Proactive Two-Party Signatures for User Authentication

Antonio Nicolosi, Maxwell Krohn, Yevgeniy Dodis, and Davidiazieres
NYU Department of Computer Science
{ni col osi, max, dodi s, dnm} @s. nyu. edu

Abstract may have the right to initiate signatures of arbitrary mes-
We study proactive two-party signature schemes in the con-sages, while a server’s role is simply to approve and log
text of user authentication. A proactive two-party signa- what has been signed. In such settings, an attacker may gain
ture schemeR2SS) allows two parties—the client and the fruitful advantage from the use of even a single key share,
server—ijointly to produce signatures and periodicallyge r unless some separate mechanism is used for mutual authen-
fresh their sharing of the secret key. The signature genera-tication of the two parties. Finally, ordinary two-partysi
tion remains secure as long as both parties are not compro-natures offer no way to transfer ownership of a key share
mised between successive refreshes. We construct the fir§tom one party to another—as the old owner could neglect
such proactive scheme based on the discrete log assumpto erase the share it should no longer be storing.
tion by efficiently transforming Schnorr’s popular signiegtu Proactive digital signatures allow private key shares to be
scheme into &2SS. We also extend our technique to the updated or “refreshed” in such a way that old key shares
signature scheme of Guillou and Quisquater (GQ), provid- cannot be combined with new shares to sign messages or
ing two practical and efficienP2SSs that can be proven recover the private key. While a number of proactive signa-
secure in the random oracle model under standard discreteture protocols have been constructed, most existing proto-
log or RSA assumptions. cols are threshold schemes designed for a variable number
We demonstrate the usefulnessR#SSs (as well as of parties. Because these threshold schemes require a ma-
our specific constructions) with a new user authentication jority of participants to be honest, they do not scale down to
mechanism for the Self-certifying File System (SFS) [28]. only two parties.
Based on a neWw2SS we call 2Schnorr, the new SFS au- This paper describes 2Schnorr, a proactive signature pro-
thentication mechanism lets users register the same publictocol specifically designed for two parties. 2Schnorr is an
key in many different administrative realms, yet still reeo efficient protocol that is easy to implement and produces
easily if their passwords are compromised. Moreover, an digital signatures compatible with the Schnorr [32] signha-
audit trail kept by a secure authentication server tellsrase ture scheme. In the random-oracle model, a three-message
exactly what file servers an attacker may have accessed—version of 2Schnorr is provably secure against existential
including even accounts the user may have forgotten aboutforgeries assuming only that discrete logs are hard. For ap-
plications with bounded concurrency, such as user authen-
tication, a two-message version can also be proven secure
under the stronger one-more-discrete-log assumption. The
1. Introduction technique we describe is equally applicable to the Guillou-
Quisquater (GQ) [20] signature scheme, producing two-
Until now, little attention has been givenpooactive two- and three-message 2GQ protocols based on the RSA and
party signature schemg¢B2SSs). In an ordinary two-party one-more-RSA inversion problems, respectively. We will
signature scheme, a private key is split between two parties concentrate on 2Schnorr, however, as 2GQ is completely
both of whom must approve and participate in the signing analogous.
of messages. An attacker must compromise both parties to P2SS signatures have a natural application to the prob-
forge signatures on its own. However, the attacker has thelem of user authentication, particularly for settings with
entire lifetime of the public key to compromise each of the many administrative realms. Within a large university, for
two parties. Moreover, particularly in the two-party case, example, it is not uncommon for a user to have five or six
the parties’ roles may be asymmetric—for instance, a client different shell accounts on machines in separate research
groups. On the web, users typically establish accounts at
This research was sponsored by the Defense Advanced Res@ajects dozens of different sites over time. Under such circum-

Agency (DARPA) and the Space and Naval Warfare Systems C&8#e gtances, a user whose private key or other credentials get
Diego, under contract N66001-00-1-8927.

compromised is unlikely to remember every place at which simultaneously access servers in multiple realms. The SFS
he needs to update his login information. Some of the sitesclient itself has no notion of belonging to a particular neal
may even be unavailable at the time the user tries to updatgIn fact, SFS has no client-side configuration options that
them, at which point the user may just give up on the prob- would differentiate one client from another.) Users simply
lem until the next time he needs one of the accounts. access files based on whatever realms they belong to. If a
Using 2Schnorr, we built a user-authentication mecha- user accesses a file on a server the client has never heard of,
nism that addresses these challenges for SFS [28]. SFS ian “automounting” mechanism causes the file to spring into
a secure, global file system in which users gain transparengexistence before the access completes.
access to files from many different administrative realms SFS users have public signature keys which they register
after logging in with a single password. With the new au- with any realms in which they have accounts. User authen-
thentication mechanism, every user has an ordinary Schnortication consists of digitally signing an authenticatias r
public signature key on file wherever the user has an ac-quest with the corresponding private key. Each user runs a
count. The corresponding private key is split between the program sfsagentthat attempts to authenticate her to every
user and an authentication server of the user’s choiceelf th file server she accesses. In this way, by registering the same
user’s password is ever compromised, he can immediatelypublic key in every administrative realm, a user can trans-
block further unauthorized access to all of his accounts by parently access files from multiple realms without worrying
updating his password and private key halves on this sin-about administrative boundaries. Unfortunately, if a lsser
gle authentication server. Moreover, from the server'sJog private key is ever compromised, the user may have to up-
the user can determine exactly what servers an attacker hadate her public key in a large number of realms. The mech-
accessed, where on the network those accesses came froranism described in this paper makes it considerably more
and whether the attacker has changed the user’s login infordifficult to compromise a user’s key.
mation at any sites. Thus, even accounts the user may have SFS comes bundled with a remote execution utifigy,
forgotten about will be brought back to his attention if ther with similar functionality to the populassh[37]. Between
is any risk of an attacker having accessed them. the file system andex, any SFS user authentication mech-
The next section describes SFS and related work in useranism can cover a large fraction of the day-to-day network
authentication and proactive signature schemes. Section &ccesses people make to their servers.
describes the 2Schnorr protocol and gives a proof of secu-
rity. Section 4 describes the implementation of our user- 2.2. User Authentication
authentication mechanism in SFS. Section 5 reports on
the performance of 2Schnorr and our user-authentication
scheme. Section 6 concludes.

Of widely used network file systems, SFS’s goals are
probably most similar to those of AFS [22]. AFS is a file
system designed to work over the wide-area network. AFS
2. Related Work has been particularly successful in large organizatiores—f
instance permitting the user community of an entire univer-

A vast number of systems have dealt with the problem sity to share access to the same file systems. Unfortunately,
of user authentication. This section describes SFS and theaFs does not adapt as well to settings with many differ-

motivation for a new SFS user authentication mechanism.ent administrative realms. AFS's security is based on the

We then highlighta few other systems that have tackled usercentralized Kerberos [33] authentication system in which a
authentication on a large scale. Finally, we discuss rélate central authority manages all of the accounts and servers in
work in cryptography. a given administrative realm. Cross-realm authentication
. possible, but requires cooperation from realm administra-

2.1. SFS Overview tors. Thus, users must typically type a separate password

SFS is a secure network file system designed for decen+or each realm in which they wish to access servers. Since
tralized control and easy sharing of files across organiza-the central Kerberos server stores a secret that is efédgtiv
tional boundaries. In SFS’s administrative model, serversequivalent to the user’s password, it is inadvisable foraise
are grouped into administrativealmsthat recognize the to have the same password in different Kerberos realms.
same set of authorized users. Realms can be as large as The SSH remote login tool supports a mode of au-
an entire campus or as small as a single server behind dhentication based on public keys. The user registers
DSL line. While a simple mechanism allows one realm to his private key with an agent process on the local ma-
“import” or recognize users from another, realms in gen- chine, and stores the corresponding public key in a file
eral need not trust each other, coordinate with each other, 0. ssh/ aut hori zed keys in his home directory on the
even know of each other’s existence. server. SSH public key authentication is very convenient.

