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Abstract

The goal of the bounded storage model (BSM) is to construct unconditionally secure cryptographic
protocols, by only restricting the storage capacity of the adversary, but otherwise giving it unbounded
computational power. Here, we consider a streaming variant of the BSM, where honest parties can
stream huge amounts of data to each other so as to overwhelm the adversary’s storage, even while their
own storage capacity is significantly smaller than that of the adversary. Prior works showed several
impressive results in this model, including key agreement and oblivious transfer, but only as long as
adversary’s storage m = O(n2) is at most quadratically larger than the honest user storage n. Moreover,
the work of Dziembowski and Maurer (DM) also gave a seemingly matching lower bound, showing that
key agreement in the BSM is impossible when m > n2.

In this work, we observe that the DM lower bound only applies to a significantly more restricted
version of the BSM, and does not apply to the streaming variant. Surprisingly, we show that it is
possible to construct key agreement and oblivious transfer protocols in the streaming BSM, where the
adversary’s storage can be significantly larger, and even exponential m = 2O(n). The only price of
accommodating larger values of m is that the round and communication complexities of our protocols
grow accordingly, and we provide lower bounds to show that an increase in rounds and communication
is necessary.

As an added benefit of our work, we also show that our oblivious transfer (OT) protocol in the BSM
satisfies a simulation-based notion of security. In contrast, even for the restricted case of m = O(n2),
prior solutions only satisfied a weaker indistinguishability based definition. As an application of our OT
protocol, we get general multiparty computation (MPC) in the BSM that allows for up to exponentially
large gaps between m and n, while also achieving simulation-based security.
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1 Introduction

It is well known that Alice and Bob cannot agree on a shared secret by communicating over public (authentic)
channel, when the eavesdropper Eve has unbounded computational resources. Thus, traditional cryptography
assumes that Eve is “resource bounded”, and most commonly, bounds her run time. Many key agreement
schemes have been constructed in this setting, starting with the seminal work of Diffie and Hellman [DH76],
under various computational hardness assumptions. Of course, the dream of cryptography is to construct
unconditionally secure protocols, without relying on any unproven assumptions, but unfortunately, this is
currently beyond our reach, as it easily implies P 6= NP .

In contrast, the Bounded Storage Model (BSM), introduced in the pioneering work of Maurer [Mau92],
only assumes that Eve has bounded space rather than time. A long series of works [CM97, CCM98, Din01,
HCR02, DR02, ADR02, DM02, Lu02, Vad04, DHRS07, Raz16, KRT17, Raz17, GRT18, GZ19] showed that it
is possible to construct many kinds of unconditionally secure cryptographic schemes in this model, including
key agreement and oblivious transfer over a public channel, provided that Eve’s storage is not too large.

It turns out that there are several related-but-different variants of the BSM. In this work, we focus on
a natural variant, which we refer to as the “streaming BSM”. We first discuss this model, which will be
the default throughout the paper. We will compare the streaming BSM model to other variants from the
literature further below.
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“Streaming” BSM. In this model, parties can generate and send huge amounts of data to each other,
but only have limited local memory. The model is parameterized by two parameters: the honest parties’
space capacity n, and the attacker’s space capacity m, where m � n. We assume parties operate in the
streaming model: they generate/receive communication one bit at a time, while only maintaining a small
local memory throughout. The total communication k can be huge, say k � m � n, and can occur over
multiple back-and-forth rounds.

For example, Alice can stream a huge random string X of length k to Bob by sampling it one bit at a
time; both Alice and Bob can store some small subset of n physical locations of X, or they can store the
parity of X computed in a streaming manner, but neither of them can remember all of X. The attacker
Eve is also streaming, just like Alice and Bob, but has much larger memory capacity m � n. We call
the resulting model the (n,m)-BSM, and it will be the default throughout the paper; sometimes, we will
explicitly refer to it as the “streaming BSM” to disambiguate from other variants.

Prior Results. As with computational cryptography, in the BSM we can consider a symmetric-key setting,
where honest parties can share a short secret key that can be used to encrypt arbitrarily many messages
over time, or a public-key setting, where no shared key is available. In both cases the parties can freely
communicate over a public channel, and the goal is to achieve unconditional, information-theoretic (IT)
security, without making any additional computational assumptions.

In the symmetric-key setting, a series of beautiful papers [Mau92, DR02, ADR02, DM02, Lu02, Vad04,
Raz16, KRT17, Raz17, GRT18] showed that it is possible to achieve arbitrarily large gaps between the space
of the attacker and that of the honest parties, up to exponential: m = 2O(n). (Of course, the price of
allowing large values of m is that the ciphertext size has to grow proportionally, to ensure that we eventually
overwhelm the adversary’s storage capacity to overcome the Shannon lower bound. Therefore, if we want
to limit ourselves to schemes with polynomial ciphertext size, then m is limited to some arbitrarily large
polynomial.)

Amazingly, it is even possible to construct unconditionally secure public-key schemes in the BSM, and
prior works [CM97, CCM98, Din01, HCR02, DHRS07, GZ19] constructed BSM schemes for key agreement
(KA) and oblivious transfer (OT), which is then complete for all multi-party computation (MPC) [Kil88,
IPS08]. However, all of the prior works in the public-key setting allowed at most a quadratic gap between the
adversarial and the honest users storage: m = O(n2). In fact, the work of Dziembowski and Maurer [DM04]
seemed to suggest that this limitation is inherent, by showing there is no KA protocol in the BSM when
m > n2. Since OT directly implies KA, the same lower bound also extends to OT. So it may have appeared
that the question of designing public-key cryptographic primitives in the BSM had been settled.

Our Question and Main Result. However, as we observe in this work, and discuss in Section 1.1, the
lower bound of [DM04] was only shown in a restricted version of the BSM model, and does not apply to the
more general “streaming” BSM. Most significantly, the authors critically assumed that there is at most one
“long” communication round in the key agreement protocol, where the length k of the streamed message
overwhelms the storage capacity m of the attacker. While this restriction was satisfied by many prior work
in the BSM (see Section 1.1), this opens the possibility that it might be possible to break the quadratic
barrier of [DM04] when parties use the full streaming power of the BSM, including the ability to stream
several “long” messages to each other. This is the main question of this work:

Main Question: Do there exist unconditionally secure key agreement (KA) and oblivious trasnfer (OT)

protocols in the streaming (n,m)-BSM, when m is allowed to be much larger than n2?

We answer this question in the affirmative, and show that we can allow arbitrarily large gaps between
m and n, up to exponential m = 2O(n). Surprisingly, this shows that unlike time-bounded public-key
cryptography, — where we must rely on additional computational assumptions, — space-bounded public-
key cryptography can be proven unconditionally, while supporting arbitrary gaps between the powers of
honest parties and the attacker. The price of allowing large values of m is that the round and communi-
cation complexities of the protocols grow correspondingly and we also provide a lower bound to show that
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this is inherent. In particular, this means that if we want limit ourselves to protocols with polynomial
(round/communication) efficiency, then m is limited to be some arbitrarily large polynomial.

Before describing our results in detail, we start by describing the different variants of the BSM, to
understand the gap that we crucially exploit between the model used in the lower bound of [DM04] and the
model for our upper bounds.

1.1 Modeling Gap: Breaking the Quadratic Barrier

Many of the prior works in the BSM, including the original work of [Mau92] and the lower bound of
Dziembowski and Maurer [DM04], considered a more restricted model, that we refer to as the “traditional
BSM” to disambiguate from the “streaming BSM”. In particular, they consider a variant where a single
long random string X is broadcast by a third party, and the honest users can store a small subset of n
physical locations of X (chosen non-adaptively). The adversary can store arbitrary information about X, as
long as the amount of information is bounded by m bits. After this occurs, the adversary’s storage becomes
unbounded, and the honest parties can run some additional protocol, whose overall space and communication
complexity is bounded by n. Protocols in the traditional BSM readily translate into the streaming BSM, by
having one of the users stream X as the first message of the protocol.1

Compared to the streaming BSM, the traditional BSM can be seen as imposing additional restrictions
on the honest parties Alice and Bob, and giving more power to the space-bounded attacker Eve, as follows:

(a) Restricting Number of “Long” Rounds. We make a distinction between “long” rounds, in which one
of the parties streams a long message consisting of more than m bits of data, versus “short” rounds,
consisting of fewer than m bits of data. Note that Eve can store the entire message in a short round.
The traditional BSM allows only a single “long” round — the very first round of the protocol.

(b) Uniformly Random “Long Rounds”. The traditional BSM requires that a “long” round should simply
stream a uniformly random string X. When true, such X is called a randomizer string [Mau92], and
can also come externally (e.g., from nature) rather than being sampled by the parties.

(c) Local Computability for Alice/Bob. In the streaming BSM, when a party Alice streams a long string X
to an honest party Bob, then Bob is allowed to arbitrarily process all of X in a streaming manner, as
long as not using more than n bits of space. The traditional BSM demands a stricter property of n-Local
Computatibility (LC) [Vad04]: The honest parties can only access at most n (a-prori non-adaptively
chosen) physical locations of each string X sent during a “long” round. 2

(d) Unlimited Short-term Memory for Eve. In the streaming BSM, the adversary Eve is streaming and
only has m bits of memory throughout the execution of the protocol. In the traditional BSM, we only
require that Eve stores at most m bits immediately after observing each “long” round, but we allow
her to use unlimited short-term memory to process the round, and do not restrict her memory during
“short” rounds.

Clearly, enforcing any of the restrictions (a)-(d) makes any upper bound stronger, and hence all protocols
in the traditional BSM model also apply to the streaming BSM. Indeed, most previous constructions in the
traditional BSM satisfied all of these additional properties. For example, the symmetric-key results of
[ADR02, DM02, Lu02, Vad04] satisfied all of (a)-(d), as did the public-key results for key agreement and
oblivious transfer of [CM97, CCM98, DHRS07]. However, there were exceptions, pointing to the fact that
these restrictions were not all seen as crucial. For example, the work of [Din01] required two “long” rounds,
and therefore did not satisfy (a). Moreover, if one wanted to use OT as a sub-protocol in general MPC, then
this would require running many sequential copies, meaning that even if the OT protocol satisfied (a), the
resulting MPC would not.

1This holds generically in the case of KA. In the case of OT, where the participants can be malicious, it may not be generically
safe to allow one of the parties to chose X instead of having it sampled by a trusted third party. However, it was safe to do so
for all the protocols in the literature.

2For example, if local computability is demanded, parties cannot compute the parity of all the bits of X.
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More recently, the ground-breaking work of Raz et al. [Raz16, KRT17, Raz17, GRT18] (presented in
terms of time-space tradeoffs for learning parity), constructed elegant symmetric-key encryption schemes in
the streaming BSM that crucially do not satisfy (b)-(d); see Section 1.4. The work of [GZ19], then lifted
the techniques of Raz et al. [Raz16, KRT17, Raz17, GRT18] to build key agreement, oblivious transfer
and bit commitment protocols in the streaming BSM, without satisfying (b)-(d). Nevertheless, the proto-
cols of [GZ19] have some advantages over prior works in the traditional BSM, such as smaller number of
communication rounds, and perfect correctness.

Overall, looking at the literature, it appears that many works implicitly viewed the streaming BSM as the
real conceptual goal, but ended up satisfying additional properties (a)-(d) that they incorporated into their
formal model. This view seems to be shared by the more recent works of [Raz16, KRT17, Raz17, GRT18,
GZ19] that did not satisfy the additional properties, but still continued to refer to their model as the BSM,
without carefully distinguishing between the variants. We continue in this vein, and view the streaming
BSM as the main notion to strive for, while achieving the additional restrictions (a)-(d) can be seen as a
nice bonus, but is not essential.

Moving to the lower bound of Dziembowski and Maurer [DM04], it turns out it critically used restriction
(a), namely that there is only a single long round having large communication. Hence, to overcome the
quadratic barrier imposed by [DM04], our protocols must use multiple long rounds.

Interestingly, we will be able to do so while still satisfying the additional restrictions (b)-(d). In particular,
our protocols contains many long rounds, each of which involves generating a long uniformly random string
X, while the honest parties store some small set of at most n physical locations of X. The adversary is only
restricted to storing at most m bits of information about each X sent in a long round, but gets unlimited
memory otherwise (i.e. during the short rounds and for computing the functions that compresses each X
into m bits). However, we will mostly view these additional features as secondary, and focus most of our
discussion on the fully unrestricted streaming BSM. If follow-up works manage to get further improvements
by also dropping the restrictions (b)-(d), much like the works of [Raz16, KRT17, Raz17, GRT18, GZ19],
this would be “fair game” and satisfy the main goal from our point of view.

To sum up, even though many prior works already departed from the traditional BSM and considered
the streaming BSM as the main model, when it comes to public-key schemes, all prior works in the BSM
were stuck at the quadratic gap between honest and adversarial storage. On the other hand, the quadratic
lower bound of [DM04] does not extend to the streaming BSM, which opens the door for our results.

1.2 Our Results

As our main positive results, we design protocols for key agreement (KA), oblivious transfer (OT) and
general multiparty computation (MPC) in the (n,m)-BSM, supporting up to an exponential gap between
the honest user and adversary storage: m = 2O(n). This qualitatively matches the positive results in the
space-bounded symmetric-key setting, albeit in (substantially) more rounds. In fact, we also show that large
number of long rounds (and also overall large communication complexity) is essential when m � n2, by
non-trivially extending the lower bound of [DM04] to general BSM protocols. Details follow.

Key Agreement in BSM. Recall, the goal of a KA protocol is for Alice and Bob agree on a `-bit key
while talking over an authenticated-but-public channel. In Section 5, we show the following result in the
(n,m)-BSM:

Theorem 1.1 (informal). For any m,λ, there exists some nmin = O(logm+ λ) such that for all n ≥ nmin
there is an unconditionally secure key agreement protocol in the (n,m)-BSM that outputs an Ω(n)-bit key
and achieves security 2−Ω(λ). Furthermore:

• The number of rounds is Õ(dm/n2e · λ).

• The communication complexity is Õ(mdm/n2e · λ).
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Note that, although the adversary’s storage bound m can even be exponentially larger than n, this comes
at the cost of increasing the number of rounds and bits of communication. If we want the overall protocol
to be polynomially efficient, then we must restrict m to be some arbitrarily large polynomial.

Oblivious Transfer and Beyond. As our second main result, we build an OT-protocol in (n,m)-BSM,
achieving nearly the same parameters as our KA protocol from Theorem 1.1. Recall, in an OT protocol,
sender Alice has two `-bit messages (msg0,msg1), and receiver Bob has a single choice bit c ∈ {0, 1}. At the
end of the protocol, Alice should learn nothing, while Bob should learn msgc, and get no information about
msg1−c. When ported to (n,m)-BSM, (1) honest Alice and Bob should use space at most n, (2) the privacy
of choice bit c should hold even against malicious Alice with storage m, and (3) the privacy of m1−c should
hold even against malicious Bob with storage m.

In our work we will achieve receiver privacy guarantee (2) even against unbounded space sender, so we
only rely on the BSM for sender privacy (3). Moreover, our protocol satisfies simulation-based security, with
an efficient simulator. This means that our simulator only uses the attacker as a black-box and is efficient
relative to the corresponding attacker. In contrast, prior OT works in the BSM [CCM98, Din01, DHRS07,
GZ19] all satisfied a weaker indistinguishability-based variant of sender-privacy, which roughly corresponds
to inefficient simulation. The problem of having an efficient simulator was explicitly stated as an interesting
and challenging open problem in [DHRS07]. Our result, formally proven in Section 6, is summarized below:

Theorem 1.2 (informal). For any m,λ, there exists some nmin = O(logm+ λ) such that for all n ≥ nmin
there is an unconditionally secure OT protocol with efficient simulator in the (n,m)-BSM with message size
Ω(n) and security (and correctness) errors 2−Ω(λ). Furthermore:

• The number of rounds is Õ(dm/n2e · poly(λ)).

• The communication complexity is Õ(m · dm/n2e · poly(λ)).

• Receiver security holds even against a malicious sender with unbounded space.

To generalize our result to general MPC, recall that OT is information-theoretically complete for general
MPC [Kil88, IPS08]. In Section 6.4, we observe that this result also extends to the (n,m)-BSM, provided
we allow the honest parties’ storage n, round complexity R, and communication complexity C to also
polynomially-depend on the circuit size of the corresponding MPC functionality. Note that these parame-
ters are completely independent of the adversary’s storage bound m, which can still be arbitrarily (up to
exponentially) larger than n. A similar observation that OT implies MPC in the BSM was already made in
[DHRS07] and expanded on in [LV21], albeit in the setting where both the OT and the MPC only satisfy
inefficient simulation.

We emphasize that the efficient simulation of our OT protocol is critical to achieve efficient simulation
of the resulting MPC. If we apply our MPC to the special case of the zero-knowledge (ZK) functionality,
we get the first ZK protocol in (n,m)-BSM with an efficient simulator and arbitrary gap between m and
n. In contrast, if we only had indistinguishability-based OT, we would get ZK with an inefficient simulator
(which is equivalent to witness indistinguishability), which is insufficient/uninteresting in many situations
when the witness is unique. Indeed the prior works of [SPY92, AF94] constructed (non-interactive) witness
indistinguishable proofs in the BSM, and explicitly left zero-knowledge as an open problem, which we resolve
here in the interactive setting.

