
Bottleneck Links, Variable Demand,
and the Tragedy of the Commons

Richard Cole� Yevgeniy Dodisy Tim Roughgardenz
April 8, 2005

Abstract

The price of anarchy, a measure of the inefficiency of selfish behavior, has been successfully analyzed
in a diverse array of models over the past five years. The overwhelming majority of this work has
studied optimization problems that sought an optimal way to allocate a fixed demand to resources whose
performance degrades with increasing congestion. While fundamental, such problems overlook a crucial
feature of many applications: the intrinsic coupling of the quality or cost of a resource and the demand
for that resource. This coupling motivates allowing demand to vary with congestion, which in turn can
lead to “the tragedy of the commons”—severe inefficiency caused by the overconsumption of a shared
resource.

Allowing the demand for resources to vary with their congestion illuminates a second issue with
existing studies of the price of anarchy: the standard additive method of aggregating the costs of different
resources in a player’s strategy is inappropriate for some important applications, including many of
those with variable demand. For example, in networking applications a key performance metric is the
achievable throughput along a path, which is controlled by its bottleneck (most congested) edge. This
disconnect motivates consideration of nonlinear cost aggregation functions, such as the` p norms.

In this paper, we initiate the study of the price of anarchy with variable demand and with broad
classes of nonlinear aggregation functions. We focus on selfish routing in single- and multicommodity
networks, and on thèp norms for1 � p �1; our main results are as follows.� For a natural “prize-collecting” objective function, the price of anarchy in multicommodity net-

works with variable demand is no larger than that in fixed-demand networks. Thus the inefficiency
arising from the tragedy of the commons is no more severe than that from routing inefficiencies.� Using the`p norm with1 < p < 1 as a cost aggregation function can dramatically increase the
price of anarchy in multicommodity networks (relative to additive aggregation), but causes no such
additional inefficiency in single-commodity networks.� Using the`1 norm as a cost aggregation function can dramatically increase the price of anarchy,
even in single-commodity networks. If attention is restricted to equilibria with additional structure,
however—structure that is ensured by distributed shortest-path routing protocols—then using the`1 norm does not increase the price of anarchy relative to additive aggregation.�Department of Computer Science, New York University, 251 Mercer Street, New York, NY 10012. Supported in part by NSF
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1 Introduction

The Price of Anarchy and Variable Demand

Theprice of anarchy[25]—formally defined as the worst-case ratio between the objective function values
of a Nash equilibrium and of an optimal solution—is an increasingly popular measure of the inefficiency of
selfish behavior. Over the past five years, the price of anarchy has been successfully analyzed in a diverse
array of applications, including scheduling (see [15] and the references therein), routing (see [33] and the
references therein), facility location [39], network design [2, 3, 17], resource allocation [23], and other net-
working games [4, 20, 22]. Most of these previous works have identified natural classes of noncooperative
games in which the price of anarchy is provably small; hence, selfish behavior results in only a modest loss
of efficiency in these games.

The overwhelming majority of this work studied optimization problems of the following sort: given re-
sources whose performance degrades with increasing congestion, allocate a fixed demand for the resources
in an optimal way. While obviously fundamental, such problems overlook a crucial feature of many appli-
cations: the intrinsic coupling of the quality or cost of a resource and the demand for that resource. Put
differently, we expect the demand for an uncongested resource to be relatively high, and that this demand
will fall as the resource becomes more congested and expensive. Allowing the demand for a resource to vary
inevitably gives rise to a tradeoff between two different quantities: the number of users that benefit from the
resource, and the quality of the resource (which degrades as more and more users benefit from it). We next
illustrate this tradeoff with a stark, famous example:the tragedy of the commons[21].

The Tragedy of the Commons

The tragedy of the commons typically refers to a strategic scenario with a shared resource that is effectively
destroyed by overconsumption. In lieu of the traditional bovine example [21], we will illustrate this idea in
a network routing context.

Consider a large but fixed population of agents who are each considering traversing a link from a nodes to a nodet. Suppose that if anx fraction of the population makes the trip, then each of the itinerant agents
incurs a cost of(x) but reaps a benefit of 1. (Agents that stay home receive zero benefit and cost.) Suppose
further that we instantiate the cost function as(x) = xd for d large. Then the net benefit of making the trip
is always nonnegative, even if the link is fully congested, and we expect the entire population to travel tot,
resulting in zero net benefit for all.

Given dictatorial control of the population, we could implement a far superior outcome by detaining an� fraction of the population; this would result in a1 � � fraction of the population enjoying a net benefit
of nearly 1 (ford large). In other words—and this is the tragedy of the commons—the fact that the final�
fraction of the population insists on making the trip congests the shared resource to the point that none of
the population extracts any net benefit from it.

In all previous works on the price of anarchy of “selfish routing”, agents were not permitted to refuse to
travel—put differently, the amount of traffic in the network was exogenous (fixed), rather than endogenous
as in the above example. In the above single-link network, there is of course no inefficiency when the
amount of traffic is fixed (there is only one feasible solution). This brings us to the first goal of this paper.

(1) Quantify the inefficiency that arises from allowing the demand for a resource to vary with its congestion.

Bottleneck Links and Nonlinear Aggregation Functions

Allowing the demand for resources to vary with their congestion illuminates a second issue with most
existing studies of the price of anarchy: the standard way of aggregating the costs of different resources in
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a player’s strategy is inappropriate for some important applications, including many of those with variable
demand.

To motivate this point, we recall the definition ofcongestion games[29]. In a congestion game, there
is a ground set of elements (resources), and players’ strategies are subsets of this ground set. Each element
has a cost that is a function of its congestion—the number of players that select strategies containing it. For
example, in selfish routing, the edges of the network form the ground set, and the strategies of a player are
paths from a source vertex to a destination vertex. The cost of a player’s strategy in a congestion game is
given by anaggregation functionof the costs of the elements in the strategy.

Almost all of the aforementioned work on the price of anarchy concerns congestion games with different
objective functions and different restrictions on the game structure. All of these studies of congestion games
save two [1, 6] have a key assumption in common, however:that the aggregation function is linear. In
fact, with one exception [35], these papers assume that the aggregation function is additive—that the cost
of a strategy is simply the sum of the costs of the elements it contains. (Although in several, such as
the scheduling results surveyed in [15], all strategies are singletons and hence no aggregation function is
needed.)

