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Abstract

Consider two parties holding samples from correlated distributions W and W ′, respectively,
that are within distance t of each other in some metric space. These parties wish to agree
on a uniformly distributed secret key R by sending a single message over an insecure channel
controlled by an all-powerful adversary. We consider both the keyless case, where the parties
share no additional secret information, and the keyed case, where the parties share a long-term
secret SK that they can use to generate a sequence of session keys {Rj} using multiple pairs
{(Wj ,W

′

j)}. The former has applications to, e.g., biometric authentication, while the latter
arises in, e.g., the bounded storage model with errors.

Our results improve upon previous work in several respects:

• The best previous solution for the keyless case with no errors (i.e., t = 0) requires the
min-entropy of W to exceed 2n/3, where n is the bit-length of W . Our solution applies
whenever min-entropy of W exceeds the minimal possible threshold n/2, and yields a longer
key.

• Previous solutions for the keyless case in the presence of errors (i.e., t > 0) required random
oracles. We give the first constructions (for certain metrics) in the standard model.

• Previous solutions for the keyed case were stateful. We give the first stateless solution.

1 Introduction

A number of works have explored the problem of secret key agreement based on correlated informa-
tion by which two parties holding instances of correlated random variables W and W ′ communicate
and thereby generate a shared, secret uniformly-random key R. The random variables W and W ′

are not assumed to be individually uniform; this may be because of the parties’ limited abilities to
generated randomness, or because of the adversarial ability to observe some information correlated
with W and W ′, thus making W and W ′ nonuniform from the adversary’s point of view. The
problem is sometimes known as “information reconciliation” (to handle differences between the
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instances of W and W ′) and “privacy amplification” (to handle nonuniformity), and sometimes as
“fuzzy extraction.”

Early work [Wyn75, BBR88, Mau93, BBCM95] assumed that the parties could communicate
over a public but authenticated channel or, equivalently, assumed a passive adversary. This as-
sumption was relaxed in later work [Mau97, MW97, Wol98, MW03, RW03], which considered an
active adversary who could modify all messages sent between the two parties.

The motivation of the above works was primarily to explore the possibility of information-
theoretic security; however, this is not the only motivation. The problem also arises in the context
of using noisy data (such as biometric information) for cryptographic purposes, even if compu-
tational security suffices. The problem also arises in the context of the bounded storage model
(BSM) [Mau92] in the presence of errors [Din05, DS05]. We discuss each of these in turn.

Authentication using noisy data. In the case of authentication using noisy data, the random
variables W, W ′ are close (with respect to some metric) but not identical. For simplicity, we assume
the noisy data represents biometric information, though the same techniques apply to more general
settings. In this context, two different scenarios have been considered:

“Secure authentication”: In this scenario, a trusted server stores some biometric data w of a
user obtained during an initial enrollment. At a later time, when the user and the server want to
agree on a key R for a secure communication session, the user obtains a fresh biometric scan w′

which is close, but not identical, to w; the server and the user use w and w′ to agree on R.

“Key recovery”: In this scenario, a user (on his own) uses his biometric data w to generate a
random key R along with some public information P and then stores P on a (possibly untrusted)
server. The key R is then be used, for example, to encrypt some data for long-term storage. At
a later point in time, the user obtains a fresh biometric scan w′ along with the value P from the
server; together, these values enable recovery of R (and hence enable decryption of the data).

In the second setting the user is, in effect, running a key agreement protocol with himself at
two points in time, with the (untrusted) server acting as the “communication channel” between
these two instances of the user. This second scenario inherently requires a noninteractive (i.e.,
one-message) key agreement protocol since w is no longer available at the later point in time. Note
also that any solution for the second scenario is also a solution for the first.

Solutions for achieving secret key agreement using noisy data and an authenticated channel
are known [BBR88, BBCM95, JW99, FJ01, LT03, DORS08]. Most of the existing work for an
unauthenticated channel, such as [Mau97, MW97, Wol98, MW03, RW03], solves the problem only
for two special cases: (1) when W = W ′ and (2) when W and W ′ consist of (arbitrarily-many)
independent realizations of the same random experiment; i.e., W = (W (1), W (2), . . .) and W ′ =

(W ′(1), W ′(2), . . .). In the case of biometric data, however, W, W ′ are not likely to be equal and we
cannot in general obtain an unbounded number of samples.

There has been recent progress on the general case. Renner and Wolf [RW04] were the first
to demonstrate that the first scenario is solvable in principle with a multi-round protocol, but
using a nonconstructive solution, which means that parties need more than polynomial time to
complete the protocol (it was made constructive later in [KR09]). Boyen [Boy04] showed, in the
random oracle model, how to achieve unidirectional authentication with noisy data, as well as a
weak form of security for the second scenario (essentially, R remains secret but the user can be
fooled into using an incorrect key R′). Work of Boyen et al. [BDK+05] showed two solutions.
The first is noninteractive and thus applies to both scenarios, but relies on random oracles. The
second is interactive, and thus cannot be used for the key recovery scenario; it relies on an under-
lying password-based key-exchange protocol, which means it provides computational rather than
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information-theoretic security; furthermore, given the current state-of-the-art for password-based
key exchange [BPR00, BMP00, KOY01, GL01, GL03], it is impractical without additional assump-
tions, such as random oracles, ideal ciphers, or public parameters.

The bounded storage model and the “keyed” case. Key agreement using correlated in-
formation arises also in the context of the bounded storage model (BSM) [Mau92] in the presence
of errors [Din05, DS05]. In the BSM, two parties share a long-term secret key sk. In each of
time period j = 1, . . ., a long random string Zj is broadcast to the parties (and observed by an
adversary); the assumption is that the length of Zj is more than what the adversary can store.
The parties use sk and Zj to generate a secret session key Rj , with |Rj | ≫ |sk|, in each period.
This process should achieve “everlasting security” [ADR02], meaning that even if sk is revealed to
the adversary in some time period n, all session keys {Rj}j<n remain independently and uniformly
distributed from the perspective of the adversary.

A typical paradigm for achieving the above is for the parties to sample (using sk) shorter strings
from the random string Zj in each period (this way, they don’t need to store Zj , which is considered
impossible even for the adversary). In the presence of transmission errors, these shorter strings will
be similar, but not identical—thus, one party will have wj and the other will have w′j . The parties
will then use sk to generate Rj . The parallels to the case of biometric authentication, as discussed
earlier, should now be clear. Nevertheless, the problems are incomparable: in the case of the BSM
with errors there is a stronger setup assumption (the parties share a long-term key sk), but the
security requirements are more stringent, in particular because sk needs to be reusable.

Our contributions. We focus on the abstract problem of secret key agreement between two
parties holding instances w, w′ of correlated random variables W, W ′ that are guaranteed to be
close but not necessarily identical. Specifically, we assume that w and w′ are within distance t with
respect to some underlying metric. Our definitions as well as some of our results hold for arbitrary
metric spaces, while others assume the Hamming or set difference metrics.

We consider only noninteractive protocols defined by procedures (Gen, Rep) that operate as
follows: the first party, holding w, computes (R, P ) ← Gen(w) and sends P to the second party;
this second party computes R′ ← Rep(w′, P ). (If the parties share a long-term key SK then Gen, Rep
take this as additional input.) The basic requirements, informally, are

Correctness: R = R′ whenever w′ is within distance t of w.

Security: If the entropy of W is high, R is uniformly distributed even given P .

So far, this gives exactly a fuzzy extractor as defined by Dodis et al. [DORS08] (although we addi-
tionally allow the possibility of a long-term key). Since we are interested in the case when the parties
communicate over an unauthenticated channel, however, we actually want to construct robust fuzzy
extractors [BDK+05] that additionally protect against malicious modification of P . Robustness re-
quires that if the adversary sends any modified value P̃ 6= P , then with high probability the second
player will reject (i.e., Rep(w′, P ) =⊥). We distinguish between the weaker pre-application robust-
ness and the stronger post-application robustness, depending on whether the adversary has access
to R when trying to modify P . Post-application robustness is needed in settings where the first
party may begin using R before the second party computes R′, and is also needed for the “key
recovery” scenario discussed earlier (since previous usages of R may leak information about it).

The case of no errors. Although our focus is on the case when W, W ′ are close, we obtain
improvements also in the case when they are equal (i.e., t = 0) but nonuniform. Let m denote the
min-entropy of W and n denote its bit-length. The best previous non-interactive solution in this
setting is due to Maurer and Wolf [MW03] who show that for when m > 2n/3 it is possible to
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achieve pre-application robustness and generate a shared key R of length m− 2n/3. On the other
hand, results of [DS02, DW09] imply that a non-interactive solution is impossible when m ≤ n/2.
(Interactive solutions can do much better, as shown in [MW03, Section IIIC]; in fact, the length of
R can get very close to m [RW03, DW09, CKOR10].)

We bridge the gap between known upper- and lower-bounds and show that whenever m > n/2 it
is possible to achieve pre-application robustness and generate a shared key R of length 2m−n. This
improves both the required min-entropy of W as well as the length of the resulting key. Moreover,
we give the first solution satisfying post-application robustness which still works as long as m > n/2
(but extracts a key that is three time shorter; an improvement in the key length was subsequently
achieved in [KR08]).

Handling errors. The only previously known construction of robust fuzzy extractors [BDK+05]
relies on the random oracle model. (This solution is generic and applies to any metric admitting a
good error-correcting code.) We (partially) resolve the main open question of [BDK+05] by showing
a construction of post-application robust fuzzy extractors in the standard model, for the case of the
Hamming and set difference metrics.1 The techniques of this paper were subsequently generalized
and applied in the shared parameters setting in [CDF+08].

Relying on shared secret keys. There are scenarios in which the two parties trying to derive R
from w and w′ already share a secret key. (Naturally, one may ask why derive R when they already
have a shared secret; the answer is that the shared-secret may be long-term, while R is derived for
a particular session or time period, as in the bounded storage model (BSM) described above.) For
those scenarios, we define and construct a keyed robust fuzzy extractor (for general metrics). In
the process, we introduce a new primitive, possibly of broader interested, called “extractor-MAC”:
a one-time information-theoretic message authentication code whose output is close to uniform.