Each SFS user may have accounts in many different ad-Users therefore typically end up copying thaiut ho-
ministrative realms. From a single client machine, usens ca ri zed_keys file to all of their different accounts. Unfor-

tunately, changing public keys requires many accounts to becompatible with existing one-party algorithms. Such two-
updated, and users are likely to forget to update accounts orparty schemes allow systems to interoperate with verifiers
infrequently used machines. that cannot be updated to understand new signature types.
Perhaps most relevantR2SS are the various hardware- While 2Schnorr and 2GQ are the first two-party schemes
based user-authentication systems. As smart cards and otheompatible with Schnorr and GQ, they are hardly the first
physical security devices gain more computational power, i schemes to interoperate with standard one-party algosithm
will become increasingly practical for them to compute dig- Bellare and Sanhdu [6] and MacKenzie and Reiter [26] con-
ital signatures. Such configurations will be even more desir sider several flavors of two-party generation of the RSA
able if they can keep an audit trail of all signed messages in(full domain hash) signatures (building on some previous
case the device is stolen or otherwise compromiB&ES less formal work, e.g. [10, 18]). The schemes are simple,
schemes enable such scenarios, while additionally alipwin elegant, and in most cases reducible to the basic RSA as-
users to recover from compromised devices without chang-sumption. MacKenzie and Reiter [27] also give a protocol
ing their public keys. To compromise a user’s public key fortwo-party generation of DSA signatures [16]. Two-party
permanently, an attacker would need to break the user’'ssignatures can also be viewed as a special case of general
hardware device (or steal a backup of the user’s steard) secure two-party computation [36].
compromise the centralized signature server before thre use Resisting compromise Two-party signatures are also re-

had an opportunity to recover from the first event. lated to the notion okey-insulated signature schenjés].
In this model, a server helps the client update its secret key
2.3. Related Cryptography from period to period. Though public keys remain the same

across updates, signatures reflect the period in which they

Related work in cryptography includes proagtwe CIYP- \vere created. Thus, a verifier can reject signatures praduce
tosystems, two-party signature schemes, and in particulas, o iods during which the client was known to be compro-

sever_al speuahze:jj two-party &gga}urefsdch(_ames destgne_d mised. Within a given period, the client performs all signa-
remain Secure under various models of device Compromis€y,, a5 on its own. This has the advantage of not requiring

Proactive S'Q”at“res- Basic multi-party S|gnature the server’s cooperation on each signature, but for our ap-
schemes remain secure only as Ipng as a sufficient num'plication we specificallyvant all signatures to go through
ber of parties remain uncompromised. Unfortunately, the o server for approval and logging. Involving the server on
longer the lifetime of a public key, the more realistic the 5.1, ignature also allows for immediate recovery from a

threat that enough parties will be compromised to rendercompromised password, without the need to notify all veri-
the public key completely insecureRroactive cryptosys- fiers of compromised periods

temg[29, 21] address the problem by allowing a potentially Recent work of Itkis and Reyzin [24] on intrusion-

unboun?er::i nurr'?ber of gomlprom|seT, sc; Iong:fl_ asl'l no;[] 100 esilient signatures combines the properties of key-atedl
many of them happen simultaneously. Speciiically, there o,y o q4ctive signatures. However, as in the key insulated

is an efficient sharapdateprotocol which allows parties to), qe| the server only helps the client update its secret key
refresh the way in which they share the secret I_<ey. As Iongfrom one time-period to the next; all the signing is done
as a bounded number of servers are compromised betweeBy the client alone. In th©2SS model, the actual secret

any two successive refreshes, the system remains secure. does not change from one time period to the next; only the
Most proactive signatures are threshold schemes, WhiChsharing of the secret changes

assume an honest majority of players. Such schemes only The most closely related work was proposed in [25],

functionin the case of > 3 players. Infact, most threshold where MacKenzie and Reiter extend their schemes

techniques and even definitions (e.g., robustness) are inapfrom [26] to allow for delegationof password-checking

plicable to the.two-party setting. - . services. Their paper describes a protocol for a novel
Two—party_ signature schemc_—zs. Bwldmg an ordinary hardware-based user-authentication mechanism. In their
two-party signature scheme Is trivial. (_3|ven a SECUre msdel, the server is almost stateless, the device contains
one-party S|gnf_;1ture algor|thn_1, let the client and server a password protected private key, yet an attacker who cap-
each gg?erate Its own key pair—call thed., Kc_1> and tures the device cannot mount an off-line password guessing
<Ks’,KS), respectlvely. The two-party public key .then attack. By contrast, the authentication system described i
consists of the two pgbhc key(s.Kc, Ky). A_ two-party SIg- this paper assumes a stateful server and is designed to work
nature of a message just consists of two independent sig- i, stateless clients—as in the case of a user with only a

; 1 —1 ; ;
na;[urss OWdUS'”géfc hamlj'K s Lhehf'rSt 5|gndaturle <l:)anh password who wants to sit down at a new workstation and
only be produced by the client, and the second only by the " _c< a11 of her files.

SErver.)) Embedded in the MacKenzie and Reiter protocol is ac-
Most previous work on two-party signatures has therefore tually a fully general-purposB2SS version of RSA. We
focused on the problem of generating signatures that are

believe that their RSA algorithm could be used to build a each time; disclosing or reusing the valugkofould allow
user-authentication system similar to the one described inrecovery of the secret key.
this paper. Similarly, our 2Schnorr and 2GQ schemes could To check whether a givefr, s) is indeed a signature for
replace RSA within their protocols. We note, however, that some messaga, it suffices to know the corresponding pub-
in the case of RSA, proactivization costs some efficiency lic key (p, ¢, g, y) and verify thaty®* = ry® mod p, where
because of the need to employ techniques from [17] to sharee = H (m, r).
the secret exponent over a much larger modulus ian. 2Schnorr is a simple two-party proactive variation of the
In both 2Schnorr and 2GQ, the share update protocol isabove scheme. We call the two parties thient and the
very simple: a client simply sends a random element of anserver We assume the client is the party that wants the
appropriate group to the server over a secure channel. Ofligital signature—it starts with the message and ends with
course, this does not mean that proactivization is genyerall the signature. The server simply wants to log or approve all
simple in the two-party case. Indeed, there seems to be nsigned messages.
way to “proactivize” the trivial double signature two-part The main issue in generalizing Schnorr to two parties is
scheme. The question génericproactive two-party signa- that if one party, say the server, could control the choice of
turesis not as trivial as in the non-proactive case. Otlarth one of the secret quantitiesor k, or their public counter-
the two-party RSA scheme in [25], previous two-party sig- partsy andr, then the server would gain an advantage over
natures do not appear to “proactivize” in as simple a mannerthe client and the resulting scheme might not be secure.

as 2Schnorr and 2GQ. Fortunately, the parties need only agree on random val-
ues, a task usually referred to@asin flipping[8]. This can
3. The 2Schnorr Signing Protocol be implemented by first having each party choose a random

share, then exchanging and combining the shares to produce

Trlns section spef:lflesllt(he ESchno(;r S('jgg'nr? protocol and o 4qreed upon value. Of course, the two parties might not
analyzes its security. Like the standard Schnorr signature,g, o their shares simultaneously. To prevent the second

schemh_e,hZfSchTworr rellefs ona c_lrlyptograpth r;]ash fulnkCt'on’party, say the server, from choosing its share after legrnin
H, (;N Ic orl the proots we wi assume benaves Ih'e 2 the client's, the server can first “commit” to its share, then
random oracle (a common assumption in cryptographic re'“open” the commitment upon receiving the client's share.

sgarch, first formalized.in [4]. Bgfore going into the de- The simplest commitment scheme for a random share
tails of 2Schnorr, we briefly describe the standard SchnorriS to revealGi(r) for some hash functiot” that behaves

scheme. :) like a random oracle. The client cannot learn anything from
The S_Chn_orr signature scheme_ [31] was f|rst_ proposed aSG(r), but will be able to check’s consistency at the end
an app!|cat|oq of the Fiat-Shamir trgnsformaﬂgn [14]' It of the exchange(G need not be a random oracle, however.
can b.e instantiated on any groq)of prime order in which Any “extractable” commitment scheme will do (for instance
the discrete log problem is believed to be hard._ S_Chnorr“committing” encryption [12], which can be implemented
has_been proven _secure_under the stz_;mdard notienisf without random oracles). However, since Schnorr relies on
tential unfqrgeabmty against an adaptive chosen-meesag random oracleél anyway,G might as well be a random or-
attack[19] in the Random Oracle MOd?I‘ The security has acle, too. Note further that andH take inputs of different
been analyzed, among other places, in [32, 30]. For COI"'Iengths, and thus will never be evaluated on the same in-

creteness, we will consider cyclic subgroup&gfiforlarge ;" An implementation can therefore use the same crypto-

primesp) of prime orden. hic hash function— A-1 [15]—for both H and
The key generation algorithm producestwolargeprimesg_ap 'c hash function—e.g3H [15}—for bo an

p andgq such thay|(p — 1), and an element in Z;, of or-

o i We remark that the use of extractable commitment to
derq. Then it picks a random elementin Z*, and sets

Y h blic kev i Hie th chose randomness in Schnorr and GQ generalizes to other
y = g* mod p. The public key iSp, ¢, g,y), while the cor-yhapilistic signature schemes in which the security re-

responding private key is. The group pa_rametepg 49 sult depends on honestly chosen public randomness (e.g.,
can be safely shared between a community of users, so thalBSS [5], PFDH [11])

y by itself can be thought of as the public key correspond-
ing to private keyr. Schnorr additionally relies on a cryp-
tographic hash functiorf/, mapping arbitrary strings to el-
ements ofZ;. We will assumeH has been specified as a
parameter of the scheme.