While additive aggregation functions are arguably the most natural ones, they are not well suited for all
applications. For instance, when analyzing the performance of a communication network with a variable
amount of traffic, a key performance metric is the achievablethroughputalong a path, which is controlled by
its bottleneck(most congested) link; see e.g. Keshav [24]. In fact, the studies of Qiu et al. [28] and Akella,
Chawla, and Seshan [1], both of which tried to adapt theoretical results for selfish routing to more faithful
models of the Internet, singled out the choice of the additive aggregation function over the bottleneck link
metric as a key disconnect between selfish routing and the traditional concerns of the networking community.

The bottleneck link metric corresponds to using the1̀ norm as the aggregation function. Banner and
Orda [6] point out that thè1 norm is the natural aggregation function in many additional applications.
For example, in wireless networks, the transmission capability of a path is constrained by the node with
the smallest lifetime, as determined by its remaining battery power and the amount of traffic that it must
send [10]. Thè1 norm also arises when robustness to bursty traffic [5] or to growing demand [40] is a
priority. For further discussion and examples, see [6].

Determining the price of anarchy with nonlinear aggregation functions, and in particular with the1̀
norm, is therefore essential to understanding the consequences of selfish behavior in the above applications.
This is the second goal of this paper.

(2) Analyze the price of anarchy in fixed- and variable-demand congestion games with nonlinear aggre-
gation functions, and in particular with the1̀ aggregation function.

Our Results

In this paper, we initiate the study of the price of anarchy in congestion games with variable demand and with
broad classes of nonlinear aggregation functions. We focus on selfish routing in single- and multicommodity
networks, and on thèp norms for1 � p � 1.

For the first goal (1), we augment the basic selfish routing model in a standard way, so that each player
has a fixed benefit of making the trip. If the player can travel from its source to its destination incurring
cost below this benefit, it makes the trip; otherwise, it does not. In the transportation science literature, such
networks are said to possesselastic traffic(see e.g. [18]).

As discussed at the beginning of the paper, with elastic traffic there are two quantities to optimize: we
would like to maximize the benefit of the players, but also to minimize the cost they incur. To study the
price of anarchy, we must aggregate these two quantities into a single objective function. The most natural
ways to accomplish this—such as maximizing theconsumer surplus, defined as the total benefit minus the
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total cost—result in mixed-sign objective functions. As is typical of approximation measures, non-trivial
bounds on the price of anarchy for such objective functions are possible only under very strong assumptions.
For example, in the single-link network above, the consumer surplus of the noncooperative equilibrium is 0,
while an optimal solution has strictly positive consumer surplus (even if the link has cost(x) = x).

On the other hand, mixed-sign objectives in optimization can often be transformed, in a non-approximation-
preserving way, into natural same-sign objectives (see e.g. [19] and the references therein). Indeed, we show
that for the usual additive aggregation function and the “prize-collecting” objective of minimizing thelost
benefit plus the sum of the costs incurred,there is no tragedy of the commons. Formally, we prove that the
worst-possible price of anarchy in multicommodity networks with elastic traffic—specified by anarbitrary
continuous distribution of the benefits of traveling—and cost functions in a setC is no more than that of
networks with a fixed amount of traffic and cost functions inC. As a consequence, the price of anarchy in
multicommodity networks with linear cost functions and arbitrary benefit distributions is at most4=3 [34]; if
the cost functions are polynomials with nonnegative coefficients and degree at mostd, the price of anarchy in
such networks isO(d= log d) [31]. Thus, for this prize-collecting objective, the worst-possible inefficiency
that arises from variable demand has no greater magnitude than that arising from routing inefficiencies.

For the second goal (2), we prove matching positive and negative results about the price of anarchy of
selfish routing with̀ p aggregation functions. On the negative side, we give examples in Section 4.1 that
demonstrate the following.� For every1 < p � 1, there is a family of two-commodity networks with linear cost functions and

inelastic traffic in which the price of anarchy grows polynomially with the network size. (Cf. thep = 1 case, where the price of anarchy is at most4=3 in networks with linear cost functions, inelastic
traffic, and an arbitrary number of commodities [34].) The “bicriteria bound” of [34] also fails to hold.� For the`1 norm, there is a family of single-commodity networks with linear cost functions and
inelastic traffic in which the price of anarchy grows polynomially with the network size, and in which
the bicriteria bound of [34] does not hold.

We also achieve the following matching positive results in Sections 4 and 5.� For every1 < p < 1, the price of anarchy in single-commodity networks with thep̀ norm is no
worse than that in thep = 1 case. (E.g., is at most 4/3 for linear cost functions,O(d= log d) for
bounded-degree polynomials, and so on.) The bicriteria bound of [34] also holds in such networks.� For the`1 norm and a naturalsubclassof equilibria, which we callsubpath-optimal, the price of
anarchy in single-commodity networks is no worse than that in the1̀ case. The bicriteria bound
of [34] also holds for this subclass of equilibria.

These positive results hold for networks with inelastic traffic (Section 4) and, under an additional technical
condition, with elastic traffic as well (Section 5).

In particular, these results imply that the inefficiency of selfish routing with thep̀ norm with p > 1
is provably larger in multicommodity networks than in single-commodity ones. This separation stands in
contrast to the provable equivalence of single- and multicommodity networks for the price of anarchy under
the `1 norm [13, 31]. Indeed, all previously known proof techniques for bounding the price of anarchy of
selfish routing (for thè1 norm) [11, 13, 14, 27, 31, 34, 38] in no way referred to the number of commodi-
ties of a network, nor to any combinatorial structure whatsoever. These proof techniques for the1̀ case
therefore appear to be necessarily incapable of extending to thep̀ case withp > 1—a new, fundamentally
combinatorial proof technique is required. We give such a technique in Section 4.

Finally, while our positive result for a subclass of equilibria in the1̀ norm is reminiscent of analy-
ses of thebestequilibrium (the “price of stability”) [3, 2, 13], it is much stronger in the following sense.
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While studying the best equilibrium typically cannot be justified without allowing some centralized inter-
vention [2], we show that subpath-optimal equilibria are in fact the “natural” outcome of decentralized
optimization from a networking perspective. Specifically, we show that if an equilibrium is computed by a
distributed shortest-path routing protocol, then it will automatically be subpath-optimal.