Application to BSM with errors. Prior work focusing on the BSM with errors [Din05, DS05]
showed that a constant relative Hamming distance between the samples wj and w′j by the two
parties can be tolerated using a single-message protocol. The solution of [Din05] is stateful (i.e.,
the long-term key sk has to be updated between each time period) while the solution of [DS05]
requires the parties to communicate over an authenticated channel (i.e., the adversary is assumed
not to modify the message). Building on keyed robust fuzzy extractors, we show a stateless BSM
solution (for the Hamming metric) using an unauthenticated channel. The cost of removing the
authenticated channel assumption is very low.

2 Background

For strings a and b, a‖b denotes their concatenation, and |a| denotes the length of a. If S is a set,
x ← S means that x is chosen uniformly from S. If X is probability distribution, then x ← X
means that x is chosen according to distribution X. The notation PrX [x] denotes the probability
assigned by X to the value x. (We often omit the subscript when the probability distribution is
clear from context.) If A is a probabilistic algorithm and x an input, A(x; ω) denotes the output
of A running with random coins ω, and A(x) denotes the random variable A(x; ω) for uniformly
sampled ω. If X is a random variable, then A(X) is the random variable obtained by sampling
x← X and sampling A(x). All logarithms are base 2 unless noted otherwise.

1The conference version of the current paper [DKRS06] contained an erroneous claim about a construction for
the edit distance, which proceeded by embedding edit distance into set difference through shingling (see [DORS08]).
That construction did not work, essentially because the set description became more than twice the length of the
input, thus violating the m > n/2 bound.

4



Min-entropy.The min-entropy of a random variable X is H∞(X) = − log(maxx PrX [x]). Fol-
lowing [DORS08], define the (average) conditional min-entropy of X given Y as H̃∞(X | Y ) =
− log(Ey←Y (2−H∞(X|Y =y))) (here the expectation is taken over y for which Pr[Y = y] is nonzero).
This definition is convenient for cryptographic purposes, because the probability that the adversary

will predict X given Y is 2−
eH∞(X|Y ). It also works well with extractors, to be defined below. Fi-

nally, we will use [DORS08, Lemma 2.2], which states that H̃∞(X | Y ) ≥ H∞((X, Y ))− λ, where
2λ is the number of elements in Y (more generally, H̃∞(X | (Y, Z) ≥ H̃∞((X, Y ) | Z)− λ).

Hash functions and extractors. We recall the notion of almost-universal hashing [CW79,
Sti94]:

Definition 1 A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}ℓ

}
i∈I

is δ-almost universal if

for all distinct x, x′ we have Pri←I [hi(x) = hi(x
′)] ≤ δ. Families with δ = 2−ℓ are called universal.

♦

A simple universal family [Sti94, Theorem 5.2] can be constructed by identifying I and {0, 1}n

with F(2n) and defining hi(x) as the topmost ℓ bits of i · x (it doesn’t matter how the elements of
F(2n) are represented as long as the representation takes n bits and addition in F(2n) corresponds
to exclusive-or).

Let X1, X2 be two probability distributions over S. Their statistical distance is SD (X1, X2)
def

=
1
2

∑
s∈S |PrX1

[s]−PrX2
[s]|. If two distributions have statistical distance at most ε, we say they are

ε-close, and write X1 ≈ε X2. Note that ε-close distributions cannot be distinguished with advantage
better than ε by an adversary who gets a single sample, even if the adversary is computationally
unbounded.

Extractors [NZ96] yield a close-to-uniform string from a random variable with high min-entropy,
using a uniformly random seed i as a kind of catalyst. Strong extractors are ones in which the
extracted string looks random even in the presence of the seed; in particular, this means that the
seed can in some cases be public and reusable. We consider only strong extractors in this paper,
and thus often omit the adjective “strong.”

Definition 2 For some set I let Ext : {0, 1}n × I → {0, 1}ℓ be a function. It is a strong (m, ε)-
extractor if for all distributions X over {0, 1}n with H∞(X) ≥ m and for the uniform distribution
over I we have SD ((Ext(X; I), I), Uℓ × I) ≤ ε. A sample from I is called seed. ♦

We will need to strengthen the definition of extractors slightly to account for any external infor-
mation E that may be correlated with X. To do so, we relax the min-entropy constraint on X
to average min-entropy, and require the extracted string remain uniform even in the presence of
E: that H̃∞(X | E) ≥ m should imply SD ((Ext(X; I), I, E), Uℓ × I × E) ≤ ε. We will call such
extractors average-case extractors. Note that any (m − log

(
1
ε

)
, ε′) extractor is automatically an

(m, ε + ε′) average-case extractor, because Pre∈E [H∞(X | e) ≤ m − log
(

1
ε

)
] ≤ ε, by Markov’s

inequality. However, this additional loss is not always necessary.
Indeed, the Leftover Hash Lemma, which says that almost universal hash functions are ex-

tractors, generalizes without any loss to the average case. (Multiple versions of this lemma have
appeared; we use the formulation of [Sti02, Theorem 8.1], augmented by [DORS08, Lemma 2.4] for
the average case; see [HILL99] and references therein for earlier formulations.)

Lemma 1 (Leftover Hash Lemma) For ℓ, m, ε > 0, if H = {hi : {0, 1}n → {0, 1}ℓ}i∈I is a
(2−ℓ(1 + 4ε2) − 2−m)-almost universal family, then H is a strong (m, ε) average-case extractor
(where the index of the hash function is the seed to the extractor). In particular, H is a strong
(m, ε) average-case extractor if H is universal and ℓ ≤ m + 2− 2 log

(
1
ε

)
.
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This Lemma holds even when H is allowed to depend on the extra information E about the input
X, i.e., when H̃ = {He}e∈E is a family of almost-universal families, one for each value of the extra
information.

Strong universality and one-time message authentication codes (MACs).
While universal hash functions are good for randomness extraction, strongly universal hash

functions [WC81, Sti94], defined below, can be used for message authentication, as well.

Definition 3 A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}ℓ

}
i∈I

is δ-almost strongly

universal if for all distinct x 6= x′, y, y′ (a) Pri←I [hi(x) = y] = 2−ℓ and (b) Pri←I [hi(x) = y ∧ hi(x
′) =

y′] ≤ δ2−ℓ. Families with δ = 2−ℓ are called strongly universal or pairwise independent. ♦

A simple strongly universal family [Sti94, Theorem 5.2] can be constructed by identifying {0, 1}n

with F(2n), letting I = F(2n)×{0, 1}ℓ, viewing i as a pair (a, b) and defining ha,b(x) as the topmost
ℓ bits of a · x exclusive-ored with b (it doesn’t matter how the elements of F(2n) are represented as
long as the representation takes n bits and addition in F(2n) corresponds to exclusive-or).

An almost strongly universal can be used for information-theoretic authentication of a message
x using a secret key i shared in advance, by transmitting a tag y = hi(x) along with x. The property
of being δ-almost strongly universal guarantees that the probability of a successful forgery after the
adversary receives a tag on a message of its choice [WC81, p. 271] is at most δ [Sti94, Theorem
3.2].

Secure Sketches and Fuzzy Extractors. We start by reviewing the definitions of secure
sketches and fuzzy extractors from [DORS08]. Let M be a metric space with distance function
dis (we will generally denote by n the length of each element in M). Informally, a secure sketch
enables recovery of a string w ∈ M from any “close” string w′ ∈ M without leaking too much
information about w.

Definition 4 An (m, m̃, t)-secure sketch is a pair of efficient randomized procedures (SS, SRec)
s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗. The recovery
procedure SRec takes an element w′ ∈M and s ∈ {0, 1}∗.

2. Correctness: If dis(w, w′) ≤ t then SRec(w′, SS(w)) = w.

3. Security: For any distribution W over M with min-entropy m, the (average) min-entropy
of W conditioned on s does not decrease very much. Specifically, if H∞(W ) ≥ m then
H̃∞(W | SS(W )) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦

For the case of the Hamming metric on M = {0, 1}n, we will make use of the syndrome
construction from [DORS08] (this construction appeared as a component of protocols earlier, e.g.,
in [BBCS91]). In it, the sketch s = SS(w) consists of the k-bit syndrome2 of w with respect to
some (efficiently decodable) [n, n− k, 2t + 1]-error-correcting code C. We do not need any details
of this construction other than the facts that s is a (deterministic) linear function of w and that
the entropy loss is at most |s| = k. We should also note that this construction extends to the set
difference metric through sublinear-time encoding and decoding [DORS08].

As opposed to a secure sketch, whose goal is to recover the original input, a fuzzy extractor
enables generation of a close-to-uniform string R from w and its subsequent reproduction given any
w′ close to w.

2For a linear code with parity check matrix H, the syndrome of w is wH⊤.
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Definition 5 An (m, ℓ, t, ε)-fuzzy extractor is a pair of efficient randomized procedures (Gen, Rep)
with the following properties:

1. The generation procedure Gen, on input w ∈M, outputs an extracted string R ∈ {0, 1}ℓ and
a helper string P ∈ {0, 1}∗. The reproduction procedure Rep takes an element w′ ∈ M and
a string P ∈ {0, 1}∗ as inputs.

2. Correctness: If dis(w, w′) ≤ t and (R, P )← Gen(w), then Rep(w′, P ) = R.

3. Security: For any distribution W overM with min-entropy m, the string R is close to uniform
even conditioned on the value of P . Formally, if H∞(W ) ≥ m and (R, P ) ← Gen(W ), then
we have SD ((R, P ), Uℓ × P ) ≤ ε. ♦

Just like with ordinary extractors, a slightly more general definition of fuzzy extractors accounts
for any external information E that may be correlated with W , and requires that H̃∞(W | E) ≥ m
should imply SD ((R, P, E), Uℓ × (P, E)) ≤ ε. This is known as an average-case fuzzy extractor; all
known constructions satisfy this more general definition.

Composing an (m, m̃, t)-secure sketch with an average-case (m̃, ε)-extractor Ext : M × I →
{0, 1}ℓ yields a (m, ℓ, t, ε)-fuzzy extractor [DORS08, Lemma 4.1]. In that case P = (SS(w), i) and
R = Ext(w; i).

