
Exposure-Resilient Functions and All-Or-Nothing Transforms

Ran Canetti� Yevgeniy Dodisy Shai Halevi� Eyal Kushilevitzz Amit Sahaiy
Abstract

In this work, we study the problem ofpartial key exposure. Standard cryptographic definitions and
constructions do not guarantee any security even if a tiny fraction of the secret key is compromised.
We show how to build cryptographic primitives, in the standard model (without random oracles), that
remain secure even when an adversary is able to learnalmost allof the secret key. We accomplish this
by giving constructions for the All-Or-Nothing Transform (AONT ), introduced by Rivest. AnAONT
is an efficiently computable transformT on strings such that:� For any stringx, givenall of T (x), one can efficiently recoverx.� There exists some threshold` such that any polynomial-time adversary that (adaptively)learns

all but ` bits ofT (x) obtains no information aboutx (in a computational sense).

By applying anAONT to the secret key of any cryptographic system, we can obtain security against
partial key exposure. The only previous construction of anAONT with provable security was based
on random oracles.

The key to our approach is a new notion, which may be of independent interest, which we call an
Exposure-Resilient Function(ERF) — a deterministic function whose output appears random even
if almost all the bits of the input are known. We show how to constructERF’s andAONT ’s with
nearly optimal parameters from any one-way function. We also obtain several related results about
these notions.

�IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598, USA.
Email: fcanetti,shaihg@watson.ibm.com.yLab. of Computer Science, Massachusetts Institute of Technology, 545 Tech Square, Cambridge,
MA 02139, USA. Email:fyevgen,amitsg@theory.lcs.mit.edu.zDepartment of Computer Science, Technion, Haifa 32000, Israel. Email:
eyalk@cs.technion.ac.il.



1 Introduction

A great deal of cryptography can be seen as finding ways to leverage the possession of a small but totally
secret piece of knowledge (a key) into the ability to performmany useful and complex actions: from
encryption and decryption to identification and message authentication. But what happens if our most
basicassumption breaks down — that is, if the secrecy of our key becomes partially compromised?

It has been noted that key exposure is one of the greatest threats to security in practice [1]. Indeed,
at the recent Rump session of CRYPTO ’98, Nicko van Someren [25] illustrated a breathtakingly simple
attack by which keys stored in the memory of a computer could be identified and extracted, by looking
for regions of memory showing high entropy. Within weeks of the appearance of the followup paper [24],
a new generation of computer viruses emerged that tried to use these ideas to steal secret keys [9]. Shamir
and van Someren gave some heuristic suggestions on preventing these kinds of attacks, such as having
software “spread a key among different memory locations” inorder to avoid being found. While such
measures help to ensure that attackers will not recover the entire secret key, they do not solve the problem
of partial exposure.

Unfortunately, standard cryptographic definitions and constructions cannot guarantee securityeven if
a tiny fraction of the secret key is exposed. In this work, we show how to build cryptographic primitives, in
the standard model (without random oracles) and using general computational assumptions, that remain
provably secure even when the adversary is able to learnalmost allof the secret key. Our techniques also
have several applications in other settings.

Previous approaches and our goals. The most widely considered solutions to the problem of key
exposure are distribution of keys across multiple servers via secret sharing [23, 4], and protection using
specialized hardware. Instantiations of the key distribution paradigm include threshold cryptosystems [8]
and proactive cryptosystems [14]. Distribution across many systems, however, is quite costly. Such an
option may be available to large organizations, but is not realistic for the average user. Another widely
considered proposal is the use of specially protected hardware such as smartcards, which can also be
costly, inconvenient, or inapplicable to many contexts. Thus, the cost or inconvenience of such solutions
may make them prohibitive for many applications; some userssimply may not have the luxury to afford
the investment such solutions would require.

Instead, we seek to enable a single user to protect itself against partial key exposure on a single
machine. A natural idea would be to use a secret sharing scheme to split the key into shares, and then
attempt to provide protection by storing these shares instead of storing the secret key directly. However,
secret sharing schemes only guarantee security if the adversary misses at least one sharein its entirety.
Unfortunately, each share must be fairly large (about as long as the security parameter). Thus, in essence
we return to our original problem: even if an adversary only learns a small fraction of all the bits, it could
be that it learns a few bits fromeachof the shares, and hence the safety of the secret can no longerbe
guaranteed. We would like to do better1.

The All-Or-Nothing Transform. Recently Rivest [22], motivated by different security concerns arising
in the context of block ciphers, introduced an intriguing primitive called theAll-Or-Nothing Transform
(AONT ). An AONT2 is an efficiently computable transformationT on strings such that:� For any stringx, givenall of T (x), one can efficiently recoverx.

1Indeed, our techniques can be seen as yielding, for certain parameters, highly efficient “gap” analogues of computational
secret sharing schemes [17], where the share size can be small as1 bit! See Remark 5.5.

2Here we informally present a refinement of the definition due to Boyko [5].

1



� There exists some threshold` such that any polynomial-time adversary that (adaptively)learns all
but ` bits ofT (x) obtainsno information aboutx (in a computational sense).

The AONT solves the problem of partial key exposure: Rather than storing a secret key directly, we
store theAONT applied to the secret key. If we can build anAONT where the threshold valuèis very
small compared to the size of the output of theAONT , we obtain security against almost total exposure.
Notice that this methodology applies to secret keys with arbitrary structure, and thus protects all kinds
of cryptographic systems. One can also considerAONT ’s that have a two-part output: a public output
that doesn’t need to be protected, and a secret output that has the exposure-resilience property stated
above. Such a notion would also provide the kind of protection we seek to achieve. TheAONT has many
other applications, as well, such as enhancing the securityof block-ciphers and making fixed-blocksize
encryption schemes more efficient [16]. For an excellent exposition on these and other applications of the
AONT , see [5].

Our Results: Until now, the only known construction of anAONT3 with provable security was given
by Boyko [5] in the random oracle model, who showed that Bellare and Rogaway’s Optimal Asymmetric
Encryption Padding (OAEP) [2] yields anAONT . In this work, we give the first constructions forAONT ’s
with essentially optimal resilience in the standard model,based only on computational assumptions.

The key to our approach and our main conceptual contributionis the notion of anExposure-Resilient
Function (ERF) — a deterministic function whose output appears random even if almost allthe bits of
the input are revealed. We believe this notion is both very useful and interesting in its own right. Consider
for example anERF with an output that is longer than its input — this can be seen aparticularly strong
kind of pseudorandom generator, where the generator’s output remains pseudorandom even if most of the
seed is known. We show thatERF’s provide a solution to the partial key exposure problem formany
settings in private-key cryptography, where the secret keyneed only be a pseudorandom string.

More specifically, our results are:� We show how to construct, from any one-way function, for any� > 0, anERF mapping an input ofn bits to an output ofany sizepolynomial inn, such that as long asanyn� bits of the input remain
unknown, the output will be pseudorandom. We give examples of how to useERF’s directly to
address key exposure problems in private key cryptography;most notably we show how to solve
what we call thegradual key exposureproblem, where an adversary is able to learn more and more
bits of a shared secret key over time.� We give a simple construction of anAONT based on anyERF. For any� > 0, we show how to
achieve a resilience threshold of` = N �, whereN is the size of the output of theAONT . If viewed
as anAONT with separate public and secret outputs, then the size of theoutput of theAONT can
be made optimal, as well.� We also show that the existence of anAONT with ` < k � 1, wherek is the size of the input,
implies the existence of one-way functions. We show that this result is tight up to a constant factor
by constructing an unconditionally secureAONT with ` = �(k) using no assumptions.� We also give another construction of anAONT based on any functionf such that both[x 7! f(x)℄
and[x 7! f(x)�x℄ areERF’s. This construction is similar to the OAEP, and so our analysis makes
a step towards abstracting the properties of the random oracle needed to make the OAEP work as an

3Though for a much weaker definition of security than the one westudy here, Stinson [27] has given a simple elegant
construction forAONT with provable security in the unconditional setting. As observed by [5], however, this construction does
not achieve the kind of security considered here.