Further Related Work

While we are not aware of any previous work that focused on the price of anarchy with variable demand or
with general nonlinear aggregation functions, there are a few papers related to the goals of the present work.
First, Vetta [39] considered profit-maximization facility location games, auctions, and a variant of selfish
routing. These games have both benefits and costs, and Vetta [39] considered a mixed-sign objective that is
related to the consumer surplus. As noted above, approximation results are hard to come by with mixed-sign
objective functions; because of this, Vetta [39] could only deduce non-trivial bounds on the price of anarchy
under strong conditions. For facility location games, Vetta [39] proved that the price of anarchy is 2 only
in the special case of all-zero costs. Similarly, the price of anarchy of profit-maximization selfish routing
is bounded only when the benefits of routing are so large than an optimal solution routes all of the traffic;
this assumption effectively rules out the tragedy of the commonsa priori. The present paper sacrifices
the mixed-sign objective for a prize-collecting one, but in exchange proves bounds on the price of anarchy
without any assumptions on the relative magnitudes of the costs and benefits of a game.

Finally, as alluded to earlier, two recent papers studied aspects of selfish routing with the bottleneck
link metric. First, Akella, Chawla, and Seshan [1] studied the price of anarchy under this metric for a
variant of selfish routing with edge capacities and a maximization objective, but only obtained bounds on
the price of anarchy that depend polynomially on the network size or on the ratio between the maximum
and minimum edge capacities. Second, Banner and Orda [6] also recently studied selfish routing with the`1 norm. However, the results of [6] primarily concern the existence and computation of equilibria, as well
as the price of stability for an objective function that we do not consider in this paper. Lastly, this paper
considers the “nonatomic” selfish routing model introduced by Wardrop [41], where all players are assumed
to control a negligible fraction of the overall traffic, whereas [1, 6] consider “atomic” selfish routing with a
finite set of players.

2 The Model

Instances. In this section we describe a model of selfish routing that includes elastic traffic and a poten-
tially nonlinear aggregation function. By a selfish routinginstance, we mean a triple(G;�; ) made up of
the following ingredients. First,G = (V;E) is a directed network with sourcess1; : : : ; sk 2 V and sinkst1; : : : ; tk 2 V . Second,� is a vector of nonincreasing, continuous functions indexed by source-sink pairs
(or commodities) i; �i models the distribution of the benefits of travel for the traffic of commodityi, and is
assumed to be defined on the population[0; Ri℄, whereRi 2 [0;1) is the size of the population. Assuming
that�i is nonincreasing amounts to ordering players according to their benefit of participating. Finally, is
a vector of nonnegative, continuous, nondecreasingcost functions, indexed byE.

Paths and Flows. For a networkG, let Pi denote thesi-ti paths ofG and letP = [ki=1Pi. A flow is a
vectorf indexed byP. For a fixed flowf , we useri to denote the amountri = PP2P fP of traffic of
the ith commodity that is routed byf . We always assume that the flow represents those most interested in
traveling, so theri units of traffic correspond to the subset[0; ri℄ of the entire population[0; Ri℄. A flow is
feasiblefor (G;�; ) if ri � Ri for all commoditiesi.
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For a flowf , let fe = PP2P : e2P fP denote the amount of traffic using the edgee. The cost of an
edgee with respect tof is e(fe). If P is a path containing the edgese1; e2; : : : ; em andf is a flow, then
the cost P (f) of a pathP with respect tof is ke1(fe1); : : : ; em(fem)k for some aggregation functionk�k. In the traditional selfish routing model,k�k is the sum function. In this paper, we will allowk�k to be

any `p norm k�kp with 1 � p � 1, where, by definition,kv1; : : : ; vmkp = (vp1 + � � � vpm)1=p if p < 1
andkv1; : : : ; vmkp = maxi vi if p = +1. (Since we will only be taking the norm of nonnegative vectors,
we omit the usual absolute value signs from these formulae.) We will sometimes call such an aggregation
function apath norm.

Nash Flows. Intuitively, a flow is atNash equilibrium(or is aNash flow) if no player can do better by
changing its mind—be it by switching paths or by switching whether or not to participate. Mathematically,
we have the following definition.

Definition 2.1 A flow f that is feasible for(G;�; ) is at Nash equilibrium if:

(a) for every commodityi and pathsP; P0 2 Pi with fP > 0, P (f) � P 0(f);
(b) for every commodityi, the common costi(f) of all si-ti flow paths is equal to�(ri).

Part (a) of Definition 2.1 is the usual condition that no player should be able to decrease its cost by switching
paths. For part (b), first note that iff satisfies part (a), theni(f) is well defined—iffP > 0 andfP 0 > 0
with P; P 0 2 Pi, thenP (f) = P 0(f). Part (b) then asserts that all participants enjoy benefit at least equal
to their cost (since�(a) � �(ri) = i(f) for all a 2 [0; ri℄), and similarly that all non-participants would
incur at least as much cost as benefit if they did participate (since�(a) � �(ri) = i(f) for all a =2 [0; ri℄).

Existence of Nash flows can be established in a number of ways; for example, it is a consequence of the
very general results of Schmeidler [36].

Proposition 2.2 Every instance(G;�; ) admits at least one Nash flow.

In some parts of this paper, Nash flows will not be unique. In these cases, we will be interested in bounds
on the performance ofall of the Nash flows of an instance.

Remark 2.3 In Section 4 we will focus on instances withinelastic traffic. Such instances can be modeled
with elastic traffic by defining the functions� to be sufficiently large everywhere. In Section 4 we will adopt
the more direct approach of defining an instance with inelastic traffic via a triple(G; r; ), where the amount
of traffic ri routed by each commodity is now exogenous. The definition of a Nash flow is then merely
part (a) of Definition 2.1.

3 No Tragedy of the Commons with Elastic Traffic

For our first main result, we will show that there is no tragedy of the commons with the usual additive
aggregation function and elastic traffic, in the sense that for a natural prize-collecting objective, the price of
anarchy in instances with elastic traffic is no more than that in instances with inelastic traffic. We begin with
a discussion of objective functions and the price of anarchy in Section 3.1 before proceedings to the proof
of this result in Section 3.2.

5



3.1 Preliminaries

As noted in the Introduction, in an instance(G;�; ) with elastic traffic there are two natural desiderata for a
flow f : the cost

PP P (f)fP thatf incurs should be small, while the benefit
Pi R ri0 �(x)dx reaped should

be large. As the single-link network in the Introduction demonstrates, no approximation bound is possible if
one of these quantities is subtracted from the other, unless benefits are assumed to be large relative to costs
as in Vetta [39]. We therefore study thecombined costCC(f) of a flowf , defined as the cost added to the
lost benefit: CC(f) =XP P (f)fP + kXi=1 Z Riri �(x)dx: (1)

This objective is inspired by the “prize-collecting” objectives that have been extensively studied in approx-
imation algorithms; see, for example, the survey of Goemans and Williamson [19] for further background.
One could also analogously consider “combined benefit”—the benefit earned plus the cost not incurred—but
we believe this to be a less natural objective than the combined cost.