To sign a message, the holder of the private keypicks
arandomk € Zj and sets = g" mod p. It then computes
e = H(m,r), s = k+ ze mod ¢, and outputs the signature
(r,s). Note thatk must be kept secret and chosen anew

Key generation. A 2Schnorr public key is just an ordi-
nary Schnorr public keyp, ¢,9,y). However, the corre-
sponding Schnorr private key, is split between two key
halvesz. andz,, such thatt = z. + z, (mod ¢). A pub-
lic 2Schnorr key can be centrally generated along with two
halves for the corresponding private key as follows:

q < alarge prime

p < alarger prime such that(p — 1)

g < an element oy of ordergq

z.,xs < random elements &,

y = gt mod p

The two private key halves are andz,.
For distributed key generation between the client and
server, the client chooses ¢, g, andz., computeg, =
g*< mod p, and sends the servep,q,g,G(y.)}. The
server then pickg, and sends the client, = ¢g** mod p.
Finally, the client revealg., both parties computg =
y.ys mod p, and the public key igp,q, g,y). To prevent
the client from (maliciously) choosing “bad” group param-
eters [7], the server may require the client to prove it has
generated the valugs ¢, g according to some specific al-
gorithm. In the implementation described in Section 4, we
use the method proposed by the NIST in [16], for which
such a proof can be easily provided.
Signature generation. To sign a message, the client

and the server each select a random eleme#f,etk, for
the client,k, for the server. The two parties then exchange

ke &7, ks &7,
re = gk mod p rs = g mod p
r = r.rs mod p e = H(m,r)
Se = ke +x.emodq ss = ks + xse mod g
s = S. + ss mod q
o G(rs)
. ® G(ry),re,m
Client (r). e, - |Server
® r.rys
-/ -/

Figure 1. 2Schnorr signature protocol. m is the
message being signed. k. is chosen by the
client. ks is chosen by the server. The final sig-
nature is (r, s).

the three messages shown in Figure 1. First the server picks

at random an ephemeral private kKeyfrom Z*, computes
the corresponding ephemeral public key= g¢*s mod p,
and send€7(r;) (messagel). Similarly, the client com-
putes its ephemeral key pdit.,r.) and sends the second
flow of the protocol, consisting of the valdé(r;) it got in
messagd, its ephemeral public key., and the message
m it wishes to sign. Upon receiving messa&jeghe server
checks thatr. belongs to the group specified yq and

g by verifying the equality-? mod p Z 1, then computes
r = r.rsmodp, e = H(m,r), ss = ks + zse mod g,
and replies with messade which reveals the value of..
The client computeé&/(r,;) and verifies that it matches the
value received in messade if so, it verifiesr, and com-
putess. in a way analogous to that described abovesfor
Finally, the client sets = s. + s, mod ¢, and obtains the
pair (r, s)—an ordinary Schnorr signature.

The protocol in Figure 1 requires three messages. The

first message can be precomputed and sent to the client in

advance, reducing network latency to a single round trip

from the time the client receives the message to be signed
As discussed later, however, a system with a constant bound
on the number of concurrent signatures requested by the 'IE

client can simply eliminate the first message of the proto-
col (and remove7(r,) from the second message). The re-

sulting two-message protocol may be more convenient to

implement.

Signature verification. Signature verification is identical
to Schnorr. Given a public ke{p, ¢, g, y), a messagen,
and a signaturér, s), the signature is valid if and only if
g° = ry® (mod p), wheree = H(m,r). It can be easily

checked that signatures obtained from an honest executioqrom the additive grouz
q

of the signing protocol do indeed verify correctly.

Key update. The aim of key updates is to tolerate multi-
ple compromises of each party. Clearly, any adversary that
compromises both parties between two successive key up-
dates will learn the entire state of the system and completel
break the security of the public key. However, the system
should be able to withstand multiple break-ins as long as
onehonest key updateappens in between.

Key updates are considerably simpler in the two-party
case than in general proactive signatures. Since eithgr par
can already destroy the private key by erasing its own share,
there is no need to preserve the private key when the client
or server misbehaves. Further simplifying the problem,
our update protocol assumes a secure channel between the
client and server, because our system already requires such
a channel for other purposes. (Otherwise, the client and
server could use a 2Schnorr signature as part of negotiating
a secure channel.)

To update the key halves andz,, the client picks a ran-
domd € Z, and sends it to the server over a secure chan-
nel. The new key halves, andz!, are simply computed as:

xl, = s + 6 mod ¢

his update algorithm is not only simple, but also quite
effective in completely re-randomizing the state of the sys
tem, thus simplifying the arguments for the security proofs
in the following subsections.

GQ signatures. The Schnorr signature scheme is often
studied together with the GQ scheme, its “twin” based on
the RSA assumption. The two can be thought of as varia-
tions of the same basic theme. Semantically, the difference
between the two is that in Schnorr, all secrets are drawn
and their public counterparts

2!, = x. — 6 mod ¢

are obtained by exponentiation on a fixed base; with GQ, ble, sincer, is uniformly distributed in the group of order
private data is instead taken from the multiplicative group generated by.

Z7 (whereN is the product of two big primes) and public When A asks us to endorse a signature with query
quantities are obtained by exponentiating to a fixed expo-{G(rs),r.,m}, we compute: = r.rs mod p, and fix the
nent. Syntactically, this is equivalent to converting atla random oracle value of = H(m,r) such thatd (m,r) =
tions in Schnorr into multiplications, and all multiplicans —p (mod ¢q). Notice that the probability of having al-
(involving secrets) into exponentiations. A mechanical ap ready set this value due to a previous hash queryito
plication of such conversion rules to our 2Schnorr protocol is negligible, since up to this point; is a random ele-
(described below) yields the 2GQ protocol, which enjoys ment unknown toA (A just sawG(rs), a random value
analogous security guarantees based on the RSA assumphat doesn’t not leak any information abotf) and sor

tion. is also uniformly distributed in the group generatedgoy
We sets, = a + Ae mod ¢, and return{r,, s;}. If A was
3.1. Security against Malicious Clients talking to an ordinary server, the server would reply with

ss = ks + (xs + A)e mod ¢, wherek; is the discrete log of
rs andx, is the discrete log ofs. Even though we cannot
computek, andzx,, we are still computing the correct value
of s, by returninga + Ae:

Theorem 1 If a malicious client can forge a signature with-

out the approval of the server in probabilistic polynomial
time (PPT) with non-negligible probability, then we can
also compute discrete logs in PPT with non-negligible prob-

ability. 9*y? = rs (mod p)
Proof. Let p, ¢, andg be as in Schnorr public keys. Let o -3
_ : 9* = ry;” (mod p)
y, in the group generated ky be an element of which we . 3
wish to compute the discrete log. Letbe an adversary 9% = g7 (9") (mod p)
that behaves like a 2Schnorr client but then outputs a forged g = g"g¢®° (mod p)
signature (which the server did not approve) in PPT (with a = ks+ase (mod q)
non-negligible probability). o
Choose a random element € Z,. Lety. = ¢”< mod p atle = ks +(zs+A)e (modg)
andy, = yy, ' mod p. Give A public key(p,q,g,y) and Because our responsesAts oracle queries are indistin-
private keyz.. Now askA to forge a signature. guishable from those of a real server and random oradles,

A can make four types of oracle query we must respond i oytput with non-negligible probability some message
to. It can make random oracle queries to the hash func-4,q forged signature, (r,).
tions H andG. It can make update queries to refresh the \ne can now rewindd’s state to the first time it queried
key halves. It can ask the server to start a signature (correihe random oracle for — H(m,r), and return some new
sponding to messadein the protoco_l.) Finally, it can_ask randomly chosen value’ # e. Such rewinding argu-
_the server to endorse a signature (i.e., return the third flowant is quite common in analyzing the security of similar
in the protocol.) _ _ schemes [23, 3, 2]: intuitively, sincé only makes poly-

Without loss of generality, we will assume throughout ,5mially many oracle queries antlis statistically indistin-
this paper thatl does not ask for the same hash query to the gishaple from, there is a non-negligible probability that
same oracle twiceA could simply store previously com- 4 || again forge a signature for the sameandr, yield-
puted vaI_ues in a table). All oracle querles@c_)are an- ing a second signature, s) for m, with s’ # s. The exact
swered with random values. As for oracle queriesl/tonve probabilistic analysis is based on tloeking lemmaof [30],

reply to them with random but consistent answers: however, g js quite similar to the one for the standard Schnorr sig-
during certain other queries (described below), we set theature scheme.

value of the random oracld on certain inputs to specific, By the verification propertyr, s, e) and(r, s', ') satisfy
though uniformly distributed, values. the following two congruences:
We keep a running total), of all the update requests
makes. Initially,A = 0, but for each update requestwe g° = rg" (mod p)
add) to A (modg). 5 ze'