2



AONT . It also has the advantage of meeting the standard definitionof anAONT (without separate
public and secret outputs) while retaining a relatively short output length.� Finally, we show that a weaker “average-case” definition ofAONT is equivalent to the standard
“worst-case” definition ofAONT , by giving an efficient transformation that achieves this goal.

Previous Work: Chor et al. [7] considered a notion called at-resilient function, which are related to
our notion of an Exposure-Resilient Function (ERF). A t-resilient function is a function whose output
is truly random even if an adversary can fix anyt of the inputs to the function. This turns out to be
equivalent to the strongest formulation of unconditional security for anERF. We give constructions for
statistical unconditionally secureERF’s that beat the impossibility results given in [7], by achieving an
output distribution that is not truly random, but rather exponentially close in statistical deviation from
truly random. Work on privacy amplification in unconditionally secure key agreement protocols is also
related to our work (see e.g. [3, 6]).

Bellare and Miner [1] consider the notion of forward-security for signature schemes, which is a differ-
ent attempt to address the key exposure problem. The kind of security they achieve prevents an adversary
that gains a current secret key from being able to forge signatures on messages “dated” in the past. A
similar notion of security can be defined for encryption, where a compromised current secret key would
not enable an adversary to decrypt messages sent in the past.In contrast, our work deals with providing
security for both the future as well as the past, but assumingthat notall of the secret key is compromised.
In Section 4.4, we also address the problem of gradual key exposure, where noa priori bound on the
amount of information the adversary obtains is assumed, rather we assume only a bound on therate at
which that the adversary gains information.

Organization: In Section 2 we briefly define some preliminaries. Section 3 defines our main notions
of Exposure-Resilient Functions and All-Or-Nothing Transforms. Section 4 talks in detail about con-
structions and application ofERF’s, while Section 5 is concentrated with constructing and examining the
properties ofAONT ’s. Due to space limitations, some of the proofs and discussion are left to Appendices.

2 Preliminaries

For a randomized algorithmF and an inputx, we denote byF (x) the output distribution ofF on x,
and byF (x; r) we denote the output string when using the randomnessr. If one of the inputs toF is
considered a “key”, then we write it as a subscript (e.g.,Fs(x)). In this paper we will not optimize certain
constant factors which are not of conceptual importance. Unless otherwise specified, we will consider
security against nonuniform adversaries. Note that all theproofs of security can be made to work with
uniform adversaries as well, with appropriate standard modifications to the definitions and proofs.

Let fǹg denote the set of̀ element subsets of[n℄ = f1 : : : ng, and forL 2 fǹg, y 2 f0; 1gn, let [y℄L
denotey restricted to its(n� `) bits not in L. We denote by� the bit-wise exclusive OR operator.

We recall that thatstatistical difference(also calledstatistical distance) between two random variablesX andY on a finite setD is defined to bemaxS�D ���Pr [X 2 S℄� Pr [Y 2 S℄ ��� = 12 �X� ���Pr [X = �℄� Pr [Y = �℄ ���:
3



2.1 Indistinguishability

Given two distributionsA andB, we denote byA �= B (A �=� B, A � B) the fact that they are
computationally (statistically within�, perfectly) indistinguishable. For the case of statistical closeness,
we will always have that� is negligible in an appropriate security parameter. When the statement can hold
for any of the above choices (or the choice is clear from the context), we will simply writeA � B.

We need the following lemma whose proof can be found in Appendix A.

Lemma 2.1 Let A and B be any two random variables. LetR be chosen uniformly at random andC be chosen according to a distributionp, both independently fromA andB. Then the following are
equivalent:

(1) hA;Bi � hA;Ri.
(2) hA;B;Ci � hA;B � C;Ci, for any polynomial time sampleable (PTS) distributionp.

(3) hA;B;Ci � hA;B � C;Ci, for uniformp.

The proof of the next simple lemma is straightforward and is omitted.

Lemma 2.2 Letg be polynomial time computable function andX;X 0; Y; Y 0 be random variables. Then

a) hX;Y i � hX 0; Y 0i () hX;Y � g(X)i � hX 0; Y 0 � g(X 0)i.
b) assumeX is independent from bothY andY 0, andh is some function. ThenhX; h(Y; g(X))i � hX; h(Y 0; g(X))i () hg(X); h(Y; g(X))i � hg(X); h(Y 0; g(X))i

We callg(X) sufficient statistics.

3 Definitions

In this section, we define the central concepts in our paper: Exposure-Resilient Functions (ERF’s) and
All-Or-Nothing Transforms (AONT ’s). An ERF is a function such that if its input is chosen at random,
and an adversary learnsall but ` bits of the input, for some threshold value`, then the output of the
function will still appear pseudorandom to the adversary. Formally,

Definition 3.1 A (deterministic) polynomial time computable functionf(x) : f0; 1gn ! f0; 1gk , is `-
ERF (exposure-resilient function)if for any L 2 fǹg and for a randomly chosenr 2 f0; 1gn, R 2f0; 1gk , the following distributions are indistinguishable:h[r℄L; f(r)i � h[r℄L; Ri (1)

Here� can refer to perfect, statistical or computational indistinguishability.

Remark 3.2 Note that this definition is a “non-adaptive” version of the definition. One may also consider
an adaptive version of the definition, where the adversary may adaptively choose one-bit-at-a-time whichn� ` positions of the input to examine. Owing only to the messiness of such a definition, we do not give
a formal definition here, but we stress that all our constructionssatisfy this adaptive definition, as well.

4



The definition states that anERF transformsn random bits intok (pseudo-)random bits, such that even
learning all but` bits of the input leaves the output indistinguishable from arandom value. There are
several parameters of interest here:`, n, andk. We see that the smaller` is, the harder is to satisfy the
condition above, since fewer bits are left unknown to the adversary. However,̀ is not the only parameter
of interest, it is bothn and` that tell us how “exposure-resilient” is theERF for a givenk. For example,
saying that̀ = k� does not mean much on its own. It could be thatn = `, and the function in this case
has no exposure-resilience properties. Generally, there are two measures of interest: the fraction of` with
respect ton, which we would like to be as small as possible (this shows the“resilience”); and the size ofk with respect tò , which we want to be as large as possible (this shows how many pseudorandom bits
we obtain compared to the number of random bits the adversarycannot see).

We now define the notion of anAONT :

Definition 3.3 A randomizedpolynomial time computable functionT (x) : f0; 1gk ! f0; 1gN is `-
AONT (all-or-nothing transform) if

1. T is efficiently invertible, i.e. there is a polynomial time machineI such that for anyx 2 f0; 1gk
and anyy 2 T (x), we haveI(y) = x.

2. For anyL 2 fǸg, anyx0; x1 2 f0; 1gk we havehx0; x1; [T (x0)℄Li � hx0; x1; [T (x1)℄Li (2)

In other words, the random variables inf[T (x)℄L j x 2 f0; 1gkg are all indistinguishable from
each other. Here� can refer to perfect, statistical or computational indistinguishability.

Remark 3.4 Note again, as in Remark 3.2, that the definition given here isa “non-adaptive” definition.
We stress that all our constructions satisfy the corresponding adaptive definition, as well.

The definition given above is the natural analogue of the formal definition ofAONT given by Boyko [5]
(refining an earlier definition of Rivest [22]) in a setting with a random oracle4. We also consider a
generalization of this notion, which we call anAONT with secret and public outputs. In this case, we
consider anAONT where the outputy is divided in two sections: a secret party1 and a public party2.
The public part of the output is such that it requiresnoprotection – that is, it can revealed to the adversary
in full. It is only secret party1 that requires some protection. The security guarantee now states that
as long as̀ bits of the secret outputy1 remain hidden (while all the bits ofy2 can be revealed), the
adversary should have no information about the message. Note that clearly, this generalized notion solves
the problem of partial key exposure as well (and also remainsequally applicable to all the other known
uses of theAONT ). This generalized form allows us to characterize the security of our constructions
more precisely. For a more detailed discussion of this notion, see Appendix B.