With the objective function now set, anoptimal flowfor an instance is simply one that minimizes the
combined cost over all feasible flows. Theprice of anarchy�(G;�; ) of an instance(G;�; ) is defined as
the largest-possible ratioCC(f)=CC(f�), wheref is a Nash flow andf� is an optimal flow. Note that this
definition makes sense even when Nash flows are not unique.

We will call instances with inelastic traffic and the additive aggregation functionbasic instances. The
price of anarchy is well understood in such instances. Since we will only be studying models that generalize
basic instances, our “holy grail” will be upper bounds on the price of anarchy that match those for basic
instances.

We next review the known upper and lower bounds on the price of anarchy in basic instances; simple
examples [34] show that such bounds must be parameterized by the allowable edge cost functions. Toward
that end, define theanarchy value�(C) of a non-empty set of cost functionsC to be:�(C) = sup2C supx;f�0 f � (f)x � (x) + (f � x)(f) : (2)

The anarchy value ofC is essentially the worst-possible price of anarchy in a two-node, two-link network
where one link has a constant cost function and the other link has a cost function inC. Thus�(C) lower
bounds the price of anarchy of basic instances with cost functions inC, assuming only thatC contains all
of the constant cost functions. Looking ahead toward the next two sections, we note that this lower bound
arises only from networks of parallel links, and that all of thep̀ norms coincide in such networks. Thus�(C) lower bounds the price of anarchy with respect to allp̀ norms, even when restricting attention to
(single-commodity) networks of parallel links.

The following are known for basic instances [13, 31]. First, the price of anarchy of a (multicommodity)
instance(G; r; ) with cost functions in a setC is at most�(C). Second, the value of�(C) is known for many
natural setsC: if C contains only linear or concave functions, then�(C) � 43 ; if C contains only polynomials
with nonnegative coefficients and degree at mostd, then�(C) = O(d= log d). Qualitatively, these results
imply that the price of anarchy is small in basic instances if and only if cost functions are not “extremely
steep.”

3.2 Bounding the Price of Anarchy with Elastic Traffic

The goal of this section is to prove that�(C), the known upper bound on the price of anarchy for basic
instances with cost functions inC, also upper bounds the price of anarchy of multicommodity instances with
arbitrary elastic traffic and cost functions inC, provided we use the combined cost objective function (1) and
the`1 aggregation function.
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We note that there is a naive reduction from networks with elastic traffic to networks with inelastic
traffic—achieved by adding a newsi-ti link for eachi to represent the traffic not routed—but this reduction
produces a network with cost functions that depend on the distributions� (which in turn control the price of
anarchy of the network). We will see that this dependence is unnecessary—the price of anarchy in instances
with elastic traffic is determined only by the edge cost functions, and is independent of the distributions�.

Our proof is a generalization of the “variational inequality” proof technique of Roughgarden [31] and
Correa, Schulz, and Stier Moses [13] to the elastic traffic case. Variational inequalities were first introduced
as a tool to study traffic equilibria by Smith [37] and Dafermos [16]; for elastic traffic, the appropriate
variational inequality is the following.

Proposition 3.1 If f andf� are Nash and feasible flows for(G;�; ), respectively, thenXe2E e(fe)[f�e � fe℄ + kXi=1 �(ri)[ri � r�i ℄ � 0;
whereri =PP2Pi fP andr�i =PP2Pi f�P .

Proposition 3.1 can be proved directly or via the convex programming approach pioneered by Beckmann,
McGuire, and Winsten [7]. For details see, for example, Nagurney [26]. We can now prove the main result
of this section. (See Appendix B for the proof.)

Theorem 3.2 If (G;�; ) is an instance with elastic traffic and cost functions in the setC, then the price of
anarchy�(G;�; ) is at most�(C).
Remark 3.3 Theorem 3.2 also holds more generally for the nonatomic congestion games studied in [35].

Remark 3.4 The very first line of the proof of Theorem 3.2—which rewrites the first term ofCC(f�) as
an equivalent sum over edges—already crucially uses properties of the1̀ path norm. Indeed, we will see
in the next section that only restricted versions of Theorem 3.2 can hold for thep̀ path norms withp > 1,
even with inelastic traffic.

Remark 3.5 The proof of Theorem 3.2 proves a stronger statement, that permits better upper bounds on the
price of anarchy in instances where Nash flows do not route all of the traffic of every commodity. We defer
further elaboration until the full version.

4 Nonlinear Path Norms

In this section we study the price of anarchy with nonlinear aggregation functions—in particular, with the`p path norms with1 � p � 1. We will see that the price of anarchy of selfish routing behaves differently
in each of the three cases ofp = 1, p 2 (1;1), andp = +1. In Section 4.1 we exhibit two examples
demonstrating the negative results promised in the Introduction; these examples will sculpt our goals for
the rest of the section. In Section 4.2 we identify a natural subclass of Nash flows for the1̀ norm, justify
them from a networking perspective, and prove optimal bounds on their inefficiency in single-commodity
networks. In Section 4.3 we treatp̀ norms withp < 1; while this case is technically more challenging
than that of thè1 norm, we will be rewarded with bounds on the inefficiency of arbitrary Nash flows in
single-commodity networks.

Throughout this section, we consider only instances with inelastic traffic. In this context, our objective
function is thecost, defined for a flowf feasible for an instance(G; r; ) asC(f) =PP2P P (f)fP . This
is the first term of the combined cost (1). The price of anarchy�(G; r; ) is then defined in the usual way.

We will generalize the positive results of this section to networks with elastic traffic in Section 5.
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4.1 Motivating Examples

We now give the two examples promised in the Introduction. The first shows that good bounds on the price
of anarchy of selfish routing with thèp norm cannot be achieved in multicommodity networks, even in
networks with linear cost functions and inelastic traffic, providedp > 1.

Example 4.1 Fix an`p norm with1 < p � 1 and consider the two-commodity network shown in Figure 1
in Appendix A. For a parameterk � 1, there arek internally disjoint pathss1 ! vi ! wi ! t1 (i 2f1; 2; : : : ; kg). Edges(vi; wi) have the cost function(x) = x; other edges in these paths cost 0. There arek � 1 cross edges(wi; vi+1) (i 2 f1; 2; : : : ; k � 1g), each with cost 0. The second sources2 is connected
to v1 with a zero-cost edge, andwk is connected tot2 with a zero-cost edge. Finally, there is a directs2-t2
edge with constant cost(x) = (r2 + 1)k1=p, wherer2 is the traffic rate of the second commodity, which is
a function ofk andp that we will define shortly. (Ifp =1, we interpret1=p as 0.) The traffic rater1 of the
first commodity isk.