. = d

When A makes a start signature query, we choose two _g T "9 (mod p)

random numbers, 3 € Z, and compute, = g°y? mod By memberwise division of the above congruences,
) s

p. We now fix some random output for the value(@fr;), we can compute, the discrete log of, as follows:
and return this tod. Notice thatA cannot learn anything gsfs' = g:c(efe')
aboutr, from the random valué&(r,), unless it has pre-

- s—s = wle—¢) (mod q)
viously asked for the hash of to the oracle?; however, . .
the chance ofl having already asked fa#(r,) is negligi- v = (s—s)(e—€)" modg 1

(mod p)

3.2. Security against Malicious Servers 3.3. Security against Mobile Adversaries

Theorem 2 If a malicious server can forge a signature N Practice, an attacker may compromise both the client
without the client’s help in PPT with non-negligible prob- and the server, as long as there is an honest refresh be-
ability, then we can also compute discrete logs in PPT with tWeen two successive compromises. Such a mobile adver-
non-negligible probability. sary can be modeled in two different ways, depending on
Proof. Letp, ¢, g, y be a challenge in which we need to find Whether it sees any commitment to the valyeandy;. If,

the discrete log of). Let A be an adversary that acts as for example, messadg# of a signature is sent in cleartext

a 2Schnorr server and can forge signatures. We choose &Ver the network and the adversary subsequently compro-

randomz, € Z, and computey, = g% mod p andy, = mises either the client or the server before an intervening
yy7 mod p. Give A public key(p, ¢, g, y) and private key update, thenlthe adversary can verify that = ry¢ or
. . Ss —1\e
xs, and ask it to forge a signature. g% =rs(yy.).) o
As before,A can make four types of oracle query: ran- N the model we consider here, the adversary is slightly

dom oracle queries (t& or to G), update queries, asking Weaker and cannot see the valuesrpfand s, commu-
the client to initiate the signature of a particular message Nicated when neither party has been compromised. This
and asking the client to finish computing the signature of a Model was inspired by our implementation, which always
message for which an initiate query was previously done. €NCrypts traffic between the client and server. However,

The two random oracles are treated as before. For updatdnere is a small subtlety—the adversary may capture en-

queries, we are now even allowed to choose aranflom- Crypted copies of message and later obtain the session
selves: since the client refreshes its key half by subtrgcti k€Y for decrypting them when it compromises the client
5, hereA is defined as the running total of the values o or server. Even if the client and server qwck!y erase any
for each update (mog). kgys used to encrypt messages to ga_mh other, in reality there
When A asks to initiate the protocol, we choose two ran- Will be a small window of vulnerability after the message
dom numbersy, 8 € Z, and compute, = g°y° mod p. is trans_mltted and before the key is eras_ed. For this reason,
Notice that we allowA to choose the message it wants we believe that the ;tronger adversary is actuglly .the more
to sign, but still, A must provide its “commitment((r,). useful model. We will consider such adversaries in future
SinceG behaves like a random oraclé, must have asked work.])
for the value ofG(r-,)—otherwise it will have only a negli- One convenient property of the model with weaker ad-

gible chance of guessing the correct value needed to openversaries is that a simulator can always assume a key is re-
in the third flow of the protocol, the commitment sent in the fréshed right before a party is compromised—the adversary
first message. Hence, upon receiving an initiate query, weWill have no way to notice thaf. andy, have just changed.

can perform a simple lookup f@# (r,) in the table contain- That, in turn, means that one can assume without loss of

ing the pairs(query, answerfor all the oracle queries that ~ 9enerality that the adversary always compromises eitleer th

A has done t@ so fart Then, we compute = 7.5 mod p client or the server, which reduces the number of cases to
and fix the random oracle value ef= H (m,r) such that consider. (If there is a period when neither is compromised,

? .
H(m,r) = —f(mod q): e is still uniformly distributed in we can pretend the adversary has asked to compromise, say,
Z, since we chosg at random. the client; if the adversary then wants to compromise the

The complete signature queries are handled virtually S€Tver, we pretend it also asks for a key refresh.)
identically to the proof of Theorem 1, reversing thand ~ 1heorem 3 The three-message 2Schnorr protocol is secure
¢ subscripts in variables. The only difference is that when against an adversary that selectively compromises both the

completing a signature, we must retun s) instead of client and the server, provided an honest share update has
(re,s.). r ands are easy to compute given, r, se, ss, occurred before the other party has been compromised.

all of which we have. Proof. To prove the theorem, we might assume that if a

Since the interaction ofl with the oracles thus simulated Mobile PPT adversany could folrge a signature, then we
is indistinguishable from a real attack on the 2Schnorr could construct a new algoritha! that could compute dis-
signing protocol, with non-negligible probabilitd will crete logs with non-negligible probability. In this caseyo
forge a signaturdr, s) for a messagen that the client construction ofd” would involve answeringl’s random or-
didn’t finish signing. Therefore, using the same technique @clé queries, update queries, server initiation queried, a

as in Theorem 1, we can compute the discrete logwith queries corresponding to three flows of the protocol. In
non-negligible probability. B other words, this newAd’ would combine the techniques

in Theorems 1 and 2. To avoid repetition of previous ar-
guments, we instead use a higher-level approach and prove
1As we mentioned, we can replacgby any “extractable” commitment thatthe existen_ce of a PPT mobile forger contradicts at leas
which would also allow us to recovet, in our simulation. one of the previous two theorems.

Suppose that by repeatedly compromising the client and
server (while always permitting an honest key update in
between), some PPT adversatyis able to forge signa-
tures with non-negligible probability. If A outputs forgery
m, (r,s), it must with all but negligible probability have
queried the random oracle fer= H(m,r). Call this the
crucial query. Since the client and server can never be si-
multaneously compromised, one (or both) of them will have
probability > 1/2 — negl of being uncompromised during
crucial queries. We distinguish the two cases.

Case 1. Suppose that at least half of the timé&,makes
crucial queries whilenot in control of the server In
other words, with probabilitys/2, after several (non-
simultaneous) compromises of both partidssuccessfully
forges a signaturg-, s) for some message after querying
the oracle fore = H(m,r) at a time when the server was
not compromised.

We now show how to construct a malicious clieAt
that, usingA as a black box, forges signatures without the
server’s approval with (non-negligible) probability2.

A’ is given the public key PK= (p, ¢, g,y), the client’s
sharer., and access to hash oracEsandG and to a server
oracle willing to engage in as many protocol runsAs
wishes. In order to forge a signaturé; runs A, giving
it public key PK. Each timel asks for access to a compro-
mised client, A’ givesA its own secret shate. (which must
have been refreshed since the last server compromige).
then responds to any oracle queries frdnby simply for-
warding them to the real servei, andG oracles.

When A asks to compromise the servdf,must give it
some share; and then emulate the client in a manner that
will be indistinguishable from a real client. Singé cannot
compromise the server to learn the real value: gfit in-
stead employs the technique from Theoremi2generates
arandome; € Z, and gives this;; to A. A’ then replies to
A’s H-oracle queries with carefully prepared (though still
uniformly distributed) values, instead of returning vadue
from the real hash oraclé. Because our coin flipping
protocol ensures is random, there is only negligible prob-
ability of A using a value off (m,r) it requested before
compromising the server.

N N
(1) Tey M _

Client Server
@ .15

— —

Figure 2. A two-message signature protocol, for
applications with a bounded number of concur-
rent signature requests from the client. The con-
stants are computed as in Figure 1.

But the fact thatd’ forges signatures with non-negligible
probability while compromising only the client contradict
Theorem 1.
Case 2.Suppose now that is most successful in its forgery
when it asks for the relevant hash vatue H (mn, r) while
not in control of the client We can then construct a mali-
cious serverd” that, usingA as a black box, again forges a
signature with probabilitg /2 — negl. The construction is
analogous to Case 1, where we “swap” the techniques used
to handled’s compromise requestsl” uses the simulation
of Theorem 1 whem breaks into the client, while it gives
Az, and returns real values é&f whenA compromises the
server. This leads to a contradiction of Theorem 2.

Since at least one of the two cases above must occur at
least half of the time, it follows that 2Schnorr is secure
against mobile adversaries.]

3.4. Two-Message Protocol

In certain cases, it may be desirable to compute signa-
tures with only two messages. If there is a constant bound
on the number of concurrent signatures a client requests, th
first message can be eliminated (and the second flow conse-
quently modified removing the hash valGér;)), yielding
the simpler two-message protocol in Figure 2.

From Theorem 1, we see that the two-message protocol

Since we are assuming an honest key update will occuris secure against a malicious client. Indeed, in this case th
between any two consecutive break-ins, and since each timenalicious client is just less powerful than in the previous

the sharing of the secret keyasx. + =, is completely
re-randomized, these simulations will proceed exactlyl as
expects. Hence, with probabilit/2 — negl, A will pro-
duce a forged signaturg:, s) for some message:. By
our assumptionA asked forH (m,r) while not in con-
trol of the server, and the construction4fguarantees that
e = H(m,r) is areal random oracle responsel’ only
“fakes” H when the server is compromised. Thys,s)

is areal signature form, one that satisfies the verification
property. A" will therefore outputr, s) as its own forgery.

scenario (since it does not have access to the initiate sig-
nature oracle): If an adversarycould forge signatures by
acting as a two-message client, one could trivially build a
three-message adversatyin terms of A.