Formally, the definition of̀ -AONT remains as above with the following simple modification: Now
we haveN = s+ p, andT (x) outputs a pairy = (y1; y2) wherey1 2 f0; 1gs andy2 2 f0; 1gp. Finally,
the security holds for allL 2 fs̀g rather thanL 2 fǸg (observe that notationally,[y℄L = ([y1℄L; y2)).
Everything else remains the same. The standard definition corresponds to the case where the public output
is of size0 (i.e. p = 0, s = N ). We call suchAONT ’s secret-only.

The above definition is “indistinguishability” based. As usual, one can make the equivalent “semantic
security” based definition, where the adversary, givenz = [T (x)℄L (wherex is picked according to some
distributionM ), cannot compute� satisfying some relationR(x; �) “significantly better” than withoutz

4Boyko’s definition looks somewhat more complicated on the surface, since he allows the adversary to choose, say,x0 andx1 based on the random oracle. In our case, there are no random oracles, so the definition simplifies.

5



at all. The proof of equivalence is standard and is omitted. Thus, the all-or-nothing transforms allow one
to “encode” anyx in such a form that the encoding is easily invertible, and yet, an adversary learning all
but ` bits of the (secret part of the) encoding “cannot extract anyuseful” information aboutx.

Boyko [5] showed that assuming the existence of a random oracle, the following so called “opti-
mal asymmetric encryption padding” (OAEP) construction isan `-AONT (where` can be chosen to be
logarithmic in the security parameter). LetG : f0; 1gn ! f0; 1gk andH : f0; 1gk ! f0; 1gn be ran-
dom oracles (wheren is any number greater thaǹ). The randomness ofT is r  f0; 1gn. DefineT (x) = hu; ti, where u = G(r)� x (3)t = H(u)� r (4)

We note thatI(u; t) = G(H(u) � t) � u. No constructions ofAONT based on standard assumptions
were previously known.

Remark 3.5 The notions ofERF andAONT are closely related with the following crucial difference.In
an ERF, the “secret” is a (pseudo-)random valuef(r). ERF allows one to represent this random secret
in an “exposure-resilient” way by storingr instead. InAONT , the secret is anarbitraryx, which can be
represented in an “exposure-resilient” way by storingT (x) instead. Thus,ERF allows one to represent
a random secret in an exposure-resilient way, whileAONT allows this for any secret.

4 Exposure-Resilient Functions (ERF)

In this section we give constructions and some applicationsof exposure-resilient functions (ERF’s). First,
we describe perfectERF’s and their limitations. Then, on our way to building computational ERF’s
with very strong parameters, we first build statisticalERF’s, and achieve essentially the best possible
parameters. Finally we show how to combine this construction with standard pseudorandom generators
(PRG) to construct computationalERF’s based on any one-way function (OWF) that achieve anỳ =
(n�) and anyk = poly(n) (in fact, suchERF’s are equivalent to the existence of one-way functions).
We conclude by giving several applications ofERF’s.

4.1 Perfect ERF

Here we require thath[r℄L; f(r)i � h[r℄L; Ri. Since the distributions are identical, this is equivalentto
saying that no matter how one sets any(n � `) bits of r (i.e. sets[r℄L), as long as the remainingr bits
are set at random, the outputf(r) is still perfectly uniform overf0; 1gk . This turns out to be exactly the
notion of so called(n � `)-resilient functions considered in [7]. As an example, ifk = 1, exclusive OR
of n input bits is a trivial perfect1-ERF (or a(n� 1)-resilient function).

We observe that perfect`-ERF can potentially exist only for̀ � k. Optimistically, we might expect
to indeed achievè= O(k). However, already fork = 2 Chor et al [7] show that we must have` � n=3,
i.e. at least third of the input should remain secret in orderto get just2 random bits! On the positive side,
for ` > n=2, usingbinary linear error correcting codesone can construct perfect`-ERF.For a sketch of
the proof of the following theorem and discussion of its implications (along with some background on
error correcting codes), see Appendix C.

Theorem 4.1 ([7]) LetM be ak � n matrix. Definef(r) = M � r, wherer 2 f0; 1gn. Thenf is perfect`-ERF if and only ifM is the generator matrix for a code of distancen� `+ 1.

6



4.2 Statistical ERF

We saw that perfectERF cannot achievè < n=3. Breaking this barrier will be crucial in achieving
the level of security we ultimately desire from (computational) ERF’s. In this section, we show that by
relaxing the requirement only slightly to allow negligible(in factexponentially small) statistical deviation,
we are able to obtainERF’s for essentially any value of̀(with respect ton) such that we obtain an output
sizek = �(`). Note that this is the best we can hope for up to constant factors, since it is not possible to
havek > ` for anyERF with statistical deviation� < 12 (proof is obvious, and omitted).

The key ingredient in our construction will be a combinatorial object called astrong extractor. An ex-
tractor is a family of hash functionsH such that when a functionh is chosen at random fromH, and
is applied to a random variableX that has “enough randomness” in it, the resulting random variableY = h(X) is statistically close to the uniform distribution. In other words, by investing enough true
randomness, namely the amount needed to select a random member ofH, one can “extract” fromX a
distribution statistically close to the uniform distribution. A strongextractor has an extra property thatY is close to the uniform distribution even when the random function h is revealed. (Perhaps the best
known example of a strong extractor is given in the Leftover Hash Lemma of [15], where standard 2-
universal hash families are shown to be strong extractors.)Much work has been done in developing this
area (e.g. [12, 26, 28, 21]). In particular, it turns out thatone can extract almost all the randomness inX
by investing very few truly random bits (i.e. having smallH). For more information on these topics, see
the excellent survey article of Nisan [20].

The intuition behind our construction is as follows: Noticethat after the adversary observes(n � `)
bits of the input (no matter how it chose those bits), the input can still be any of the2` completions of the
input with equal probability. In other words, conditioned on any observation made by the adversary, the
probability of any particular string being the input is at most 2�`. Thus, if we apply a sufficiently good
extractor to the input, we have a chance to extract
(`) bits statistically close to uniform — exactly what
we need. The problem is that we need some small amount of true randomness to select the hash function
in the extractor family. However, if this randomness is small enough (say, at most`=2 bits), we can take it
from the input itself. Hence, we view the first`=2 bits of r (which we will callu) as the randomness used
to select the hash functionh, and the rest ofr we callv. The output of our function will beh(v). Then
even observingu and(n� `) other bits ofr leaves at least2`=2 equally likely possible values ofr (sincejuj = `=2). Now, provided our extractor is good enough, we indeed obtain 
(`) bits statistically close to
uniform.

A few important remarks are in place before we give precise parameters. First, the adversary may
choose to learn the entireu (i.e. it knowsh). This is not a problem since we are using astrongextractor,
i.e. the output is random even if one knows the true randomness used. Secondly, unlike the perfectERF
setting, where it was equivalent to let the adversary set(n � `) input bits in any manner it wants, here
the entire input (includingu) mustbe chosen uniformly at random (and then possibly observed bythe
adversary).

Our most important requirement is that the hash function in the strong extractor be describable by
a very short random string. This requirement is met by the strong extractor of Srinivasan and Zucker-
man [26] using the hash families of Naor and Naor [19]. Their results can be interpreted as giving the
following lemma:

Lemma 4.2 ([26]) For any` andt < `=2, there exists a familyH of hash functions mappingf0; 1gn to a
rangef0; 1gk, wherek = `� 2t, such that the following holds: A random member ofH can be described
by and efficiently computed using4(`� t)+O(log n) truly random bits (we will identify the hash functionh with these random bits). Furthermore, for any distributionX on f0; 1gn such thatPr [X = x℄ � 2�`
for all x 2 f0; 1gn, we have that the statistical difference between the following two distributions is at

7



most� = 2 � 2�t:
(A) Chooseh uniformly fromH andx according toX. Outputhh; h(x)i.
(B) Chooseh uniformly fromH andy uniformly fromf0; 1gk. Outputhh; yi.

We are now ready to describe our statistical construction.

Theorem 4.3 There exist statistical̀-ERF f : f0; 1gn ! f0; 1gk withk = O(`) and statistical deviation2�
(`), for anyk andn satisfying!(log n) � k � n.