First, consider the flowf� that routes the traffic of the first commodity evenly across thek s1-t1 paths,
and routes the second commodity’s traffic on the directs2-t2 link. The cost off� is k + r2 � (r2 + 1)k1=p.
Next, by the choice of the cost of the directs2-t2 link, the following flowf is at Nash equilibrium: route the
first commodity’s traffic evenly across thes1-t1 paths and the second commodity’s traffic on thes2-t2 path
containing all of the cross edges. The cost off is k � (r2 + 1) + r2 � (r2 + 1)k1=p. The price of anarchy in
the network is at leastC(f)=C(f�); choosingr2 so thatr2(r2 + 1) = k1�1=p, this ratio is
(k(1�1=p)=2).
Sincen = O(k), this ratio grows polynomially in the network size for every fixedp > 1.

Finally, note that doubling the traffic rates increases the cost of the optimal flow by only a constant
factor, so the bicriteria bound of [34]—stating that a Nash flow is no more expensive than an optimal flow
at double the traffic rates, even with arbitrary cost functions—does not hold in this network.

Our second example shows that even in single-commodity networks with linear cost functions and in-
elastic traffic, there are no good bounds on the price of anarchy for the1̀ norm.

Example 4.2 Suppose we modify the network of Example 4.1 by removings2, t2, and edges incident to
them. This yields the network of Figure 2. There is a uniques-t path that contains all of the cross edges;
call it the zigzag path. With respect to thè1 norm, the flowf that routes all traffic on the zigzag path is
at Nash equilibrium—alls-t paths have costk with respect tof and thè1 norm—and has costk2. On the
other hand, routing traffic evenly among thek three-hop paths provides a flow with costk. (This flow is also
at Nash equilibrium.) The price of anarchy in this network is therefore at leastk.

As with Example 4.1, the bicriteria bound of [34] also fails in this example.

Examples 4.1 and 4.2 justify restricting our attention to single-commodity networks and, for the1̀
norm, to natural subclasses of equilibria.

4.2 The`1 Norm and Subpath-Optimal Nash Flows

We next consider single-commodity networks with the1̀ norm. Example 4.2 shows that additional re-
strictions are needed to prove a good bound on the price of anarchy. We will require only a modest extra
condition on Nash flows, stating the Nash flow condition holds not only for the destinationt, but also for all
intermediate nodesv.

Definition 4.3 Suppose(G; r; ) is a single-commodity instance with inelastic traffic and the1̀ path norm.
Let f be a flow feasible for(G; r; ) and letd(v) denote the minimum cost, with respect tof and the 1̀
norm, of ans-v path. The flowf is asubpath-optimal Nash flowif whenever ans-t pathP 2 P with fP > 0
includes a vertexv, thes-v subpath ofP has 1̀ normd(v).
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To see that a subpath-optimal Nash flow is indeed a Nash flow, takev = t. Note also that the zigzag
Nash flow of Example 4.2 is not subpath-optimal, while the optimal flow is. Finally, notions similar to
Definition 4.3 were also proposed, for different purposes and without any networking justification, in [1, 6].

The next proposition is meant to suggest that no extra notion of coordination or centralized intervention
is required to justify subpath-optimal Nash flows—indeed, processes that result in a Nash flow automatically
ensure the subpath-optimality condition. In the interests of space, we will state and discuss the proposition
somewhat informally.

Proposition 4.4 A fixed point of a distributed shortest-path routing protocol is a subpath-optimal Nash flow.

By a distributed shortest-path routing protocol, we mean a Bellman-Ford-type shortest-path algorithm—in
networking jargon, a “distance vector protocol” such as OSPF (see e.g. [24]). Proposition 4.4 assumes that
the cost functionsfe(�)g are used for edge lengths, and that path lengths are evaluated using the1̀ norm.
Such a shortest-path routing protocol naturally computes not just shortests-t paths, but also shortests-v
paths for all intermediate verticesv, which is precisely the subpath-optimality condition. We defer further
details until the full version. For more details on distributed shortest-path routing protocols and on results
along the lines Proposition 4.4, see Bertsekas and Tsitsiklis [8].

We now prove bounds on the inefficiency of subpath-optimal Nash flows. Examples 4.1 and 4.2 show
that our proof techniques must make crucial use of both the single-commodity and the subpath-optimal as-
sumptions. Since all previous proof techniques for bounding the price of anarchy of selfish routing (with the`1 path norm) worked equally well for single-commodity networks and the much more general nonatomic
congestion games [11, 13, 14, 27, 31, 34, 35, 38], we will require an intrinsically more combinatorial argu-
ment.

We first prove a lemma that identifies a type of “minimal cut” with respect to a subpath-optimal Nash
flow. Loosely, we will then treat the edges crossing this cut as a network of parallel links, which will enable
us to prove both bounds on the price of anarchy as well as an analogue of the bicriteria bound of [34]. We
defer all of the proofs until Appendix B.2.

In the statement of the lemma, we use the notationÆ+(S) (Æ�(S)), whereS is a set of vertices, to denote
the edges with tail (head) inS and head (tail) outsideS.

Lemma 4.5 Let (G; r; ) be a single-commodity instance with inelastic traffic and the1̀ path norm. Letf
be a subpath-optimal Nash flow for(G; r; ) in which all flow paths off have cost(f), and letS be the set
of vertices reachable from the sources via edges with cost strictly less than(f). Then:

(a) S is ans-t cut;

(b) e(fe) � (f) for all e 2 Æ+(S);
(c) e(fe) = (f) for all e 2 Æ+(S) with fe > 0;

(d) fe = 0 for all e 2 Æ�(S).
Theorem 4.6 Let (G; r; ) be a single-commodity instance with cost functions inC, f a subpath-optimal
Nash flow under thè1 norm, andf� a feasible flow. ThenC(f) � �(C) � C(f�).

As discussed in Section 3.1, the upper bound in Theorem 4.6 is the best possible. Simple examples [34]
also show that following bicriteria bound is also optimal.