3 New Definitions: Robust Fuzzy Extractors

Fuzzy extractors, defined above, protect against a passive attack in which an adversary observes
P and tries to learn something about the extracted key R. However, the definition says nothing
about what happens if an adversary can modify P as it is sent to the user holding w′. That is,
there are no guarantees about the output of Rep(w′, P̃ ) for P̃ 6= P .

Boyen et al. [BDK+05] propose the notion of robust fuzzy extractors, which provides strong
guarantees against such an attack. Specifically, Rep can output either a key or a special value ⊥
(“fail”). We require that any value P̃ 6= P produced by the adversary given P causes Rep(w′, P̃ )
to output ⊥. Modified versions of the correct public information P will therefore be detected.

We consider two variants of this idea, depending on whether Gen and Rep additionally share
a (short) long-term key SK. Boyen et al. considered the keyless primitive; this is what we define
first. Further below, we adjust the definitions to the case of a shared key.

Furthermore, we distinguish between two adversarial attacks, and thus two notions of robust-
ness, depending on whether the adversary has access to R when trying to modify P . Indeed, if R
has been used (e.g., for encryption) and the adversary can observe some effect of this use (e.g., the
ciphertext) before attempting its modification of P , then the notion of robustness from Boyen et

al., which gives the adversary no information about R, is insufficient. Our stronger notion accounts
for this by the giving the adversary access to all of R in addition to P . This is a conservative
choice that results in a broadly applicable definition: security holds regardless of how R is used
and whether it remains hidden partially, computationally, or not at all. We call this stronger
notion post-application robustness, and the original one, where R is not given to the adversary,
pre-application robustness. We should emphasizes that pre-application robustness still suffices in
scenarios where adversarial ability to modify P expires prior to any observable use of R.

If W, W ′ are two (correlated) random variables over a metric space M, we say dis(W, W ′) ≤ t
if the distance between W and W ′ is at most t with probability one. We call (W, W ′) a (t, m)-pair
if dis(W, W ′) ≤ t and H∞(W ) ≥ m.

7



Definition 6 An (m, ℓ, t, ε) fuzzy extractor has post-application (resp., pre-application) robustness δ
if for all (t, m)-pairs (W, W ′) and all adversaries A, the probability that the following experiment
outputs “success” is at most δ: sample (w, w′) from (W, W ′); let (R, P ) = Gen(w); let P̃ = A(R, P )
(resp., P̃ = A(P )); output “success” if P̃ 6= P and Rep(w′, P̃ ) 6=⊥. ♦

The definition is illustrated in Fig. 1. Note that the adversary we consider is computationally
unbounded. The definition applies equally to average-case fuzzy extractors. We construct examples
of keyless robust fuzzy extractors in Section 4. Observe that this definition is interesting even when
w = w′ (i.e., in the non-fuzzy case of t = 0), because ordinary extractors are not usually robust.

Re-using Robust Extractors. The definition of robust extractors composes with itself in some
situations. For example, a generalization of the above (used in [BDK+05]) allows the adversary to
output (P̃1, . . . , P̃j); the adversary succeeds if there exists an i with Rep(w′, P̃i) 6=⊥. A simple union
bound shows that the success probability of an adversary in this case increases at most linearly
in j.

Similarly, suppose that two players (Alice and Bob) receive a sequence of correlated pairs of
random variables (W1, W

′
1), (W2, W

′
2) . . . , such that each pair is at distance at most t and the

entropy of Wi conditioned on information from other time periods
{

(Wj , W
′
j)
}

j 6=i
is at least m (we

call such a sequence (t, m)-correlated). Once again, a simple hybrid argument shows that Alice and
Bob can agree on (essentially) random and uncorrelated keys R1, R2, . . ., by having Alice apply Gen
from a robust fuzzy extractor to each Wi and send Pi to Bob (here we need an average-case fuzzy
extractor, because Wj may be correlated to Wi). Namely, after j periods the attacker’s advantage
at distinguishing the vector of unknown keys from random is at most jε, and her probability of
forging a valid message P̃i is at most δ in each period.

Thus, multiple-use security comes for free with keyless robust extractors. The situation is more
delicate in the keyed case, because information about the key may be disclosed by the extractor.
This problem can be overcome by a strong security requirement, as we discuss next.

Keyed Robust Fuzzy Extractors. In some scenarios, such as the bounded storage model, the
parties running Gen and Rep can additionally share a short, truly random key to help them extract
a (long) session key R from close variables W and W ′. Syntactically, this simply means that Gen
and Rep now also take an extra input SK: namely, we have (R, P )← GenSK(w), R′ = RepSK(w′, P ),
and require that for any SK we have R = R′ whenever dis(w, w′) ≤ t.

(a)

(b)

P̃
Gen A

R or ⊥

w SK w′

P

R

Rec

Figure 1: Robustness of extractors (Def. 6).
Dotted lines indicate variations in the definition.
(a) Keyed extractors take an additional input SK

shared by Gen and Rep. (b) For pre-application

robustness, the adversary does not have access to
the extracted key R.

The robustness property of keyed fuzzy extractors
(Def. 6) does not change with the addition of SK: in
particular, the attacker does not get the secret key SK
in the unforgeability experiment of Def. 6. At first
glance, this appears to trivialize the problem of con-
structing keyed robust fuzzy extractors. For example,
one might attempt the following transformation: use
SK as a MAC key and, given an output (R, P ) of a fuzzy
extractor, simply append to P the tag MACSK(P ). This
transformation is not sufficient, however, because we
require SK to be reusable, and information-theoretic
MAC keys are not. Namely, our definition implies that
a single fixed-length key SK can be used to extract an unbounded number of independent keys {Rj}
from different (t, m)-pairs (Wj , W

′
j). In fact, we require something stronger: we require that SK

look uniform even given the extracted R and P (which, of course, implies that it can be reused).
In particular, the above transformation will not satisfy our definition, because it leaks information
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on SK, making it no longer uniform given the adversary’s view.

Definition 7 A keyed (m, ℓ, t, ε)-fuzzy extractor with post-application (resp., pre-application) ro-
bustness δ is an (m, ℓ, t, ε)-fuzzy extractor with post-application (resp., pre-application) robustness
δ in which both Gen and Rep take an additional input SK (chosen uniformly from all binary strings
of a given length), correctness is required to hold only if they have the same SK, robustness is
required to hold only if they have the same SK which is not given to the adversary A, and the
security requirement is strengthened as follows: for any distribution W over M with min-entropy
m, the string (SK, R) is close to a pair of fresh uniform random strings, even conditioned on the
value of P : if H∞(W ) ≥ m and (R, P ) ← GenSK(W ), then (SK, R, P ) ≈ε U|SK| × Uℓ × P . We
say that it has uniform helper strings if the security requirement is replaced with the following:
(SK, R, P ) ≈ε U|SK| × Uℓ × U|P |. ♦

This definition ensures that value of SK is essentially independent of the attacker’s view. This
security condition is important for two reasons: first, it means that the session key R remains
secure even if the long-term key SK is revealed in the future; second, the long-term key can be
reused (e.g., for future authentication). If Alice and Bob are given a sequence of j (t, m)-correlated
pairs (as discussed above), then A has advantage at most jε in distinguishing the vector of unknown
session keys from random. Similarly, the adversary’s probability of forging a valid P̃j in the j-th
execution of the robustness experiment (Def. 6) is at most jε + δ.

Finally, we note that some settings require the more stringent security requirement of uniform
helper strings from Def. 7. In this case the adversary’s view hides both the long-term key SK and
the exact distribution of W (since P is distributed almost independently of W ). The bounded
storage model, discussed in Section 5, is an example of such a setting.

4 Constructing Keyless Robust Fuzzy Extractors

Keyless robust fuzzy extractors solve the problem of secret key generation over a completely insecure
channel. We begin by analyzing the case of no errors (i.e., t = 0) and then consider the more
challenging case where errors may occur.

4.1 The Errorless Case (w = w
′)

When the adversary is passive and there are no errors, than the only problem left is the nonunifor-
mity of W ; in that case, an ordinary strong extractor suffices for applications such as key agreement.
Indeed, if Alice and Bob both hold the same value w of sufficient minentropy, then Alice’s Gen(w)
procedure can choose a seed i for a strong extractor and set R = Ext(w; i) and P = i. Bob’s
procedure Rep(w, P ) simply outputs R = Ext(w; i).

Unfortunately, this solution does not work if the adversary is active, which is why robust extrac-
tors are interesting even in the errorless (nonfuzzy) case. In particular, if i′ 6= i there is no longer
any guarantee on the output Ext(w; i′) (and it is easy to show counterexamples where a malicious
i′ completely determines Ext(w; i′) even if w is uniform). One idea is to somehow authenticate i
using the extracted key R, and add the authenticator to P ; in general, this does not work either,
because if i changed, then R will be also changed. It turns out, however, that w itself can be used
to authenticate i, at least for a particular choice of message authentication and a particular strong
extractor. Details follow.

Construction. We assume the input w is in {0, 1}n. To compute Gen(w), parse w as two strings
a and b of lengths n − v and v, respectively (the value of v will be determined later). View a as
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an element of F2n−v and b as an element of F2v (the construction is not sensitive to the choice of
representation of field elements as bit strings, and works as long as addition in the field corresponds
to exclusive-or of bit strings). Choose a random i ∈ F2n−v , compute ia ∈ F2n−v , and let [ia]n−v

v+1

denote the most significant n − 2v bits of ia and [ia]v1 denote the remaining v bits. View [ia]v1
as an element of F2v . Then compute σ = [ia]v1 + b, set P = (i, σ), and let the extracted key be
R = [ia]n−v

v+1 .

n − v bits v bits

v bitsn − 2v bits

a b

i

R [ia]v
1

σ

×

+

Figure 2: Construction for errorless case.

Rep(w, P̃ ), where P̃ = (i′, σ′), proceeds as follows.
Parse w as two strings a and b as above. Then verify
that σ′ = [i′a]v1 + b and output ⊥ if this is not the case.
Otherwise, compute the extracted key R = [i′a]n−v

v+1 .