Proof: Note that we will not optimize constant factors in this proof. Let `0 = `=5 andt = `=20. We
let the output size of ourERF bek = `0� 2t = `=10 and the statistical deviation be� = 2 � 2�t = 2�
(`).
Suppose the (random) input to our function isr. Now, we will consider the firstd = 4(`0�t)+O(log n) <4`=5 bits of r to beh, which describes some hash function inH mappingf0; 1gn to f0; 1gk as given in
Lemma 4.2. Letr0 be r with the firstd bits replaced by0’s. Note thatr0 is independent ofh, and the
length ofr0 is n. Definef(r) = h(r0).

We now analyze this function. Observe that for anyL 2 fǹg, conditioned on the values of both[r℄L
andh, there are still at least̀=5 bit positions (among the lastn�d bit positions) ofr that are unspecified.
Hence, for allL 2 fǹg, for all z 2 f0; 1gn�`, and for ally 2 f0; 1gn, we have thatPrr hr0 = y ��� L; [r℄L = zi � 2�`=5 = 2�`0 :
Thus, by Lemma 4.2, we have thath[r℄L; h; f(r)i = h[r℄L; h; h(r0)i �=� h[r℄L; h;Ri, whereR is the
uniform distribution onf0; 1gk. This is a stronger condition than required by the definitionof ERF, so
the theorem is established.
We make a few remarks about the security of this construction:

Remark 4.4 The constant factors in this construction can be further improved to achievek = (1 � Æ)`,
for any Æ > 0, by using the strong extractors of [21], under the slightly stronger assumption that̀ =!(log2 n). Recall thatk must be smaller thaǹ, so this is nearly optimal. Note that the statistical
deviation obtained is also exponentially small in�(`).
Remark 4.5 Note that, in particular, we can choose` to ben� for any� > 0, providing excellent security
against partial key exposure. Seen another way, we can choosen to be any size larger thaǹ, to provide
as much security against partial key exposure as we desire. The only drawback is that the output size is
only�(`).
4.3 Computational ERF

In the statistical construction given in the previous section, we were able to achieve essentially all the
security against partial key exposure we wanted. The only thing limiting the applicability of the statistical
construction is that the output size is limited tok < `. We would like to be able to achieve an arbitrary
output size. By finally relaxing our requirement tocomputationalsecurity, we can easily accomplish this
goal by using a pseudorandom generator as the final outermostlayer of our construction. We also show
that anyERF with k > ` implies the existence of pseudoranom generators, closing the loop.

Lemma 4.6 Letn; `;m be any polynomially related quantities. Letf be any statistical̀ -ERF mappingf0; 1gn to f0; 1gk with negligible statistical deviation�, for somek polynomially related tom. LetG be
a pseudorandom generator stretchingf0; 1gk to f0; 1gm. Then the functiong : f0; 1gn ! f0; 1gm which
sendsx 7! G(f(x)) is a computational̀ -ERF.

8



Proof: LetL 2 fǹg. Suppose there was distinguisherD distinguishing betweenA = h[r℄L; G(f(r))i
andB = h[r℄L; Ri with advantageÆ, whereR is the uniform distribution onf0; 1gm. By the properties
of f as a statistical̀-ERF, and the fact that statistical difference can only decreaseby applying a function
(G in our case), we have thatA = h[r℄L; G(f(r))i andC = h[r℄L; G(K)i are within statistical distance� of one another, whereK is the uniform distribution onf0; 1gk. Thus,D distinguishesC from B with
advantageÆ � �, as well. Note that in bothB andC, the second component is independent of the first.
Thus, we can useD to distinguishG(K) from R (with advantageÆ � �), by simply picking a randomr 2 f0; 1gn, and providingD with [r℄L as the first component. This contradicts the security of the
generatorG, completing the proof.

Theorem 4.7 Assume one-way functions exist. Then for any`, anyn = `�(1) andk = nO(1), there exists
a computational̀ -ERF mappingf0; 1gn to f0; 1gk.

Proof: We use Theorem 4.3 to build a statistical`-ERFf mappingf0; 1gn to f0; 1g`=10, with s-
tatistical deviation2�
(`). Since` is polynomially related tok, by [13], one-way functions imply the
existence of a pseudorandom generatorG mappingf0; 1g`=10 to f0; 1gk. Applying Lemma 4.6, we see
thatg(r) = G(f(r)) is a computational̀-ERF, as desired.

Finally, we show a “converse”, i.e. that computationalERF’s with k > ` imply the existence of
pseudorandom generators (and hence, one-way functions).

Lemma 4.8 If there exists aǹ-ERF f mappingf0; 1gn tof0; 1gk, for k > ` (for infinitely many different
values of̀ ; n; k), then one-way functions exist.

Proof: We simply observe that the hypothesis implies the existenceof the ensemble of distributions
(we hide the obvious parametrization):A = h[r℄L; f(r)i andB = h[r℄L; Ri, whereR is uniform onf0; 1gk. By assumption,A andB are computationally indistinguishable ensembles. Note thatA can have
at mostn bits of entropy (since the only source of randomness isr), whileB hasn� `+k � n+1 bits of
entropy. Thus, the statistical difference betweenA andB is at least1=2. By the result of Goldreich [11],
the existence of a pair of efficiently samplable distributions that are computationally indistinguishable but
statistically far apart implies the existence of pseudorandom generators, and hence one-way functions.

As an immediate corollary, we get

Theorem 4.9 For any (infinite sequence of)n; `; k satisfying
(k�) � ` < k, n = `�(1), the following
are equivalent:

1. The existence of`-ERF f : f0; 1gn ! f0; 1gk .

2. The existence of one-way functions.

A particularly useful kind of̀ -ERF will be a length-preservingf : f0; 1gk ! f0; 1gk , which is impossi-
ble to achieve in the statistical or perfect sense. Thus, we get

Corollary 4.10 If one-way-functions exist, length-preserving`-ERF f : f0; 1gk ! f0; 1gk exists, for
any` = 
(k�).
4.4 Applications of ERF

As we said,`-ERF f : f0; 1gn ! f0; 1gk allows one to represent a random secret in an “exposure-
resilient” way. In Section 5 we show how to constructAONT ’s usingERF’s. Here we give some other
examples.

9



As an immediate example, especially whenk > n, it allows us to obtain a much stronger form of
pseudorandom generator, which not only stretchesn bits tok bits, but remains pseudorandom when any(n � `) bits of the seed are revealed. As a natural extension of the above example, we can apply it to
private-key cryptography. A classical one-time private key encryption scheme overf0; 1gk chooses a
random shared secret keyr 2 f0; 1gn and encryptsx 2 f0; 1gk by the pseudorandom “one-time pad”G(r) (whereG is aPRG), i.e.E(x; r) = x�G(r). We can make it resilient to the partial key exposure
by replacingPRGG with ERF f .

For the next few examples, we assume for convenience thatERF f : f0; 1gk ! f0; 1gk is length-
preserving. Using suchf , we show how to obtainexposure-resilient form of a pseudorandom function
family (PRF). A PRF family F = fFs j s 2 f0; 1gkg has the property thatfs is indistinguishable from
a random function when the seeds is chosen at random fromf0; 1gk , but the pseudorandomness is only
guaranteed ifs is completely hidden. Defining~Fs = Ff(s), we get a new pseudorandom function family~F = f ~Fs j s 2 f0; 1gkg, which remains pseudorandom even when all but` bits of the seeds are known.
We call such family anexposure-resilientPRF. We appply this again to private-key cryptography. The
classical private-key encryption scheme selects a random shared keys 2 f0; 1gk and encryptsx by a
pair hx� Fs(R); Ri, whereF = fFs : f0; 1gk ! f0; 1gk j s 2 f0; 1gkg is a PRF, andR is chosen
at random. Again, replacingF by an exposure-resilientPRF, we obtain resilience against partial key
exposure. Here, our secret key iss 2 f0; 1gk , butf(s) is used as the index to a regularPRF.