Round and Communication Lower Bound. As we already mentioned, circumventing the lower bound
[DM04] requires more than one long round. Also, any protocol in the (n,m)-BSM clearly requires more than
m bits of communication. However, our protocols in Theorems 1.1 and 1.2 are noticeably less efficient: they
use Ω(m/n2) rounds and Ω(m2/n2) communication. This begs the question of whether large round and
communication complexities of our protocols are inherent. In particular, when m� n2, should the number
of rounds R grow with m and should the communication C be super-linear in m?
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Unfortunately, we show that the answer is affirmative (see Theorem 7.4). Specifically, we show that any
KA and OT protocols must satify R ≥ Ω((m/n2)1/2) and C ≥ Ω(m · (m/n2)1/2). While leaving a non-trivial

gap with our upper bounds R = Õ(m/n2) and C = Õ(m2/n2) when m� n2, it still shows that the number
of rounds grows with m, and the communication must be super-linear in m. It is an interesting open question
to close this quantitative gap between our lower and upper bounds.

Our basic lower bound above only holds for BSM protocols where the attacker Eve is allowed unlimited
short-term memory, and is only subject to keeping an m-bit state in between rounds (i.e., condition (d)).
However, we also non-trivially extend our lower bound to show that it can even handle fully streaming
adversaries that are restricted to m-bits of memory throughout the protocol execution, at the cost of a
weaker quantitative bound: R ≥ Ω((m/n2)1/3), C ≥ Ω(m · (m/n2)1/3). It is also an interesting open
question to close the quantitative gap between this bound and the previous one.

1.3 Our Techniques

Bit-Entropy Lemma. As a crucial tool in our KA and OT constructions, we rely on a new technical
lemma for min-entropy (Lemma 3.1). On a high level, the lemma says that if a long string X ∈ {0, 1}k has
high min-entropy (e.g., because it was chosen uniformly at random and the adversary could only remember
m � k bits of information about it, in which case X denotes the conditional distribution), then many
individual bits X[i] of X must have non-trivial min-entropy. Specifically, if H∞(X) ≥ δ · k, we show
that

∑
i∈[k] H∞(X[i]) ≥ ρ · k, where we (optimally) relate ρ to δ. For example, when δ = Ω(1), then

ρ = Ω(1). The technical lemma relates to conceptually similar lemmas in [NZ96, Vad04, BKR16], showing
that random subsets of bits in X have a high entropy rates. It also relates to quasi chain-rules for min-
entropy [DKZ18, Sko19]. However, to our knowledge, the single-bit version does not appear to follow easily
from the prior results.

Key Agreement Protocol. The high-level idea for our KA protocol from Section 5.2 is surprisingly
simple. For readers familiar with prior work on the bounded storage model, our protocol builds on a core
template, introduced in [CM97] and further used in [CCM98, Din01, DHRS07], which we adapt and extend
to the interactive setting. The protocol consists of many rounds i, where Alice streams a (k = 2m)-bit
random string X to Bob and remembers a single random location in the string X[a]. Similarly, as Bob
receives the string X, he remembers a single random location X[b]. At the end of each round, Alice and
Bob exchange their choice of locations a, b with each other; if a = b, they set X[a] = X[b] as their shared
key and terminate, else they erase all of their memory so far and go to the next round. Their storage only
consists of a single index and is therefore n = O(logm). The probability of Alice and Bob agreeing in any
round is 1/(2m) and therefore after O(m) rounds they are likely to terminate. In the round i∗ where they
agree, the attacker can only remember m out of 2m bits of arbitrary information about the string X that
was sent, and the choice of what information to remember is made before seeing Alice’s and Bob’s locations
a, b. Therefore, the agreed upon location X[a] = X[b] in that round has some constant amount of entropy
from Eve’s point of view.

The simple template above only outputs a 1-bit shared key, only guarantees that it has some low but
non-trivial entropy from the point of view of the attacker (but does not guarantee that it is uniformly
random), has a constant correctness error and and requires O(m) rounds. However, it is easy to address
these deficiencies. First, Alice/Bob can store O(n/ logm) random locations (not just 1), which means they
improve their odds of agreement in a given round from 1/m to roughly O(n2/m), to get round complexity
O(m/n2) and communication complexity O(m2/n2), respectively. Second, we can amplify security (and
correctness) to ensure that the agreed upon key is 2−λ-statistically close to uniform, while simultaneously
making the key longer (say, λ bits), by repeating the above O(λ) times, and applying a randomness extractor
to the O(λ) agreed upon bit locations. Finally, once the symmetric-key is O(λ) bits long, we amplify it to
be Ω(n) bits, by adding an additional round, and using any of the optimal symmetric-key BSM protocols
(e.g., [Vad04]).

One crucial difference with the template of [CM97] and any single round in our interactive protocol is
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that, in our case, Alice and Bob agree on bits in a given round with very small probability O(n2/m) � 1,
as opposed to almost always agreeing in [CM97]. Our analysis is consequently significantly different, and
builds on our bit-entropy lemma.

We also notice that, while our protocol takes many rounds (which we show to be inherent) and therefore
does not satisfy restriction (a), it does satisfy the additional restrictions (b)-(d): each long string is truly
random, Alice and Bob are “locally computatable”, and security holds even if Eve has an unrestricted amount
of short-term local memory, as long as she can only remember at most m bits of information after seeing
each string X.

Oblivious Transfer Protocol. In an OT protocol, sender Alice has two messages (msg0,msg1), and
receiver Bob has a single choice bit c ∈ {0, 1}. At the end of the protocol, Alice should learn nothing, while
Bob learns msgc, and gets no information about msg1−c.

Our oblivious transfer crucially relies on a tool called interactive hashing [NOVY93, DHRS07]. This tool
was also used to construct OT in the BSM by prior works [CCM98, Din01, DHRS07] achieving a quadratic
gap between the honest and adversarial storage. However, our protocol uses it in a substantially different
way. In an interactive hashing protocol, a sender Bob has a random input b ∈ [k], and at the end of the
protocol, Alice can narrow down Bob’s input to one of two possible choices b0, b1 such that b ∈ {b0, b1}, but
Alice does not learn which of them it is; both options are equally likely. On the other hand, Bob cannot
simultaneously control both of the values b0, b1 that Alice ends up with, and in particular he cannot cause
both of them to land in some sparse subset B ⊆ [k]. Such interactive hashing protocols can be performed with
4 rounds of interactions and polylog(k) time/space. The security properties hold information-theoretically,
even if the parties have unbounded computation and memory.

We now describe a simplified version of our OT protocol, which roughly corresponds to the case where
honest users have n = O(logm) storage. We first rely on a component sub-protocol, which one can think of
as an (imperfect) form of Rabin OT [Rab81]: Alice outputs some bit r, and Bob either also outputs r or ⊥,
but Alice does not learn which of these occurred. We set the length of “long rounds” to k = O(m log(m)):

• Alice and Bob choose random indices a, b ← [k] respectively. Alice samples a random string X ←
{0, 1}k and sends it to Bob. Alice stores X[a] and Bob stores X[b].

• Alice and Bob run interactive hashing where Bob uses his index b. Alice learns that it is one of b0, b1.

• Alice checks if a ∈ {b0, b1}, and if not, then the parties go back to the beginning and try again. Else
Alice sends a to Bob and outputs r = X[a]. Bob checks if a = b and if so he outputs r = X[b] else he
outputs ⊥.

The interactive hashing security ensures that even if Alice is malicious, she does not learn whether Bob
outputs ⊥ or r. On the other hand, even if Bob is malicious and has storage m, there is only a small
O(k/ log k) set of bad indices B ⊆ [k] that he “knows” (have very small entropy given his state). The
interactive hashing ensures that it’s unlikely that both b0, b1 are in B, and Alice selects one of them at
random (the one that matches her a). Therefore, in the execution where Alice accepts, with probability
≈ 1/2, Alice’s index satisfies a 6∈ B and therefore Bob does not know r = X[a].

To go from the above sub-protocol to full OT, we employ a variant of the trick of [Cré88] to go from
Rabin OT to the more standard 1-out-of-2 OT. The parties run the above sub-protocol for t = 3λ iterations,
where Alice outputs bits (r1, . . . , rt) ∈ {0, 1}t and Bob outputs (r′1, . . . , r

′
t) ∈ {0, 1,⊥}t such that r′i ∈ {ri,⊥}

and roughly 1/2 of them are ⊥, but Alice does not know which. Bob selects two disjoint subsets I0, I1 ⊆ [t]
of size λ each at random, subject to Ic only containing values i for which r′i 6= ⊥. Alice applies an extractor
on the values rI0 , rI1 and uses the outputs to one-time-pad her messages msg0,msg1. This allows Bob to
recover msgc. It’s easy to see that the sets I0, I1 look identically distributed to Alice and so she does not
learn Bob’s choice bit c. On the other hand, since Bob only knows roughly t

2 = 3λ
2 of the values ri, at

least one of rI0 , rI1 must contain roughly λ
2 values that Bob does not know, and hence the corresponding

extracted string will blind the message.
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Note that in our scheme, security against an adversarial Bob (receiver) relies on him having bounded
storage m, but security against an adversarial Alice (sender) does not impose any restrictions on her storage.

The overall protocol requires Õ(m · λ) rounds to terminate and Õ(m2λ) communication. Our full protocol

generalizes the above to settings where honest users have larger storage n to get Õ(dm/n2e · λ) rounds and

Õ(m · dm/n2e ·λ) communication. This requires additional technical ideas to perform interactive hashing on
sets of indices rather than just a single index; see Section 6.

One issue with the above idea, and indeed all prior constructions of OT in the BSM [CCM98, Din01,
DHRS07, GZ19], is that it only satisfies a weak form of indistinguishability-based security, which is equivalent
to security with an inefficient simulator. In particular, to simulate an adversarial Bob, we need to figure out
his choice bit c, which requires figuring out which locations X[a] he “knows” and which he does not. This
can be done inefficiently (and non-black-box) by looking at Bob’s state after processing X and figuring out
the conditional entropy of each bit of X given the state; but there seems to be no hope to make this process
efficient. We show how to overcome this via an efficient rewinding-based simulation strategy. The simulator
forks off many copies of the interactive hashing protocol and figures out which indices show up as one of
Alice’s outputs with high frequency. We show that this serves as a good proxy for the indices that Bob knows
– since he only knows X[a] for very few locations a, he has to “play” such locations with high frequency if
he wants to have a good chance of Alice selecting them. Therefore, by using the efficiently computable set
of high-frequency indices as a proxy for the inefficiently computable set of indices that Bob knows, we can
efficiently extract Bob’s choice bit c.

Lower Bound. We prove a lower-bound for KA and, since OT directly gives KA, this also implies an
identical lower bound for OT. Let us first recall the main intuition of the DM lower bound [DM04]. Let
m > n be the storage size of the adversary, and suppose the first message of the protocol is some large
message M , potentially of size |M | � m much larger than the adversary’s storage. In the real protocol,
the honest parties Alice and Bob respectively compute states sA and sB after processing M . DM shows
that there exists some compact information s∗E of size m, which (1) is publicly-computable given M , and (2)
decorrelates the states sA and sB of Alice and Bob in the following sense: conditioned on s∗E , the users’ states
sA and sB only share a low amount of mutual information, bounded by n2/m. Therefore, if m = O(n2) is
sufficiently large, the information shared between Alice and Bob conditioned on the adversary’s view becomes
too small (much less than 1 bit) for them to agree on a shared random key.

One obstacle towards extending DM to the interactive setting is that, even if the mutual information
created in each round is very small O(n2/m), with sufficiently many rounds it can add up. Indeed, this is
exactly what our upper bound exploits, and why one can allow large gaps between m and n with a large
numbers of rounds! For our lower bound on rounds and communication, we want to show that this is
essentially the best that one can do. There are two main obstacles. Firstly, the DM approach only works
if Alice and Bob do not share any mutual information in the first place. This is true at the beginning of
the protocol, which results in a candidate adversarial strategy for the first round of the protocol. But it
is not clear whether it extends to any intermediate round within the protocol execution, where Alice and
Bob managed to already get some, albeit small, amount of mutual information.3 Moreover, a naive attempt
would be to have Eve compute an appropriate s∗E for every round, but then Eve would need to store all of
these values throughout the duration of the protocol, thus blowing up her storage.

Instead, we approach the DM core idea from a different angle, by thinking of it as a round reduction
step that allows us to convert an R round protocol into an R − 1 round protocol, with only a small loss in
correctness and security. In particular, instead of having Alice send the long message M to Bob in the first
round, we remove the first round entirely, and have Bob do the following: (1) sample M as Alice would, (2)
(inefficiently) sample s∗E given M as the adversary in DM, and (3) sample his state sB conditioned on s∗E ;
(4) use it to compute the next message M ′, and (5) send (s∗E ,M

′) as the new message to Alice. Alice then:

3Indeed, it is not true in general that their mutual information can only increase by a small amount in each round; once
Alice and Bob share even a small amount of mutual information (e.g., they share a short extractor seed, perhaps even only
with small probability), they may be able to leverage it to derive much more mutual information in just one additional round
(e.g., send a long message and extract).
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(6) samples sA conditioned on s∗E ; and (7) processes M ′ using sA, as she would have done originally. Note
that Alice and Bob are now inefficient, with unlimited short-term memory to process each round, but only
keep short n-bit states between rounds, similar to feature (d) of Eve.4

We claim that the round reduction step preserves correctness and security up to some small loss. This
holds because the original states sA, sB had small mutual information conditioned on s∗E , which implies that
they are statistically close to independent. Therefore, the new way of sampling sA, sB truly independently
conditioned on s∗E only introduces a small statistical error. On the other hand, any attack Eve can perform
on the new protocol by observing both of the values (s∗E ,M

′) sent by Bob at the same time, she could have
also performed originally by computing s∗E from Alice’s original message M , storing s∗E locally in her m-bit
state (here we crucially rely on it being small), and then performing the same computation on the values
(s∗E ,M

′), once Bob sends M ′.
By performing the round-reduction steps iteratively, we eventually get a 0-round key agreement protocol,

which leads to a contradiction. However, each time we perform the round-reduction step we incur some
statistical error

√
n2/m. The square-root comes from using Pinsker’s inequality to convert from mutual

information to statistical distance. Therefore, we only end up with a secure protocol at the end, if the
original protocol has R = O(

√
m/n2) rounds, which gives our lower bound on rounds R ≥ Ω(

√
m/n2) .

Note that this also gives a lower bound on communication C since C ≥ R. However, we can get a stronger
lower bound of C ≥ Ω(m ·

√
m/n2) by showing how to remove “small” rounds (i.e., having communication

smaller than m) for free, without any loss in correctness/security. We refer to Section 7.2 for more details.
As mentioned previously, this lower bound only rules out protocols secure against strong attackers Eve

who have access to unbounded short-term memory to process each round, while storing m bits between
rounds. We further adapt the techniques above to handle fully streaming adversaries, that are restricted
to m bits of memory throughout the protocol. The main observation is that the only step in the round
reduction procedure that requires Eve to have unbounded short-term memory is sampling s∗E given M . We
first observe that this step can be performed in a streaming manner using small local memory, as long as
Alice and Bob are streaming algorithms with small local memory. However, even if the latter was the case in
the initial protocol, once we start removing rounds, we required Alice and Bob to have large local memory
to run Eve’s attack. This turns into a recursive analysis, where the memory that Alice and Bob need to
run the protocol after removing R rounds, depends on the memory Eve needs to attack on the protocol
after removing R − 1 rounds, which depends on the memory Alice and Bob need to run the protocol after
removing R − 1 rounds etc. By carefully analyzing this recursion, we show that Eve’s short-term memory
can be bounded to only be a factor of R larger than the previous bound we had on her long-term memory,
which yields our new new quantitatively weaker bounds of R ≥ Ω((m/n2)1/3) and C ≥ Ω(m · (m/n2)1/3) for
the fully streaming model. We refer to Section 7.4 for more details.

1.4 Related Work

We already extensively mentioned the prior work on the symmetric-key BSM [Mau92, ADR02, DM02, Lu02,
Vad04, Raz16, KRT17, Raz17, GRT18] and the public-key BSM models [CM97, CCM98, Din01, HCR02,
DHRS07, GZ19]. In particular, the work of [Raz16, KRT17, Raz17, GRT18] constructed “reusable” n-bit-
key symmetric-key encryption schemes, capable of encrypting exponentially many b-bit messages, where an
individual ciphertext is “only” O(mb/n) bits long.5 When b� n, this is a huge saving compared to the prior
symmetric-key schemes in the BSM, where each individual ciphertext had size greater than m, irrespective
of message length. Interestingly, these works did not satisfy restrictions (b)-(d), critically using full features
of the streaming BSM.