Theorem 2 Let M = {0, 1}n. Setting v = (n − ℓ)/2,
the above construction is an (m, ℓ, 0, ε) fuzzy extractor with
robustness δ, for any m, ℓ, ε, δ satisfying

ℓ ≤ 2m− n−max
{
2 log

(
1
δ

)
, 4 log

(
1
ε

)}

for pre-application robustness and

ℓ ≤ min

(
2m− n− 2 log

(
1
δ

)

3
, 2m− n− 4 log

(
1
ε

)
)

for post-application robustness.

To help understand the formula for ℓ, let the “entropy gap” g = n−m, and ignore terms in ǫ, δ.
For nonrobust extraction, the most we can hope to extract is the entropy of the input m = n− g.
Pre-application robustness imposes an additive cost of g (since 2m−n = n−2g), essentially because
σ has to be a bit over g bits long (else it is possible that σ would be constant regardless of w and
thus forgeable). Requiring post-application robustness further reduces the length of R by a factor
of 3, essentially because of the need to insure that R does not leak so much information that σ
becomes forgeable.

Observe that extraction is possible as long as H∞(W )
def

= m > n/2. Furthermore, in the case of
pre-application robustness (which is the notion of security considered by Maurer and Wolf [MW03])
we extract a key of length roughly 2m− n, thus improving on the [MW03] requirement of entropy
m > 2n/3 and extraction length m− 2n/3.
Proof We first show that R is close to uniform even conditioned on P , and then argue robustness.

Extraction. We show that R is nearly uniform given P = (i, σ). To do so, we first show that

hi(a, b)
def

= (σ, R), is a universal hash family. Indeed, for (a, b) 6= (a′, b′) we have

Pri [hi(a, b) = hi(a
′, b′)] = Pri

[
[ia]v1 − [ia′]v1 = b′ − b

∧
[ia]n−v

v+1 = [ia′]n−v
v+1

]
.

This is equivalent to Pri

[
i(a− a′) = 0n−2v‖(b′ − b)

]
, where “‖” denotes concatenation (this is be-

cause we insisted that addition/subtraction in our fields corresponds to bitwise exclusive-or). If
a = a′ then b 6= b′, and thus this probability is 0. If a 6= a′, then there is a unique i that satisfies
the equality. Thus, the probability is at most 1/|F2n−v | = 2v−n. Applying Lemma 1, we see that
the distribution of (R, P ) = (R, (i, σ)) is 2(n−v−m)/2−1-close to (Un−2v × Un−v × U2v).

We now need a simple Lemma.

Lemma 3 If SD ((A, B), C ×D) ≤ α, then SD ((A, B), C ×B) ≤ 2α.
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Proof SD (C ×D, C ×B) = SD (D, B) ≤ SD (C ×D, (A, B)) ≤ α. The claim follows by the
triangle inequality applied to SD ((A, B), C ×D) and SD (C ×D, C ×B).

Applying this lemma to A = R, B = P , C = Un−2v, D = Un−v × U2v, we get that (R, P ) is
ε-close to Un−2v × P , for ε = 2(n−v−m)/2.

Pre-application robustness. Assume A is deterministic; since we allow an unbounded adver-
sary, this is without loss of generality. Fix arbitrary i known to A (this makes the result stronger,
since we will show that robustness holds for worst-case choice of i). Upon observing σ, the adver-
sary outputs A(σ) = (i′, σ′) 6= (i, σ). Note that if i′ = i, then Rep will reject unless σ′ = σ; so, we
need only consider the case i′ 6= i. By construction, A succeeds if σ′ = [i′a]v1 + b.

Call the triple (σ, i′, σ′) a transcript and denote it by tr. Call a transcript possible if A(σ) =
(i′, σ′). Note that the number of possible transcripts is at most 2|σ| = 2v. Let Succ be the event
that A succeeds. Note that, given our conventions above, this now depends only on the choice
of w = a‖b; for each w, we can evaluate whether the adversary will succeed by summing over all
possible transcripts (this sum will be either 0 or 1). In the formulas below and let [[expression]]
equal 1 if expression is true, and 0 otherwise. We have:

Pr[Succ] ≤
∑

a,b

PrW [a‖b]
∑

tr

[[
[ia]v1 + b = σ ∧ A(σ) = (i′, σ′) ∧ [i′a]v1 + b = σ′

]]

=
∑

tr

[[
A(σ) = (i′, σ′)

]]∑

a,b

PrW [a‖b] ·
[[

[ia]v1 + b = σ ∧ [i′a]v1 + b = σ′
]]

=
∑

possible tr

Pra‖b←W

[
[ia]v1 − [i′a]v1 = σ − σ′ ∧ b = σ − [ia]v1

]
.

Now, [ia]v1 − [i′a]v1 = [ia − i′a]v1 = [a(i − i′)]v1 (again, this is because we insisted that addi-
tion/subtraction in our fields corresponds to bitwise exclusive-or). For fixed tr, the term a(i − i′)
takes on each possible value in F2n−v exactly once as a varies; therefore, there are 2n−2v values of
a for which [a(i− i′)]v1 = σ− σ′. For each such value of a, there is a unique value of b that satisfies
b = σ− [ia]v1. Since the min-entropy of W is at least m, each such (a, b) pair occurs with probability
at most 2−m and so Pra‖b←W [[ia]v1 − [i′a]v1 = σ − σ′ ∧ b = σ − [ia]v1] ≤ 2n−2v−m. We conclude that
Pr[Succ] ≤

∑
possible tr

2n−2v−m ≤ 2n−v−m.

Setting v. If we want to achieve pre-application robustness δ and an extracted key that is ε-close
to uniform, we obtain the following constraints on v:

• v < n/2 (because the construction achieves |R| = n− 2v > 0);

• v ≥ n−m + log
(

1
δ

)
(to achieve 2n−v−m ≤ δ); and

• v ≥ n−m + 2 log
(

1
ε

)
(to achieve 2(n−v−m)/2 ≤ ε).

We extract n− 2v bits, so we’d like to set v as small as possible to extract the largest possible key.
Thus, we set v = n−m + max

(
log
(

1
δ

)
, 2 log

(
1
ε

))
to extract

2m− n− 2 max
(
log
(

1
δ

)
, 2 log

(
1
ε

))

bits, and extraction is possible as long as m > n/2.

Post-Application Robustness. Because |R| = n − 2v bits, providing R to the adversary can
increase the adversary’s success probability by a multiplicative factor of at most 2n−2v as compared
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to pre-application robustness (indeed, if the increase was greater, then the adversary could break
pre-application robustness with higher probability by simply guessing the value of R).

Thus, if we want robustness δ and our extracted key to be ε-close to uniform, we obtain the
following constraints on v:

• v < n/2 (as before);

• v ≥ (2n−m + log
(

1
δ

)
)/3 (to achieve 22n−m−3v ≤ δ); and

• v ≥ n−m + 2 log
(

1
ε

)
(as before).

If δ < ε622m−n, setting v = (2n−m + log
(

1
δ

)
)/3 allows us to extract

ℓ =
2m− n− 2 log

(
1
δ

)

3

bits, or about a third of what was possible if we required only pre-application robustness. If
δ ≥ ε622m−n, we can extract as many bits as for pre-application robustness, because the uniformity
constraint dominates the robustness constraint. Again, extraction is possible as long as m > n/2.

4.2 Authenticating a Message While Extracting

The above construction uses the input w to authenticate the extractor seed i. It can be extended
to additionally authenticate a (bounded-length) message M ; i.e., to be simultaneously a robust
fuzzy extractor and an information-theoretic one-time MAC. In this case, both Gen and Rep will
take an additional input M , and it should be difficult for an adversary to cause Rep to accept a
different M . (We are being informal here since this is merely a stepping stone to the results of
the following section.) Naturally, this could be done easily by using (a part of) R as a key for a
MAC, but this would correspondingly reduce the final number of extracted bits. In contrast, the
approach presented here (almost) does not reduce the length of R at all. We adapt a standard
technique [BJKS93, dB93, Tay93] for authenticating long messages using polynomial-based almost
universal hash functions.

Construction. Assume |M | = L · (n − v), where L is known to all parties in advance. Split M
into L chunks M0, . . . , ML−1, each n − v bits long, and view these as coefficients of a polynomial
M(x) ∈ F2n−v [x] of degree L − 1. Modify the construction of the previous section as follows: to
compute Gen(w, M), parse w as a‖b, choose random i ∈ F2n−v , compute σ = [a2M(a) + ia]v1 + b,
and set P = (i, σ). As before, the extracted key is R = [ia]n−v

v+1 .

The procedure Rep, given w, M ′, and P̃ = (i′, σ′), verifies that |M ′| = L(n − v) and that
σ′ = [a2M ′(a) + i′a]v1 + b. If so, it computes R = [i′a]n−v

v+1 .

Analysis. Extraction and robustness (which here implies that neither i nor M can be modified
without being detected) are proved in a manner very similar to the proof of Theorem 2.

Fix arbitrary M , known to the adversary. To argue that R is nearly uniform given P =
(i, σ), we will show that the function hi(a, b)

def

= (σ, R) is universal. Indeed, for (a, b) 6= (a′, b′),
Pri [hi(a, b) = hi(a

′, b′)] = Pri

[
i(a− a′) = 0n−2v‖y

]
, where y ∈ {0, 1}v is equal to [(a′)2M(a′) −

a2M(a)]v1 + b′− b. If a = a′ then b 6= b′; hence y 6= 0 and the equality cannot be satisfied. If a 6= a′,
then there is a unique i that satisfies this equality. The rest of the proof proceeds as before.
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For robustness, fix arbitrary M and i (known to A) and proceed as before. The only difference
is that we now need to compute the number of values of a for which

[a2M(a) + ia− a2M ′(a)− i′a]v1 = σ − σ′. (1)

The crucial property is that the polynomial x2M(x)+ ix−x2M ′(x)− i′x is nonconstant if (M, i) 6=
(M ′, i′). A nonconstant polynomial of degree at most L+1 can take on a given value at most L+1
times; hence, there are at most (L + 1)2n−2v values of a satisfying Eq. (1). As before, then, the
adversary’s success (in changing either i or M without being detected) is at most (L + 1) · 2n−v−m.