To prove the two-message protocol secure against a ma-
licious server, however, we must rely on a stronger assump-
tion than the difficulty of computing discrete logs, and as-
sume a constant bourtdbn the number of concurrent runs
of the protocdl. The intuitive reason behind the strengthen-

2More precisely, we assume that the client is willing to atii an un-

ing of the assumptions is that in the two-message protocolhash oracleld beforewe even start executing: we will

the server can control the valueroby (maliciously) choos- use these values one after the other to ans¥i®iqueries,

ingrs = rr-! mod p. In this way, the server can be able to no matter what specific value it's asking for. Also, we ran-

computeH (m, r) before sending the value to the client. domly choose anfix the entire random tape of. Finally,

This would break the simulation described in the Subsec-we also choose update valugsandomly, and keep a run-

tion 3.2, so that the proof does not go through. Still, it is ning sumA = > (¢ — é) mod ¢. To put it differently, all

not clear how this attack could help the server in forging a the randomness we need for the entire simulation is chosen

signature(r, s), since the choice of; = rr ! leaves the and fixed.

server with the problem of computing its the discrete log, WhenA asks us to initiate the signature on a message

ks; hence, the server will not be able to compute the cor- we setr. = z; for some challenge; we have not yet used,

rects, = ks + (zs + A)e mod ¢ needed to complete the and we send! the messagér., m}.

signaturg(r, s). When A wishes us to complete the signature of some
Indeed, we show that the modified scheimsecureun- it will send us{r. = z;,rs,ss}. Letr = r.ry mod p and

der the assumption that theown-target discrete log prob- e = H(m,r). We query our own discrete log oracle to

lem (DL-KT) [1] is hard. The DL-KT problem consists find the discrete log of.(y.g*)¢ mod p. Let s. be this

of getting some number of discrete log challenges in the logarithm. Letk. be the log ofr. andz. be the log ofy..

same group, then computing their discrete logs while mak- Both k. andz,. are unknown to us. However:

ing at mostn — 1 queries to a discrete log oracle. Al-

Se — Aye
though the assumption that the DL-KT problem is hard for g - rz(ycg) A e(mOd p)
any polynomially-bounded is relatively new, it has al- g = ¢ (¢°") (mod p)
ready been used quite a bit in proving the security of various S¢ = ke+ (z.+A)e (mod q)

schemes [1, 3, 2, 9]. However, in all these other cases the) ,
claimed result follows almost trivially from such assump- Thus, s. is exactly as it should haye been. We compute
tion. On the contrary, our application is considerably more 5 = S¢ 1 $s mod ¢, and output the signatute, s). _
involved: it requires an additional “twist” in the reduatio .Slnce we are exactly §|mulat|ng th.e.attack scengﬂo,
argument, namely the assumption on the bounded concurWIII eventually output, with non-negligible probability

rency, and the development of some novel ideas in the prob-M€SSagen anq forged S|gnatur(a~,_s). . .
abilistic analysis. We then rewindd’s state to the time it queried the random

i A di
Theorem 4 If a malicious server, interacting with a client °racle for the value off (m, r) (say this was thé" A did

with bounded concurrency, can forge a signature without o thg oraclei.) Ca_II this f?‘_’eWUCia'- This tirpe, instead
the client's help in PPT with non-negligible probability, of using the value in the “list of randomness” we prepared

then we can also solve the DL-KT problem in PPT with non- P€foreé beginning executing, we discard this value, and
negligible probability answer suclerucial query with a new, random value. We

Proof. Let p, ¢, g define a group as usual. Lef. 1, 2o, ... then continue the simulation as in the first execution: in par

be challenges of which we want to compute the discreteticmar’ we V_’i” Continu_e using our “list” to reply to random
logs. Lett be the concurrency bound of the client. Let oracle queries, but will use brand new (already prepared)

A be an adversary that acts as a 2Schnorr server and forge%ha"enges’j'

signatures in PPT. We will compute the discrete logs of AS We will shortly prove in Lemma 5, there is a non-
n challenges for some number> 0, while making only negligible probability thatd will forge again the same mes-
n — 1 queries to a discrete log oracle sagemn with randomness but different values fof (m, r)

We first choose a randomy, € Z,. Lety = z (i.e., the (plus some additional property will hold; see below). Once
first challenge)y, = ¢ mod p zaqﬁdyc - mod » we come up with two signatures for the same message
1 s .

We give A public key(p, ¢, g,) and private key,. Finally thhe same ra’mc_iqm_nesbutdifferer;thasdh \I/alue.shyé e’-(and
we askA to forge a signature. ences # s'), itis just a matter of modular arithmetic to re-

Again, A can make four kinds of oracle queries. It can coverz (see Theorem 1.) Now, giver we can answer all

guery the random oracle, ask for a key update, ask the cliemthe challeng_e_sq- as follows.)

to initiate the protocol on some message, or ask the client For each |n|t|ate_ query that the adversary decided not .to
to complete and output a signature. We emulate the ran_complete (i.e. he mmatgd a run of the protocol but then it
dom oracleH in a completely honest manner, by replying demdednqt to ccimplete 'F)’ \Q’e have used one c_)f the chal-

to each query with a random value. More specifically, we '€N9€z; Without “consuming” any query to our discrete log

choose arandom (and sufficiently long) list of values for the oracle. Therefore, we can use it how to find t_he d'SFrete log
of z;. So we concentrate on the initiate queries which were

bounded number of concurrent executions of the protocalitbill only complete_d byA. . .
complete one of the most recent pending runs. Next, sincey = ¢* mod p = zg, x itself is the answer to

the challengey (and we did not consume any discrete log i, but thei™ response we gave was different.
queries for getting:). Moreover, once we know bothand) o .
x5, we can also compute. = z — z; mod g. Givenz,, we 3. A used thesame(up to)¢ important queries in the first
can recover the value.—the discrete log of eacty—from and second run.
each of thes, = k. + (z. + A)e mod ¢ values we asked
our discrete log oracle to compute.

There is only one subtle problem: we have to ensure that
we consume at most one discrete log query per each value

g (forj > 1), i.e. per each (completed) initiation query Lemma5 Let e be the probability ofA successfully pro-

of the adversary. Such queries can be divided into three . . 4
parts: the queries initiated and completed before the Cru__ducmg a forgery in one run, anélbe the success probabil

ial hash / the (at ¢ ies initiated before bt ity of satisfying the above three conditions in the “double”
cia ?St gu?try, the (a.tmols)querlesdlrl|h|a edbe ore_dut run of A. Assume also thal makes at mosjn,sn random
;(r)lg]goeme Iea;egrafteer('Errwlelccarit?clél?ryo:rn Thee?euizrfos Ir:aok?lem oracle queries in one run, andlis the maximum number
with the fl?rst and the last kind qu ue%.es indeed thpe both of concurrent signature queries the client initiates. Then

org ' - they > 2 /gtt} — negl(k). (herek is the security parameter

consumed exactly ong and utilized exactly one call to the ash. o -
discrete log oracle (recall, we use fresfs in the second andnegl(k) is a negligible function irk).

! 9 we u ! Proof. Without loss of generality, we will assume through-
run). However, the second category could present problems;

each query utilizes o but can potentially call the dis out the proof thatd always calls the random oraclé
query S ONe;, np y) to validate all issued signatures and its final forgery—
crete log oracla@wice, i.e. once in each run of. Here is

. . otherwised has at most a negligible success of probability,
where we \{Y'" use that is bouoded (by a constant). For which is consumed in theegl(k) term. Leti € [1, gnash] be
each such “semi-completed” signature quety, letr; be

th di q in the first d call th an index and/ C [1, gnash] be a subset of at mosindices.
€ corresponding rahdomness in the Hirst run, and ca eLets,v s be the probability that an execution of the adversary
t hash querie$? (m;,r;) important(in the first run). No- ’

tice, important queries could appear both before and afterWiII succeed in forging a signature, and that during this ex-
+ Imp q PP ecution the crucial query corresponding to the forgery will

tnheesgrgljﬂr?:oesri):]’gsgii;gzt?r?grlvevraﬁjg ;;n;rol th?nroa;gom- be query numbet, and that the set of (at mogtimportant
5J J
. ' queries will be exactly. It follows that: ZZ JEi,J = €.
for eachrm;, and queryH (m;, r;) way before the initia- Next, recalld is the probability of success of the above

tlont ql{[er:y fﬁrmf S'm”?ﬂy’ we C%n define thesem:j ic experiment. For anyand.J defined as above, 16§ ; be the
portant hash queries in the second run (corresponding probab|I|tythat both executions of the adversary will autp

the samem;, r.,; but possibly different values;, r ;). forgeries, and that in both executions the critical query wi

However, since we chose all the randomness for our has noe and the important queries will be exactly Again, it
query answers at the beginning and reused this random;

follows that) ", ; d; 5 = 0.
ness in the seco_nd run, we do not haye to _make the ex- We cla|mthat if the size of the universe of hash responses
trat calls to the discrete log oracle providéte important . ‘)
oo ' . has sizel, > 2%, we have:
queries in the first and the second run have the same in-
dices Indeed, in this case we would return the same value
e; for the important query in both runs, and therefore will

need to compute the discrete Iog of two very similar values Assuming Equation (1) is true, by using Cauchy-Schwartz
Te,j (ycg)% mod p andr, ; (ycg)61 mod p. Itis clear inequality’ we get:

that these discrete logs differ s ; — A’)e; mod g, which

is a known value, so we can compute the discreteslog § = Z(sw > Z(giJ —eig27Y

by returning(s. ; — (A; — A})e;) mod g. We will argue in

Lemma 5 that (for a boundedl the important queries will

We argue that the above three conditions hold (with
non-negligible probability) in the following final lemma,
which completes the proof.]