In the context of proof systems, [SPY92, AF94] constructed non-interactive witness indistinguishable
proofs secure against memory-bounded streaming verifiers, allowing arbitrary gap between the values n and
m. In contrast, the proofs systems constructed in this work are full zero-knowledge, with efficient simulation,
but use many rounds of interaction. In a related vein, a very recent work of [GZ21] considered the notion of

4Note that allowing Alice and Bob to be stronger makes the resulting lower bound stronger as well.
5This is optimal, as otherwise Eve is capable of storing more than n/b ciphertexts in its memory, allowing the parties to

encrypt more than b · n/b = n bits of information using an n-bit key, contradicting Shannon lower bound.
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“disappearing cryptography” in the (streaming) BSM. Here, a component of the scheme (e.g., a ciphertext,
signature, proof or program) is streamed bit by bit. The space-bounded receiver can get the functionality
of the system once, after which the object “disappears” for subsequent use.

The work of [MST09] designed novel “timestamping” schemes in the (traditional) BSM. Here space-
bounded sender and receiver have access to a long randomizer string X: the sender will timestamp a given
document D at time t, and the receiver will prepare to verify D (which is yet unknown). The sender can
then prove the timestamping of D to the receiver at a much later time, and the receiver is guaranteed that
the sender is unable to timestamp a “very different” (i.e., high-entropy) document D′.

Finally, we mention the seminal works of [Nis90, NZ96] in the context of designing pseudorandom gen-
erators fooling space-bounded distinguishers. Unlike the BSM setting, the memory n of the generator must
be necessarily higher than the memory m of the the distinguisher, and the works of [Nis90, NZ96] come
very close to this bound, unconditionally. In a similar vein, the work of [KRVZ11] constructs deterministic
randomness extractors for space-bounded sources of randomness.

2 Preliminaries

Notation. When X is a distribution, or a random variable following this distribution, we let x← X denote
the process of sampling x according to the distribution X. If X is a set, we let x ← X denote sampling x
uniformly at random from X. We use the notation [k] = {1, . . . , k}. If x ∈ {0, 1}k and i ∈ [k] then we let
x[i] denote the i’th bit of x. If s ⊆ [k], we let x[s] denote the list of values x[i] for i ∈ s.

Statistical Distance. Let X,Y be random variables with supports SX , SY , respectively. We define their
statistical difference as

SD(X,Y ) =
1

2

∑
u∈SX∪SY

|Pr[X = u]− Pr[Y = u]| .

We write X ≈ε Y to denote SD(X,Y ) ≤ ε.

Predictability and Entropy. The predictability of a random variable X is Pred(X)
def
= maxx Pr[X = x].

The min-entropy of a random variable X is H∞(X) = − log(Pred(X)). Following Dodis et al. [DORS08],

we define the conditional predictability of X given Y as Pred(X|Y )
def
= Ey←Y [Pred(X|Y = y)] and the

(average) conditional min-entropy of X given Y as: H∞(X|Y ) = − log (Pred(X|Y )) . Note that Pred(X|Y )
is the success probability of the optimal strategy for guessing X given Y .

Lemma 2.1 ([DORS08]). For any random variables X,Y, Z where Y is supported over a set of size T we
have H∞(X|Y,Z) ≤ H∞(X|Z)− log T .

Lemma 2.2 ([DORS08]). For any random variables X,Y ,for every ε > 0 we have

Pr
y←Y

[H∞(X|Y = y) ≥ H∞(X|Y )− log(1/ε)] ≥ 1− ε.

Lemma 2.3. If X and Y are independent conditioned on Z then H∞(X|Y ) ≥ H∞(X|Y,Z) ≥ H∞(X|Z).

Lemma 2.4. If X and Y are independent conditioned on Z then H∞(X,Y |Z) ≥ H∞(X|Z) + H∞(Y |Z).

Shannon Entropy. The Shannon entropy of a random variable X is H(X)
def
= Ex←X [− log(Pr[X = x])].

The conditional Shannon entropy ofX given Y is H(X|Y )
def
= Ey←Y H(X|Y = y) = E(x,y)←(X,Y )[− log(Pr[X =

x|Y = y])].

For 0 ≤ p ≤ 1 we define the binary entropy function h(p)
def
= H(Bp), where Bp is a Bernoulli variable

that outputs 1 with probability p and 0 with probability 1− p.

Lemma 2.5. For any random variables X,Y , we have: H∞(X|Y ) ≤ H(X|Y ).

10



Extractors. We review the notion of randomness extractors and known parameters.

Definition 2.6 ((Strong, Average-Case) Seeded Extractor [NZ96]). We say that an efficient function
Ext : {0, 1}n × {0, 1}d → {0, 1}` is an (α, ε)-extractor if for all random variables (X,Z) such that X
is supported over {0, 1}n and H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)) , (Z, S, U`)) ≤ ε where S,U` are
uniformly random and independent bit-strings of length d, ` respectively.

Theorem 2.7 ([ILL89]). There exist an (α, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}` as long as
α ≥ `+ 2 log(1/ε). Furthermore, such an extractor can be computed in O(n) time and space.

Definition 2.8 (BSM Extractor [Vad04]). We say that an efficient function BSMExt : {0, 1}k ×{0, 1}d →
{0, 1}` is an (n,m, ε)-BSM extractor if:

• Given seed ∈ {0, 1}d initially stored in memory, it is possible to compute BSMExt(x; seed) given stream-
ing access to x ∈ {0, 1}k using at most n bits of total memory. Moreover, it can be done while only
accessing at most n locations (chosen non-adaptively) in the string x.

• BSMExt is an (α, ε)-extractor (Definition 2.6) for α = k −m.

Note that a BSM Extractor gives a simple one-round protocol (n,m)-BSM protocol where Alice and
Bob start with a uniformly random shared key key0 of some small size d and derive a new shared key
key1 ∈ {0, 1}` of a larger size ` > d. Alice just streams a random x ∈ {0, 1}k to Bob and both parties
compute key1 = BSMExt(x; key0). Security holds since the adversary can only store m-bits of information
about x so it has α ≥ k−m bits of entropy conditioned on the adversary’s view, and key0 acts as a random
seed which is a-priori unknown to the adversary. Therefore key1 = BSMExt(x; key0) is ε-close to uniform
given the adversary’s view of the protocol.

Theorem 2.9 ([Vad04]). For any m ≥ `,λ, there is a (n,m, ε)-BSM extractor BSMExt : {0, 1}k×{0, 1}d →
{0, 1}` with n = O(`+ λ+ logm), ε = 2−Ω(λ), k = O(m+ λ log(λ)), d = O(logm+ λ).

KL Divergence and Mutual Information. We recall the notions of KL divergence and (conditional)
mutual information.

Definition 2.10 (KL Divergence). For two discrete probability distributions P , Q with the same support
Supp(P ), we define the KL divergence as

DKL(P‖Q) =
∑

x∈Supp(P )

P (x) log

(
P (x)

Q(x)

)
.

Definition 2.11 ((Conditional) Mutual Information). If (X,Y, Z) denotes a triple of (potentially correlated)
random variables with joint distribution P(X,Y,Z), we define the mutual information of X and Y conditioned
on Z as:

I(X;Y |Z) = E
Z
DKL(P(X,Y )|Z‖PX|Z × PY |Z),

where P(X,Y )|Z denotes the conditional distribution of (X,Y ) given Z, and PX|Z and PY |Z respectively denote
the marginal distributions of X and Y given Z.

Lemma 2.12 (Pinsker’s Inequality). Let X, Y be random variables with distributions PX , PY with the same
support Supp(X). We have:

SD(X,Y ) ≤
√

1

2
DKL(PX‖PY ).

We will use the following lemma:
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Lemma 2.13. Let n, k be integers. Let A ⊆ [k] be a uniformly random set such that |A| = n. Then for any
fixed B ⊆ [k] with |B| = n, we have:

Pr
A

[A ∩B 6= ∅] ≥ Ω

(
min

(
n2

k
, 1

))
.

Proof. Suppose k > n2. The probability over A that A∩B = ∅ is at most
(
k−n
k

)n
= 1−O(n2/k). Therefore

the probability that A ∩B 6= ∅ is at least Ω(n2/k).

3 Bit-Entropy Lemma

We prove a new lemma showing that if X has sufficiently high min-entropy, then many individual bits X[i]
have sufficiently high min-entropy as well.

For q ∈ [0, 1], we define h−1
+ (q) to be the unique value p such that .5 ≤ p ≤ 1 and h(p) = q, where h is

the binary entropy function defined above.

Lemma 3.1. Assume X,Y are random variables, where X is distributed over {0, 1}k. Let X[i] denote the
i’th bit of X. If H∞(X|Y ) ≥ δk the following 3 statements hold:

1.
∑
i Pred(X[i] | Y ) ≤ h−1

+ (δ)k.

2.
∑
i H∞(X[i] | Y ) ≥ − log(h−1

+ (δ))k.

3. If I is uniformly random over [k] and independent of X,Y then H∞(X[I] | Y, I) ≥ − log(h−1
+ (δ)).

Proof. We have:

δk ≤ H∞(X|Y ) ≤ H(X|Y ) =
∑
i∈[k]

H(X[i] | X[1], ..., X[i− 1], Y ) ≤
∑
i∈[k]

H(X[i] | Y ).

Therefore
δ ≤ E

i←[k],Y←y
H(X[i] | Y = y).

Since h−1
+ is a decreasing and concave function, this means:

h−1
+ (δ) ≥ h−1

+

(
E

i←{0,1}k,y←Y
H(X[i] | Y = y)

)
≥ E

i←[k],y←Y
h−1

+ (H(X[i] | Y = y))

≥ E
i←[k],y←Y

( max
b∈{0,1}

Pr[X[i] = b | Y = y])

≥ E
i←[k]

Pred(X[i]|Y ).

This proves the first part of the theorem. Also the third part of the theorem follows since H∞(X[I] | Y, I) =
− log(Ei←I Pred(X[I] | Y, I = i)) = − log(Ei←[k] Pred(X[i] | Y )). The second part follows since (− log) is
a decreasing and convex function so

− log(h−1
+ (δ)) ≤ − log

(
E

i←[k]
Pred(X[i] | Y )

)
≤ E

i←[k]
− log(Pred(X[i] | Y ))

≤ E
i←[k]

H∞(X[i] | Y )
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Remark 3.2. To the best of our knowledge, the “bit-prediction” lemma above is new, as it talks about
individual bit prediction; as opposed to “subkey-predcition” lemma studied in prior BSM literature [NZ96,
Vad04, BKR16], which talked about simultaneously predicting a large subset of bits. It also does not appear
to follow directly from quasi chain-rules for min-entropy [DKZ18, Sko19] that have a large loss in parameters
that does not appear to give any non-trivial bounds in the bit setting. We also remark that our parameters
are tight, as can be seen by taking X to be the uniform distribution over a hamming ball of radius pk, where
p = 1− h−1

+ (δ) ≤ 1/2. The volume of this ball is roughly 2h(p)k = 2δk, so H∞(X) = δk. Yet, each bit of X

can be predicted with probability at least 1− p = h−1
+ (δ).

Lemma 3.3. For any 0 < ε ≤ 1 there is a δ = Ω(ε2) such that − log(h−1
+ (1− δ)) = (1− ε).

Proof. Given ε we can solve:

− log(h−1
+ (1− δ)) = 1− ε

⇒ h−1
+ (1− δ) = 2ε/2

⇒ 1− δ = h(2ε/2) = h(1/2 + Θ(ε)) = 1−Θ(ε2).

where we rely on the bound 2ε = (1 + Θ(ε)) and h(1/2 + Θ(ε)) = 1−Θ(ε2) (e.g. [Cal09, Theorem 2.2]).

4 Bounded Storage Model

A (n,m)-bounded storage model (BSM) protocol, is parametrized by a bound n on the memory of the honest
parties, and a bound m > n on the memory of the adversary. Communication between parties occurs in
rounds where one party sends data to another party. Honest parties send and receive data in a streaming
manner, by generating/reading the stream one bit at a time, while only using n bits of memory overall. The
adversary is also a streaming algorithm with m bits of memory.

For all our constructions, we will satisfy additional properties, corresponding to properties (b)-(d) dis-
cussed in the introduction. The protocol consists of two types of rounds: “short rounds” are of size is < n,
and can be fully generated, sent, and processed by the honest parties using only n bits bits of memory,
without needing to be streamed one bit at a time, while “long rounds” are of size > m.6 Our protocols
satisfy the following additional properties:

• Uniformly Random “Long Rounds”. Each long round consists of a uniformly random string x generated
by some party A and sent to party B.

• Local Computability for Honest Parties. In each long round, the honest parties only read a small set
of < n locations of x and use these to update their state, while using only n bits of memory in total.
Furthermore, the set of locations accessed is chosen non-adaptively at the beginning of the round,
before seeing any bits of x.

• Unlimited Short-term Memory for Adversary. The adversary can generate and read the entire long
round of communication at once, and can use unlimited amounts of short-term memory during this
process, but can only store a compressed m-bit state immediately after the end of each long round.
There are no restrictions on the adversary’s memory during/after short rounds.

6We will allow ourselves to split up the protocol into rounds arbitrarily, and may have two (or more) adjacent rounds where
the same party A talks to party B.
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5 Key Agreement

5.1 Definition

A key agreement protocol in the (n,m)-BSM with security ε is a protocol between two honest users Alice and
Bob with memory bound n. At the end of the protocol Alice and Bob outputs values keyA, keyB ∈ {0, 1}`
respectively. For correctness, we require that when the protocol is executed honestly then Pr[keyA = keyB ] =
1. For security, we consider a passive BSM adversary Eve with memory bound m. Let viewEve denote Eve’s
final state at the end of the protocol execution. We require that

(viewEve, keyA) ≈ε (viewEve, key
∗)

where key∗ ← {0, 1}` is chosen uniformly at random and independently of the protocol execution.

5.2 Construction

Theorem 5.1. For any m ≥ `, λ there is some nmin = O(λ + ` + logm) such that for all n > nmin
there is a key agreement protocol in the (n,m)-BSM that outputs an `-bit key and has security ε = 2−Ω(λ).
The round complexity of the protocol is O(d(m/n2)e · λ · polylog(m)) and the communication complexity
O(m · d(m/n2)e · λ · polylog(m+ λ)).

Proof. We first give the key agreement protocol between Alice and Bob, then discuss security, and then show
how to set parameters to get the claimed efficiency.

Construction. Given m,λ, ` we define additional parameters as follows.

• Let k = 2m.

• Let d1 = O(λ+ logm) and n1 = O(λ+ logm+ `) and k′ = O(m+ λ log(λ)) be some values such that
there is a (n1,m, ε = 2−Ω(λ))-BSM extractor BSMExt : {0, 1}k′ ×{0, 1}d1 → {0, 1}` per Theorem 2.9.

• Let t = O(λ+ logm) and d0 = O(t), n0 = O(t) be some value such that there is a (t/10, ε = 2−Ω(λ))-
extractor Ext : {0, 1}t × {0, 1}d0 → {0, 1}d1 that can be computed using n0 space per Theorem
2.7.

• Define nmin = max(n0, n1, 2t+ dlog ke+ 1) = O(λ+ logm+ `).

• For any n ≥ nmin, define ñ = b(n− t)/(dlog ke+ 1)c = Ω(n/ logm).

The protocol works as follows.

1. Set i := 0. Repeat the following until i = t:

(a) Alice and Bob select uniformly random subsets sA, sB ⊆ [k] of size |sA| = |sB | = ñ respectively.
Alice streams a uniformly random string x← {0, 1}k to Bob.
Alice stores x[sA] while Bob stores x[sB ].

(b) Bob sends sB to Alice.

(c) If sA ∩ sB 6= ∅ then Alice selects a random index j ← sA ∩ sB and sends j to Bob.
Both Alice and Bob set ri = x[j] and increment i := i+ 1.

Else if sA ∩ sB = ∅ then Alice simply sends j = ⊥ to Bob.

2. Alice and Bob set r := (r1, . . . , rt).
Alice sends a random seed0 ← {0, 1}d0 to Bob and both of them compute seed1 = Ext(r; seed0).

3. Alice streams a uniformly random string x ← {0, 1}k′ to Bob and both parties compute key =
BSMExt(x; seed1).
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We refer to each execution of the sub-protocol in steps 1.(a) - 1.(c) as an epoch. We say that an epoch is
successful if Alice does not send j = ⊥ in step 1.(c). Note that step 1.(a) and step 3 are “long rounds” and
all other steps are “short rounds”.

Honest Party Memory. Note that Alice and Bob only need ñ(dlog ke+1) memory to execute each epoch,
and need to store up to t bits from previous epochs for a total of ñ(dlog ke+ 1) + t ≤ n memory to execute
part 1 of the protocol. They need n0 ≤ n memory to execute part 2 and n1 ≤ n memory to execute part 3.
Therefore, in total, the protocol can be executed using at most n memory as required.