The optimal setting of v can be computed as before. We remark that the resulting parameters
are affected only by an addition of log(L + 1) to log

(
1
δ

)
; in particular, since L can be expected to

be much less than 1/δ, this impact is small.

4.3 Adding Error-Tolerance

We now consider settings when the input w′ to Rep is close, but not identical to, the value w used
in Gen. An obvious first attempt, given the scheme just discussed, is to include a secure sketch
s = SS(w) along with (i, σ), and to authenticate s using the message authentication technique
discussed previously; s would allow recovery of w from w′, and then verification could proceed
as before. Unfortunately, this does not quite work: if the adversary modifies s, then a different
value w∗ 6= w may be recovered; however, the results of the previous section apply only when the
receiver uses the same w as used by the sender (and so in particular we can no longer claim that
the adversary could not have modified s without being detected). In effect, we have a circularity:
the receiver uses w to verify that s was not modified, but the receiver computes w (from w′) using
a possibly modified s.

We show how to break this circularity using a modification of the message authentication
technique used earlier. The key idea is to exploit algebraic structure in the metric space, and
to change the message authentication code so that it remains secure even when the adversary
can influence the key (sometimes called security against related-key attacks). Specifically, we will
assume that the distance between w and w′ is small in the Hamming metric, and that we are given
a deterministic, linear secure sketch (for example, the syndrome construction described following
Def. 4). In Section 4.3.2 we will extend the approach to the set difference metric.

Another problem arises from the fact that the performance of our previous constructions de-
grades not only when the entropy m of the input decreases, but also when the entropy gap g = n−m
increases (for example, Theorem 2 can extract roughly m−g bits with pre-application robustness).
Because s reveals information about w, the entropy of w from the adversary’s point of view will
decrease, and the gap will increase. An important idea is to decrease the gap by using the (shorter)
part of w that is independent of s.

4.3.1 Construction for Binary Hamming Errors

Suppose the input W is a distribution of min-entropy m on n-bit string. Our starting point is
a deterministic, linear secure sketch s = SS(w) that is k bits long; let n′ = n − k; note that
H̃∞(W | SS(W )) ≥ m− k. We assume that SS is a surjective, linear function (this is the case for
the syndrome sketch for the Hamming metric), and so there exists an k × n matrix S of rank k
such that SS(w) = Sw (see footnote 2). Let S⊥ be an n′ × n matrix such that the n × n matrix(

S
S⊥

)
has full rank. We let SS⊥(w)

def

= S⊥w. One can view SS⊥(w) as the information remaining in
w once SS(w) has been learned by the adversary.
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Gen(w):

1. Set s = SS(w), c = SS⊥(w), k = |s|, n′ = |c|.

- Parse c as a‖b with |a| = n′ − v and |b| = v.
- Let L = 2⌈ k

2(n′−v)⌉. Pad s with 0s to length L(n′ − v).

Parse the padded s as sL−1‖sL−2‖ . . . ‖s0, for si ∈ GF (2n′−v).

2. Select i← GF (2n′−v).

- Define fs,i(x) = xL+3 + x2(sL−1x
L−1 + sL−2x

L−2 + · · ·+ s0) + ix.

3. Set σ = [fs,i(a)]v1 + b and output R = [ia]n
′−v

v+1 and P = (s, i, σ).

To reproduce R given w′ and P̃ = (s′, i′, σ′), first compute w∗ = SRec(w′, s′); make sure
w∗ ∈ {0, 1}n, SS(w∗) = s′ and dis(w∗, w′) ≤ t (these conditions are not guaranteed for arbitrary
inputs by the definition of SRec); if not, output ⊥. Let c′ = SS⊥(w∗); parse c′ as a′‖b′. Compute
σ∗ as above using s′, a′, b′, i′, and check that this matches the value σ′ received. If so, output
R = [i′a′]n

′−v
v+1 , else output ⊥.

Note that Rep and Gen have to pre-agree on k (the length of s) and n′ = n− k. We view these
values as being fixed. It does not matter at what end s is padded with zeroes as long Gen and Rep
do it the same way.

Analysis. The polynomial fs,i defined above differs from the message authentication technique
in the previous section only in the leading term xL+3 (and the forcing of L to be even). It has
the property that for any pair (s′, i′) 6= (s, i), and for any fixed offset ∆a, the polynomial fs,i(x)−
fs′,i′(x+∆a) is a non-constant polynomial of degree at most L+2 (this is easy to see for ∆a = 0; if
∆a 6= 0, then the leading term is ((L + 3) mod 2)∆ax

L+2). In our analysis, we use the linearity of
the scheme to understand the offset ∆a = a′ − a, and conclude that the adversary succeeds only if
it can guess the last v bits of fs,i(x)−fs′,i′(x+∆a), which happens with low probability. Note that
this definition of fs,i amounts to a message authentication code (MAC) provably secure against a
class of related key attacks where the adversary can force the receiver to use a key shifted by an
offset of the adversary’s choice. We obtain:

Theorem 4 LetM = {0, 1}n with the Hamming metric. Assume SS is a linear (m, m−k, t)-secure
sketch for M. Setting v = (n − ℓ − k)/2, the above construction is an (m, ℓ, t, ε) fuzzy extractor
with robustness δ, for any m, ℓ, ε, δ satisfying

ℓ ≤ 2m− n− k − 2 max
(
b + log

n

δ
, 2 log

(
1
ε

))

for pre-application robustness and

ℓ ≤ min

(
1

3

(
2m− n− k − 2b− 2 log

n

δ

)
,

2m− n− k − 4 log
(

1
ε

) )

for post-application robustness, where b is the logarithm of the volume of the Hamming ball of radius
t in {0, 1}n. (For t ≤ n/2, b ≤ nH2(t/n) = t log n

t + (n − t) log n
n−t .) The exact bounds can be

improved somewhat; see Theorem 10.

The proof of this theorem, along with a more detailed statement, is given in Appendix A. We
briefly discuss the parameters in the statement. The bound on ℓ differs in two large terms from
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the bound in the errorless case of Theorem 2. First, we lose the length of the sketch k. This is not
surprising, since we need to publish the sketch in order to correct errors.3 Second, we lose twice the
logarithm of the volume of the Hamming ball of radius t. This is due to our analysis of robustness,
which essentially starts by giving the attacker the error pattern ∆ = w′⊕w “for free.” This in the
worst case can reduce the min-entropy w by the logarithm of volume of the Hamming ball of radius
t. Our analysis can, in fact, yield a more general result: if m̂ = H̃∞(W | ∆), then 2(m− b) in the
above bounds on ℓ simply gets replaced with 2m̂. For instance, when knowing the error pattern
w′ ⊕ w does not reduce the entropy of w (say, the errors are independent of w, as in the work of
Boyen [Boy04]), then the term b disappears from the bounds.

The analysis gives away ∆ since we can then use the linearity of the sketch to conclude that
the adversary knows the difference between the original input w and the value w∗ that Rep(w′, P̃ )
reconstructs (see the proof of Theorem 10). This means the adversary knows ∆a = a′ − a, and we
can use the properties of fs,i to bound the forgery probability.

4.3.2 Extension to Set Difference Metric

The construction from the previous section relies heavily on the linearity of the secure sketch used
in the protocol and on the structure of the Hamming space. Using the techniques from [DORS08],
however, it can be extended to set difference.

In the set difference metric, each element ofM is a set of at most r elements chosen from a large
universe of N elements; the distance between two such sets is the size of their symmetric difference:
dis(a, b) = |{x : x ∈ a ∪ b and x /∈ a ∩ b}|. This is geometrically identical to the Hamming metric,
since we can represent sets as characteristic vectors in {0, 1}N (by ordering the N -element universe
and placing a bit into every location indicating whether it is in the sent). However, the efficiency
requirement is much stricter: for set difference, we require that operations take time polynomial
in the description length of the inputs, which is only r log N , not N . (To be precise, sets of size
exactly r take r log N bits to describe; sets of size up to r can be described in r log(N + 1) bits by
adding a special character for “absent”).

In order to extend the analysis of the previous section to handle this different representation of
the input, we need a pair of functions SS(), SS⊥() that take sets and output bit strings of length
k and r log(N + 1) − k, respectively. A set w of size up to r should be unique given the pair
(SS(w), SS⊥(w)), and the functions should possess the following linearity property: the addition or
removal of a particular element in the set should correspond to adding a particular bit vector to the
output. In other words, SS() and SS⊥() should be linear in the characteristic vector of their input
set. The SS() function of the BCH secure sketch of Dodis et al. [DORS08, Section 6.3] (called
“PinSketch”) is, in fact, linear; it outputs t values of log(N + 1) bits each in order to correct up to
t errors, thus producing sketches of length k = t log(N + 1). We will see in a moment how to build
SS⊥ for it. For the PinSketch construction the universe must be viewed as nonzero elements of a
binary field F2α for some α and thus N = 2α − 1.

The construction of Gen and Rep remains the same as in the previous section, with the exception
of different SS, SRec, and SS⊥ functions. In addition, Rep needs to replace the check that w∗ ∈
{0, 1}n with the check that the recovered w∗ is a set with elements in F

∗
2α (note, however, that it is

not necessary to check the sizes of w′ and w∗; the construction works correctly even if w′ has more
than r elements, as long as dis(w, w′) ≤ t).

3In fact, a more naive construction would lose 2k, since the sketch reduces the min-entropy m by k, and blindly
applying the errorless bound 2m − n would double this loss. The use of SS⊥ is precisely what allows us not to lose
the value k twice.
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The analysis is the same as in the previous section. The volume of the ball of radius t remains
the same as in the binary Hamming case; however, since N is large compared to t, t log(N + 1) is
a good approximation for it (it is an upper bound because every point in the ball can be described
by up to t values), and we can use it to simplify the formulas. Replacing both k and b with
t log(N + 1) = tα, and n with r log(N + 1) = rα, we obtain the following statement.