In fact, we can achieve security even against what we call thegradual key exposureproblem in the
setting with random private keys. Namely, consider a situation where the adversary is able to learn more
and more bits of the secret key over time. Here, we do not placeany upper bound on the amount of
information that the adversary can learn about the secret key, but instead assume only that the rate at
which the adversary can gain information is bounded. For example, suppose that every week the adversary
somehow learns at mostb bits of our secretr. We know that as long as the adversary misses` bits ofr, the
system is secure5. However, if our key is relatively short, pretty soon there is a danger that the adversary
knows more thank � ` bits of r, so the system is no longer secure. We argue that we can avoid this,
provided the rateb the adversary learns our secret is not too large. Namely, both parties periodically
(say with period slightly less than(k � `)=b weeks), update our key by settingrnew = f(rold). Since at
the time of each update, the adversary missed at least` bits of our current keyr, the valuef(r) is still
pseudorandom, and thus secure. Hence, we can agree on the secret key onlyonce, even if the adversary
continuously learns more and more of our secret!

5 All-Or-Nothing Transform (AONT)

As we pointed out, noAONT constructions without random oracles are known. We give several such
constructions. One of our constructions implies that for the interesting settings of parameters, the exis-
tence of̀ -AONT ’s, `-ERF’s and one-way functions are equivalent. The other construction can be viewed
as the special case of the OAEP contruction of Bellare and Rogaway [2]. Thus, our result can be viewed
as the first step towards abstracting the properties of the random oracle that suffice for this construction to
work. Finally, we give a “worst-case/average-case” reduction for AONT ’s that shows that one only needs
to check the definition ofAONT for randomx0; x1.

5Here we assume that ourERF is secure even against adaptive key exposure, where the adversary may choose which next
bits to learn based on his current information. However, ourconstructions achieve this.

10



5.1 Simple Construction using ERF

We view the process of creating̀-AONT as that ofone-time private-key encryption, similarly to the
application in Section 4.4. Namely, we look at the simplest possible one-time private key encryption
scheme – the one-time pad, which is unconditionally secure.Here the secret key is a random stringR of
lengthk, and the encryption ofx 2 f0; 1gk is justx�R. We simply replaceR by f(r) wheref is `-ERF
andr is our new secret. We get

Theorem 5.1 Let f : f0; 1gn ! f0; 1gk be computational (statistical, perfect)`-ERF. DefineT :f0; 1gk ! f0; 1gn � f0; 1gk (that usesn random bitsr) as follows:T (x; r) = hr; f(r)� xi. ThenT is
computational (statistical, perfect)̀-AONT with secret partr and public partf(r)� x.

Proof: Take anyL 2 fǹg, andx0; x1 2 f0; 1gk . We have to show thathx0; x1; [r℄L; f(r)� x0i � hx0; x1; [r℄L; f(r)� x1i
LetC = x0 � x1. Addingx0 to the last component of both distributions and noticing that C is sufficient
statistics, we get (using both parts of Lemma 2.2) that it suffices to showhC; [r℄L; f(r)i � hC; [r℄L; f(r)� Ci
But this follows immediately from the definition ofERF and Lemma 2.1, sinceC is independent ofr.

As an immediate corollary of Theorems 4.7 and 5.1, we have:

Theorem 5.2 Let `; s; k be any settings of parameters such thats = `�(1) and k = `O(1). Then there
exists aǹ -AONT for messages of lengthk, with secret output sizes and public output sizek.

Remark 5.3 To see the power of the above construction, observe that one can decide on any value for̀
(which will essentially be a security parameter), and any value for s� `, which is the number of bits the
adversary can see without gaining any information, with only the constraint thats � ` be polynomially
related to`. Then, one can build aǹ-AONT with secret outputs of sizes and public outputs of sizek,
for messages of any lengthk polynomially related tò . In particular, we can select parameters such that` = s� for any� > 0 ands = O(k) if we so choose.

Remark 5.4 Observe that anỳ-AONT with public and secret outputs of lengthp and s, respectively,
also gives a secret-onlỳ0-AONT with output sizeN = s+p and`0 = `+p (since if the adversary misses`+ p bits of the output, that means it must miss at least` bits of the secret output). Note that viewing our
construction as a secret-onlỳ-AONT on messages of lengthk, if one requires a security paremeter of`0,
we will need to pick̀ = `0 + k. However, we make two observations:

1. As before, for any choice of security parameter`0, and for any choice of the resilience in terms
of the number of bitse we allow the adversary to learn (polynomially related to`0), and for any
message lengthk, we can build an secret-onlỳ-AONT with output lengthN = e+ `0 + k.

2. Also, as before, for any security parameter`0 and message lengthk and � > 0, we can build a
secret-only`-AONT with output sizeN , such that̀ = N �. Here, however,N = (`0 + k)1=�,
whereas in the case ofAONT ’s with public and secret outputs,s could essentially be chosen inde-
pendently ofk.

We conclude with a remark about the applicability ofAONT ’s as certain kinds of computational secret
sharing schemes.

11



Remark 5.5 Consider an`-AONT with public output of sizep and secret output of sizes. We can
interpret this as being a kind of “gap” computational secretsharing scheme. For some secretx, we apply
theAONT to obtain a secret outputy1 and public outputy2. Here, we think ofy2 as being a public share
that is unprotected. We interpret the bits ofy2 as being tiny shares that are only1 bit long, with one share
given to each ofs parties. We are guaranteed that if all the players cooperate, by the invertability of the
AONT , they can recover the secretx. On the other hand, ifs�` or fewer of the players collude, they gain
no computational information about the secret whatsoever.We call this a “gap” secret sharing scheme
because there is a gap between the number of players needed toreconstruct the secret and the number
of players that cannot gain any information. Note that such agap is unavoidable when the shares are
smaller than the security parameter. Using our constructions, we can obtain such schemes for any value
of ` larger than the security parameter, and any value ofs larger than`.
5.2 AONT implies OWFs

Theorem 5.6 Assume we have a computational`-AONT T : f0; 1gk ! f0; 1gs � f0; 1gp = f0; 1gN
where` < k � 1. Then one-way functions exist.

Proof: To show thatOWF’s exist it is sufficient to show thatweakOWF’s exist [10]. FixL = [`℄ �[s℄. Defineg(x0; x1; b; r) = hx0; x1; [y℄Li, wherey = T (xb; r). We claim thatg is a weakOWF.
Assume not. Then there is an inverterA such that whenx0; x1; b; r are chosen at random,y = T (xb; r),z = [y℄L, h~b; ~ri = A(x0; x1; z), ~y = T (x~b; ~r), ~z = [~y℄L, we havePr(z = ~z) > 34 .

To show that there existx0; x1 breaking the indistinguishability property ofT , we construct a distin-
guisherF for T that has non-negligible advantage forrandomx0; x1 2 f0; 1gk . This would show that the
requiredx0; x1 exist. Hence, the job ofF is the following.x0, x1, b, r are chosen at random, and we sety = T (xb; r), z = [y℄L. ThenF is given the challengez together withx0 andx1. Now,F has to predictb correctly with probability non-negligibly more than1=2. We letF runA(x0; x1; z) to get~b; ~r. Now,F
sets~y = T (x~b; ~r), ~z = [~y℄L. If indeed~z = z (i.e. A succedeed),F outputs~b as its guess, else it flips a
coin.

LetB be the event thatA succeeds inverting. From the way we set up the experiment, weknow thatPr(B) � 34 . CallU the event that whenx0; x1; b; r are chosen at random,[T (xb; r)℄L 2 [T (x1�b)℄L, i.e.
there exists somer0 such that[T (x1�b; r0)℄L = z or g(x0; x1; 1 � b; r0) = g(x0; x1; b; r). If U does not
happen andA succeeded inverting, we know that~b = b, as it is1� b is an impossible answer. Thus, usingPr(X ^ Y ) � Pr(X) � Pr(Y ), we get:Pr(~b = b) � 12 Pr(B) + Pr(B ^ U) � 12 Pr(B) + Pr(B)� Pr(U)= 12 + 12 Pr(B)� Pr(U) � 12 + �38 � Pr(U)�

To get a contradiction, we show thatPr(U) � 2`�k, which is at most14 < 38 since` < k�1. To show
this, we observe thatU measures the probability of the event that when we choosex; x0; r at random and
setz = [T (x; r)℄L, what is the probability that there isr0 such thatz = [T (x0; r0)℄L. However, for any
fixed setting ofz, there are only2` possible completionsy 2 f0; 1gN . And for each such completiony,
invertability of T implies that there could be at most onex0 2 T�1(y). Hence, for any setting ofz, at
most2` out of2k possiblex0 have a chance to have the correspondingr0. Thus,Pr(U) � 2`�k indeed.