Security. For i ∈ [k], let us define random variables corresponding to the values in the i’th successful
epoch:

• Xi: the value of x ∈ {0, 1}k sent by Alice during that epoch,

• Y i: the state of the adversary immediately after processing x but before Bob sends sB ,

• J i: the index j ∈ [k] sent by Alice,

• Ŷ i: the state of the adversary at the end of the epoch after Alice sends j,

• Ri = Xi[J i] the value ri stored by Alice and Bob.

Firstly, we see that:

H∞(Xi|Ŷ i−1, Y i) ≥ H∞(Xi|Ŷ i−1)−m ≥ H∞(Xi)−m ≥ k −m = k/2

where the first inequality follows by Lemma 2.1 and the fact that Y i ∈ {0, 1}m, the second inequality follows

since Xi, Ŷ i−1 are independent, and the third since Xi is uniformly random over {0, 1}k. Furthermore J i is

uniformly random over [k] and independent of Ŷ i−1, Xi, Y i; it only depends on the sets sA, sB selected by
Alice and Bob during the epoch and, by the symmetry of the protocol, every index j is equally likely to be
selected. Therefore, by Lemma 3.1, we have

H∞(Ri = Xi[J i]|Ŷ i−1, Y i, J i) ≥ ρ,

where ρ = − log(h−1
+ (1/2) ≥ .1.

The variable Ŷ t denotes the state of the adversary at the end of the final epoch. We have:

H∞(R1, . . . , Rt|Ŷ t) ≥ H∞(R1, . . . , Rt|(Y 1, J1), . . . , (Y t, J t)) (1)

≥
∑
i∈[t]

H∞(Ri|(Y 1, J1), . . . , (Y t, J t)) (2)

≥
∑
i∈[t]

H∞(Ri|Ȳ i−1, Y i, J i) (3)

≥ t · ρ ≥ .1 t, (4)

where:

• (1) follows from Lemma 2.3 since (R1, . . . , Rt) and Ŷ t are independent conditioned on ((Y 1, J1), . . . , (Y t, J t)).

• (2) follows from Lemma 2.4 since the random variablesRi are independent conditioned on ((Y 1, J1), . . . , (Y t, J t)).

• (3) follows from Lemma 2.3 since Ri and ((Y 1, J1), . . . , (Y t, J t)) are independent conditioned on
(Ȳ i−1, Y i, J i).
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Therefore, by extractor security, we have seed1 = Ext(r = (r1, . . . , rt); seed0) is 2−Ω(λ) statistically close
to uniform, given the adversary’s state at the end of part 2 of the protocol execution (this state is fully

determined by the values Ŷ t, seed0). This allows us to switch to a hybrid world where we choose seed1

uniformly at random and independently of the view of the adversary after part 2 of the protocol, and this
hybrid is 2−Ω(λ) indistinguishable from real.

Now, we can rely on the security of BSMExt to argue that key = BSMExt(x; seed1) is 2−Ω(λ) statistically
close to uniform even given the adversary’s view of the entire protocol. Note that, in the hybrid world, seed1

is uniformly random and independent of the adversary’s view, and the adversary only gets m bits of leakage
on the value x, which is chosen uniformly at random. This proves security as needed.

Round and Communication Complexity. To analyze the round and communication efficiency, no-
tice that each epoch is successful if sA ∩ sB 6= ∅, which occurs with probability p = Ω(min(ñ2/k, 1)) =
Ω(min(ñ2/m, 1)) by Lemma 2.13, and the probabilities are independent for each epoch. Therefore, in 2t/p
epochs, we expect 2t successes, and by the Chernoff bound, the probability of having fewer than t successes
is at most 2−Ω(t) = 2−Ω(λ). Therefore, with all but 2−Ω(λ) probability, in part 1 of the protocol, the number
of rounds is

r = O(t/p) = O(t/min(ñ2/m, 1)) = O(d(m/n2)e · λ · polylog(m),

and the communication complexity is then O(m ·r). Parts 2 and 3 of the protocol together add only 2 rounds
and d0 + k′ = O(m+ λ log(λ)) bits of of communication, which gives the bounds of the theorem.

Note that we can modify the protocol to get worst-case round and communication complexities with the
above bounds by having Alice and Bob always stop after at most 2t/p epochs, and if they did not get t
successful ones, they simply output an all 0 key. Since this bad event only occurs with 2−Ω(λ) probability,
security is preserved.

6 Oblivious Transfer and Multiparty Computation

6.1 Definition of Oblivious Transfer

We define oblivious transfer (OT) in the BSM via a real/ideal framework. In the ideal model the sender
(Alice) gives two messages (msg0,msg1) ∈ ({0, 1}`)2 to an ideal functionality FOT and the receiver (Bob)
gives a bit c ∈ {0, 1}. The ideal functionality FOT gives msgc to the receiver and gives nothing to the sender.

A protocol Π realizes FOT in the (n,m)-BSM with security ε if:

• Π can be executed by honest parties with n-bit memory.

• There exists an efficient black-box simulator SimA that runs in time poly(n,m, λ = log(1/ε)) with
black-box (rewinding) access to the adversary A, such that for any (inefficient) BSM-adversary A with
m-bit state corrupting either the sender or the receiver and for any choice of inputs Z = (msg0,msg1, c)
from the environment, we have

REALA,Π,Z ≈ε IDEALSimA,FOT ,Z

where we define the distributions:

REALA,Π,Z : denotes the real execution of Π with the adversary A taking on the role of either the sender
or the receiver while the honest party uses the input specified by Z; the output of the distribution
consists of the output of A together with the inputs/outputs of the honest party.
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IDEALSimA,FOT ,Z : denotes the ideal execution of FOT with an ideal-adversary SimA taking on the same
role as A, while the honest party uses the input specified by Z; the output of the distribution consists
of the output of SimA together with the inputs/outputs of the honest party.

We further say that the protocol is secure against an unbounded-memory sender (resp. receiver) if we
can drop the requirement on the storage of A when it corrupts the sender (resp. receiver).

We say that the protocol is only secure with inefficient simulation, if we drop the requirement on the
efficiency of the simulator. Our default notion will be efficient simulation.

On Efficient Simulation. Note that we require efficient simulation even though the adversary may be
computationally unbounded. This may seem strange at first, but is natural and is analogous to (e.g.,)
requiring an efficient simulator for statistical Zero Knowledge proofs [GMR89] or for information-theoretically
secure MPC protocols. In particular, the definition is agnostic to whether or not the adversary is efficient,
but ensures that the adversary cannot learn anything in the real world that it could not also learn with only
polynomially more computational power in the ideal world. The need for an efficient simulator is crucial
when leveraging OT to construct other more complex functionalities, as we will do in Section 6.4. For
example, we can use our OT in the BSM to construct zero-knowledge (ZK) proofs in the BSM. If the OT
simulator were inefficient, the resulting ZK proof would only be inefficiently simulatable (equivalently, would
only be witness indistinguishable), which is completely meaningless in many scenarios where the witness is
unique; the prover may as well just send the witness in the clear.

On the other hand, our simulator does not have bounded storage and can use more memory than the
adversary. This naturally corresponds to the idea that having some a-priori (polynomial) bound on storage
is only assumed to be a limitation in the real world, and is a useful limitation in helping us build secure
protocols, but is not a fundamental restriction that we need to also preserve for the ideal-world adversary
interacting with the ideal functionality.

6.2 Interactive Hashing

Basic Interactive Hashing. In an interactive hashing protocol a sender Bob has an input u ∈ [k]. The
goal of the protocol is for Alice to narrow down Bob’s input to one of two possible choices u0, u1 such that
u = ub for one of b = 0 or b = 1, but Alice does not learn which. In particular, even if Alice acts maliciously,
when Bob chooses his input u ← [k] at random, then both choices of b appear equally likely from Alice’s
point of view. On the other hand, although Bob can choose an arbitrary input u and ensures u = ub for
some b ∈ {0, 1}, he cannot control the “other” value u1−b too much. In particular, even if Bob is malicious
during the protocol, for any sufficiently sparse subset B ⊆ [k], it is highly unlikely that both of u0, u1 are
contained in B.

Definition 6.1. An interactive hashing protocol is a protocol between a public-coin randomized Alice (re-
ceiver) and a deterministic Bob (sender). Alice has no input and Bob has some input u ∈ [k]. At the end of
the protocol, we denote the transcript (h, v), consisting of all the random messages h sent by Alice and all
the responses v sent by Bob. We can think of h as defining a hash function that maps Bob’s input u to his
set of responses v = h(u). The protocol has the following properties:

• 2-to-1 Hash: Every possible choice of Alice’s messages results in a hash function h which is 2-to-1,
meaning that for every v in the image of h has exactly two pre-images: |h−1(v)| = 2.

• (α, β)-Security: For any set B ⊆ [k] of size |B| ≤ β ·k, if Alice follows the protocol honestly and Bob acts
arbitrarily resulting in some transcript (h, v) such that {u0, u1} = h−1(v) then Pr[{u0, u1} ⊆ B] ≤ α.

Note: the 2-to-1 hash property ensures that, if Bob chooses u← [k] uniformly at random and acts honestly
during the protocol, then even if Alice acts maliciously resulting in some transcript (h, v) at the end of the
protocol, if we define {u0, u1} = h−1(v) such that u = ub, Alice cannot distinguish between b and 1− b.

We have constructions of interactive hashing (with security against arbitrary Alice and Bob, without any
bound on their memory):
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Theorem 6.2 ([NOVY93, DHRS07]). There is an 4-round interactive hashing protocol with (α, β)-security
for any β < 1 with α = O(β log k). Furthermore, the execution of the protocol and the computation of h−1

can be done in polylogk time and space.

Definition of Set Interactive Hashing. Here, we extend the notion of interactive hashing to the case
where the sender Bob has an entire set of inputs sB ⊆ [k]. Alice has her own set of inputs sA ⊆ [k]. The goal
of the protocol is to ensure that when there is a value in the intersection sA∩ sB then there is a good chance
that Alice will accept and output some value u ∈ SA, in which case it then holds with probability 1/2, that
u ∈ SB and Bob accepts and outputs it, while with probability 1/2 Bob rejects. Alice should not learn which
of these two cases occur, even if she acts maliciously. On the other hand, even if Bob is malicious, he cannot
have too much control over the value that Alice outputs: for any sufficiently sparse set B ⊆ [k], he cannot
ensure that the value u that Alice outputs (conditioned on her accepting) is in the set B with probability
much higher than 1/2.

Definition 6.3. In a set interactive hashing protocol, Alice and Bob have sets sA, sB ⊆ [k] of size |sA| =
|sB | = n. At the end of the protocol, Alice either rejects by sending a special ⊥ message to Bob, or she
accepts and sends some u ∈ SA to Bob. If Alice sends ⊥, then Bob always rejects and outputs ⊥. Otherwise,
Bob can either accept, in which case he outputs the same u as Alice and it must hold that u ∈ SB, or he
rejects. The protocol has (α, β)-security if it satisfies the following properties:

• Correctness: If Alice and Bob both execute the protocol honestly using random subsets sA, sB ⊆ [k] of
size |sA| = |sB | = n then:

Pr[Alice accepts] ≥ Ω(min(n2/k, 1)) , Pr[Bob accepts | Alice accepts] =
1

2
.

Furthermore whenever Alice accepts with some value u, then it must be the case that u ∈ SA and if
Bob also accepts then it must be the case that u ∈ SA ∩ SB.

• Security for Honest Bob: If Bob follows the protocol honestly using a random subset sB ⊆ [k] of size
|sB | = n and Alice follows the protocol arbitrarily, then, even condition on any arbitrary protocol
transcript in which Alice accepts (i.e., does not send ⊥ to Bob as the last message) we have:

Pr[Bob accepts] =
1

2
.

• (α, β)-Security for honest Alice: Let B ⊆ [k] be a set of size |B| ≤ β · k. If Alice follows the protocol
honestly using a random subset sA ⊆ [k] of size |sA| = n and Bob follows the protocol arbitrarily, then

Pr[Alice outputs u ∈ B | Alice accepts] ≤ 1

2
+ α.

Construction of Set Interactive Hashing. The most natural idea for set interactive hashing is to just
run n parallel copies of basic interactive hashing to every element of Bob’s set SB = {u1, . . . , un}, using the
same hash function h for all of them. Alice then learns the outputs v1, . . . , vn and computes 2n pre-images
{u0

i , u
1
i } ← h−1(vi). She checks if any of these 2n values lie in sA: if not she rejects, else she selects the

corresponding ubi . Bob accepts if ubi = ui.
Unfortunately, there is a subtle issue that prevents us from proving the security of this scheme when

Alice is honest and Bob is malicious. The issue is that the vi values may have some repetitions (even if Bob
is honest), since it may be the case that h(ui) = h(uj) so that vi = vj . And since Alice accepts if some
uib appears in SA, and then selects a random such value uib, she is more likely to accept if there are more
distinct values, and more likely to select an index i that does not repeat vs one that repeats. In other words,
both Alice’s probability of accepting and the index i that she chooses conditioned on accepting, now depend
on the outcome of the basic interactive hashing execution itself, which prevents us from being able to rely
on the security of a single instance of the protocol chosen a-priori.
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To fix this issue, we notice that each of the values vi can appear at most twice in the list v1, . . . , vn
since the ui’s are distinct, so there are at least n/2 distinct values. We have Alice randomly sub-select a list
I ⊆ [n] distinct values vi : i ∈ I and the continue the execution as before with the narrowed list. Moreover,
the way Alice performs the sub-selection ensures that the outcome of sub-selecting I and choosing a random
i ← I is distributed identically to i ← [n]. This is done by taking every pair vi = vj that appears twice in
the list and selecting exactly one of i 6= j at random, and then selecting a random subset of exactly 1/2 of
the indices i such that vi only appears once in the list. It’s easy to see that each index i ∈ [n] is included
in I with probability exactly 1/2. This solves the above issue since the probability of Alice accepting is now
the same for every execution of interactive hashing and, conditioned on her accepting, the index i that she
chooses is uniformly random over [n]. The full construction and analysis are described below.

We consider the following protocol for set interactive hashing using basic interactive hashing. Alice and
Bob have sets sA, sB ⊆ [k] of size |sA| = |sB | = n. Let us denote sB = {u1, . . . , un}. Assume n is even.

• Alice and Bob run n parallel copies of a basic interactive hashing protocol where Alice uses the same
random coins for all copies, and Bob uses the input ui in copy i. The resulting transcript consists of a
hash function h and an ordered list of n hash outputs v1, . . . , vn with vi = h(ui).

Since the h is 2-to-1, each vi should appear at most 2 times in the list, and if this is not the case then
Alice rejects and sends ⊥. Let Ionce be the set of i ∈ [n] such that vi only appears once in the list and
Itwice be the set of i ∈ [n] such that vi appears twice.

Alice sub-selects a set of indices I ⊆ [n] of size |I| = n/2 as follows:

– Select a random subset of exactly 1
2 of the indices from Ionce.

– For each i 6= j in Itwice such that vi = vj , select exactly one of {i, j}.

• If there exist some values i ∈ I, u ∈ h−1(vi) such that u ∈ sA then Alice sends a random such pair
(i, u) to Bob and outputs u. Else she sends ⊥ and rejects.7

• If Bob receives ⊥ from Alice, then he also rejects and outputs ⊥. Else if he receives the pair (i, u) from
Alice then he does the following:

– if u = ui ∈ SB is the input Bob used in the i’th execution of the interactive hashing protocol,
then he outputs u,

– else he outputs ⊥.

Lemma 6.4. Assuming the basic interactive hashing protocol has (α, β)-security, the above construction
yields a set interactive hashing protocol with (α, β)-security. In particular, there is an 5-round set interactive
hashing protocol with (α, β)-security for any β < 1 with α = O(β log k). Furthermore, the execution of the
protocol can be done in n · polylogk time and space.

Proof. Firstly, for correctness, Alice accepts if sA ∩ U 6= ∅, where U = h−1({vi : i ∈ I}) ⊆ [k] is some
set of size n and sA is a uniformly random and independent set of size n. Therefore Pr[Alice accepts] ≥
Ω(min(n2/k, 1)) by Lemma 2.13.

Secondly, assume Bob follows the protocol honestly using a random subset sB = {u1, . . . , un} ⊆ [k] of
size |sB | = n and Alice follows the protocol arbitrarily. The protocol transcript consists of the interactive
hashing transcript (h, v1, . . . , vn) with vj = h(uj) and Alice’s choice of (i, u) with u ∈ h−1(vi). Condition on
any worst-case choice of these values. Bob accepts if ui = u and outputs ⊥ otherwise. Since h is a 2-to-1
function, conditioned on the above values, Bob’s input ui is uniformly random over {u0

i , u
1
i } = h−1(vi) and

therefore the probability that ui = u is exactly 1/2. Note that, as a special case, this also implies that if
Alice and Bob are both honest then Pr[Bob accepts | Alice accepts] = 1

2 .