Corollary 5 LetM be the set difference metric on sets of size up to r over the universe F
∗
2α. The

above construction is an (m, ℓ, t, ε) fuzzy extractor with robustness δ, for any m, ℓ, ε, δ satisfying

ℓ ≤ 2m− rα− tα− 2 max
(
tα + log

rα

δ
, 2 log

(
1
ε

))

for pre-application robustness and

ℓ ≤ min

(
1

3

(
2m− rα− 3tα− 2 log

rα

δ

)
,

2m− n− k − 4 log
(

1
ε

) )

for post-application robustness. The exact bounds can be improved somewhat; see Theorem 10.

We need to describe SS⊥. To compute SS(w) and SS⊥(w) on input w ⊆ F
∗
2α , let si

def

=
∑

x∈w xi

(computations in F2α) and, viewing si values as bit strings, output SS(w) = s1‖s3‖s5‖...‖s2t−1 and
SS⊥(w) = s2t+1‖s2t+3‖...‖s2r−1. Given any set of r points, these two vectors are easy to compute
in O(r2) operations in F2α . Moreover, together they contain all the entropy of the original input w,
since given s1, ..., s2r−1 one can recover w. (Simply observe that (SS(w), SS⊥(w)) is the syndrome,
with respect to the binary BCH code of distance 2r + 1, of the characteristic vector of w, and
that the weight of this vector is at most r. For more details, see [DORS08, Lemma6.2], setting
n = 2α − 1, k = n − rα and δ = 2r + 1.) Finally, the pair (SS, SS⊥) has the desired linearity
property, since adding or removing an element y from w corresponds to adding xi each component
si (and we require addition in binary fields to correspond to bitwise exclusive-or).

5 Keyed Robust Fuzzy Extractors and Their Applications

In this section we show that the addition of a very short secret key SK allows us to achieve
considerably better parameters when constructing keyed robust fuzzy extractors. The parameters
are optimal up to constant factors.

To motivate our construction, let us recall the naive transformation from fuzzy extractors to
keyed robust fuzzy extractors discussed in Section 3. Suppose we start from the generic construction
of a fuzzy extractor from [DORS08, Lemma 4.1]: P = (s, i), R = Ext(w; i), where s ← SS(w) for
a secure sketch SS, Ext is an average-case extractor, and i is its seed. In an attempt to make this
construction robust, we set SK = µ and σ = MACµ(s, i), and redefine P to also include the tag σ.
The problem is that the value σ allows the attacker to distinguish the real key µ from a random
key U|µ|, since the attacker knows the authenticated message (s, i). Thus this scheme fails to meet
the security requirement of Def. 7.

We can change the scheme to avoid this. First, note that Rep must recover the input w =
Rec(w′, s) before computing R. Thus, we can add w to the authenticated message: that is, set
σ = MACµ(w, s, i). Rep will be able to verify it after recovering w. This does not strengthen
the robustness property, which was already satisfied by the naive scheme. However, it does help
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satisfy security. In the naive scheme the attacker A knows the message (s, i) we are authenti-
cating. In contrast, W has high entropy from A’s point of view, even given SS(W ) and R (for
appropriate parameters). Thus, to make the pair (P, R) independent of SK = µ, it suffices to
construct information-theoretic MACs whose key µ looks independent from the tag, as long as the
authenticated message has high min-entropy. In other words, if we can ensure that the MAC is
simultaneously a strong randomness extractor (where µ is the seed), we can solve our problem,
because in strong extractors the seed and the extracted output look jointly uniform.

5.1 Extractor-MACs

Definition 8 A family of functions
{
MACµ : {0, 1}ñ → {0, 1}v

}
is a strong (m̃, ε, δ) (average-case)

extractor-MAC if it is δ-almost strongly universal (Def. 3) and a (m̃, ε) (average-case) strong ex-
tractor (Def. 2, where the key µ is the seed). ♦

When constructing MACs, one typically tries to minimize the tag length v (to approach the
bound log

(
1
δ

)
), while for extractors one tries to maximize the output length v (to approach the

bound m̃− 2 log
(

1
ε

)
). In our setting, the extractor constraint is merely a convenient way to argue

key reuse, so we will in fact try to minimize v. Naturally, we also want to minimize the minimal
min-entropy threshold m̃.

Our construction of extractor-MACs follows from the observation that almost strongly universal
hash functions are MACs and, as universal hash functions, also extractors by the leftover hash
lemma Lemma 1. (In fact, this observation was used to get extractors with short seeds in [SZ99,
Section 3].) Any family of almost strongly universal hash functions will work. We exemplify our
construction with the family constructed in [BJKS93, Section 4]. Specifically, we compose two hash
families, as follows. Let {pβ} be a (δε2/2)-almost universal hash family mapping ñ bits to u bits
(for some u to be determined later), and let {fα} be a strongly universal hash family mapping u to
v bits, where v = log

(
1
δ

)
+1 (i.e., 2−v = δ

2). Set MACα,β(w) = fα(pβ(w)). By [Sti94, Theorem 5.5],
{MACα,β} is a δ-almost strongly universal hash family, since δε2/2 + 2−v ≤ δ. This means it can
be used for message authentication. And by [Sti94, Theorem 5.4], it is (δε2/2+2−v) = (1+ε2)2−v-
almost universal, since {fα} is 2−v-almost universal. This means, by the leftover hash lemma
(Lemma 1), that it is a (m, ε)-extractor with m = log

(
1
δ

)
+ 2 log

(
1
ε

)
.

We will set {fα} to be the family from [Sti94, Theorem 5.2] (described following Def. 3 above)
with keys of length u+v. It remains to set u so that we can construct a convenient almost universal
hash family {pβ}. We can use the polynomial-based construction of [BJKS93, dB93, Tay93], also
used in previous sections. The key β is a point in F2u , and the message x is split into c = ñ/u
pieces (x0, . . . , xc−1), each of which is viewed as an element of F2u . Now, set pβ(x0 . . . xc) =
xc−1β

c−1 + . . . + x1β + x0. This family is (c − 1)/2u-almost universal with key length u (because
two distinct degree-(c−1) polynomials agree on at most c−1 points). We can set u = v+log( ñ

ε2 ) =
1 + log

(
1
δ

)
+ 2 log

(
1
ε

)
+ log ñ to make (c − 1)/2u < ñ/2u = δε2/2. This gives key length 2u + v,

and we obtain:

Theorem 6 For any δ, ε and m̃ ≥ log
(

1
δ

)
+ 2 log

(
1
ε

)
, there exists a (m̃, ε, δ)-extractor-MAC with

key length κ = 3 + 2 log ñ + 3 log
(

1
δ

)
+ 4 log

(
1
ε

)
and tag length v = log

(
1
δ

)
+ 1.

This construction has both short keys and short tags (linear in the security parameters log
(

1
δ

)
,

log
(

1
ε

)
). One can reuse the key µ as long as min-entropy of the message is above the threshold

log
(

1
δ

)
+ 2 log

(
1
ε

)
. The tag length is within one bit of optimal (one can’t obtain δ-almost strong

universality with tags shorter than log
(

1
δ

)
). This implies, from bounds on extractors [RT00, The-

orem 1.9] (the bounds need to be reinterpreted for strong extractors considered here, by viewing
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the seed as part of the extractor output), that the key length is optimal up to a constant factor
and the entropy threshold is optimal up an additive constant.

5.2 Building Keyed Robust Fuzzy Extractors

We now apply the extractor-MACs to build keyed robust fuzzy extractors forM (which we assumed
for simplicity is {0, 1}n). We start with a generic construction and set the parameters below.

Assume (SS, SRec) is a (m, m̃, t)-secure sketch with sketch length k; Ext is an average-case
(m̃, ε)-extractor with n-bit inputs, ℓ-bit outputs, and d-bit seeds; and MAC is an average-case
(m̃− ℓ, ε, δ)-extractor-MAC from ñ = n + k + d bits to v bits having a key µ of length κ. We now
define a keyed robust fuzzy extractor with secret key SK = µ:

• Genµ(w): compute sketch s ← SS(w), sample i at random, set key R = Ext(w; i), tag σ =
MACµ(w, s, i), P = (s, i, σ) and output (R, P ).

• Repµ(w′, (s′, i′, σ′)): Let w̄ = SRec(w′, s′). If MACµ(w̄, s′, i′) = σ′, then R = Ext(w̄; i); else
R = ⊥.

We note that a variant of this construction (whose security is proven analogously) would move
the extractor seed i into the secret key SK. Namely, set SK = (µ, i), σ = MACµ(w, S) and
P = (S, σ). The main advantage of this variant is that the scheme becomes non-interactive in the
case of no errors (i.e., t = 0) or requires only a short message for small t. However, in order to keep
the length of SK low one must choose the extractor Ext carefully to make sure it has short seeds.

Theorem 7 The above construction is a (m, ℓ, t, 4ε)-keyed fuzzy extractor with post-application
robustness δ, which uses a secret key SK of length κ and outputs public information P of length
k + d + v.

Proof We need to show correctness, security, and unforgeability. Correctness follows immediately
from the correctness of the secure sketch. To show security (that is, extraction), we need to argue
that for any W of min-entropy m, we have

(SK, R, P ) ≈4ε U|SK| × Uℓ × P ,

or, equivalently,
(µ, R, s, i, σ) ≈4ε U|SK| × Uℓ × (s, i, σ) .

Indeed,
(R, s, i) ≈ε Uℓ × SS(W )× Ud

because H̃∞(W | SS(W )) ≥ m̃, and Ext used to extract R is an average-case (m̃, ε)-extractor. This
trivially implies that

U|SK| × (R, s, i)× Uv ≈ε U|SK| × Uℓ × SS(W )× Ud × Uv .

On the other hand,
(µ, R, s, i, σ) ≈ε U|SK| × (R, s, i)× Uv

because H̃∞(W | R, s, i) ≥ H̃∞(W, R, i | s) − ℓ − d ≥ H̃∞(W, i | SS(W )) − ℓ − d ≥ H̃∞(W |
SS(W )) + d− ℓ− d = m̃− ℓ (the first inequality follows from [DORS08, Lemma 2.2], as described
in Section 2 above, and the last inequality follows by independence of i), and MAC is a (m̃− ℓ, ε)
average-case extractor.
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By triangle inequality, therefore, we obtain

(µ, R, s, i, σ) ≈2ε U|SK| × Uℓ × SS(W )× Ud × Uv .