Up to a constant factor, the result is optimal, since one can achieve statistical (even secret-only)`-
AONT with ` = O(k). Indeed, we use statistical`-ERF f : f0; 1gn ! f0; 1gk with ` = O(k) (and anyn � ` we like) as achieved in Theorem 4.3, and then apply Theorem 5.1 to it. This yields unconditional`-AONT with N = n + k and` = O(k). Merging secret and public parts together gives secret-only`0-AONT with `0 = `+ k = O(k) still.

12



5.3 Towards secret-only AONT

We also give another construction of anAONT based on any length-preserving functionf such that both[r 7! f(r)℄ and [r 7! f(r) � r℄ areERF’s. This construction can be viewed as a special case of the
OAEP construction as defined by Equations (3)-(4) (but without random oracles). Thus, our analysis
makes a step towards abstracting the properties of the random oracle needed to make the OAEP work as
an AONT . It also has the advantage of meeting the standard definitionof an AONT (without separate
public and secret outputs), while retaining a relatively short output length.

Recall that the OAEP construction setsT (x; r) = hu; ti, whereu = G(r) � x, t = H(u) � r, andG : f0; 1gn ! f0; 1gk andH : f0; 1gk ! f0; 1gn are some functions (e.g., random oracles). We analyze
the following construction, which is a special case of the OAEP construction withn = k, andH being
the identity function. u = f(r)� x (5)t = s� r (6)

wheref : f0; 1gk ! f0; 1gk . Thus,T (x; r) = hf(r)� x; (f(r)� r)� xi, and the inverse isI(u; t) =u� f(u� t).
Theorem 5.7 Assumef is such that bothf(r) and (f(r) � r) are length-preserving computational`-
ERFs. ThenT above is computational secret-only2`-AONT .

The proof and the related discussion can be found in AppendixD. We note, though, that random oraclef clearly satisfies the conditions of the Theorem. Thus, we obtained a simple proof that even removing
random oracleH leaves the OAEP construction secure forn = k. We believe that the assumption of
the theorem is quite reasonable, even though we leave open the question of constructing suchf based on
standard assumptions.

5.4 Worst-case / Average-case Equivalence of AONT

In the definition ofAONT we require that Equation (2) holds for anyx0, x1. This implies (and is equiv-
alent) to saying that it holds if one is to choosex0; x1 according to any distributionp(x0; x1). A natural
such distribution is the uniform distribution, which selects randomx0; x1 uniformly and independently
from f0; 1gk . We call anAONT secure against (possibly only) the uniform distribution anaverage-case
AONT . A natural question to ask is whether average-caseAONT implies (regular)AONT with compa-
rable parameters, which can be viewed as the worst-case/average case equivalence. We show that up to
a constant factor, the notions are indeed identical in the statistical or computational settings. Below we
assume without loss of generality that our domain is a finite field (e.g. GF (2k)), so that addition and
multiplication are defined.

Lemma 5.8 Let T : f0; 1gk ! f0; 1gs � f0; 1gp be an average-case (statistical or computational)`-AONT . Then the followingT 0 : f0; 1gk ! f0; 1g4s � f0; 1g4p is a (statistical or computational)4`-
AONT , wherea1, a2, b are chosen uniformly at random subject toa1+a2 6= 0 (as part of the randomness
of T 0): T 0(x) = hT (a1); T (a2); T (b); T ((a1 + a2) � x+ b)i
In the above output, we separately concatenate secret and public parts ofT ’s output.

Proof: See Appendix E

13



6 Conclusions

We have studied the problem of partial key exposure and related questions. We have proposed solutions to
these problems based on new constructions of the All-Or-Nothing Transform in the standard model based
on any one-way function, without random oracles.

The key ingredient in our approach is an interesting new primitive which we call an Exposure-
Resilient Function. This primitive has natural applications in combatting key exposure, and we believe
it is also interesting in its own right. We showed how to buildessentially optimalERF’s based on any
one-way function. We also explored many other interesting properties ofERF’s andAONT ’s.

14



References

[1] M. Bellare, S. Miner. A Forward-Secure Digital Signature Scheme. InProc. of Crypto, pp. 431–448,
1999.

[2] M. Bellare, P. Rogaway. Optimal Asymetric Encryption. In Proc. of EuroCrypt, pp. 92–111, 1995.

[3] C. Bennett, G. Brassard, C. Crepeau, U. Maurer. Generalized Privacy Amplification. InIEEE Trans-
actions on Information Theory, 41(6), 1995.

[4] G. Blackley. Safeguarding Cryptographic Keys. InProc. of AFIPS 1979 National Computer Confer-
ence, 1979.

[5] V. Boyko. On the Security Properties of the OAEP as an All-or-Nothing Transform. InProc. of
Crypto, pp. 503–518, 1999.

[6] C. Cachin, U. Maurer. Linking information reconciliation and privacy amplification. InJournal of
Cryptology, 10(2):97-110, 1997.

[7] B. Chor, J. Friedman, O. Goldreich, J. Hastad, S. Rudich,R. Smolensky. The Bit Extraction Problem
or t-resilient Functions. InProc. of FOCS, pp. 396–407, 1985.

[8] Y. Desmedt, Y. Frankel. Threshold Cryptosystems. InProc. of Crypto, pp. 307–315, 1989.

[9] A. Dornan. New Viruses Search For Strong Encryption Keys. In PlanetIT Systems Management News,
http://www.planetit.com/techcenters/docs/systems management/news/
PIT19990317S0015, March, 1999.

[10] O. Goldreich. Foundations of Cryptography (Fragmentsof a Book). Available at
http://www.wisdom.weizmann.ac.il/home/oded/public html/frag.html

[11] O. Goldreich. A Note on Computational Indistinguishability. In IPL, 34:277–281, 1990.

[12] O. Goldreich, A. Wigderson. Tiny Families of Functionswith Random Properties: A Quality-Size
Trade-off for Hashing. InProc. of STOC, pp. 574–583, 1994.

[13] J. Hastad, R. Impagliazzo, L. Levin, M. Luby. A Pseudorandom generator from any one-way func-
tion. In Proc. of STOC, 1989.

[14] A. Hertberg, M. Jackobson, S. Jarecki, H. Krawczyk, M. Yung. Proactive public key and signature
schemes. InProc. of Conference on Computer and Communication Security, ACM, 1997.

[15] R. Impagliazzo, L. Levin, M. Luby. Pseudo-random Generation from one-way functions. InProc.
of STOC, pp. 12–24, 1989.

[16] M. Jakobsson, J. Stern, M. Yung. Scramble All, Encrypt Small. InProc. of Fast Software Encryption,
pp. 95–111, 1999.

[17] H. Krawczyk. Secret Sharing Made Short. InProc. of Crypto, pp. 136–146, 1993.

[18] F. MacWilliams, J. Sloane. Theory of Error-CorrectingCodes, Amsterdam, 1981.

[19] J. Naor, M. Naor. Small-Bias Probability Spaces: Efficient Constructions and Applications. InSIAM
J. Computing, 22(4):838-856, 1993.

i



[20] N. Nisan. Extracting Randomness: How and Why A survey. In IEEE Conference on Computational
Complexity, pp. 44–58, 1996

[21] R. Raz, O. Reingold, S. Vadhan. Error Reduction for Extractors. In Proc. of FOCS, pp. 191–201,
1999.

[22] R. Rivest. All-or-Nothing Encryption and the Package Transform. InFast Software Encryption,
LNCS, 1267:210–218, 1997.

[23] A. Shamir. How to share a secret. InCommunications of the ACM, 22:612-613, 1979.

[24] A. Shamir, N. Someren. Playing “hide and seek” with stored keys. InProc. of Financial Cryptog-
raphy, 1999.

[25] N. Someren. How not to authenticate code. Crypto’98 Rump Session, Santa Barbara, 1998.

[26] A. Srinivasan, D. Zuckerman. Computing with Very Weak Random Sources. InProc. of FOCS, pp.
264–275, 1994.