7We can assume without loss of generality that even a malicious Alice always sends u ∈ h−1(vi) since Bob can check this
condition, and we can re-interpret Alice’s message as ⊥ if it does not hold.
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Thirdly, let B ⊆ [k] be a set of size |B| ≤ β · k, and assume Alice follows the protocol honestly using a
random subset sA ⊆ [k] of size |sA| = n and Bob follows the protocol arbitrarily. Notice that Alice accepts
if sA ∩ U 6= ∅, where U = h−1({vi : i ∈ I}) ⊆ [k] is some set of size n and sA is a uniformly random
and independent set of size n. Therefore the probability of Alice accepting (over the randomness of sA)
is the same no matter what U is and is hence independent of what happens in the executions of the basic
interactive hashing protocol. Furthermore, conditioned on Alice accepting, the pair (i, u) that Alice chooses
is identical to choosing uniformly random i ← [n], u ← h−1(vi). This is because every i ∈ [n] has the same
probability (1/2) of being included in I, and every pair (i, u) with i ∈ I, u ∈ h−1(vi) then has the same
probability of being selected by Alice, since she selects such a pair by selecting a random such u that belongs
to her random set sA and all the u values contained in the n pairs are distinct. Therefore the probability
that Alice outputs u ∈ B conditioned on Alice accepting is the same as the probability that if we choose a
uniformly random i ← [n], u ∈ h−1(vi), then u ∈ B. Since we are selecting a uniformly random execution
i of the basic interactive hashing protocol, we can rely on the (α, β)-security of basic interactive hashing,
to argue that the probability that {u0

i , u
1
i } = h−1(vi) ⊆ B is at most α and therefore the probability that

u← h−1(vi) satisfies u ∈ B is at most 1
2 + α.

6.3 OT Construction

Theorem 6.5. For any m ≥ `, λ there is some nmin = Ω(logm+ `+ λ) such that for all n ≥ nmin there is
an oblivious transfer protocol in the (n,m)-BSM with `-bit messages and security ε = 2−Ω(λ). The protocol is
secure with efficient simulation, and it achieves security against an unbounded-memory sender. The round
complexity is O(dm/n2e ·poly(λ, logm)) and the communication complexity O(m · dm/n2e ·poly(λ, log(m))).

Proof. We first describe the OT protocol between sender Alice and receiver Bob, then discuss security, and
then show how to set parameters to get the claimed efficiency.

Construction. Given m,λ, ` we define additional parameters as follows:

• Let d1 = O(λ+logm) and n1 = O(λ+logm+`) and k′ = O(m+`+λ log(λ)) be some values such that
there is a (n1,m+ `, ε = 2−Ω(λ))-BSM extractor BSMExt : {0, 1}k′ × {0, 1}d1 → {0, 1}` per Theorem
2.9.

• Let t = O(λ+ logm) and d0 = O(t), n0 = O(t) be some value such that there is a (t/40, ε = 2−Ω(λ))-
extractor Ext : {0, 1}t × {0, 1}d0 → {0, 1}d1 that can be computed using n0 space per Theorem
2.7.

• Set k = (m+ λ) log3(m+ λ).

• Set α = 1
20 and let β = 1/O(log k) be such that (α, β)-security for interactive set hashing holds.

• Set δ = Ω(β2) = 1/O(log2 k)) be such that − log(h−1
+ (1− δ)) = (1− β/2) by Lemma 3.3.

This ensures that δk ≥ Ω((m+ λ) log(m+ λ)).

• Let g(k) = poly log k be the parameter from Lemma 6.4, such that an execution of the set interactive
hashing protocol with parameters n, k can be done in n·g(k) time and space. Assume g(k) ≥ dlog k+1e.

• Define nmin = max(2n0, 2n1, 3t+ g(k)) = O(λ+ logm+ `).

• For any n ≥ nmin, define ñ = b(n− 2t)/g(k)c = Ω(n/polylog(m+ λ)).

• Let p = Ω(min(ñ2/k, 1)) be the correctness probability of Alice accepting during an honest execution
of the set interactive hashing protocol with parameters ñ, k ,per Definition 6.3.
Set Rmax = 2t/p = O(t · dk/ñ2e) = O(dm/n2e · poly(λ, logm).

The protocol works as follows.
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Bob has a choice bit c ∈ {0, 1} and Alice has two messages msg0,msg1 ∈ {0, 1}`.

1. Alice and Bob initiate vectors rA ∈ {0, 1}t, rB ∈ {0, 1,⊥}t respectively. They set i := 0.
Repeat the following until i = t:

(a) Alice and Bob select uniformly random subsets sA, sB ⊆ [k] of size |sA| = |sB | = ñ respectively.
Alice streams a uniformly random string x← {0, 1}k to Bob.
Alice stores x[sA], and Bob stores x[sB ].

(b) Alice and Bob perform set interactive hashing, with Bob’s input being sB .

• If Alice rejects, then both parties move to the next iteration.

• Else, if Alice accepts with some value u ∈ sA, then she sets rA[i] = x[u].

– If Bob also accepts then it must be the case that u ∈ sB and he sets rB [i] = x[u].

– Else, Bob sets rB [i] = ⊥.

Both parties increment i := i+ 1.

If the number of iterations reaches Rmax before i = t, the parties abort.

2. Bob sets I := {i ∈ [t] : rB [i] 6= ⊥}. If |I| < 2·t
5 then Bob aborts. Else he chooses two sets I0, I1 of size

|I0| = |I1| = 2·t
5 by sub-selecting Ic ⊆ I and I1−c ⊆ [t] \ Ic uniformly at random.

Bob sends I0, I1 to Alice.

3. Alice checks that |I0| = |I1| = 2·t
5 and I0 ∩ I1 = ∅ and aborts otherwise.

She chooses an extractor seed seed← {0, 1}d0 and sends seed to Bob.
Alice computes seed0 = Ext(rA[I0]; seed), seed1 = Ext(rA[I1]; seed).
Bob computes seedc = Ext(rB [Ic]; seed).

4. Alice streams a uniformly random string x← {0, 1}k′ to Bob.
Alice computes key0 = BSMExt(x; seed0), key1 = BSMExt(x; seed1).
Bob computes keyc = BSMExt(x; seedc).

5. Alice sends to Bob:
ct0 = key0 ⊕msg0, ct1 = key1 ⊕msg1

and Bob outputs msg = ctc ⊕ keyc.

We refer to each execution of the sub-protocol in steps (a), (b) as an epoch. We say that an epoch is
successful if Alice accepts during the set interactive hashing protocol, and the parties increment i. Note that
step 1.(a) and step 4 are “long rounds”, and all other steps are “short rounds”.

Honest Party Memory. Note that Alice and Bob only need ñg(k) memory to execute each epoch, and
need to store up to 2t bits from previous epochs for a total of ñg(k) + t ≤ n memory to execute part 1 of the
protocol. They need 2n0 ≤ n memory to execute part 2 and 2n1 ≤ n memory to execute part 3. Therefore,
in total, the protocol can be executed using at most n memory as required.

Efficiency. The number of rounds is O(Rmax) = O(dm/n2e · poly(λ, logm). Each of the at most Rmax
epochs requires communication k + polylog(k) = O(k) = O((m + λ)polylog(m + λ). Furthermore, step 2
requires t = O(λ+ logm) bits of communication, step 3 required d0 = O(λ+ logm) bits of communication,
and step 4 requires k′ = O(m + λ log(λ)) bits and step 5 require ` = O(m) bits, for a total communication
of O(m · dm/n2e · poly(λ, logm).
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Correctness. It’s easy to see that correctness holds unless the parties abort. Firstly, we argue that the
probability of aborting due to the number of epochs exceeding Rmax is 2−Ω(λ). By the correctness of set
interactive hashing, each epoch is successful with probability p = Ω(ñ2/k). Therefore, in Rmax = 2t/p
epochs, we expect 2t successes, and by Chernoff, the probability of having fewer than t successes is at most
2−Ω(t) = 2−Ω(λ).

Second, we argue that the probability of Bob aborting due to |I| < 2·t
5 is 2−Ω(λ). For each successful

epoch i, the probability that i ∈ I is exactly the probability that Bob accepts in the set interactive hashing
protocol, conditioned on Alice accepting, which is 1/2. Therefore the expected size of I is t/2 and, by
Chernoff, the probability that |I| < 2·t

5 is 2−Ω(t) = 2−Ω(λ).

Security for Honest Bob (Receiver). First, we consider the setting where Bob is honest and Alice is
adversarial. We show how to efficiently simulate Alice’s view, even if Alice has unlimited computational
power and memory. The simulator uses Alice’s code as a black-box and runs in polynomial time. It simply
runs the protocol with Alice by taking on the role of Bob. It follows Bob’s specification during all the
epochs, but remembers the entire message x sent by Alice. Therefore, no matter what u Alice picks in the
i’th successful epoch, the simulator will set rB [i] = x[u]. If there are t successful epochs and Alice does
not abort, then the simulator picks completely random sets I0 ⊆ [t] and I1 ⊆ [t] \ I0 and sends them to
Alice. It receives seed from Alice and computes seedb = Ext(rB [Ib]; seed) for b ∈ {0, 1}. It receives x from
Alice in step 4 and computes keybBSMExt(x, seedb) for b ∈ {0, 1}. Finally, it receives ct0, ct1 and computes
msgb = ctb ⊕ keyb for b ∈ {0, 1}, and gives (msg0,msg1) to the ideal functionality on behalf of Alice.

We show that the real execution and the simulation are statistically indistinguishable. We define the
following hybrids over Alice’s view in the protocol.

• H0: Real execution.

• H1: In each epoch, Bob remembers the entire x. If the epoch is successful and Alice accepts with some
index u, then Bob flips a coin and with probability 1/2 he sets rB [i] = x[u] and with probability 1/2
he sets rB [i] = ⊥.

• H2: This is the simulation.

We have H0 ≡ H1 by the security of set interactive hashing (for honest Bob), which guarantees that
conditioned on any worst-case Alice’s view of the protocol, the probability of Bob accepting is exactly 1/2.

We claim H1 ≈ H2. The only differences between H1, H2 are the following. In H1, the set I := {i ∈ [t] :
rB [i] 6= ⊥} is chosen by including the index i ∈ [t] with independent probability 1/2. Bob aborts if |I| ≤ 2·t

5
and else he chooses two sets: Ic ⊆ I and I1−c ⊆ [t] \ Ic of size 2·t

5 each. On the other hand, in H2 Bob
chooses uniformly random sets Ic ⊆ [t] and I1−c ⊆ [t] \ Ic of size 2·t

5 each. Notice that in H1, conditioned
on Bob not aborting, the set Ic ⊆ [t] is a uniformly random set of size 2·t

5 . Therefore, the only difference
between the hybrids is the probability that Bob aborts in H1. By the Chernoff bound, this probability is
2−Ω(t) ≤ 2−Ω(λ). This concludes the proof of security for honest Bob.

Security for Honest Alice (Sender): Inefficient Simulation. We now consider the setting where the
sender Alice is honest and the receiver Bob is adversarial. We first show that we can inefficiently simulate
Bob’s view of the protocol, as long as Bob is a BSM adversary whose storage is at most m bits. We then
modify the proof further to get efficient simulation via a more complex argument.

We begin by describing the inefficient simulator and then proceed to prove indistinguishability.

Inefficient Simulator: The simulator runs a copy of Bob and begins executing the protocol acting as the
honest Alice. It initiates a set I∗ = ∅. In each epoch i, let yipre be Bob’s state prior to seeing Alice’s message

xi and let yipost be the state immediately after during the execution. Let the random variables Xi, Y ipre, Y
i
post

correspond to these values. If

H∞(Xi|Y ipre = yipre, Y
i
post = yipost) ≤ (1− δ)k
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then abort (denoted: abort 1).
Define the set of indices that Bob “knows” (i.e., have low entropy from his point of view) via:

Bi =

{
j : H∞(Xi[j] | Y ipre = yipre, Y

i
post = yipost) ≤

1

2

}
⊆ [k].

If the i’th epoch is the î’th successful one and Alice accepts with some value ui such that ui ∈ Bi then the
simulator adds î to I∗ .
If at the end of all the epochs |I∗| ≥ 6·t

10 then the simulator aborts (denoted: abort 2).
When Bob sends I0, I1, there must be at least one value of c such that |I1−c \ I∗| ≥ t

10 . The simulator picks
any such c, sends it to the ideal functionality and gets msgc. It simulates Alice’s communication in step 3,4,5
by choosing seed, x and ctc just like an honest Alice, but replacing ct1−c by a random independent value.

There are three main differences between the simulation and the honest execution: the presence of the
abort conditions abort 1 and abort 2, and the fact that we replace ct1−c by uniform. We do a sequence of
hybrids argument (over Bob’s view in the protocol) to show that these are indistinguishable:

• H0: Real Execution

• H1: Add abort condition 1.

• H2: Add abort condition 2.

• H3: Choose seed1−c uniformly at random.

• H4: Simulation: choose ct1−c uniformly at random.

Claim 6.6. SD(H0, H1) ≤ Rmax · 2−Ω((m+λ) log(m+λ)) = 2−Ω(λ).

We can bound the statistical distance by the probability of abort 1 occurring in H1. For each epoch i, if
we set v = (k−m)− (1− δ)k ≥ Ω((m+ λ) log(m+ λ)), then with all but 2−v probability over the choice of
yipre, y

i
post, we have:

H∞(Xi|Y ipre = yipre, Y
i
post = yipost) ≥ H∞(Xi|Y ipre, Y ipost)− v

≥ H∞(Xi|Y ipre)−m− v
≥ H∞(Xi)−m− v
≥ k −m− v
≥ (1− δ)k

Where the first inequality follows from Lemma 2.2, the second inequality follows by Lemma 2.1 and the fact
that Y ipost ∈ {0, 1}m, the third inequality follows from the fact that Xi is independent of Y ipre and the last

follows since Xi is uniform over {0, 1}k. The claim follows by taking a union bound over all i ∈ [Rmax].

Claim 6.7. SD(H1, H2) ≤ 2−Ω(λ).

We can bound the statistical distance by the probability of abort 2 occurring in H2. In each epoch i, let
us condition on values values yipre, Y

i
post for which abort 1 does not occur. Then

H∞(Xi|Y ipre = yipre, Y
i
post = yipost) ≥ k −m− λ ≥ (1− δ)k.

Then, by Lemma 3.1, we have∑
j∈[k]

H∞(Xi[j] | Y ipre = yipre, Y
i
post = yipost)︸ ︷︷ ︸

eij

≥ − log(h−1
+ (δ))k ≥ (1− β/2)k.
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By an averaging argument, this implies that |Bi = {j : eij < 1/2}| ≤ βk. We now rely on the security of the
set interactive hashing, which guarantees that conditioned on the ith epoch being successful, the probability
of Alice accepting with some ui ∈ Bi is at most 1/2 + α for α ≤ 1

20 . Since this holds for each successful
epoch, even if we condition on all the previous epochs, we can rely on the Chernoff bound to argue that
|I∗| < ( 1

2 + 1
10 ) · t except with 2−Ω(t) = 2−Ω(λ) probability.

Claim 6.8. SD(H2, H3) ≤ 2−Ω(λ).

Let us condition on the any worst-case sequence of states yipre, y
i
post of Bob during the execution of the

protocol, and all the other messages exchanged during parts 1 and 2 of the protocol except for all the values
Xi, subject to abort 1 and abort 2 not occurring. This also fixed Bob’s view through the end of part 2 of
the protocol. The remainder of the analysis holds for any such fixed choice. Note that once we fix yipre, y

i
post,

then the Xi random variables are completely independent of everything else we conditioned on, and they are
also independent of each other. In addition, this fixes the indices of the epochs i that are successful. Let us
consider the random variables RA [̂i] = Xi[ui] for the values rA [̂i] kept by Alice in the î’th successful epoch,
which occurs in iteration i. By definition, if î 6∈ I∗ then ui 6∈ Bi and therefore H∞(RA [̂i] = Xi[ui]) > 1

2 .

Furthermore, the variables RA [̂i] are independent of each other. By definition, for the bit c extracted by the
simulator, we have |I1−c \ I∗| ≥ t

10 and hence, conditioned on all the values we fixed, we have:

H∞(RA[I1−c] | RA[Ic]) = H∞(RA[I1−c]) ≥ H∞(RA[I1−c \ I∗]) ≥
∑

î∈I1−c\I∗
H∞(RA [̂i]) ≥ t

20
.

In part 3 of the execution, Alice chooses a random seed and sets seedc = Ext(RA[Ic]; seed), seed1−c =
Ext(RA[I1−c]; seed). By the security of Ext, we have that seed1−c is 2−Ω(λ) close to uniform even given
seed, seedc. Note that parts 4,5 of the protocol only depend on seed0, seed1 and are otherwise independent
of RA. Therefore, the hybrids are 2−Ω(λ) close.

Claim 6.9. SD(H3, H4) ≤ 2−Ω(λ).

This follows by the security of the BSM Extractor. In particular, even given Bob’sm-bit state immediately
after seeing the string x sent in part 4 of the protocol and the `-bit value keyc = BSMExt(x; seedc), we have
that key1−c = BSMExt(x; seed1−c), is 2−Ω(λ) close to uniform. Once we replace key1−c by uniform, we get
hybrid 4.