Theorem 4.7 Let (G; r; ) be a single-commodity instance andf a subpath-optimal Nash flow under the`1 norm. Iff� be feasible for(G; 2r; ), thenC(f) � C(f�).
9



4.3 The`p Norms

In this section we extend Theorems 4.6 and 4.7 to thep̀ path norms withp <1. The proofs for thep <1
case are more involved than those for thep =1 case. In particular, Lemma 4.5—which essentially reduced
the problem of bounding the inefficiency of a Nash flow to that of bounding its inefficiency across a single,
well-behaved cut—has only weak analogues for thep̀ norms withp < 1. Specifically, we will need to
bound the cost of a Nash flow acrossmanycuts, and then aggregate the results into a bound on the overall
cost of the flow. Because we work with fairly general path norms, the aggregation step is somewhat delicate.
On the other hand, since Nash flows under thep̀ norm withp <1 are automatically subpath-optimal, we
can prove bounds on their cost without any extra restrictions.

Due to space constraints, we state the main results and defer proof sketches to Appendix B.2.

Theorem 4.8 Let (G; r; ) be a single-commodity instance with thep̀ norm (p <1) and cost functions inC. If f andf� are Nash and feasible flows for(G; r; ), respectively, thenC(f) � �(C) � C(f�).
Theorem 4.9 Let (G; r; ) be a single-commodity instance with thep̀ norm (p <1). If f andf� are Nash
and feasible flows for(G; r; ) and(G; 2r; ), respectively, thenC(f) � C(f�).
Remark 4.10 Theorems 4.8 and 4.9 can be generalized to all path norms that satisfy certain symmetry
properties, but we not aware of any compelling norms that satisfy these properties other than thep̀ norms.

5 No Tragedy of the Commons with Nonlinear Path Norms

In this final section we investigate whether or not the positive results of Sections 3 and 4 can be combined.
Our answer will be somewhat incomplete. In particular, we will answer in the affirmative only when a Nash
flow sends at least as much traffic through the network as an optimal flow. Simple examples—including
networks of parallel links, and by definition all networks that illustrate the tragedy of the commons—satisfy
this condition. Unfortunately, examples related to Braess’s Paradox [9, 30] show that it does not hold for
arbitrary single-commodity networks. We do not know how to analyze the price of anarchy for instances
with elastic traffic and nonlinear path norms in which this technical condition does not hold.

Proposition 5.1 Let (G;�; ) be a single-commodity instance with elastic traffic, the1̀ norm, and cost
functions in the setC. If f andf� are subpath-optimal Nash and optimal flows for(G;�; ), respectively,
that satisfy

PP fP �PP f�P , thenC(f) � �(C) � C(f�).
Proposition 5.2 Let(G;�; ) be a single-commodity instance with elastic traffic, thep̀ norm (p <1), and
cost functions in the setC. If f and f� are Nash and optimal flows for(G;�; ), respectively, that satisfyPP fP �PP f�P , thenC(f) � �(C) � C(f�).

Propositions 5.1 and 5.2 follow fairly easily from Theorems 4.6 and 4.8, respectively, from a common
proof.

Proof of Propositions 5.1 and 5.2:Consider an instance(G;�; ) and flowsf; f� of the specified form. By
assumption,

PP fP = r � r� = PP f�P . Let �0 denote� restricted to[0; r℄. Thenf andf� are Nash
and feasible flows for(G;�0; ), respectively, and the cost of each has dropped by an additive factor ofR Rr �(x)dx. Hence the price of anarchy of(G;�0; ) can only be larger than that of(G;�; ).

Next, replace�0 be the function� that is everywhere equal to�(r). The flowf is still at Nash equilib-
rium for (G;�; ) and its cost is unchanged. Since� � �0, the cost off� can only decrease and the price of
anarchy again only increases.
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Finally, reduce(G;�; ) to a network(G0; r; ) with inelastic traffic as discussed at the beginning of
Section 3.2. (That discussion was in the context of the1̀ path norm, but the reduction works equally well
for all `p norms.) Note thatG0 is obtained fromG be adding a directs-t link with constant cost�(r). Thus(G0; r; ) is a network with inelastic traffic and cost functions that are either constant or inC. It is easy to
verify that adding constant functions to a set does not affect its�-value [31], and thus Theorem 4.6 or 4.8
implies that the cost off in (G0; r; ) is at most�(C) times that off� in (G0; r; ). Since the above reductions
only increased the ratio of costs of these two flows, the cost off in (G;�; ) is at most�(C) times that off� in (G;�; ). �
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[20] M. M. Halldórsson, J. Y. Halpern, E. L. Li, and V. S. Mirrokni. On spectrum sharing games. In
Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 107–114, 2004.

[21] G. Hardin. The tragedy of the commons.Science, 162:1243–1248, December 13 1968.

[22] R. Johari and J. N. Tsitsiklis. Routing and peering in a competitive Internet. Technical Report 2570,
MIT LIDS, 2003.

[23] R. Johari and J. N. Tsitsiklis. Efficiency loss in a network resource allocation game.Mathematics of
Operations Research, 29(3):407–435, 2004.

[24] S. Keshav.An Engineering Approach to Computer Networking. Addison-Wesley, 1997.

[25] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. InProceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume 1563 ofLecture Notes in
Computer Science, pages 404–413, 1999.

[26] A. Nagurney.Network Economics: A Variational Inequality Approach. Kluwer, 1993. Second Edition,
1999.

[27] G. Perakis. The price of anarchy when costs are non-separable and asymmetric. InProceedings of the
10th Conference on Integer Programming and Combinatorial Optimization (IPCO), volume 3064 of
Lecture Notes in Computer Science, pages 46–58, 2004.

[28] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish routing in Internet-like environments. In
Proceedings of SIGCOMM, pages 151–162, 2003.

[29] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.International Journal of
Game Theory, 2(1):65–67, 1973.

12



[30] T. Roughgarden. Designing networks for selfish users is hard. InProceedings of the 42d Annual
Symposium on Foundations of Computer Science (FOCS), pages 472–481, 2001.

[31] T. Roughgarden. The price of anarchy is independent of the network topology.Journal of Computer
and System Sciences, 67(2):341–364, 2003.

[32] T. Roughgarden. The maximum latency of selfish routing. InProceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 973–974, 2004.

[33] T. Roughgarden.Selfish Routing and the Price of Anarchy. MIT Press, 2005.

[34] T. Roughgarden and́E. Tardos. How bad is selfish routing?Journal of the ACM, 49(2):236–259, 2002.

[35] T. Roughgarden and́E. Tardos. Bounding the inefficiency of equilibria in nonatomic congestion games.
Games and Economic Behavior, 49(2):389–403, 2004.

[36] D. Schmeidler. Equilibrium points of nonatomic games.Journal of Statistical Physics, 7(4):295–300,
1973.