[27] D. Stinson. Some observations on all-or-nothing transforms. Available from
http://cacr.math.uwaterloo.ca/ dstinson/papers/AON.ps, 1998.

[28] L. Trevisan. Construction of Extractors Using Pseudo-Random Generators. In Proc. of STOC, pp.
141–148, 1999.

A Proof of Lemma 2.1

Lemma A.1 Let�, � be two (possibly dependent) random variables taking value in f0; 1g. LetD be the
following experiment: observe� and�. If � = �, then flip a coin, else output� (= 1 � �). Let be the
output ofD. Then Pr( = 1) = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄

Proof: We use the formula that for any eventsA andB, Pr(A ^B) + Pr(A ^B) = Pr(A).Pr( = 1) = Pr(� = 1 ^ � = 0) + 12 � [Pr(� = 1 ^ � = 1) + Pr(� = 0 ^ � = 0)℄= 12 � f[Pr(� = 1 ^ � = 0) + Pr(� = 1 ^ � = 1)℄ + [Pr(� = 1 ^ � = 0) + Pr(� = 0 ^ � = 0)℄g= 12 � [Pr(� = 1) + Pr(� = 0)℄ = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄
We now prove Lemma 2.1, which stated the following: LetA andB be any two random variables.

LetR be chosen uniformly at random andC be chosen according to a distributionp, both independently
fromA andB. Then the following are equivalent:

(1) hA;Bi � hA;Ri.
(2) hA;B;Ci � hA;B � C;Ci, for any polynomial time sampleable (PTS) distributionp.

(3) hA;B;Ci � hA;B � C;Ci, for uniformp.

ii



We concentrate on the computational case, which is the hardest of the above.(1)) (2). Assume(2) is false for some PTSp, so there is an adversaryF distinguishinghA;B;Ci fromhA;B � C;Ci with advantage�. We construct a distinguisherD that distinguisheshA;Bi from hA;Ri.D gets as inputhA;Xi. It generatesC according top, sets� = F (A;X;C), � = F (A;X�C;C). ThenD proceeds as in Lemma A.1. Thus,Pr( = 1) = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄= 12 + 12 � [Pr(F (A;X;C) = 1)� Pr(F (A;X � C;C) = 1)℄
WhenX = B, the difference above is at least�, by assumption ofF . Thus,Pr( = 1) > 12 + �2 .
WhenX = R, bothR andR� C are uniform and independent ofC. Thus,Pr(F (A;X;C) = 1) =Pr(F (A;X �C;C) = 1), and soPr( = 1) = 12 . Hence,D is a good distinguisher indeed.(2)) (3) is trivial.(3) ) (1). LetR = B � C. If C is uniform and independent fromA andB, then so isR. If there is

an adversary that can distinguishhA;Bi from hA;Ri, then there is an adversary distinguishinghA;B;Ci
from hA;B � C;Ci = hA;R;Ci, that simply ignores the extra informationC and runs the original
adversary on the first two components.

B Discussion of AONT with Secret and Public Outputs

We now discuss the generalized definition ofAONT . Recall that the standard definition requires that
security should hold forany`-element subsetL of [N ℄. The interpretation is that we wish to protect the
secretx, we encode secretx into a new secrety = T (x) such thatx is protected against the adversary
learning all but` bits of y. Thus, it is implicitly assumed that all parts of the transform are “equally
important” and should have the same protection against the attacker. In reality, different parts of the
transform serve different purposes for the decoding process. Some of them could be used just for the
decoding process (so that the mapping is invertible), but are not important to keep secret against the
attacker, while others are really the ones that do all the cryptographic work, and thus, should be kept
secret.

For example, we could have a transform of output length2k, where, as long as the adversary does not
learn

pk bits from the second half of the transform, we are completelysecure, but are totally insecure if
it learns the entire second half. This seems like a very reasonable solution to the key leakage problem;
we will simply protect as hard as we can the second half of the transform, while the first part we might
as well publish. However, in the standard setting we must set` = k + pk to ensure that the adversary
misses at least

pk bits of the second half. This seems to be an artificial settingfor `, indicating that more
than half of the transform should be kept hidden. Common sense tells us that the real answer is` = pk,
because first and second half serve different purposes, and we are secure as long as

pk bits of the second
half remain hidden.

This leads us to the following more general notion ofAONT . Here we can encodex into a “secret”
party1 and a “public” party2, such that the public part might as well be published, while the secret part
has our standard resilience property. Namely, the adversary learning all but̀ bits of y1 (and the entire
public y2) cannot learn anything useful aboutx. Thus, public part is only used to decodex back (in
conjunction with the secret part), but we really do not care about protecting it. It is the secret party1 that
is important to protect.

iii



We argue that this generalized notion allow us more flexibility than before. First of all, it allows
reasonableAONT constructions, as in the example above, to have small`, as they should. Secondly,
while without the public part, the size of the secret part hadto be at least the size of the message, now
it can be much smaller (at the expense of the public part). Thus, the public part may be stored on some
insecure device with fast access time (like public cache), while secret part may be stored further away in
some publically read-protected memory (and still give a guarantee that small accidental leakage will not
compromise the security). In addition, we will see that moregeneralAONT ’s (with the public part) seem
to be more efficient and much easier to construct than the correspondingAONT ’s with secret part only.
We also point out that this generalized notion ofAONT naturally suffices for all applications ofAONT
we are aware of.

C Error Correcting Codes and Perfect ERF

A binary linear [n; k; d℄ error-correcting codecan be seen as a linear transformation fromf0; 1gk tof0; 1gn (where these are viewed as vector spaces overGF (2)). Thus, such a code can be described by ank � n generating matrixM overGF (2). For any vectorv 2 f0; 1gk, the codeword corresponding tov
is vM . A code is said to haveminimum distanced if for every two distinct vectorsu; v 2 f0; 1gk, uM
andvM differ on at leastd coordinates. Note that by linearity, this is equivalent to requiring that every
non-zero codeword has at leastd non-zero components. For further information on error correcting codes,
as well as for proofs of the results on error correcting codesthat we use, see [18].

Theorem C.1 ([7]) LetM be ak�n matrix. Definef(r) = M � r, wherer 2 f0; 1gn. Thenf is perfect`-ERF if and only ifM is the generator matrix for a code of distancen� `+ 1.

The proof of this theorem follows by observing that every codeword is a linear combination of the
rows of M (since codewords are of the formuM for u 2 f0; 1gk). The distance properties of the
code imply that the rows ofM are linearly independent, and furthermore that every non-trivial linear
combination of the rows creates a codeword of Hamming weightat leastd. Hence, even after removing
any(d� 1) = (n� `) columns ofM , the resulting rows ofM are still linearly independent, which gives
the desired result.

We apply this result to a special kind of code. A code is said tobeasymptotically goodif n = O(k)
andd = 
(n) (i.e., the three parametersn, k, andd differ by multiplicative constants). Many explicit
constructions for asymptotically good codes (e.g. the Justesen code) also exist. Using such a code, we
can get both̀=n andk=n to be (very small) constants.

Note that for any code,k � n � d + 1 (this is called thesingleton bound). Thus, we havek �n� (n� `+ 1) + 1 = `, as expected. Also, it is known thatd � n=2 for k � 2 log n. This implies that
we are limited to havè� n=2. However, at the expense of makingn = poly(k), using a Reed-Solomon
code concatenated with a Hadamard code, we can achieve` = n � d + 1 to be arbitrarily close ton=2,
but can never cross it.

D Discussion and Proofs for Section 5.3

Recall that the OAEP construction setsT (x; r) = hu; ti, whereu = G(r) � x, t = H(u) � r, andG : f0; 1gn ! f0; 1gk andH : f0; 1gk ! f0; 1gn are some functions (e.g., random oracles). Let’s try to
develop some informal intuition of why this construction works; in particular, to separate the properties
of G andH that are essential (and hopefully sufficient) for this construction to be anAONT . We look at
the two extreme cases.

iv



First, assume we knowu and miss̀ bits of t. Then we miss̀ bits ofr, sincer = H(u)� t. Note thatx = G(r) � u, so in order to “missx completely”,G must have the property that missing` bits ofG’s
random inputr makes the output pseudorandom (random oracle clearly satisfies this). But this isexactly
the notion of̀ -ERF! Thus,G must be anERF, and this suffices to handle the case when we miss` bits
of t.