Finally, applying Lemma 3 (here A = (µ, R), B = P = (s, i, σ), C = U|SK|×Uℓ, D = SS(W )×Ud×
Uv), we obtain the desired result.

To show robustness, suppose A gives P̃ = (s′, i′, σ′) different from P = (s, i, σ). First consider
the case when (s, i) = (s′, i′). In this case, dis(w, w′) ≤ t implies SRec(w′, s′) = w, and thus
MACµ(w∗, s, i) = σ. Therefore, unless σ′ = σ and P̃ = P , Rep will output ⊥. Now consider the
case when (s, i) 6= (s′, i′). Then, in order for Rep not to reject, A must correctly guess the tag of a
new message with a uniformly chosen key µ, which cannot be done with probability higher than δ
by the δ-almost strong universality of MAC. Note that this shows post-application robustness—it
does not hurt to reveal R (or even W itself) to A, because the security of MAC relies on the secrecy
of SK only.

The Price of Authentication. We compare the parameters of Theorem 7 to the original
(non-robust, non-keyed) constructions of [DORS08]. First, note that the choice of a sketch and
strong extractor can be done in the same manner as for non-robust fuzzy extractors. Assume we
use the construction of Theorem 6 for MAC. Then the secret key SK is the just the MAC key
µ, whose length will be 2 log n + 3 log

(
1
δ

)
+ 4 log

(
1
ε

)
+ O(1), as long as d = O(n) and k = O(n)

(which is the case with typical extractor and secure sketch constructions), so that ñ = O(n).
In order for the extractor-MAC of Theorem 6 to work, we need m̃ − ℓ ≥ log

(
1
δ

)
+ 2 log

(
1
ε

)
, or

ℓ ≤ m̃ − 2 log
(

1
ε

)
− log

(
1
δ

)
. This means that the R is only log

(
1
δ

)
+ 2 bits shorter than for non-

robust extractors, which can extract ℓ = m̃− 2 log
(

1
ε

)
+ 2 bits [DORS08, Lemma 4.3]. Finally, the

length of P increases increases only by the tag length v = log
(

1
δ

)
+ 1.

5.3 Application to the Bounded Storage Model with Errors

Keyed robust fuzzy extractors allow us to remove the need for an authenticated channel between
the honest parties in the bounded storage model with errors. To explain this result, we first briefly
recall the key elements of the bounded storage model (BSM) [Mau92] with errors [Din05, DS05],
concentrating only on the stateless variant of [DS05]. Our discussion will be specific to Hamming
errors.

In the bounded storage model with errors, the parties (say, Alice and Bob) have a long-term
secret key sk, and at each time period j have access to two noisy versions Xj and X ′j of a very long
random string Zj (of length N). We assume that noise is Hamming noise, i.e., there is a bound
on the Hamming distance of Xj and X ′j . Both the honest parties and the attacker A are limited
in storage to considerably fewer than N bits. More specifically, we assume that A can look at
the entire Zj but store only γN bits of (arbitrary) information about Zj , for γ < 1. After A has
stored its information about Zj , it cannot see Zj again, so Zj has average min-entropy (1 − γ)N
from its point of view by [DORS08, Lemma 2.2]. The honest parties are even more limited in
their storage, but they can use their shared secret key to gain an advantage over the adversary
and communicate securely without the need for computational assumptions (they can even achieve
something called everlasting security [ADR02]).

Prior work [Din05, DS05] assumed that the communication channel between Alice and Bob
is authenticated or, equivalently, that the adversary does not modify the messages between Alice
and Bob. This authenticated channel was used to reconcile the differences between (the relevant
portions of) Xj and X ′j . In this work, we remove the need for the authenticated channel.
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The basic idea underlying prior work is to use sk to extract a short-term key Rj from Xj and
X ′j that will be unknown to A. For example, in “sample-and-extract” protocols [Vad04], one part
of sk consists of a key sam for an oblivious sampler [BR94, Vad04]. The key sam specifies n
secret locations in the N -bit string Xj (respectively, X ′j) which Alice (respectively, Bob) will read,
obtaining n-bit substring wj (respectively, w′j). The properties of the sampler ensure that (a) with
high probability wj and w′j are still close (say, within Hamming distance t from each other); and
(b) with high probability, A still has some uncertainty (min-entropy m ≈ (1− γ)n) about wj and
w′j . Fuzzy extractors can be used to the derive Rj from wj and w′j , with Alice running Gen(wj)
to obtain (Pj , Rj), sending the helper string Pj to Bob over the authenticated channel, and Bob
running Rep(w′j , P ) to get Rj [Din05, DS05].

In order to remove the need for an authenticated channel, Alice and Bob can use a keyed robust
fuzzy extractor instead, storing its secret key SK as part of their long-term secret key sk. However,
there is a subtle problem here, which already caused difficulties even in the case of authenticated
channels and nonrobust extractors [Din05, DS05].

The problem is in the reuse of key sk. Even though robust fuzzy extractors and their keyed
variants can be reused, as discussed Section 3, they can be reused only when the distribution is
guaranteed to have sufficient entropy (from the adversary’s point of view). In the current setting,
however, A can use information gleaned from Pj in order to reduce the entropy of wj+1 (conditioned
on A’s storage), because A can adaptively decide what information about Zj+1 to store and choose
to store information that is related to wj+1. This can happen if Pj reveals something about the
sampler key sam, thus enabling A to determine which positions in Xj+1 Alice will read in order to
create wj+1.

Even though our definition of keyed robust extractors (Def. 7) is strong enough to ensure that
the public value Pj is statistically independent of the key SK (which means that SK can be reused), it
still allows the value Pj to depend on the wj (which, in turn, depends on the sampling key sam), thus
making it unsafe to reuse sam. We can solve this problem by using keyed robust fuzzy extractors
with uniform helper strings (also defined in Def. 7). Using them will ensure the public value P not
only hides the secret key SK, but even the distribution of wj : (SK, R, Pj) ≈ε U|SK|×Uℓ×U|Pj |. This
will be sufficient for our setting by an argument (omitted here) similar to the authenticated case
considered in [DS05].

Keyed Robust Extractors with Uniform Helper Strings. Examining the keyed con-
struction in Theorem 7, we see that the only place where the value P = (s, i, σ) depends on the
distribution of w is in the sketch s← SS(w). Indeed, the seed i is chosen uniformly at at random,
and the value σ is close to uniformly random (even conditioned on i, s, w, and SK) by the prop-
erties of the extractor-MAC. Thus, to solve our problem we only need to build an (m, m̃, t)-secure
sketch SS such that SS(W ) is statistically close to uniform whenever W has enough min-entropy:
SS(W ) ≈ε U|SS(W )| (note that such sketches cannot be deterministic, because a deterministic SS
would give half of the w values the same first bit). Such sketches were studied by Dodis and Smith
[DS05], since they were already needed to solve the noisy BSM problem even in the authenticated
channel case. In particular, [DS05] built such sketches binary Hamming metric with parameters
that are only a constant factor worse than those of regular sketches.

Theorem 8 ([DS05, Theorem 1]) For any min-entropy m = Ω(n), there exists efficient (m, m̃, t)-
secure sketches for the Hamming metric over {0, 1}n that are also (m, ε)-extractors, where m̃, t and
log
(

1
ε

)
are all Ω(n), and the length of the sketch is k = O(n).

Using such sketches in the construction of Section 5.2 gives us the following theorem.
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Theorem 9 Using sketches of Theorem 8 in the construction of Section 5.2 gives a (m, ℓ, t, 3ε)-
keyed fuzzy extractor with uniform helper strings and post-application robustness δ.

Proof Correctness and unforgeability are shown the same way as in Theorem 7. To show security
(that is, extraction) with uniform helper strings, we need to argue that for any W of min-entropy
m, we have

(SK, R, P ) ≈3ε U|SK| × Uℓ × U|P | ,

or, equivalently,
(µ, R, s, i, σ) ≈3ε U|SK| × Uℓ × Uk × Ud × Uv .

Indeed,
(R, s, i) ≈ε Uℓ × SS(W )× Ud

for the same reason as in Theorem 7. On the other hand, SS(W ) ≈ε Uk by Theorem 8 and therefore

Uℓ × SS(W )× Ud ≈ε Uℓ × Uk × Ud ,

which, by triangle inequality, implies

(R, s, i) ≈2ε Uℓ × Uk × Ud .

The rest of the proof proceeds the same way as in Theorem 7, except the application of Lemma 3
is not needed.

Application to the BSM. Using the construction of Theorem 9 instead of the nonrobust fuzzy
extractor allows us to remove the need for authenticated channels in [DS05]. Now Alice and Bob no
longer need to trust that their message goes unmodified: they will (with probability 1− δ) detect
any modification to the helper string. The price is that Alice and Bob have to additionally share
a (short) extractor-MAC key SK, compute the tag σ = MACSK(w, s, i), and send this (short) tag
together with the rest of the information. Thus, we obtain a stateless protocol in the BSM without
assuming authenticated channels, which tolerates a linear fraction of Hamming errors, requires a
long-term shared secret key of size O(log N +log

(
1
ε

)
+log

(
1
δ

)
), and requires Alice and Bob to read

O(ℓ) bits of the source and pass a single message of size O(ℓ) per time period in order to extract ℓ
bits that are ε-close to uniform. These parameters are optimal up to constant factors.