Security for Honest Alice (Sender): Efficient Simulation. We now show how to modify the preceding
argument to make the simulator efficient, using Bob’s code as a black box. Previously, the simulator was
non-black-box and inefficient since it needed to know Bob’s states yipre and yipost and to compute the set Bi,
corresponding to the indices j ∈ [k] that Bob “knows” (i.e., xi[j] has low entropy from Bob’s point of view),
which is not an efficient operation. To make the simulator black-box/efficient, we replace the set Bi with
a different set Hi, corresponding to the “high-frequency” indices j ∈ [k] that Alice is likely to output in
interactive hashing portion of the ith epoch, conditioned on the epoch being successful. We can efficiently
compute Hi by forking many executions of the interactive hashing sub-protocol and rewinding to estimate
these frequencies. The main observation is that the set Bi is sufficiently small, so that if Bob wants to ensure
that some index from Bi is chosen with good probability, he has to “play” such indices with high frequency in
the interactive hashing protocol. More specifically, since the probability of the interactive hashing outputting
any specific “low frequency” index j 6∈ Hi is small, we can rely on the union bound over the small set Bi, to
show that the probability of outputting some such j ∈ Bi such that j 6∈ Hi is still small. Therefore Hi is an
efficiently commutable small set that can serve as a good proxy for Bi in the previous argument. We now
proceed with the formal proof.
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Efficient Simulator: Define parameters µ := log1.5(k)/k, ρmin = 1
40Rmax

, γ = (ρminµ)/10. The
simulator runs Bob and begins executing the protocol acting as the honest Alice. It initiates a set I∗H = ∅.
In each epoch i, prior to executing the interactive hashing protocol in step (b) with Bob, the simulator
computes a set Hi via a rewinding strategy that forks many independent copies of the execution for the
interactive hashing protocol and estimates the following parameters:

• ρ̃i is the estimated probability that the epoch is successful and Alice accepts in the interactive hashing
protocol, where the estimate has precision γ, meaning that the true probability ρi is equal to ρ̃i ± γ
except with a sampling error of 2−Ω(λ+log(Rmax)) over the coins of the estimator.8 If ρ̃i < ρmin then
set Hi := ∅ and exit.

• For each j ∈ [k]: g̃ij be the estimated probability that Alice accepts and outputs the index ui = j in

epoch i, with precision γ, meaning that the true probability gij is equal to g̃i ± γ except with error

2−Ω(λ+log(Rmax)+log k) over the coins of sampling.8

• For each j ∈ [k]: Set f̃ ij = g̃ij/ρ̃
i to be the estimated conditional probability that Alice outputs the index

ui = j in epoch i conditioned on epoch i being successful. Then f̃ ij is an estimate for the true probability

f ij = gi/ρi. Assuming that the estimates for g̃ij , ρ̃
i are within their target precision and ρ̃i ≥ ρmin, then

the estimate for f̃ ij is with precision µ/2 since:

f ij =
gij
ρi

=
g̃ij ± γ
ρ̃i ± γ

=
g̃ij
ρ̃i
± µ/2.

• Set Hi := {j : f̃ ij ≥ µ}.

If the i’th epoch is the î’th successful one and Alice accepts with some value ui such that ui ∈ Hi then the
simulator adds î to I∗H.
If at the end of all the epochs |I∗H| ≥ 6·t

10 then the simulator aborts (denoted: abort 2).
When Bob sends I0, I1, there must be at least one value of c such that |I1−c \ I∗H| ≥ t

10 . The simulator picks
any such c, sends it to the ideal functionality and gets msgc. It simulates Alice’s communication in step 3,4,5
by choosing seed, x and ctc just like an honest Alice, but replacing ct1−c by a random independent value.

Note that the simulator above is essentially the same as the inefficient simulator with the differences that
there is no abort 1 condition (since it cannot be checked efficiently) and the simulator uses Hi in place of Bi
to define the set that we previously denoted by I∗ and now denote by I∗H to disambiguate. For the analysis,
it will be convenient to still define the sets Bi and I∗B corresponding to the way I∗ was defined previously for
the inefficient simulation. Moreover, it will be useful to define the same abort 1 condition as in the inefficient
simulation (even though our efficient simulator does not check it). Moreover we define two additional abort
conditions: abort 0 says that the execution aborts if any of the estimates ρ̃i, g̃

i
j are not within the specified

precision of the true probabilities, and abort 3 says that the execution aborts if |I∗B \ I∗H| ≥ t/20.
There are two main differences between the simulation and the honest execution: the presence of the

abort condition 2, and the fact that we replace ct1−c by uniform. We do a sequence of hybrids argument
(over Bob’s view in the protocol) to show that these are indistinguishable:

• H0: Real Execution

• H1/2: Add abort condition 0

• H1: Add abort condition 1.

• H2: Add abort condition 2.

8 This can be done efficiently via the Chernoff bound.
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• H3: Add abort condition 3.

• H4: Replace seed1−c by uniformly random.

• H5: Replace key1−c by uniformly random.

• H6: Simulation: Remove abort conditions 0,1,3.

Claim 6.10. SD(H0, H1/2) ≤ 2−Ω(λ).

This follows from our bound on the sampling errors of the estimates ρ̃i and gij and a union bound over
i ∈ Rmax, j ∈ [k].

Claim 6.11. SD(H1/2, H1) ≤ 2−Ω(λ).

This follows by the same argument as in the proof of inefficient simulation (Claim 6.6).

Claim 6.12. SD(H1, H2) ≤ 2−Ω(λ).

We bound the probability of abort 2 occurring in H2. Assume abort 0 does not occur. The either Hi = ∅
or Hi = {j : f̃ ij ≥ µ} ⊆ {j : f ij ≥ µ/2}. Since

∑
j f

i
j = 1 we have |{j : f ij ≥ µ/2}| ≤ 2/µ ≤ k/ log1.5(k).

Therefore in either case |Hi| ≤ k/ log1.5(k). By the (α = 1
20 , k/ log1.5(k))-security of the set interactive

hashing, with the bad set Hi, the probability of ui ∈ Hi conditioned on Alice accepting is at most 1/2 + α
for α ≤ 1

20 . Since this holds for each successful epcoh even conditioned on all previous epochs, we can rely

on the Chernoff bound to argue that |I∗H| < ( 1
2 + 1

10 ) · t except with 2−Ω(t) = 2−Ω(λ) probability.

Claim 6.13. SD(H2, H3) ≤ 2−Ω(λ).

We bound the probability of abort 3 occurring in H3. Assume abort 0 does not occur. We can write
|I∗B \ I∗H| ≤ q1 + q2, where we define q1 to be the number of epochs i in which ρ̃i ≤ ρmin but epoch i is
successful, and we define q2 to be the number of successful epochs i in which Alice accepts with some value
ui such that ui ∈ Bi \ Hi and ρ̃i > ρmin. Firstly, we can bound q1 ≤ t/40 since when abort 0 does not
occur then ρ̃i ≤ ρmin implies that the probability of epoch i succeeding is ρi ≤ 2ρmin = 1

20Rmax
. Therefore

the probability that there exist t/40 epochs where this occurs is ≤
(
Rmax

t/40

)
( 1

20Rmax
)t/40 ≤ (1/t)Ω(t) ≤ 2−Ω(λ).

Secondly, we can bound q2 ≤ t/40 since for any epoch i such that ρ̃i > ρmin and any j 6∈ Hi we have

Pr[ui = j | epoch i successful] = f ij ≤ f̃ ij + µ/2 < (1.5)µ.

Furthermore, by the same calculation as done in the proof of inefficient simulation, we have |Bi| ≤ βk ≤
k/ log2 k. Therefore, we can rely on the union bound:

Pr[ui ∈ Bi \ Hi | epoch i successful] ≤
∑

j∈Bi\Hi

Pr[ui = j | epoch i successful]

≤
∑

j∈Bi\Hi

(1.5µ)

≤ |Bi| · (1.5) · µ = O(1/ log.5(k) = o(1).

Therefore within the t successful epochs, we expect o(t) of them to satisfy ui ∈ Bi \ Hi and, by Chernoff,
the probability that more than t/40 of them satisfy this is 2−Ω(t) = 2−Ω(λ).

Claim 6.14. SD(H3, H4) ≤ 2−Ω(λ).
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To argue that hybrids H3 and H4 are 2−Ω(λ) statistically close, we employ a similar argument as in Claim
6.8 for inefficient simulation. In particular, by definition, for the bit c extracted by the simulator, we have
|I1−c \ I∗H| ≥ t

10 . Assuming abort 3 does not occur, we have |I∗B \ I∗H| ≤ t
20 . Therefore |I1−c \ I∗B| ≥ t

20 . The
rest of the argument is essentially the same as before. Using the same notation as previously.

Let us condition on the any worst-case sequence of states yipre, y
i
post of Bob during the execution of the

protocol, and all the other messages exchanged during parts 1 and 2 of the protocol except for all the values
Xi, subject to abort 0,1,2,3 not occurring. Let us consider the random variables RA [̂i] = Xi[ui] for the
values rA [̂i] kept by Alice in the î’th successful epoch, which occurs in iteration i. We have:

H∞(RA[I1−c] | RA[Ic]) = H∞(RA[I1−c]) ≥ H∞(RA[I1−c \ I∗B]) ≥
∑

î∈I1−c\I∗B

H∞(RA [̂i]) ≥ t

40
.

Note that we conditioned on the entire view of Bob except for the last message, which is defined as

seed, ctc = Ext(RA[Ic]; seed)⊕msgc, ct1−c = Ext(RA[I1−c]; seed)⊕msg1−c.

In part 3 of the execution, Alice chooses a random seed and sets seedc = Ext(RA[Ic]; seed), seed1−c =
Ext(RA[I1−c]; seed). By the security of Ext, we have that seed1−c is 2−Ω(λ) close to uniform even given
seed, seedc. Note that parts 4,5 of the protocol only depend on seed0, seed1 and are otherwise independent
of RA. Therefore, the hybrids are 2−Ω(λ) close.

Claim 6.15. SD(H4, H5) ≤ 2−Ω(λ).

This follows by the security of the BSM Extractor. The proof is identical to Claim 6.9 for inefficient
simulation.

Claim 6.16. SD(H5, H6) ≤ 2−Ω(λ).

The argument that removing the abort conditions is statistically close is the same as the argument that
adding them is statistically close in Claims 6.13, 6.11, 6.10.

6.4 Multiparty Computation from OT

It is known that one can use the oblivious transfer (OT) ideal functionality as a black box to achieve general
multi-party computation in the OT-hybrid model [Kil88, IPS08]. By plugging in our construction of OT in
the BSM, one therefore gets general multiparty computation in the BSM with efficient simulation. A similar
observation that OT implies MPC in the BSM was already made in [DHRS07] and expanded on in [LV21],
albeit in the setting where both the OT and the MPC only satisfy inefficient simulation.

We provide some additional details. Assume we want to perform a multiparty computation of some
circuit C with N parties and security parameter λ.

• Honest user storage: If we start with an OT protocol in the (n,m)-BSM and use it to construct MPC,
the honest users need to keep in memory all of the intermediate state of the external MPC protocol in
the OT-hybrid model. The size of this state is some poly(|C|, N, λ) completely independent of n,m.
Therefore the resulting protocol will be in the (n′,m)-BSM model with n′ = n+ poly(|C|, N, λ), which
can still be arbitrarily smaller than the adversarial storage m.

• Adversary storage: We note that the MPC protocol only executes copies of the OT protocol sequen-
tially. When the “outer” simulator of the overall MPC needs to simulate each OT execution, it can
spawn of a fresh copy of an “inner” OT simulator. Although the outer simulator may need to store
some additional state related to the outer MPC execution, this is completely unrelated to the inner
OT. Therefore, the OT protocol only needs to achieve security against an OT adversary with the same
storage bound m as the overall MPC adversary.

Summarizing we get the following theorem as a corollary of our OT protocol (Theorem 6.5) and the
works of [Kil88, IPS08].
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Theorem 6.17. For any m,λ and any N -party ideal functionality F having circuit size |F|, there is some
nmin = O(logm) + poly(|F|, N, λ) such that for all n ≥ nmin there is a secure MPC protocol in the (n,m)-
BSM with ε = 2−Ω(λ) security against an adversary that can maliciously corrupt any number of parties.
The round complexity is O(dm/n2e · poly(|F|, N, λ)) and the communication complexity O(m · dm/n2e ·
poly(|F|, N, λ)).

7 Lower Bounds on Rounds and Communication

In this section, we prove that achieving large memory gaps between adversaries and honest parties in the
bounded storage model inherently requires large round complexity and communication. In Section 7.1, we
introduce the specific BSM we use for our lower bound. In Section 7.2, we prove a lower bound on round
complexity and communication in this model. Looking ahead, one drawback of this lower bound is that
it only rules out protocols secure against somewhat strong, non-streaming adversaries. In Section 7.3, we
introduce another variant of the BSM where adversaries are streaming, and prove an associated lower bound
in Section 7.4.

7.1 Model for the Lower Bound: the Unbounded Processing Model

As mentioned in the introduction, our lower bound holds in a stronger model than the variant of streaming
BSM we use for our positive results in Section 4. The main conceptual difference is that both the honest
parties are only bound by their storage used between the rounds, but could compute its contents using
unbounded temporary memory. We describe that model, and introduce notation in more details below. We
develop in more details the relation with previously discussed notions of BSM in Remark 7.1.

A (n,m)-bounded storage model protocol Π in the unbounded processing model, is parametrized by a
bound n on the storage of honest parties and a bound m on the storage of the adversary. In the case of
two parties, Alice and Bob send (potentially large) messages to each other at every round. Every round i
consists of one party, say Alice, sending a message to the other, say Bob, as follows: she computes

(s
(i)
A ,M (i))← send

(i)
A (s

(i−1)
A )

and Bob computes

s
(i)
B ← receive

(i)
B (s

(i−1)
B ,M (i)),

and vice-versa if Bob sends the message in round i. s
(i)
A and s

(i)
B denote the local states kept by Alice and

Bob respectively after round i, and M (i) denotes the message sent at round i. By convention their starting

states are s
(0)
A = s

(0)
B = ∅. We require the states sA and sB to be of bounded size, namely |s(i)

A |, |s
(i)
B | ≤ n

for all i. There are however no restrictions on the complexity of the functions send
(i)
A , receive

(i)
B in rounds i

where Alice sends a message, or send
(i)
B , receive

(i)
A in rounds i where Bob sends a message. We’ll assume for

convenience of notation that parties speak turn by turn, namely Alice sends messages in odd rounds and
Bob sends messages in even rounds, or vice-versa.

Adversaries Adv in this model are similarly modeled as functions Adv(i) : (s
(i−1)
E ,M (i))(i) 7→ s

(i)
E , where

there are no restrictions on the complexity of Adv(i), up to the state s
(i)
E having size at most m for all i.

We will respectively denote by C and R some upper bounds on the total communication and the number
of rounds of Π, which hold over all possible executions of Π. In the case of key agreement, this is without loss
of generality up to a constant loss in either security (having both parties abort and output 0) or correctness
(having both parties abort and output a random value), using Markov’s inequality.

We will furthermore suppose that the length of the message sent in any fixed round i is fixed by the
protocol, and in particular does not depend on its internal randomness. We discuss how to relax this
requirement later in Remark 7.7.

We now define key agreement (with 1-bit output) in this model. A key agreement protocol Π in the (n,m)-

BSM is a protocol with two parties, Alice and Bob, which results in a single-bit final state s
(R)
A , s

(R)
B ∈ {0, 1}.

We require the following properties:
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• δ-correctness: We have
Pr[s

(R)
A = s

(R)
B ] ≥ 1/2 + δ.

for some constant δ ≤ 1/2.

• (m, ε)-Sscurity: No adversary Adv with memory m (with the specifications above) can guess Alice’s

output s
(R)
A at the end of the protocol:

∀Adv,Pr[s
(R)
E = s

(R)
A ] ≤ 1/2 + ε,

for constant ε ≤ 1/2.

• We furthermore require δ − ε = Θ(1).

The last requirement enforces that adversaries have strictly smaller probability of guessing the output of the
honest parties than the other honest party.

Remark 7.1 (Comparison with previously discussed models). As mentioned before, this defines a more
expressive model than the one in Section 4, as honest users for the definition above are stronger than
in Section 4. The main differences are (1) there are no restrictions on the computational power of the
honest users to compute their states kept between the rounds of the protocol, who can in particular use
arbitrary large temporary memory, (2) they are neither bound to send uniformly random “long” messages,
nor restricted to have local access to it. In the terminology we used in the introduction, the lower bound
holds for honest users without restrictions (b), (c), but with the same capability (d) as Eve. All these
capabilities make the resulting lower bound stronger.

