DR); d̃← InverttdR

(c)]

If THIR satisfies these four properties, we say that THIR is secure.

Constructions. We first present THIR based on RSA permutation [30] in the
standard model. An RSA permutation is defined by fn,e(x) = xe mod n, where
n is the product of two primes p and q, x ∈ Z

∗

n, e ∈ Z
∗

ϕ(n). Inverting an RSA

permutation is believed to be hard (i.e., the RSA assumption). Now, we can

define the relation R
(n,e)
RSA = {(y, x) | x ∈ Z

∗
n, y = xe mod n} and the algorithms

(Gen, Sample, Check, Invert) as follows; Gen chooses primes p, q and an integer e ∈
Zϕ(n), where n = pq. Gen outputs DRRSA

= (n, e) and tdRRSA
= e−1 mod ϕ(n).

Sample selects a proof d ∈ Z
∗

n, computes a lock c = fn,e(d), and outputs (c, d).
For a given lock/proof pair (c, d), Check verifies whether c = fn,e(d) or not. Invert

knowing tdRRSA
= e−1 mod ϕ(n) can find a proof d for a given lock c ∈ Z

∗
n by

d = fn,e−1 (c). Correctness property and ambiguity property are obvious, because
the RSA permutation is deterministic. One-wayness property results from the
RSA assumption and soundness property from the fact that fn,e−1(·) is the
inverse permutation of fn,e(·) in Z

∗

n. Similarly, we can construct THIR based on
any trapdoor one-way permutation.
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Theorem 5. If there is a trapdoor one-way permutation, there exists a secure
THIR in the standard model.

Proof: (Sketch) We can build a secure THIR based on a trapdoor one-way per-
mutation in the exactly same way as the THIR based on the RSA permutation
mentioned above. The security can also be checked from the properties of trap-
door one-way permutations. We leave the details to readers.

The existence of trapdoor one-way permutations is a sufficient but not a
necessary condition for the existence of THIR. We present an example based on
GDH groups [26, 8], which does not exploit trapdoor one-way permutations. A
prime order group G is called a GDH group if decisional Diffie-Hellman (DDH)
problem of G is easy but computational Diffie-Hellman (CDH) problem of G
is difficult (i.e., the GDH assumption). DDH problem is the decision problem

of the equality logg h
?

= logc d for given g, h, c, d ∈ G and CDH problem is the

computation problem of d = clogg h for given g, h, c ∈ G. Let G be a GDH group of
order p with generators g, h and VDDH be an efficient algorithm which solves the

DDH problem of G. Now, we can define the relation R
(g,h)
GDH = {(c, d) | c ∈ G, d ∈

G, logg h = logc d} and the algorithms (Gen, Sample, Check, Invert) as follows;
Gen chooses a GDH group G of order p with a generator g and selects an integer
x ∈ Zp. Gen computes h = gx and outputs DRGDH

= (g, h, p), tdRGDH
= x.

Sample selects an integer z ∈ Zp and outputs a lock/proof pair (c, d) = (gz, hz).
For given lock/proof pair (c, d), Check verifies whether VDDH(g, h, c, d) = 1 or
not. Invert knowing tdRGDH

can find a proof d for a given c ∈ G by d = cx.
Finally, we show that THIR can be constructed from a one-way function in

the random oracle model.

Theorem 6. If there is a one-way function, there exists a secure THIR in the
random oracle model.

Proof: (Sketch) Assume that there is a one way function f : X → Y . Let Σf be
the Σ-protocol for the knowledge of a pre-image of a common input f(x) ∈ f(X).
If we denote by ΣOR the OR-proof for two Σf protocols, we can obtain the
corresponding OR-signature scheme by applying the Fiat-Shamir heuristic. Now,
we define DR = (f, f(x1)) where x1 ∈ X and R = {(f(x2), π) | x2 ∈ X, π is an
OR-signature on f(x2) for the knowledge of a pre-image of either f(x1) or f(x2)}.
The algorithms (Gen, Sample, Check, Invert) are defined as follows; Gen chooses
x1 ∈ X and outputs DR = (f, f(x1)), tdR = x1. Sample randomly chooses x2 ∈
X and generates an OR-signature π on f(x2) for the knowledge of a pre-image
of either f(x1) or f(x2). Sample outputs a lock/proof pair (c, d) = (f(x2), π).
For a given (c, d) = (f(x2), π), Check verifies whether π is a valid OR-signature
on f(x2) for the knowledge of a pre-image of either f(x1) or f(x2). On input
c = f(x2), Invert knowing tdR = x1 generates an OR-signature π on f(x2). The
security can be checked in a similar way to Theorem 1.

Remark 5. (Related Work) Trapdoor hard-to-invert isomorphism, i.e., a
special case of our general notion, was recently introduced by Catalano et al. [14]
to present a generic password-based key exchange construction.
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