8ig > €5y — £i,727¢ (1)

indeed be the same with non-negligible probability. = Z€?,J —e27" > 71 ZEZ J) — 57
To summarize, if we are lucky that the following three iJ hash 4,7
conditions hold during the “double” run of, we utilize € e € negl(k)
one less discrete log query than the number of discrete log o ﬁjs}] 2t qﬁ;}] 9
challenges we are computing, thus breaking the DL-KT as-
sumption: It remains to show the validity of Equation (1). For any

o - fixedi andJ, consider all the random input to the system,
1. A succeeded the first time on some critical quiery

3Cauchy-Schwartz inequality states that:
. . < 2
2. Asucceeded the second time on the same critical queryVN € N)(Va1, ..., ay > 0). by ai > 1/N(by a;)”]

including the random tape of the adversary, #hg, ora- Theorem 6 If a mobile bounded-concurrency PPT adver-
cle responses for values @éf, and any other randomness sary can forge a 2Schnorr signature with non-negligible
needed by the simulator. Split the random inputs into the probability, then we can also solve the DL-KT problem in
two parts: the value returned in response toitheequest ~ PPT with non-negligible probability.

for a value ofH (call it €), and everything else, which we Sketch of Proof. Consider the same experimental setup as
will call R. Now consider a matrix with one column for in Theorem 4. z; are the discrete log challengesis the
every possible value aof, and one row for every possible concurrency bound of the client, agd= z, is the first dis-
value of R. For each cell of the matrix, put a dot in the crete log challenge. Next, assume a PPT mobile adversary
cell if on the corresponding input the adversary outputs a A that can forge 2Schnorr signatures with non-negligible
successful forgery witli the crucial query and the set of probability. The goal is now to construct an algorithth
important queries. Let; ; r be the probability of success that calls upond4 to solve the DL-KT problem. When it
conditioned onR, i.e. the density of marks in row number runsA, A" must respond to six different oracle queries. As

R of our matrix. We have that: usual, A’ must respond to random oracle queriesdfo It
1 does so by outputting a random value except for when it is
€i,J = @ Z%J,R) preprogrammed to output3 = H (mn,r) as seen later. The
R

other five queries are specific to the two states thatan
Next, letd; ; r be the probability of success of the whole be in:server-compromise sta(§CS) orclient-compromise
experiment (with rewinding), conditioned on the fact that state(CCS).
the row wasR, i.e. conditioned on the fact that the random- If A starts the experimentin SCS, thdhchooses:; €
ness used in the entire experiment (except for the answer tdZ, at random, computeg. = yy; ' mod p, and givesr;
query numbef) is described by?. We want to estimate the to A. If A starts in CCS, them!’ choosest, € Z, at
probability that, when we selected at random the answer torandom, computeg,, and sendsc.. We now consider
thei™ querytwice, we got a dot both times and the answers both casesA can ask three oracle queries specific to SCS:
chosen—e; ande,—were different. Indeed, sinceand J client signature initiation, client signature completi@amd
are fixed, in this casél succeeds twice and uses the same refresh/transition to CCS. In the first two types of queries,
important/critical queries. Since these two runs are mew A’ follows the simulation used in Theorem 4. It chooses
dependentthe needed probability is simply computed as: . = z; for some challenge; not yet used and responds to
a completion request with a call to its discrete log oradle.
can also request a key-refresh, thereby transitioning t6.CC
Finally, by conditioning); ; on the value of?, using Equa- ~ When A requests a refreshy’ picks a randomr;, € Z,,

Sivr=cisnleior—2"= Ef,Jﬁ —e0r2 " (3)

tion (2), (3), and Cauchy-Schwartz again, we get: computingy’, = yg~" mod p, and sending’, to A.
In CCS, A only asks two queries: server signature en-
1 1) . o) :
0i,g = Rl Z 0i,J,R= Rl (ZEMR - Z €i,J,R2) dorsement, and refresh/transition to SCS.endorses sig-
2] R |2 R R natures using thg, it computed in the transition, following
_ (i Z 22) _Gid (i Z .)2_ €i,J the same simulation used in Theorem 1; it generates at ran-
~\|r] £ “hER) T 0 = \|R] ~ LR 20 doma, 8 € Z, and sets’, = g*y’? mod p. When it com-

putesr = rgr. mod p, A’ storesH (m,r) = —f (mod q)
in a table for future output. WheA requests a refresH’
Equation (1), and hence the overall bound, follows. ® Wil generate a new and corresponding;’ as usual, re-
turningz! to A.
The analysis ofA’ proceeds as in Theorem 1 and

3.5. Security Against Mobile Adversaries in the Theorem 4. Whether in SCS or CC$,cannot distinguish

Two-Message Protocol between running withA”’'s oracle values and running in
a real system. This is guaranteed Hy/s access to the
discrete log oracle in SCS, the uniform random distribution
of 3in CCS, and the random refresh of the system between
the two states. IfA produces a forgery for message
it must have at some point computedcaucial query,

2 —L
= Ele — 817‘]2

We now show the equivalent of Theorem 3 for the Two-
Message protocol. Unfortunately, our previous analysis no
longer holds. In that earlier proof, we argued tHatcould
effectively simulate a client without knowing its key. In-

!
deed, A" could output phony values dff (m,r) because H(m,r). If this query occurred wher was in CCS, we

coin-flipping assured that is truly random. In the Two- - ; .
use the rewinding argument given in Theorem 1 to compute
Message protocol, we have no such assurances. Rather, we

need to consider the lower-level details of the previous re- = If in SCS, the rewinding argument given in Theorem 4

: , 4
duction. Using the same definition of a “mobile adversary” apphes,_ andA can complIJte:nC knowing Ls thereby
as above- computinge. In either cased’ recovers the discrete logs of

AuthlD = SHA-1(SessID, Server, .).

2. Opaque auth protoc

agent auth
)

\ 3. Seqg#,

1. Seqg#, SessID, Server, ..[AuthID,
Credentials

4. Seq#, Auth#(—

SFS client File Serve

Secure Chann

Figure 3. SFS user-authentication architecture.

Figure 4. Messages exchanged during the user-
authentication process. The authentication pro-
the otherz; after it recovers:. A variation of Theorem 4's tocol between the agent and authd is opaque to
bounded concurrency argument applies to guarantee that the core file system software.
A’ did not exhaust its quota of queries to the discrete log
oracle. ThusA’ is shown to be a PPT algorithm that can

compute DL-KT with non-negligible probability. B ceeds, the authd informs the file server of the user’s Seq#,
AuthlD, and credentials. The server then returns a short
handleAuth# to the client, which the client subsequently

4. Implementation uses to tag all file system requests on behalf of thatuser.

In the original SFS authentication system, authd keeps
a mapping of users’ public keys to credentials, while the
agent keeps one or more private keys in memory. The
authentication protocol consists of the user digitallynsig
ing {Seq#, AuthlD}. The original protocol used Rabin-
Williams [34] digital signatures.