However, we only consider strong adversaries with unlimited short-term memory (restriction (d) in the
introduction). This does make our lower bound weaker than ideal, and leaves open the possibility of a tighter
lower bound for more restricted classes of “streaming” adversaries. Looking ahead, in Sections 7.3 and 7.4,
we adapt this model and the subsequent lower bound to restrict adversaries to be streaming, albeit at the
cost of slightly worse quantitative bounds.

To sum up, in this new model, the honest users have the same capabilities as the adversary, up to a
smaller storage between rounds.

In terms of key agreement, we relax correctness and security to only be constants, as long as honest users
have some non-trivial advantage in agreeing on the output bit compared to an adversary; this again makes
our lower bound stronger.

7.2 Lower Bound in the Unbounded Processing Model

Before proving our lower bounds, we state some useful lemmas.

Lemma 7.2 ([DM04]). Let P be a random process that outputs a tuple of (potentially correlated) values
(Z, Y ). Let q be some integer. Let P ′ denote the process of sampling (Z0, Y )← P , computing X = f(Y ) for
some randomized function f , and independently sampling for j ∈ [q]:

Zj ← PZ|Y

where PZ|Y denotes the marginal distribution of Z induced by P , conditioned on Y . Then there exists some
index i ∈ [q] such that:

I(X;Z0|Z1, · · · , Zi) ≤
H(X)

q + 1
. (5)

Furthermore, one can (inefficiently) compute such an index i.
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Proof. The proof directly follows from the proof of Theorem 1 of [DM04]. We restate it here for completeness.
It suffices to argue that Z0, · · · , Zq are symmetric with respect to X, namely:

P ′X,Zi1
,...,Ziw

(x, z1, . . . , zw) = P ′X,Zi′1
,...,Zi′w

(x, z1, . . . , zw)

for all w ≤ q, and all sets of distinct indices (i1, . . . , iw) and (i′1, . . . , i
′
w). Indeed, a chain rule for conditional

mutual information gives:

n∑
i=0

I(X;Zi|Zi−1, . . . , Z0) = I(X;Z0, . . . Zq) ≤ H(X),

so that there exists some i ∈ [q] (computable inefficiently) such that:

I(X;Zi|Zi−1, . . . , Z0) ≤ H(X)

q + 1

and the conclusion follows as I(X;Z0|Z1, . . . , Zi) = I(X;Zi|Zi−1, . . . , Z0) by symmetry.
To prove that Z0, · · · , Zq are symmetric with respect to X, we observe that they are symmetric with

respect to Y , as sampled independently conditioned on Y. They are therefore symmetric with respect to
X = f(Y ).

Lemma 7.3. Consider the process P ′, the random variables X,Z and some index i ∈ [q] defined in
Lemma 7.2.

Consider the random variable Z ′ ← P ′Z0|Z1,··· ,Zi
obtained by sampling Z0 conditionally on Z1, · · · , Zi.

Then:

SD ((X,Z, {Zj}j≤i), (X,Z ′, {Zj}j≤i)) ≤

√
H(X)

2(q + 1)
,

Proof. We start with Eq. (5) of Lemma 7.2:

I(X;Z0|Z1, · · · , Zi) ≤
H(X)

q + 1
. (5)

By definition of mutual information, the left-hand-side is:

I(X;Z0|Z1, · · · , Zi) = DKL(P ′(X,Z0)|{Zj}j≤i
‖P ′X|{Zj}j≤i

× P ′Z0|{Zj}j≤i
) (6)

Conditioned on {Zj}j≤i, the conditional distribution of (X,Z0) is P ′(X,Z0)|{Zj}j≤i
(by definition), and the

conditional distribution of (X,Z ′) is P ′X|{Zj}j≤i
× P ′Z0|{Zj}j≤i

. This is because the marginal distribution of

X conditioned on {Zj}j≤i is P ′X|{Zj}j≤i
, and Z ′ is independently sampled from P ′Z0|{Zj}j≤i

.

We therefore have:

SD (X,Z, {Zj}j≤i), (X,Z ′, {Zj}j≤i)) ≤ E
{Zj}

SD (((X,Z)|{Zj}j≤i), (X,Z ′)|{Zj}j≤i))

≤ E
{Zj}

√
1

2
·DKL

(
P ′(X,Z0)|{Zj}j≤i

‖P ′X|{Zj}j≤i
× P ′Z0|{Zj}j≤i

)
≤
√

1

2
· E
{Zj}

DKL

(
P ′(X,Z0)|{Zj}j≤i

‖P ′X|{Zj}j≤i
× P ′Z0|{Zj}j≤i

)
=

√
1

2
· I(X;Z0|Z1, · · · , Zi)

≤

√
H(X)

2(q + 1)
,
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where the second inequality follows by Pinsker’s inequality (Lemma 2.12), the third by concavity of the
square root function, the equality by Eq. (6), and the last inequality by Eq. (5).

We are now ready to prove our main theorem of this section.

Theorem 7.4. Let Π be a key agreement protocol in the unbounded processing model (Section 7.1), with
honest storage n, satisfying δ-correctness and (m, ε) security, where δ− ε = Ω(1). Suppose furthermore that
for any execution of Π, the total communication between Alice and Bob is at most C and consists of at most

R rounds. Then C ≥ Ω
(
m3/2

n

)
, and R ≥ Ω

(√
m
n

)
.

Remark 7.5 (Lower Bound for OT). Because any OT protocol directly induces a key agreement protocol
with identical round complexity and communication, the theorem directly extends to an identical lower
bound for OT.

Proof. We define the following transformation, which takes a protocol Π in the unbounded processing model,
with total communication (upper-bounded by) C, and number of rounds (upper bounded by) R, and outputs
a protocol Π with number of rounds (upper bounded by) R − 1, such that correctness and security of Π
respectively imply correctness and security of Π with a small loss.

On a high level, Π compresses the first two rounds of Π into a single round. Without loss of generality,
suppose that in Π, Alice sends the first message M (1). In Π, Bob will instead send the first message. Namely,

(send
(1)
A , receive

(1)
B , send

(2)
B , receive

(2)
A ) are compressed into two algorithms (send

(1)

B , receive
(1)

A ).
The subsequent rounds are identical to Π, that is, Alice and Bob compute the subsequent messages and

update their states as in Π. Formally, for 1 ≤ k ≤ b(R− 1)/2c

send
(2k)

A (sA) = send
(2k+1)
A (sA), receiveB(2k)(sB ,M) = receive

(2k+1)
B (sB ,M),

send
(2k+1)

B (sB) = send
(2k+2)
B (sB), receiveA(2k + 1)(sA,M) = receive

(2k+2)
A (sB ,M).

Therefore, we now focus on defining send
(1)

B and receive
(1)

A , or, equivalently, (sA
(1), sB

(1),M
(1)

), that is
the states of Alice and Bob after one round of Π, along with the first message sent.

Our transformation acts differently according to the length of the first message M (1) of Π, which we
recall is assumed of fixed length.

Case 1: |M (1)| ≤ m. If the first message M (1) of the original protocol Π is of size |M (1)| ≤ m, the transfor-

mation works as follows. Bob computes the two messages M (1),M (2) of the first two rounds of Π himself, and
in particular computes himself Alice’s first round message M (1) in Π. He sends both messages (M (1),M (2))
in the first round of the new protocol Π. Given this new message, Alice (inefficiently) samples a state
compatible with the original first message M (1), and then processes M (2) as in the original protocol Π.

Formally, we define send
(1)

B , receive
(1)

A as follows:

• send
(1)

B : Compute (s
(1)
A ,M (1)) ← send

(1)
A . Compute s

(1)
B ← receive

(1)
B (M (1)). Compute (s

(2)
B ,M (2)) ←

send
(2)
B (s

(1)
B ). Output:

sB
(1) = s

(2)
B , M

(1)
= (M (1),M (2)).

• receive
(1)

A (M
(1)

= (M (1),M (2))): Given M (1), sample sA
(0) as

sA
(0) ← P

s
(1)
A |M(1)

where P
s
(1)
A |M(1) is the marginal distribution of Alice’s state s

(1)
A after the first round of Π, induced by

(s
(1)
A ,M (1))← send

(1)
A conditioned on M (1). Note that this is an inefficient process.

Output:

sA
(1) ← receive

(2)
A (sA

(0),M (2)).
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We first argue that Π is δ-correct. The conditional sampling makes the two following distributions
identically distributed:(

(s
(1)
A , s

(1)
B ,M (1)) ; (s

(1)
A ,M (1))← send

(1)
A , s

(1)
B ← receive

(1)
B (M (1))

)
(

(sA
(0), s

(1)
B ,M (1)) ; (s

(1)
A ,M (1))← send

(1)
A , sA

(0) ← P
s
(1)
A |M(1) , s

(1)
B ← receive

(1)
B (M (1))

)
Therefore the distributions remain identical after computing send

(2)
B , receive(2), that is

(s
(2)
A , s

(2)
B ,M (2)) ≡ (sA

(1), sB
(1),M (2)).

In particular, the user states (sA
(1), sB

(1)) of Π after round one are identically distributed as the user states

(s
(2)
A , s

(2)
B ) of Π after round two. δ-correctness of Π then follows by δ-correctness of Π.

Next, we show that (m, ε)-security of Π implies (m, ε)-security for Π. Let Adv be an unbounded processing
model adversary with storage m and advantage ε against Π. We build an adversary Adv against Π as follows.
Define:

s
(1)
E = Adv(1)(M (1)) = M (1),

and Adv(i) = Adv
(i−1)

for all i ≥ 2. In particular, Adv(2) is given as input (s
(1)
E = M (1), M (2)), and can

therefore run Adv
(1)

(M
(1)

) with input distributed identically as M
(1)

= (M (1),M (2)) by construction of
Π. In particular, Adv has the same advantage ε as Adv. Moreover, Adv is an adversary in the unbounded
processing model with storage m as |M1| ≤ m and Adv has storage at most m.

Case 2: |M (1)| > m. If the first message M (1) of Π is of size |M (1)| > m, the transformation works as

follows. Bob computes the first message M (1) of Alice in Π, and computes the second message M (2) of Π.
Instead of sending M (1) directly, Bob (inefficiently) samples many independent copies of Alice’s state after

the first round of Π conditioned on M (1), that we denote {sA,j}. He instead sends M
(1)

= ({sA,j},M (2))
as the first round message of Π. Given this new first message, Alice (inefficiently) samples a state sA

(0)

(corresponding to a state of Π after the first round) conditioned on {sA,j}, and processes M (2) given this
state sA

(0).
Formally, let (Z0, Y ) be correlated random variables corresponding to computing (Z0, Y ) := (s

(1)
A ,M (1))←

send
(1)
A . For j ∈ [q], define Zj as the random variable corresponding to sampling

Zj := sA,j ← P
s
(1)
A |M(1)

where P
s
(1)
A |M(1) is the marginal distribution of Alice’s state s

(1)
A induced by (s

(1)
A ,M (1))← send

(1)
A conditioned

on M (1). Note that this is an inefficient process. Let f = receive
(1)
B , and X = s

(1)
B ← f(Y ).

By Lemma 7.2, there exists an (inefficiently computable) index i ∈ [q] such that

I(X;Z0|Z1, · · · , Zi) ≤
H(X)

q + 1
. (5)

We define send
(1)

B , receive
(1)

A as follows:

• send
(1)

B : Compute (s
(1)
A ,M (1))← send

(1)
A . Compute an index i such that Eq. (5) holds.

For j ∈ [i], given M (1), sample sA,j as

sA,j ← Q
s
(1)
A |M(1)

where Q
s
(1)
A |M(1) is the marginal distribution of s

(1)
A induced by (s

(1)
A ,M (1))← send

(1)
A , conditioned on

M (1). Note that both computing i and sampling from Q
s
(1)
A |M(1) are inefficient.

32



Compute s
(1)
B ← receive

(1)
B (M (1)), (s

(2)
B ,M (2))← send

(2)
B (s

(1)
B ), and output:

sB
(1) = s

(2)
B , M

(1)
= ({sA,j}j∈[i], M

(2)).

• receive
(1)

A (M
(1)

): On input M
(1)

= ({sA,j}j∈[q], M
(2)), sample sA

(0) as

sA
(0) ← P

s
(1)
A |{sA,j}j∈[i]

where Q
s
(1)
A |{sA,j}j∈[i]

is the marginal distribution of s
(1)
A conditioned on {sA,j}j∈[i] induced by the

following process: sample (s
(1)
A ,M (1)) ← send

(1)
A , sample for j ∈ [i], sA,j ← P

s
(1)
A |M(1) , and output

(s
(1)
A , {sA,j}j∈[q]). Note that such a sampling is inefficient.

Output:

sA
(1) ← receive

(2)
A (sA

(0),M (2))

Next, we argue that the distribution of users states after round two of Π is statistically close to the
distribution of states after round one of Π.

Claim 7.6. We have

SD
(

(s
(2)
A , s

(2)
B , {sA,j}j∈[i],M

(2)), (sA
(1), sB

(1), {sA,j}j∈[i],M
(2))
)
≤
√

n

2(q + 1)
.

Proof. Let X = s
(1)
B , and Z0 = s

(1)
A . For j ∈ [q], let Zj = sA,j . By Lemma 7.3, we have:

SD
(

(s
(1)
B , s

(1)
A , {Zj}j≤i), (s

(1)
B , sA

(0), {Zj}j≤i)
)
≤
√

n

2(q + 1)
.

noting that X has length at most n, so that H(X) ≤ n.

We observe that (s
(2)
A , s

(2)
B ,M (2)), (sA

(1), sB
(1),M (2)) are the respective output of some randomized func-

tion g on input (s
(1)
A , s

(1)
B ) and (sA

(0), s
(1)
B ), where g computes the second round of Π. Namely, g(sA, sB)

computes (s′B ,M
′)← send

(2)
B (sB), s′A ← receive

(2)
A (sA,M

′), and outputs (s′A, s
′
B ,M

′). We therefore obtain:

SD
(

(s
(2)
A , s

(2)
B , {sA,j}j∈[i],M

(2)), (sA
(1), sB

(1), {sA,j}j∈[i],M
(2))
)
≤
√

n

2(q + 1)
.

We now argue that Π is correct and secure as long as Π is.

Suppose Π satisfies δ-correctness. Because the respective outputs of Alice and Bob s
(R)
A , s

(R)
B in Π are

randomized functions of (s
(2)
A , s

(2)
B ), Claim 7.6 implies that

Pr[sA
(R) = sB

(R)] ≥ 1/2 + δ −
√

n

2(q + 1)
, (7)

that is, Π satisfies δ-correctness with δ ≥ δ −
√

n
2(q+1) .

Next, suppose q ≤ bmn c. We show that (m, ε)-security of Π implies (m, ε)-security for Π, with

ε ≤ ε+

√
n

2(q + 1)
. (8)

Let Adv be an unbounded processing model adversary against Π with storage m and advantage ε. Define:
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• Adv(1)(M (1)) : Compute (s
(1)
A ,M (1)) ← send

(1)
A . Compute as in send

(1)

B an index i such that Eq. (5)
holds.

For j ∈ [i], given M (1), sample sA,j as

sA,j ← Q
s
(1)
A |M(1)

where Q
s
(1)
A |M(1) is the marginal distribution of s

(1)
A induced by (s

(1)
A ,M (1)) ← send

(1)
A conditioned on

M (1), and output

s
(1)
E = {sA,j}j∈[i].

Note that both computing i and sampling sA,j are inefficient.

• Adv(i) = Adv
(i−1)

for all i ≥ 2.

In particular, Adv(2) is given as input (s
(1)
E = {sA,j}j∈[i], M

(2)), and can therefore run Adv
(1)

(M
(1)

) as it

can compute M
(1)

= ({sA,j}j∈[q],M
(2)). Now, M (2) and all the further inputs to Adv(i) and Adv

(i−1)
are

randomized functions of (s
(2)
A , s

(2)
B , sA,jj∈[i],M

(2)) (in the case of Adv) or (sA
(1), sB

(1), sA,jj∈[i],M
(2)) (in the

case of Adv). In particular, by Claim 7.6, the statistical distance of the outputs of Adv and Adv is at most√
n

2(q+1) , so that the advantage of Adv is at least ε ≥ ε−
√

n
2(q+1) .

Moreover, Adv is an adversary in the unbounded processing model with storage max(m,nq) as Adv is
m-bounded and |sA,j | ≤ n for j ∈ [i]. Therefore, if q ≤ bmn c, this induces an adversary Adv with storage m.

Applying the transformation. Set q = bm2nc. We iteratively apply this transformation up to R times to

the base protocol Π, until obtaining a 0-round protocol Π̃, namely, where Alice and Bob do not communicate,
which satisfies δ̃-correctness and (m, ε̃)-security. As, for a 0-round protocol, an adversary can always run
Bob’s algorithm to guess Alice’s bit, this implies ε̃ ≥ δ.