Acknowledgments. We would like to thank Hoeteck Wee for his collaboration at the early stages
of this work.
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A Proof of Theorem 4 and Corollary 5

We first give a more detailed statement of the result:

Theorem 10 Assume SS is a deterministic linear (m, m − k, t)-secure sketch for the Hamming
metric on {0, 1}n. Setting v = (n− ℓ−k)/2, the construction of Section 4.3.1 is an (m, ℓ, t, ε) fuzzy
extractor with robustness δ, for any m, ℓ, ε, δ satisfying

ℓ ≤ 2m− n− k − 2 max

(
log B + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)
, 2 log

(
1
ε

))

for pre-application robustness and

ℓ ≤ min

(
1

3

(
2m− n− k − 2

(
log B + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)))
,

2m− n− k − 4 log
(

1
ε

) )

for post-application robustness, where B denotes the size of the Hamming ball of radius t in {0, 1}n.
The construction of Section 4.3.2 is a robust fuzzy extractor for the set difference metric on sets

of size up to r over the universe F
∗
2α for the same parameters, except B now denotes the size of the

Hamming ball of radius t in {0, 1}2
α−1, n = rα and k = tα

Note that the volume of the Hamming ball of radius t in {0, 1}n is
(
n
0

)
+
(
n
1

)
+ · · · +

(
n
t

)
, and

that for t ≤ n/2, its logarithm is at most nH2(t/n) [MS77, Chapter 10, §11, Lemma 8], where

H2(x)
def

= −x log x− (1− x) log2(1− x) ≤ −2x log x is the binary entropy function. Another bound
on the logarithm of the volume is t log(n + 1), achieved simply by noting that every point in this
ball (when centered at 0) can represented by up to t strings of length log(n + 1) each, where each
string represents the position of a 1 or indicates “the end” in case the weight of a point is less

than t. Also note that 2
⌈

k
n−k

⌉
+ 2 < n. These observations give the statements of Theorem 4 and

Corollary 5.
Proof We will prove the theorem for the Hamming metric; the proof set difference follows, as
discussed in Section 4.3.2.

We need to argue robustness (that if P is modified, Rep will likely reject), and that the extracted
key R is uniform even given P . We will give the adversary A very strong control over w′: the value
of w′ can be any function Err(w, P ) as long as it is within the error-correcting distance of the secure
sketch. Denote by B the volume of the Hamming ball of radius t in {0, 1}n.

Pre-application Robustness. Assume that the adversary A is deterministic (since she is un-
bounded, this is without loss of generality): upon observing P = (s, i, σ), A outputs P̃ = (s′, i′, σ′),
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where (s′, i′, σ′) is some function A(s, i, σ). Fix arbitrary i known to A (this makes the result
stronger, since we will show that robustness holds for worst-case choice of i). Now, the only re-
maining probability comes from the choice of w and w′; also, s and σ determine the entire transcript
tr = (i, s, σ, s′, i′, σ′). If i = i′ and s = s′, then Rep will compute c′ = c, so for verification to succeed,
σ′ must equal σ, which means that P cannot be modified at all. Hence, assume (i, s) 6= (i′, s′).

For the purposes of the analysis, we assume that A learns ∆ = w′ − w “for free” (that is, we
will condition on ∆ even though it may not be necessary). Recall that w∗ is the putative value of
w reconstructed by SRec, and a′, b′ are the putative values of a, b: w∗ = a′‖b′.

Let Succ be the event that A succeeds (that is, Rep accepts P̃ ). We will need two claims to
bound the probability of Succ.

1. Given ∆ = w′ − w, and the sketches s, s′, A can compute ∆a = a′ − a and ∆b = b′ − b, or
determine that Rep will reject before computing a′ and b′.

2. For any tr and difference ∆, we have

Pr
w

(Succ | tr, ∆) ≤ (L + 2)2n′−2v2−H∞(W |s,σ,∆).

The first claim says that given the information at hand, A knows the offset between the au-
thentication key used by Gen to compute σ and the key which Rep will use to verify σ′. The second
claim is that she still cannot succeed as long as W has enough min-entropy, even knowing that
offset.

Before proving the claims, let us see why the second one suffices. Recall that adversarial success
depends only on w, w′, or, equivalently, on w, ∆, and that the transcript tr is determined by s and
σ. We can thus expand the probability of success conditioned on the values s, σ, ∆.

Pr
w,∆

(Succ) = Es,σ,∆[Pr
w

(Succ | tr, ∆)]

≤ Es,σ,∆[(L + 2)2n′−2v2−H∞(W |s,σ,∆)]

= (L + 2)2n′−2v2−
eH∞(W |s,σ,∆) .

The last equality follows from the definition of the average conditional min-entropy H̃∞(W |
s, σ, ∆), and the fact that s, σ determine s′, i′, σ′. The information on which W is conditioned
can be represented by k + v + log B bits, where B is the volume of the Hamming ball of radius t
in {0, 1}n (that is, the number of possibilities for ∆), and therefore by [DORS08, Lemma 2.2],

H̃∞(W | SS(W ), σ, ∆) ≤ m− k − v − log B .

The forgery probability is thus Pr(Succ) ≤ B(L + 2)2n′−2v−m+k+v = B(L + 2)2n−m−v. We will see
how to set v further below. For now, note that the probability of forgery differs from the errorless
case by a factor of B(L + 2), and is low when m and v are large.

It remains to prove the claims above. For the first claim, observe that by correctness of SRec,
Rep will produce w∗ such that dis(w∗, w′) ≤ t and SS(w∗) = s′ if such a w∗ exists; and if it
does not exist, Rep will output ⊥ before proceeding to compute c′ = a′‖b′. Let Γ = w∗ − w′ =
w∗ − w − ∆; the conditions on w∗ are equivalent to saying that there exists Γ of weight at most
t such that SS(Γ) = s′ − s − SS(∆) (by linearity of SS). Such Γ can be found by A, if it exists,
by simply running SRec(0n, s′ − s − SS(∆)) and testing if the result has the correct weight and
SS (by correctness of the secure sketch scheme at input Γ, which is at most t away from 0n, this
procedure must find Γ if it exists). Furthermore, if Γ exists, w∗ − w = Γ + ∆. By linearity,
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c′ − c = SS⊥(w∗) − SS⊥(w) = SS⊥(w∗ − w) = SS⊥(Γ + ∆). Thus, A can find whether Rep will
output ⊥ before producing a′ and b′ by checking if Γ exists, and if so, can compute the desired
quantities by computing SS⊥(Γ + ∆) and parsing it into n′ − v bits of ∆a and v bits of ∆b.

We can use the first claim to prove Claim 2 above. Given a particular transcript tr and ∆, A
succeeds only when σ′ = [fs′,i′(a

′)]v1 + b′, which is the same as requiring that a be a solution to the
equation [fs,i(a)− fs′,i′(a + ∆a)]

v
1 = ∆b + σ − σ′. By Claim 1 above, this equation is fixed given tr

and ∆.
Now we claim that for any distinct pairs (s, i) 6= (s′, i′) and for any offset ∆, the polynomial

fs,i(x) − fs′,i′(x + ∆a) is non-constant of degree at most L + 2. There are two cases in the proof:
(a) if ∆a 6= 0, then the coefficient of order L + 2 is (L + 3)∆a, which is non-zero (in GF (2v)) since
L is even; (b) if ∆a = 0 then the polynomial fs,i(x)− fs′,i′(x) is non-constant (a coefficient of order
2 or higher is nonzero if s 6= s′, or the coefficient of order 1 is nonzero if i 6= i′).

Thus, the number of a values that satisfy [fs,i(a) − fs′,i′(a + ∆a)]
v
1 = ∆b + σ − σ′ is at most

(L + 2)2n′−2v (a goes through two mappings: the polynomial, which is at most (L + 2)-to-1, and
truncation, which is 2n′−2v-to-1). Each such value occurs with probability 2−H∞(a|tr,∆), giving the
bound (L + 2)2n′−2v2−H∞(a|tr,∆) on the probability of forgery for a particular tr and ∆.

Since all the other parts of tr are deterministic functions of s and σ, we can replace tr with
(s, σ) in the formula. Finally, H∞(a | s, σ, ∆) = H∞(a, s, σ | s, σ, ∆) = H∞(a, s, b | s, σ, ∆), because

b = σ − [fs,i(a)]v1; and H∞(a, s, b | s, σ, ∆) = H∞(W | s, σ, ∆), because w =
(

S
S⊥

)−1
(s‖a‖b). Thus,

the success probability is at most (L + 2)2n′−2v2−H∞(W |s,σ,∆), as desired.

Extraction. The argument that R is nearly uniform given P is similar to the errorless case, except
s has to be taken into account. For every s, the function Hi(c)

def

= (σ, R) is universal, because for
every c1, c2, there is at most one i such that Hi(c1) = Hi(c2) (because i(a1−a2) is fixed, like in the
errorless case). Because H̃∞(W | SS(W )) ≥ m−k, applying Lemma 1, we see that the distribution
of (R, P ) = (R, (i, σ, s)) is 2(n′−v−(m−k))/2−1 = 2(n−v−m)/2−1-close to (Un′−2v×Un′−v×U2v×SS(W )).

Applying Lemma 3 to A = R, B = P , C = Un′−2v, D = Un′−v × U2v × SS(W ), we get that
(R, P ) is ε-close to Un′−2v × P , for ε = 2(n′−v−m)/2.

Setting v. We thus obtain the following constraints on v:

• v ≤ (n− k)/2 (because the construction requires |a| ≥ |b| = v);

• v ≥ n−m + log B + log(L + 2) + log
(

1
δ

)
(because B(L + 2)2n−m−v ≤ δ); and

• v ≥ n−m + 2 log
(

1
ε

)
(because 2(n−v−m)/2 ≤ ε).

Observe that L = 2⌈k/(n− k − v)⌉ ≤ 2⌈k/(n− k)⌉ (because v ≤ (n− k)/2). Thus, we set

v = n−m + max

(
log B + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)
, 2 log

(
1
ε

))

to extract a key of length

ℓ = 2m− n− k − 2 max

(
log B + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)
, 2 log

(
1
ε

))
.

Post-Application Robustness. Because the extracted key R contains n−k−2v bits, providing
it to Eve increasing her ability to forge the σ by at most a factor of 2n−k−2v (indeed, if the increase
was greater, she could break the original MAC with higher probability by simply guessing the value
of R). The rest of the analysis remains the same. Thus, the second constraint on v becomes
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• v ≥ 1
3

(
2n− k −m + log B + log

(
2
⌈

k
n−k

⌉
+ 2
)

+ log
(

1
δ

))

If the second constraint dominates the third, which happens whenever

δ < ε6B

(
2

⌈
k

n− k

⌉
+ 2

)
22m−n−k ,

then we can extract

ℓ =
1

3

(
2m− n− k − 2

(
log B + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)))

bits, or about a third of what was possible if we required only pre-application robustness. If larger
δ is acceptable in an application, then we can set v according to the third constraint to extract as
many bits as in the case of pre-application robustness.
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