In addition to validating file server users, SFS’'s authd
plays a separate role as a repository of users’ encrypted pri
for validating authentication requests and translatiregnth \rfrii:/eatl;e?(/:'yssvsii l:ﬁ:r:uiﬁg SF?LZ?TSQ;E;S”CSOIQIS(% Ssec;]:/g:falr

into credentials meanlngful_to the file server. - . After logging into a client machine, users typically connec
When a user accesses afile server for the first time, the file L=) :

. , to their primary server's authd over the network, authenti-

system client delays the access and asks the user’s agent t

. 4 Cate themselves through the SRP [35] secure password pro-
authenticate her to the server. The agent then (:ommunlcateFOCOI and then retrieve their encrypted private keys. (&)se
with the server’s authd to obtain appropriate privileges fo ’ '

the user. The agent and authd communicate through th also end up securely downloading server public keys this

Svay; see [28] for details.
file system’s secure channel, but the file system views their ay; see [28] for details.)

messages as opaque byte arrays. Thus, new z_;\uthentic_atiolﬁlll' Implementing 2Schnorr in SFS
protocols can be implemented without modifying the file
system software. Integrating 2Schnorr in SFS was relatively straight-
Figure 4 shows the interface between the file system,forward, as the original user authentication protocoladse
agent, and authd. Every secure channel between a cliengonsisted of a simple digital signature f8eq#, AuthiD}.
and server is identified by a unique session$BssID Ses- On the server side, we made several modifications to au-
sID, when hashed together with the server's name, publicthd. We extended it to support both Schnorr and Rabin pub-
key, and certain other information, produces a value calledlic keys. We modified the server’'s encrypted private-key
AuthID. When the SFS client asks a user’s agent to authen-repository functionality, so that it now optionally holdsth
ticate her to a server, it sends the agent the SessID of theéan encrypted half of a user’s private key and an unencrypted
session with that server, a sequence nunfbeg#identify- one. We added an option to the RPC by which users update
ing the authentication request within that session, and sev their login information so as to update the two key halves
eral other pieces of information including the name of the whenever users change their passwords. Finally, we added
server. The agent computes AuthlD and then communicates 4srs could equally well have chosen to tag requests with Sea,
with the server’s authd. If the authentication protocol-suc Auth# is a shorter and therefore slightly more conveniefiea

Figure 3 illustrates the major components of SFS in-
volved in user authentication. The file system client and
file server communicate over a TCP connection, encrypt-
ing and MACing all traffic to obtain a secure channel. User
authentication itself is actually performed by processes e
ternal to the file system. On the client, every user runs an
agentprogram responsible for authenticating it to remote
servers. On the server side, a programhdis responsible

signin
a%thc?.

verifyin
au hdg

Figure 5. Implementation of proactive signatures in SFS

a SIGN RPC that implements the server side of the two- putess. = (k. (e* mod ¢) + z.) e mod ¢ to thwart any
message 2Schnorr protocol. timing attacks based on non-constant time of the modular
In order to access the new SIGN RPC, a user must first aureduction.s, is computed similarly.
thenticate himself to the server. The simplest way is thhoug
SRP. When a client downloads a user’s encrypted private5 Performance
key half, it is permitted to keep the connection open to the
server for issuing SIGN requests. The server is currently This section evaluates the performance of 2Schnorr and
willing to endorse two types of message—login requests, its impact on SFS. The two most important effects of
and requests to change the user’s public key on a particula2Schnorr are on the responsiveness of the client and on
server. Both types of messages include an AuthlD, which consumption of server CPU time. In both cases, we com-
authd computes and verifies. Computing AuthID involves pare the new 2Schnorr authentication protocol to the orig-
hashing, among other things, the name and public key ofinal SFS authentication protocol, which is based on an op-
the server being accessed and the type of service being retimized, non-interactive Rabin signature scheme. While
quested (remote login, file server, etc.). Authd logs this in 2Schnorr itself is noticeably slower than Rabin, user-
formation, leaving a complete audit trail in case an attacke authentication is not on the critical path for file system-per
steals a user’s password. formance. Thus, we show that 2Schnorr has an accept-
On the client side, rather than hard-code 2Schnorr into able impact on client responsiveness. Furthermore, while
the agent, we instead implemented an extension facility by 2Schnorr is considerably more expensive than Rabin on the
which arbitrary external programs can plug into the agent Server-side, it is still cheap in absolute terms, given Hee t
and offer to attempt user-authentication. Figure S ilasts ~ relative infrequency of user authentication requests.
the complete system. Upon loading the 2Schnorr private We measured the 2Schnorr and Rabin algorithms both in
key half, an external authentication processplugs into isolation and as part of a file system access that required
the agent, keeping open a connection to the user’s primaryuser authentication. We used three separate machines in
authd, which we call theigning authd When the user ac- our experiments: &erifying-authdserver, asigning-authd
cesses a new file server, the agent queries the ext processerver, and a client. Theerifying-authdmachine served
which executes 2Schnorr with the signing authd to producethe file system we used in the file access benchmark, while
an ordinary Schnorr signature. Therifying authdon the thesigning-authdperformed the 2Schnorr server-side pro-
server that the user is accessing then verifies the Schnortocol (and hence was not used in the Rabin experiments).
signature to authenticate the user. All three machines had 1.75 GHz Athlon processesors and
Several other implementation details are worth mention- sufficient memory so that no paging activity was detected
ing. The new authd can actually store two private keys for a during any of the trials. The three machines were connected
user. This is important so that a user who changes her pubby switched 100 Mbit ethernet, with round trip latencies be-
lic key can access both the old and new private keys for alow 0.2 ms between every pair of machines. Teeifying-
time. On the client side, while ext is waiting for the server authdwas running FreeBSD 4.6.2, while tegning-authd
to endorse a signature, it precompuiés mod p for the and client were running OpenBSD 3.1. All machines used
next signature, to reduce latency. Also, in order to compute GMP version 3.1.1 for large integer arithmetic.
the values. = k. + z.e mod ¢, the client actually com- The experiments were conducted using Rabin keys with
a 1024-bit modulus, and Schnorr keys with 1024gkiand

N
o

%
k=]
c
S 20
S]
9]
2]
E 7 |:| Client Sign
)]
=] . Server Sign
= 10
c 4
2] . End-to-end Protocol
5 5
2]
o]
w]
0

Rabin Schnorr

Figure 6. Benchmarks for signing and verifying in the Rabin and Schnorr signature schemes. End-to-end
protocol shows user wait time for complete authentication.

160-bitgs. There are no known efficient reductions from the tocol, SFS servers cannot scale to 1,000s of new connec-
discrete log problem to factorization or vice-versa. How- tions per second anyway.

ever, given today’s fastest algorithms, taking discretgslo If we compare the cost of signing, the sum of the halves of
over the group in the Schnorr algorithm should be roughly the 2Schnorr signature protocol is 102% slower than Rabin.
comparable to factoring the Rabin modulus. As 2Schnorr overlaps its calculationgf mod p with net-

To measure system responsiveness, we timed @m- work latency and server computation, the cost of this com-
mand on the client to a directory (on therifying-authd putation, about 1.7 msec, is not reflected in the CPU times

that triggered an authentication. Under normal circum- shown in the graphs. Note that even given this overlap, the
stances, a user is authenticated to a remote SFS server adient requires more computation than the signing server.
long as that server is mounted and the user does not add’he reason is that the client must check the server has been
or remove keys from his agent. In our experimental setup, honest before outputing a signature.

however, we reset the user’s agent after every successful Finally, we should note that key generation with 2Schnorr
authentication. The results of this experiment are shownis significantly slower. We generated keys on $igning-

by the black bars in Figure 6. Without network latency, authdand found that Rabin keys can be generated in about
the 2Schnorr protocol is 68% slower. However, in absolute 0.2 seconds, while 2Schnorr keysets require about 0.55 sec-
terms, 2Schnorr is only 7 msec slower, which is a barely onds to generate a new ¢, g, andy = ¢* mod p. Since
noticeable delay for the first access to a file system. In fact,users rarely need to regenerate keys, this slowdown is ac-
when the file system client is not already connected to theceptable. If an application needs to generate many keys
server, there is additional time to connect and negotiate a(perhaps to create a large batch of user accounts at once),
session key, which further reduces the relative difference2Schnorr can actually be made faster than Rabin by reusing
of Rabin and 2Schnorr. On the other hand, had there beerthe same, ¢, andg parameters for different keys.

greater latency between the client asigning-authd the Though 2Schnorr is clearly more expensive than the orig-
2Schnorr authentication time would increase by the networkinal Rabin-based user authentication scheme, the perfor-
round trip time. mance is still perfectly acceptable for a procedure thag onl

Figure 6 also shows the CPU times required to computeneeds to be invoked when a user first accesses a new file
and verify digital signatures. Note that verifying in Ra- server. Moreover, we believe the performance impact is
bin is negligible, as no modular exponentiation is required more than offset by the 2Schnorr’s added security.