Denoting t ≤ R the number of times Case 2 occurred in the (up to) R transformations, namely the
number of rounds of Π with message sent of length greater than m, the degradation for correctness (Eq. (7))
and security (Eq. (8)) of Π gives

ε+ t ·
√

n

2(q + 1)
≥ ε̃ ≥ δ̃ ≥ δ − t ·

√
n

2(q + 1)
,

so that

2t ·
√

n

2(q + 1)
≥ δ − ε,

where δ − ε > 0 is a constant by assumption on Π. As t is upper-bounded by the maximum number of
rounds R of Π, and recalling that q = bm2nc, this gives:

R ≥ Ω

(√
m

n

)
.

Furthermore, every application of Case 2 decreases the total communication of the resulting Π by at least
m− nq ≥ m/2. As Π has total communication at most C, the number of applications Case 2 is therefore at
most t ≤ C

m/2 , so that:

C ≥ Ω

(
m3/2

n

)
,

which concludes the proof.
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Remark 7.7 (Variable length messages). In our model (Section 7.1), and therefore Theorem 7.4, we assumed
the lengths of the messages of protocols to have a fixed length.

First, we observe that our lower bound on the number of rounds applies even if there is no such restriction.
Indeed, one can modify any protocol Π as follows: consider the maximal message length sent in Π (across all
possible executions), and pad all the messages to have that maximal length. This does not affect the round
complexity of the protocol, and therefore the lower bound on the number of rounds still applies.

Second, we note that our lower bound for communication also applies for variable length messages proto-
cols if we restrict ourselves to the streaming model Section 4. Indeed, if the honest parties are streaming, we
can assume that they send exactly one bit per round, turn by turn: this at most doubles the communication
cost the initial protocol. Then, all messages are then by definition of fixed length, and Theorem 7.4 applies.

7.3 Model for a Lower Bound against Streaming Adversaries

In the unbounded processing model for our lower bounds of Sections 7.1 and 7.2, the only restriction, both
for the honest parties and the adversary, is that their maintained state between rounds of communications
has bounded size. In particular, they all can process messages from the protocol using potentially unbounded
temporary memory, so long as they compress it to some limited amount of storage afterwards.

One natural setting left open, however, is the case where the adversary has bounded storage throughout
the entire attack and only streaming access to messages sent. This makes the adversary weaker than in the
model of Section 7.1, and it is not clear whether the subsequent lower bound extends. In this section, along
with Section 7.3, we extend the lower bound of Sections 7.1 and 7.2 to such adversaries, albeit at the cost
of slightly worse parameters. Another difference is that while Sections 7.1 and 7.2 also rule out protocols
with unbounded processing honest parties, the model of this section and the subsequent lower bound in
Section 7.3 only rule out streaming honest parties.

We first describe our model, that we call the streaming model with CRS . Honest parties send and receive
messages in a streaming manner, using some bounded memory n, without any other restriction on the
messages sent nor on the receiving algorithm. We will also consider adversaries which are similarly treating
messages sent between the parties in a streaming manner using bounded memory m > n.

For comparison with Section 4, honest users are still more powerful, as having general streaming access
to messages (as opposed to local access), and are not required to send uniformly random messages. In other
words, honest parties neither have restriction (b) nor (c), but are still required now to be treating messages
in a streaming manner. The adversary, however, is weakened to only have streaming access to the messages
of the protocol, similar to honest users. Doing so makes the resulting lower bound stronger.

Compared with our previous lower bound (Sections 7.1 and 7.2), both the honest parties and the adversary
are weaker, as they are now both streaming, as opposed to having unbounded preprocessing. As a result, the
resulting lower bounds are technically incomparable. Still, we believe that restricting ourselves to protocols
where honest parties use bounded memory during the whole execution of the protocol is an extremely natural
setting for protocols in the bounded storage model.

Optionally, we will consider a streaming model in the common reference string model, where a common
reference string is available prior to protocol execution. The CRS is used to (independently) derive starting
states for the parties of the protocol. We consider these processes (namely, the CRS generation and the user
state generation) to be performed by a trusted party, which can potentially run in memory larger than n.
Honest parties do not require knowledge of the CRS to execute the remainder protocol, but adversaries do
have access to the CRS to mount attacks. For simplicity, we will only consider CRS that directly fit in the
adversary’s memory.

We define key agreement (with one-bit output) in a very similar way as in Section 7.1: we refer to that
section for our notion of δ-correctness and (m, ε)-security. We further consider security against non-uniform
attacks where adversaries obtain some non-uniform advice that can be generated using unbounded memory.
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7.4 Lower Bound against Streaming Adversaries

Theorem 7.8. Let Π be a key agreement protocol in the streaming model (Section 7.3) with honest storage
n, satisfying δ-correctness and (m, ε) security against non-uniform attacks, where δ − ε = Ω(1). Suppose
furthermore that for any execution of Π, the total communication between Alice and Bob is at most C and

consists of at most R rounds. Then C ≥ Ω
(
m ·

(
m
n2

)1/3)
, and R ≥ Ω

((
m
n2

)1/3)
.

Remark 7.9 (Lower Bound for OT). Because any OT protocol directly induces a key agreement protocol
with identical round complexity and communication, the theorem directly extends to an identical lower
bound for OT.

Proof. We define the following transformation, which takes a protocol Π in the streaming model with CRS,
with number of rounds (upper bounded by) R, and outputs a protocol Π with at most R− 1 rounds, which
preserves correctness and security of Π in the streaming model with CRS with some small loss in parameters.
Looking ahead, such a transformation also works when starting with protocols without any CRS (but still
results in a protocol in the CRS model).

Let us first fix some notation (similar to the notation of Section 7.2). Let Π be a key agreement protocol
in the streaming model with CRS. Up to renaming Alice and Bob, Π has the following structure:

• crsGen→ crs: generates a CRS for Π. It will be convenient for us to separate crs into two parts, that
we call crss and crsM , respectively.

• stateGenA(crs)→ sA: on input crs, generates a state sA (for Alice),

• stateGenB(crs)→ sB : on input crs, generates a state sB (for Bob).

Every odd rounds 1 ≤ k ≤ R, consists of Alice sending a message to Bob:

(s
(k)
A ,M (i))← send

(k)
A (s

(i−1)
A )

and Bob computes

s
(k)
B ← receive

(k)
B (s

(k−1)
B ,M (k)),

and vice-versa for even rounds k, where Bob sends the message.
The new protocol Π is defined as follows. Let i, q be integers such that i ≤ q, to be determined later. We

will now simply denote by M the first message sent in Π (by Alice to Bob).
We distinguish two cases, depending on whether the first message M sent in Π is larger than m.

Case 1: |crsM |+ |M | ≤ m/2. This case is extremely similar to the associated case in the proof of Theo-
rem 7.4, the main difference being that the first message M is now moved in the new CRS as opposed to
generated by Bob in Π.

In more details, we define Π as follows:

• crsGen : Compute crs = (crss, crsM ) ← crsGen. Compute sA ← stateGenA(crs), and (s′A,M) ←
sendA(sA). Set crss = crss, crsM = (crsM‖M), and output

crs = (crss, crsM ).

• stateGenB(crs): On input crs = (crss, (crsM‖M)), set crs = (crss, crsM ). Generate sB ← stateGenB(crs),
and compute s′B ← receiveB(sB ,M). Output s′B .

• stateGenA(crs): On input crs = (crss, (crsM‖M)), set crs = (crss, crsM ). Generate sA ← stateGenA(crs),
and compute (s′A,M

′)← sendA(sA). If M = M ′, output s′A, otherwise repeat.

• For appropriate k ≤ (R − 1)/2, send
(2k+1)

B = send
(2k+2)
B , receive

(2k+1)

A = receive
(2k+2)
A , send

(2k+2)

A =

send
(2k+3)
A receive

(2k+2)

A = receive
(2k+3)
A .
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Case 2: |crsM |+ |M | > m/2.

• crsGen → crs: generate crs ← crsGen, along with sA ← stateGenA(crs) and sB,j ← stateGenB(crs) for
j ≤ i. Compute (s′A,M)← sendA(sA) and, for j ≤ i: s′B,j ← receiveB(sB,j ,M). Output:

crs =
(
crss =

(
s′B,1, . . . , s

′
B,i

)
, crsM = ∅

)
.

• stateGenA(crs)→ sA: on input crs, generate crs← crsGen, along with sA ← stateGenA(crs) and sB,j ←
stateGenB(crs) for j ≤ i. Compute (s′A,M) ← sendA(sA) and, for j ≤ i: s′B,j ← receiveB(sB,j ,M). If

crs =
(
s′B,1, . . . , s

′
B,i

)
, output

sA = s′A.

• stateGenB(ocrs) → sB : on input crs, generate crs ← crsGen, along with sA ← stateGenA(crs) and
sB,j ← stateGenB(crs) for j ≤ i + 1. Compute (s′A,M) ← sendA(sA) and, for j ≤ i + 1: s′B,j ←
receiveB(sB,j ,M). If crs =

(
s′B,1, . . . , s

′
B,i

)
, output

sB = s′B,i+1.

• For even 2 ≤ k ≤ R− 1: send
(k)

A (s′A) = send
(k+1)
A (s′A), receive

(k)

B (s′B ,M) = receive
(k+1)
B (s′B ,M),

• For odd 1 ≤ k ≤ R− 1: send
(k)

B (s′B) = send
(k+1)
B (s′B), receive

(k)

A (s′A,M) = receive
(k+1)
B (s′A,M).

We now analyze the cost of the transformation given the two cases. To do so, consider the following
algorithms Samp,Samp, which combines all of the algorithms crsGen, stateGenA, stateGenB .

• Samp: sample crs ← crsGen. Sample sA ← stateGenA(crs), and, for j ≤ i + 1, sB,j ← stateGenB(crs).
Output:

(crs, sA, sB,1, . . . , sB,i+1) .

• Samp: sample crs ← crsGen. Sample sB ← stateGenB(crs), and, for j ≤ i + 1, sA,j ← stateGenA(crs).
Output:

(crs, sB , sA,1, . . . , sA,i+1) .

The distribution of the states and transcripts in Π after Case 1 occurs is identically distributed as in Π.
We now argue that the transformation in Case 2 only slightly degrades security and correctness.

Claim 7.10. Suppose Samp is computable by a streaming algorithm using memory K1, and that Π is δ-

correct and (K2, ε)-secure with K2 ≥ K1 + in. Suppose that Case 2 occurs. Then Π is
(
δ −

√
n
q+1

)
-correct

and
(
K2 − in, ε−

√
n
q+1

)
-secure.

Proof. Let Adv be a (streaming) attack on Π with memory K3 and advantage ε′ = ε −
√

n
q+1 . We build a

(streaming) attack Adv on Π as follows.

• Adv :

1. On input crs, Adv calls Samp to generate (crs′, sA, sB,1, . . . , sB,i+1). While crs′ 6= crs, repeat the
above. Store (sB,1, . . . , sB,i).

2. When receiving the first message M for Π in a streaming manner, call in parallel i copies of
receiveB :

∀j ∈ [i], s′B,j ← receiveB(sB,j ,M),

and set:
crs := (s′B,1, . . . , s

′
B,i).
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3. Call Adv, with CRS crs and with every subsequent messages relayed in a streaming way from Π,
namely the jth streamed message of Π is the (j + 1)th streamed message of Π, for j ≤ R − 1.
Relay the output of Adv as the final output.

Let us first analyze the properties of Adv. Let K3 be the memory cost of Adv. Calling Samp in Step 1
costs memory K1 + in. Step 2 costs memory in, namely the cost of running i copies of Bob in parallel.
Step 3 costs memory K3 + in. So overall, Adv can be run with memory max(K1,K3) + in. Given that
K2 ≥ K1 + in, this is a contradiction as long as K3 ≤ K2− in. Furthermore, Adv processes all the messages
sent by Π in a streaming manner, as Adv does as well.

Next, we argue that the distribution (crs, s′A, s
′
B) of Alice and Bob in Π after receiving the first message

M (where s′A is defined implicitly), along with crs generated by Adv (Step 2 above), is within statistical

distance
√

n
q+1 to (crs, sA, sB) in Π where sB is sampled conditioned on crs, and sA is implicitly sampled

conditioned on crs and M . First, note that the distributions (crs, s′A) and (crs, sA) are identical by definition
of Π. Bounding the distance between the two distributions then follows similarly than in Section 7 using
Lemma 7.3 and Claim 7.6, which define the index i ∈ [q], and taking Y = (crs,M), X = s′A and Zj = s′B,j

for j ≤ i. This shows that if Π has correctness δ−
√

n
q+1 , and security ε−

√
n
q+1 , then Π has correctness at

least δ and security at least ε.

Next, we analyze the memory complexity of computing Samp. We do so by inheriting an efficient way of
implementing Samp given an efficient way to implement Samp.

Claim 7.11. Suppose Samp is computable by a streaming algorithm using memory K1. Then Samp is
computable by a streaming algorithm using memory

max ((2i+ 2)n+ max(K1, (i+ 2)n), m/2 + (i+ 2)n) .

Proof. Suppose Samp is computable using memory K1. We provide an alternative way to sample from the
distribution output by Samp with low memory, depending on whether Case 1 or Case 2 occurs, as follows:

• Case 1: |crsM |+ |M | ≤ m/2. We build Samp as follows:

1. Compute (crs, sA, (sB1
, . . . , sB,i+1))← Samp; parse crs = (crss, crsM ).

2. Compute (s′A,M)← sendA(sA) (in a streaming manner), and set crss = crss, crsM = (crsM‖M).

3. Compute, for j ≤ i+ 1, s′B,j ← receiveB(sB,j ,M).

4. Output (crs = (crss, crsM ), s′A, (s
′
B,1, . . . , s

′
B,i+1)).

• Case 2: |crsM |+ |M | > m/2. We construct Samp as follows:

1. Compute (crs, sA, (sB1
, . . . , sB,i+1)← Samp. Compute (s′A,M)← sendA(sA), and, for all j ∈ [i],

s′B,j ← receiveB(sB,j ,M). Store crss =
(
s′B,1, . . . , s

′
B,i

)
and set crsM = ∅.

2. For ` ∈ [q + 1], do the following:

– Sample fresh (crs, sA, (sB1
, . . . , sB,i+1))← Samp. Compute fresh (s′A,M)← sendA(sA), and,

for all j ∈ [i], s′B,j ← receiveB(sB,j ,M). If for all j ∈ [i], s′B,j = crsj , output sA,` = s′A.
Otherwise repeat.

3. Sample fresh (crs, sA, (sB1 , . . . , sB,i+1)) ← Samp. Compute fresh (s′A,M) ← sendA(sA), and, for
all i ∈ [q + 1], s′B,j ← receiveB(sB,j ,M). If for all j ∈ [i], s′B,j = crsj , output sB = s′B,i+1.
Otherwise repeat.

4. Output (crs, (sA,1, . . . , sA,i+1) , sB).
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In Case 1, the memory cost of Samp is max(K1,m/2 + (i + 2)n), where (i + 2)n bounds the cost of
implementing the send and receive (in a streaming manner) (Step 2,3) while updating crs by storing M .

In Case 2, Step 1 uses memory max(K1, (i+1)n). Every loop of Step 2 uses memory in+max(K1, (i+1)n).
Every loop of Step 3 uses memory in+ max(K1, (i+ 2)n). Noting that all the quantities above already take
into account crs output by Samp, the output additionally takes (i+ 2)n memory.

Overall, Samp can be implemented using memory max ((2i+ 2)n+ max(K1, (i+ 2)n),m/2 + (i+ 2)n).

To finish the proof of Theorem 7.8, we apply the transformation repeatedly R times. Defining the
intermediate protocols Π requires knowledge of the special index i ∈ [q] (where q is still to be determined)
given by Lemma 7.3 Claim 7.6 for application of the transformation; our attack receives these indices as
non-uniform advice (which can be stored using memory R log q).

Repeatedly applying Claim 7.11 gives that the sampling algorithm Samp associated with the final protocol
without interaction can be implemented with memory K1 = max(R(2q+ 2)n,m/2 + qn), using the fact that
the initial R-round protocol Π has both an empty CRS and empty starting states for Alice and Bob.

Then, note that any protocol in the CRS without interaction has a streaming attack with memory n and
guessing probability δ (where δ is the correctness of the protocol without interaction), which corresponds to
either running the Alice or Bob algorithm. Therefore, applying Claim 7.10 repeatedly R times gives that
there is a generic attack on Π with memory max(R(2q + 2)n,m/2 + qn) + Rqn and guessing probability

δ −R
√

n
q+1 . Therefore, for an adversary with memory m, setting

q = Θ
( m
Rn

)
gives that the original Π can only be secure if:

R

√
n

q + 1
= Ω

(
R3/2

√
n2

m

)
≥ Ω(1),

that is

R ≥ Ω

((m
n2

)1/3
)
.

Turning to communication, applying the transformation with Case 1 incurs no overhead in the memory
complexity of sample (up to taking a maximum of the cost with m/2 + (q + 2)n) and no loss in advantage.
Observe that the number of applications of Case 2 is bounded by O(C/m): this is because the combined
length of crsM and the entire transcript decreases by at least m/2 at every application of the transformation
with Case 2, and is left unchanged at every application with Case 1. This yields:

C ≥ Ω

(
m ·

(m
n2

)1/3
)
.
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