Now assume that we knowt and are missing̀ bits of u. Assume for a second thatH is a random
oracle. Then, sincer = H(u) � t, we are essentially missingr completely. But from the previous
argument aboutG, we know that even missing̀bits of r leavesx completely unknown. Thus, random
oracleH achieves even more than we need. In some sense, as long asH does not “unhide” information
we miss aboutu, we will miss at least̀ bits of r. In other words, assumeH satisfies the property that
missing` of its input bits implies “missing” at least̀of its output bits. Then missing̀bits ofu implies
missing` bits of r, which implies missing entireG(r), which implies missingx completely. So we ask
the question of whichH satisfy this property? Clearly, the easiest one is the identity function (assumingn = k). This has led us to analyze the following construction, which is a special case of the OAEP
construction withn = k, andH being the identity function.u = f(r)� x (7)t = s� r (8)

wheref : f0; 1gk ! f0; 1gk . Thus,T (x; r) = hf(r)� x; (f(r)� r)� xi, and the inverse isI(u; t) =u� f(u� t).
Theorem D.1 Assumef is such that bothf(r) and (f(r) � r) are length-preserving computational`-
ERFs. ThenT above is computational secret-only2`-AONT .

Proof: LetN = 2k be the size of the output,L1 = f1 : : : `g,L2 = f`+1 : : : 2`g. As in Equations (7)-
(8), letu = f(r)� x, t = (f(r)� r)� x). Note thatu� t = r.
Take anyL 2 fN2`g and anyx0; x1 2 f0; 1gk . It must be the case that eitherjL\L1j � ` or jL\L2j � `.
Thus, it suffices to show security when we either knowt completely and miss̀ bits of u, or when we
know u completely and miss̀ bits of t. Hence, it suffices to assume thatjLj = ` and consider the two
cases separately.

1)L � L1. Then we must show thathx0; x1; [f(r)� x0℄L; (f(r)� r)� x0i � hx0; x1; [f(r)� x1℄L; (f(r)� r)� x1i
Since[u℄L � [t℄L = [r℄L, by Lemma 2.2 the above is the same ashx0; x1; [r℄L; (f(r)� r)� x0i � hx0; x1; [r℄L; (f(r)� r)� x1i
Adding x0 to the last component and lettingC = x0 � x1, using both parts of Lemma 2.2, above is the
same as hC; [r℄L; (f(r)� r)i � hC; [r℄L; (f(r)� r)� Ci
The result now follows from the fact that(f(r)� r) is `-ERF and Lemma 2.1.

2) L � L2. The proof is identical to above with the roles off(r) and (f(r) � r) interchanged. In
particular, security follows from the fact thatf(r) is `-ERF.

We remark that non-trivial length-preservingERF’s can exist only in the computational sense, since` � k for any statisticalERF.

v



E Proof of Lemma 5.8

First, sinceT is invertible anda1 + a2 6= 0, we have thatT 0 is invertible (invert all four components
and recoverx). Assume now thatT 0 is not an`-AONT , that is for someL0 2 f4s4`g, x00; x01 2 f0; 1gk
(obviously,x00 6= x01) we have hx00; x01; [T 0(x00)℄L0i 6� hx00; x01; [T 0(x00)℄L0i

Call z the last input toT , i.e. either(a0 + a1) � x00 + b or (a0 + a1) � x01 + b. Let x0; x1 be selected
at random formf0; 1gk, and we are givenhx0; x1; [T (xi)℄Li, wherei is either0 or 1. We need to chooseL allowing us to “blindly transform”[T (xi)℄L into [T 0(x0i)℄L0 . Then, since the latter distribution is not
indistinguishable fori = 0 andi = 1, the so is the former distribution. Thus, the quadrupleha1; a2; b; zi
resulting from our “blind” transformation should satisfy(a1 + a2) � x0i + b = z (9)

Moreover,ha1; a2; b; zi should be (statistically close to)randomsatisfying the corresponding equation
above (subject toa1 + a2 6= 0).

We constructL by looking at which part of the output ofT 0 has the most bits inL0. Namely, letLj = fm 2 [`℄ j m + j` 2 L0g. SincejL0j � 4`, somejLjj � `. We letL be any`-element subset of
thisLj. We now consider4 cases depending on the identity of thisj. In all the cases, one ofa1; a2; b; z
(depending onj) will have to be implicitly set toxi (for unknowni). The remaining3 parameters must
be then set in thesame way independent ofi (but stay otherwise random), such that irrespective ofi = 0
or i = 1, Equation (9) is satisfied. We now illustrate how this can be done for eachj = 1; 2; 3; 4.� jL1j � `. Hence, we know thathx00; x01; [T (a1)℄L; T (a2); T (b); T ((a1 + a2) � x00 + b)i 6�hx00; x01; [T (a1)℄L; T (a2); T (b); T ((a1 + a2) � x01 + b)i

Clearly, we should (implicitly) makea1 = xi (which is random sincexi is random). In order to seta2; b; z in an identical manner independent ofi, we solve the linear system ina2 andd (d is to be
interpreted asz � b) (x0 + a2) � x00 = d(x1 + a2) � x01 = d
This system is always solvable sincex00 6= x01. Moreover,a2 andd are random and independent
of each other for a random choice ofx0 andx1. We then pick randomb; z such thatz � b = d.
We note thatx0 + a2 or x1 + a2 are0 with only negligibly small probability (since resultinga2 is
random), so we can ignore this case happening for the statistical or computational setting. Then we
immediately observe thathx0i; a2; b; zi satisfy(xi + a2) � x0i + b = z. Moreover, this is arandom
quadruple of inputs toT used for computingT 0(x0i) (technically, statistically close to it). Hence, by
the argument above, we obtain a contradiction to the fact that T is `-AONT .� jL2j � `. This is symmetric to the above witha1 anda2 interchanged.� jL3j � `. Hence, we know that

vi



hx00; x01; T (a1); T (a2); [T (b)℄L; T ((a1 + a2) � x00 + b)i 6�hx00; x01; T (a1); T (a2); [T (b)℄L; T ((a1 + a2) � x01 + b)i
Clearly, we should (implicitly) makeb = xi (which is random sincexi is random). In order to seta1; a2; z in an identical manner independent ofi, we solve the linear system ina andz (a is to be
interpreted asa1 + a2) a � x00 + x0 = za � x01 + x1 = z
This system is always solvable sincex00 6= x01. Moreover,a andz are random and independent of
each other for a random choice ofx0 andx1. Also, unlessx0 = x1 (which happens with exponen-
tially small probability),a 6= 0. Pick randoma1; a2 such thata1 + a2 = a. Thenha1; a2; xi; zi
satisfy (a1 + a2) � x0i + xi = z. Moreover, this is arandomquadruple of inputs toT used for
computingT 0(x0i) (technically, statistically close to it). Hence, we obtaina contradiction to the fact
thatT is `-AONT .� jL4j � `. Hence, we know thathx00; x01; T (a1); T (a2); T (b); [T ((a1 + a2)x00 + b)℄Li 6�hx00; x01; T (a1); T (a2); T (b); [T ((a1 + a2)x01 + b)℄Li
Clearly, we should (implicitly) makez = xi (which is random sincexi is random). In order to seta1; a2; b in an identical manner independent ofi, we solve the linear system ina andb (a is to be
interpreted asa1 + a2) a � x00 + b = x0a � x01 + b = x1
This system is always solvable sincex00 6= x01. Moreover,a andb are random and independent of
each other for a random choice ofx0 andx1. Also, unlessx0 = x1 (which happens with exponen-
tially small probability),a 6= 0. Pick randoma1; a2 such thata1 + a2 = a. Thenha1; a2; b; xii
satisfy(a1 + a2) � x0i + b = xi. Moreover, this is arandomquadruple of inputs toT used in com-
putingT 0(x0i) (technically, statistically close to it). Hence, we obtaina contradiction to the fact thatT is `-AONT .

vii