The verifying-authdcan verify a Rabin signature in well

under 0.1 msec. By contrast, Schnorr signature verifica-6. Summary

tion takes approximately 3 msec—a significant increase. _)

For this reason, Schnorr might be a bad candidate for a \We study proactive, two-party signature schenR23S)
verifying-authdserver that supported huge numbers of users @ an effective tool to address the challenges of user-
with high turnover. However, since every client connection authentication in settings with many administrative realm

also requires the server to engage in the key negotiation pro e present a three-message protocol, 2Schnorr, which is
provably secure in the random oracle model assuming only

the difficulty of the computational discrete log problemr Fo
systems with a constant bound on the number of concurrent
signature requests, we also give a two-message version of

2Schnorr, which we prove secure using the stronger one-
more-discrete-log assumption. We argue that similar tech- 8

nigues can be used folR2SS version of the GQ signature
scheme.
To demonstrate the utility ofP2SS, we integrated

2Schnorr into SFS, a secure network file system. Using

(7]

9]

2Schnorr, a user whose password is compromised can re-

cover by simply changing his password on his primary [10]
server. This will immediately block attackers from access-
ing his accounts in all other administrative realms where

he has registered the same public key. Moreover, the user

can also obtain from his primary server a log of all servers
accessed by the attacker—possibly including accounts the
user has forgotten about. While 2Schnorr is slower than 12]
SFS’s original Rabin signature algorithm, we show that the
performance impact is quite acceptable, particularly mive
the added security.

Acknowledgments

11]

[13]

We thank the anonymous reviewers of this paper, the [14]
members of the NYU cryptography reading group, our
shepherd Dawn Song, and Mike Reiter for their helpful sug-
gestions on this paper.

References

(1]

(2]

(3]

(4]

(5]

(6]

M. Bellare, C. Namprempre, D. Pointcheval, and M. Se-
manko. The one-more-RSA-inversion problems and the
security of Chaum’s blind signature scheme. Avail-
able aslACR eprint archive Report 2001/00ht t p: //
eprint.iacr.org/ 2001/ 002/ ,January 2001.

M. Bellare and G. Neven. Transitive signatures basedon f
toring and RSA. IMAdvances in Cryptology—AsiaCrypt’02
2002. To appear.

M. Bellare and A. Palacio. GQ and Schnorr identification
schemes: Proofs of security againstimpersonation under ac
tive and concurrent attacks. Kdvances in Cryptology—
Crypto’02, volume 2442 ol ecture Notes in Computer Sci-
ence pages 162-177, Berlin, 2002. Springer-Verlag.

M. Bellare and P. Rogaway. Random oracles are practical:
paradigm for designing efficient protocols. Rroceedings

of the First ACM Conference on Computer and Communica-
tions Securitypages 62—73, Fairfax, VA, 1993.

M. Bellare and P. Rogaway. The exact security of digital
signatures—how to sign with RSA and Rabin. In U. Maurer,
editor, Advances in Cryptology—Eurocrypt 1996olume
1070 ofLecture Notes in Computer Scienpages 399-416.
Springer-Verlag, 1996.

M. Bellare and R. Sandhu. The security of prac-
tical two-party RSA signature schemes. Available
as IACR eprint archive Report 2001/060http://
eprint.iacr.org/ 2001/ 060/, July 2001.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

D. Bleichenbacher. Generating ElIGamal signatures -with
out knowing the secret key. lAdvances in Cryptology—
EuroCrypt'96 volume 1070 ofLecture Notes in Computer
Sciencepages 10-18, Berlin, 1996. Springer-Verlag.

] M. Blum. Coin flipping by telephone. IFEEE Spring COM-

PCOM, pages 133-137, 1982.

A. Boldyreva. Efficient threshold signature, mul-
tisignature and blind signature schemes based on the
gap-diffie-hellman-group signature scheme. Available
as IACR eprint archive Report 2002/118http://
eprint.iacr.org/2002/118/,2002.

C. Boyd. Digital multisignatures. IHMA Conference on
Cryptography and Codingrages 241-246. Oxford Univer-
sity Press, 1989.

J.-S. Coron. Optimal security proofs for PSS and otliger s
nature schmes. IAdvances in Cryptology—EuroCrypt’02
volume 2332 ofLecture Notes in Computer Sciengages
272-287, Berlin, 2002. Springer-Verlag.

|. Damgard and J. Nielsen. Perfect hiding and perfaud-b
ing commitment schemes with constant expansion factor. In
Advances in Cryptology—Crypto’02olume 2442 of_ec-
ture Notes in Computer Sciencpages 581-596, Berlin,
2002. Springer-Verlag.

Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insekat
signature schemes. Unpublished Manuscript, 2002.

A. Fiat and A. Shamir. How to prove yourself: Practicat s
lutions to identification and signature problemsAlivances

in Cryptology—Crypto’86volume 263 ofLecture Notes in
Computer Sciencgpages 186-194, Berlin, 1987. Springer-
Verlag.

FIPS 180-1. Secure Hash Standard U.S. Department
of Commerce/N.1.S.T., National Technical Information-Ser
vice, Springfield, VA, April 1995.

FIPS 186. Digital Signature Standard U.S. Department
of Commerce/N.1.S.T., National Technical Information-Ser
vice, Springfield, VA, 1994.

Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Proac
tive RSA. InAdvances in Cryptology—Crypto’9volume
1294 ofLecture Notes in Computer Scienpages 440-454,
Berlin, 1997. Springer-Verlag.

R. Ganesan. Yaksha: Augmenting kerberos with pubig-k
cryptography. IrProceedings of the ISOC Network and Dis-
tributed Systems Security Symposipages 132-143, 1995.
S. Goldwasser, S. Micali, and R. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message
tacks.SIAM Journal of Computingl7(2):281-308, 1988.

L. Guillou and J.-J. Quisquater. A "paradoxical” idept
based signature scheme resulting from zero-knowledge. In
Advances in Cryptology—Crypto’88olume 403 of_ecture
Notes in Computer Sciencpages 216-231, Berlin, 1988.
Springer-Verlag.

A. Herzberg, M. Jacobsson, S. Jarecki, H. Krawczyk, and
M. Yung. Proactive public key and signature schemes. In
Fourth ACM Conference on Computer and Communication
Security pages 100-110. ACM, 1997.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file systeACM
Transactions on Computer Systeng$1):51-81, February
1988.

at-

(23]

(24]

(25]

(26]

[27]

(28]

(29]

G. Itkis and L. Reyzin. Forward-secure signature wigh o
timal signing and verifying. IPAdvances in Cryptology—
Crypto’01, volume 2139 oL ecture Notes in Computer Sci-

ence pages 332—-354, Berlin, 2001. Springer-Verlag.

G. ltkis and L. Reyzin. SiBIR: Signer-base intrusion-
resilient signatures. IAdvances in Cryptology—Crypto’02
volume 2442 ofLecture Notes in Computer Sciengages
499-514, Berlin, 2002. Springer-Verlag.

P. MacKenzie and M. Reiter. Delegation of cryptographi
servers for capture-resilient devices. Bight ACM
Conference on Computer and Communication Security
pages 10-19. ACM, 2001. Full version available at:
ftp://dimacs. rutgers. edu/ pub/ di macs/

Techni cal Reports/ TechReports/ 2001/ 2001-
37.ps.gz.

P. MacKenzie and M. Reiter. Networked cryptographie de
vices resilient to capture. IRroceedings of the 2001 IEEE
Symposium on Security and Priva@p01.

P. MacKenzie and M. Reiter. Two-party generation of DSA
signature. InAdvances in Cryptology—Crypto’p%olume
2139 ofLecture Notes in Computer Scienpages 137-154,

Berlin, 2001. Springer-Verlag.
D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witche

Separating key management from file system security. In
Proceedings of the 17th ACM Symposium on Operating Sys-
tems Principles pages 124-139, Kiawa Island, SC, 1999.

ACM.
R. Ostrovsky and M. Yung. How to withstand mobile virus

attacks. InrProceedings of the 10th Annual ACM Symposium
on Principles of Distributed Computingages 51-59, 1991.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

D. Pointcheval and J. Stern. Security Arguments foriDig
tal Signatures and Blind Signaturekurnal of Cryptology
13(3):361-396, 2000.

C. Schnorr. Efficient identification and signature fanast
cards. InAdvances in Cryptology—Crypto’89olume 435

of Lecture Notes in Computer Sciencpages 235-251,
Berlin, 1990. Springer-Verlag.

C. Schnorr. Efficient signature generation by smartisar
Journal of Cryptology4(3):161-174, 1991.

J. G. Steiner, B. C. Neuman, and J. |. Schiller. Kerbefos
authentication service for open network systems.Pto-
ceedings of the Winter 1988 USENPages 191-202, Dal-
las, TX, February 1988. USENIX.

H. C. Williams. A modification of the RSA public-key en-
cryption procedurelEEE Transactions on Information The-
ory, IT-26(6):726—729, November 1980.

T. Wu. The secure remote password protocol Ptoceed-
ings of the 1998 Internet Society Network and Distributed
System Security Symposiymages 97-111, San Diego, CA,
March 1998.

A. Yao. How to generate and exchange secret®roteed-
ings of the 27th IEEE Symposium on Foundations of Com-
puter Sciencepages 162—-167, 1986.

T. Yloénen. SSH — secure login connections over therinte
net. InProceedings of the 6th USENIX Security Symposium
pages 37-42, San Jose, CA, July 1996.