[37] M. J. Smith. The existence, uniqueness and stability of traffic equilibria.Transportation Research,
Part B, 13(4):295–304, 1979.
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Figure 1: A bad two-commodity example for thep̀ norm withp > 1.
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Figure 2: A bad single-commodity example for the1̀ norm.
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B Missing Proofs

B.1 Missing Proofs from Section 3

Proof of Theorem 3.2:Fix an instance(G;�; ) with cost functions in a setC, a Nash flowf , and a feasible
flow f�. For each commodityi, let ri =PP2Pi fP andr�i =PP2Pi f�P . First writeC(f�) = Xe2E e(f�e )f�e + kXi=1 Z Rir�i �(x)dx= Xe2E e(f�e )f�e + kXi=1 Z rir�i �(x)dx+ kXi=1 Z Riri �(x)dx� Xe2E e(f�e )f�e + kXi=1 [ri � r�i ℄�(ri) + kXi=1 Z Riri �(x)dx;
where the first equality follows from a reversal of sums (

PP P (f�)f�P =Pe e(f�e )f�e ) and the inequality
follows from the fact that each function�i is nonincreasing. (This inequality holds both ifr�i � ri and ifri � r�i .)

Next, the definition (2) of�(C) yields, for each edgee (with r = fe andx = f�e ):e(f�e )f�e � e(fe)fe�(C) + e(fe)[f�e � fe℄:
HenceC(f�) � Xe2E �e(fe)fe�(C) + e(fe)[f�e � fe℄�+ kXi=1 [ri � r�i ℄�(ri) + kXi=1 Z Riri �(x)dx= 1�(C)Xe2E e(fe)fe + kXi=1 Z Riri �(x)dx+Xe2E e(fe)[f�e � fe℄ + kXi=1 [ri � r�i ℄�(ri)� 1�(C)Xe2E e(fe)fe + kXi=1 Z Riri �(x)dx= 1�(C) XP2P P (f)fP + kXi=1 Z Riri �(x)dx; (3)

where (3) follows from Proposition 3.1. Since�(C) � 1 for every setC, inequality (3) implies thatC(f�) �C(f)=�(C), and the proof is complete.�
B.2 Missing Proofs from Section 4

Missing Proofs from Section 4.2

Proof of Lemma 4.5:Parts (a) and (b) follow from the definitions. Part (c) follows from part (b) and the
fact that if all flow paths off have cost(f), thene(fe) � (f) for all edgese with fe > 0. For part (d),
suppose for contradiction thate = (v; w) 2 Æ�(S) with fe > 0. Let P 2 P be a path withfP > 0 ande 2 P . Recall thatd(u) denotes the minimum cost (w.r.t.f and the`1 norm) of ans-u path. By the
definition ofS, d(u) < (f) for all u 2 S; in particular,d(w) < (f).
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LetP 0 be thes-w subpath ofP , which concludes with the edgee. Sincee 2 Æ�(S) ands 2 S, an earlier
edge ofP 0 lies in Æ+(S). By the definition ofS, e0(fe0) � (f) for all e0 2 Æ+(S) (otherwiseS could be
enlarged), so thè1 norm ofP 0 is at least(f) > d(w). But this contradicts the subpath-optimality off . �
Proof of Theorem 4.6:Define thes-t cut S as in Lemma 4.5. We now define an instance on a network of
parallel links. LetV 0 = fs0; t0g and letE0 be a set of parallel edges (all directed froms0 to t0) in one-to-one
correspondence with the edges ofÆ+(S). Edges ofE0 inherit cost functions from their counterparts inÆ+(S).

Let G0 = (V 0; E0) and consider the instance(G0; r; ). Parts (a) and (d) of Lemma 4.5 imply thatf
routes preciselyr units of flow on the edges ofÆ+(S); it therefore naturally induces (by projection) a flowg feasible for(G0; r; ). Moreover, parts (b) and (c) of Lemma 4.5 imply thatg is a Nash flow for(G0; r; )
with costr �(f)—the same cost asf in (G; r; ). Note that when we discuss the cost of flows in the network
of parallel links(G0; r; ), the path norm is irrelevant.

We now discussf�, which might route strictly more thanr units of flow on the edges ofÆ+(S) (if some
flow path off� contains more than one edge ofÆ+(S)). In this case, we defineg�e � f�e for all e 2 Æ+(S)
in the following way: a pathP 2 P with f�P > 0 only contributes to theg�-value of the most expensive
(largest value ofe(f�e )) edge inP \ Æ+(S), with ties broken arbitrarily. (SinceP is ans-t path andS is ans-t cut,P \ Æ+(S) 6= ;.) Theng� can be viewed as a flow feasible for(G0; r; ) satisfyingXe2E0 e(g�e )g�e � Xe2E0 e(f�e )g�e XP2P P (f�)f�P = C(f�);
thus the cost ofg� in (G0; r; ) is at most that off� in (G; r; ).

We have established that the price of anarchy in(G; r; ) is at most that in(G0; r; ). But since the latter
instance is a network of parallel links and can therefore be viewed as basic, its price of anarchy is at most�(C). �
Proof of Theorem 4.7:The proof of Theorem 4.7 is similar to that Theorem 4.6 and is omitted.�
Missing Proofs from Section 4.3

We now outline the proofs of Theorems 4.8 and 4.9. The first step is to linearly order the vertices of a network
so that the cost of a Nash flow breaks down nicely across several cuts. The following three propositions were
previously known for thè1 norm [30], and the proofs for the generalp̀ case are similar.

Proposition B.1 Let (G; r; ) be a single-commodity instance with path normp̀ for somep 2 [1;1). Letf be a flow feasible for(G; r; ) and for a vertexv, let d(v) denote the minimum-norm of ans-v path with
respect tof .

(a) For every edgee = (v; w), d(w) � (d(v)p + e(fe)p)1=p.
(b) The flowf is at Nash equilibrium if and only ifd(w) = (d(v)p + e(fe)p)1=p whenevere = (v; w) is

an edge withfe > 0.

Proposition B.2 Let (G; r; ) be a single-commodity instance with path normp̀ for somep 2 [1;1). If f
is a Nash flow for(G; r; ), then there is an acyclic Nash flow~f withC( ~f) = C(f).
Proposition B.3 Let (G; r; ) be a single-commodity instance with path normp̀ for somep 2 [1;1), and
let f be an acyclic Nash flow. Defined(v) as in Proposition B.1. Then the vertices ofG can be sorted
topologically w.r.t. the flowf such thats comes and first and such that the valuesd(v) are nondecreasing in
the ordering.
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Proposition B.3 gives amonotone orderingof the vertices that inducesn�1 cuts (the first vertex, the first
two vertices, and so on). Monotone orderings have emerged as a basic tool for analyzing single-commodity
selfish routing networks, and have been used previously in the context of Braess’s Paradox and related
issues [30, 32], as well as for a pricing problem [12]. Monotone orderings were only used in [12, 30, 32]
for the `1 path norm, however, and these prior works used them only to prove inequalities on the relative
amounts of flow on different edges (as opposed to the cost of flows, which we are concerned with here).
Moreover, for bounding Braess’s Paradox and related quantities [30, 32], it sufficed to consider asingle
good cut; this is similar in spirit to our proofs of Theorems 4.6 and 4.7. Here, in a price of anarchy context,
we will use these orderings to identify asequenceof good cuts, which we will then analyze separately
and combine the results. Because we must aggregate the analyses of many cuts with respect to a fairly
general path norm, the following analysis will be more involved than the previous applications of monotone
orderings [12, 30, 32].

The next definition provides a sequence of cost functions, where theith set of cost functions is designed
to isolate the cost of a flow across theith cut of the network. This would be easy if each edge of the network
participated in at most one such cut, but this of course need not be the case. There are two properties we will
require of these cost functions, which work in opposition to each other. First, theith set of cost functions
should be “uniform” in some sense. Second, the cost of an edge should be accurately accounted for over the
sequence of cost functions, no matter how many cuts of the network the edge participates in.

Definition B.4 Let (G; r; ) be a single-commodity instance with path normp̀ for somep 2 [1;1), and
let f be an acyclic Nash flow. Defined(v) as in Proposition B.1 and sort the verticesv1; : : : ; vn as in

Proposition B.3. For an edgee and an integeri 2 f1; 2; : : : ; n� 1g, theith cost function(i)e of e is defined
as follows:� if e =2 Æ+(fv1; v2; : : : ; vig), then(i)e is zero everywhere;� if e 2 Æ+(fv1; v2; : : : ; vig), then(i)e = �(i)e e, where�(i)e is the unique number such thatd(vi+1) = (d(vi)p + [�(i)e e(fe)℄p)1=p:
For a flowf� feasible for(G; r; ), we then define(i)P (f�) = (Pe2P [(i)e (f�e )℄p)1=p.
The second part of Definition B.4 is not well defined ife(fe) = 0; in this case Propositions B.1(a) and B.3

imply thatd(v) = d(w), so we can take�(i)e = 0.

The next lemma states that the cost functions(i)e do indeed serve the purpose described prior to Defini-
tion B.4. We defer the proof to the full version.

Lemma B.5 With the assumptions and notation of Definition B.4, the following statements hold.

(a) For eachi = 1; 2; : : : ; n � 1, there is a constantAi > 0 such that(i)P (f) � Ai for all P 2 P, with
equality holding wheneverfP > 0.

(b) For eachi = 1; 2; : : : ; n� 1, d(vi+1) = kA1; : : : ; Aik, where eachAj is defined as in (a).

(c) For every feasible flowf� for (G; r; ) and every pathP 2 P, P (f�) � k(1)P (f�); : : : ; (n�1)P (f�)k.
The proofs of the next two lemmas, which analyze the inefficiency of a Nash flow according to a single

set of the cost functions described Definition B.4, are analogous to those for Theorems 4.6 and 4.7, respec-
tively, where Lemma B.5(a) plays the role originally served by Lemma 4.5. In the statements of the lemmas,
we will useC(i) to denote the cost of a flow with respect to the cost functions(i).
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Lemma B.6 Let(G; r; ) be a single-commodity instance with thep̀ path norm (p <1) and cost functions
in the setC. Letf andf� be acyclic Nash and feasible flows for(G; r; ), respectively, and define the cost

functions(i)e as in Definition B.4. Then for eachi = 1; 2; : : : ; n� 1,C(i)(f�) � C(i)(f)�(C) :
Lemma B.7 Let (G; r; ) be a single-commodity instance with thep̀ path norm (p < 1). Let f be an
acyclic Nash flow for(G; r; ) andf� a feasible flow for(G; 2r; ), respectively, and define the cost functions(i)e as in Definition B.4. Then for eachi = 1; 2; : : : ; n� 1,C(i)(f�) � C(i)(f):

The proof for thè 1 case was complete at this point. For thep̀ path norms withp < 1, the most
crucial step lies directly ahead: aggregating the “cut-by-cut” bounds of Lemmas B.6 and B.7 into a bound
for the entire network. Next, we use such an aggregation to prove Theorem 4.8.

Proof of Theorem 4.8:First, note that by Proposition B.2 there is no loss of generality in assuming thatf is
acyclic; we can then define the cost functions(i)e as in Definition B.4.

Since the only tool at our disposal for relating the costs off andf� is Lemma B.6, which relates their
“cut costs”, our first goal will be to use Lemma B.5 to express the costC(f�) of f� in terms of these cut
costs. Specifically, writeC(f�) = XP2P f�P P (f�)� XP2P f�P(1)P (f�); : : : ; (n�1)P (f�) (4)= XP2P f�P � (1)P (f�); : : : ; f�P � (n�1)P (f�) (5)� XP2P f�P � (1)P (f�); : : : ;XP2P f�P � (n�1)P (f�); (6)

where (4) follows from Lemma B.5(c), and (5) and (6) follow sincep̀ is a norm (and thus satisfies linearity
under scalar multiplication and the Triangle inequality). Applying Lemma B.6 and the monotonicity ofk�k,
we then obtain C(f�) �  1�(C) XP2P fP � (1)P (f); : : : ; 1�(C) XP2P fP � (n�1)P (f): (7)

Finally, we aim to reverse the first argument to recover the cost of the subpath-optimal Nash flowf . Since
the Triangle inequality ofk�k is only useful in one direction, we will rely on the stronger assertions of
Lemma B.5, which are tailored for Nash flows, to accomplish this. Precisely, we have, for some nonnegative
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constantsA1; : : : ; An�1,C(f�) �  1�(C) XP2P fP � A1; : : : ; 1�(C) XP2P fP �An�1 (8)= PP2PfP�(C) kA1; : : : ; An�1k (9)= 1�(C) XP2P fP � d(t) (10)= C(f)�(C) ; (11)

where (8) follows from (7) and Lemma B.5(a), (9) from the linearity ofk�k under scalar multiplication, (10)
from Lemma B.5(b) withi = n, and (11) from Definition 2.1 and the definition ofd(t). This completes the
proof.�

A similar proof, combined with Lemma B.7, establishes Theorem 4.9.
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