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Abstract
We study proactive two-party signature schemes in the con-
text of user authentication. A proactive two-party signa-
ture scheme (P2SS) allows two parties—the client and the
server—jointly to produce signatures and periodically to re-
fresh their sharing of the secret key. The signature genera-
tion remains secure as long as both parties are not compro-
mised between successive refreshes. We construct the first
such proactive scheme based on the discrete log assump-
tion by efficiently transforming Schnorr’s popular signature
scheme into aP2SS. We also extend our technique to the
signature scheme of Guillou and Quisquater (GQ), provid-
ing two practical and efficientP2SSs that can be proven
secure in the random oracle model under standard discrete
log or RSA assumptions.

We demonstrate the usefulness ofP2SSs (as well as
our specific constructions) with a new user authentication
mechanism for the Self-certifying File System (SFS) [28].
Based on a newP2SS we call 2Schnorr, the new SFS au-
thentication mechanism lets users register the same public
key in many different administrative realms, yet still recover
easily if their passwords are compromised. Moreover, an
audit trail kept by a secure authentication server tells users
exactly what file servers an attacker may have accessed—
including even accounts the user may have forgotten about.

1. Introduction

Until now, little attention has been given toproactive two-
party signature schemes(P2SSs). In an ordinary two-party
signature scheme, a private key is split between two parties,
both of whom must approve and participate in the signing
of messages. An attacker must compromise both parties to
forge signatures on its own. However, the attacker has the
entire lifetime of the public key to compromise each of the
two parties. Moreover, particularly in the two-party case,
the parties’ roles may be asymmetric—for instance, a client
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may have the right to initiate signatures of arbitrary mes-
sages, while a server’s role is simply to approve and log
what has been signed. In such settings, an attacker may gain
fruitful advantage from the use of even a single key share,
unless some separate mechanism is used for mutual authen-
tication of the two parties. Finally, ordinary two-party sig-
natures offer no way to transfer ownership of a key share
from one party to another—as the old owner could neglect
to erase the share it should no longer be storing.

Proactive digital signatures allow private key shares to be
updated or “refreshed” in such a way that old key shares
cannot be combined with new shares to sign messages or
recover the private key. While a number of proactive signa-
ture protocols have been constructed, most existing proto-
cols are threshold schemes designed for a variable number
of parties. Because these threshold schemes require a ma-
jority of participants to be honest, they do not scale down to
only two parties.

This paper describes 2Schnorr, a proactive signature pro-
tocol specifically designed for two parties. 2Schnorr is an
efficient protocol that is easy to implement and produces
digital signatures compatible with the Schnorr [32] signa-
ture scheme. In the random-oracle model, a three-message
version of 2Schnorr is provably secure against existential
forgeries assuming only that discrete logs are hard. For ap-
plications with bounded concurrency, such as user authen-
tication, a two-message version can also be proven secure
under the stronger one-more-discrete-log assumption. The
technique we describe is equally applicable to the Guillou-
Quisquater (GQ) [20] signature scheme, producing two-
and three-message 2GQ protocols based on the RSA and
one-more-RSA inversion problems, respectively. We will
concentrate on 2Schnorr, however, as 2GQ is completely
analogous.

P2SS signatures have a natural application to the prob-
lem of user authentication, particularly for settings with
many administrative realms. Within a large university, for
example, it is not uncommon for a user to have five or six
different shell accounts on machines in separate research
groups. On the web, users typically establish accounts at
dozens of different sites over time. Under such circum-
stances, a user whose private key or other credentials get



compromised is unlikely to remember every place at which
he needs to update his login information. Some of the sites
may even be unavailable at the time the user tries to update
them, at which point the user may just give up on the prob-
lem until the next time he needs one of the accounts.

Using 2Schnorr, we built a user-authentication mecha-
nism that addresses these challenges for SFS [28]. SFS is
a secure, global file system in which users gain transparent
access to files from many different administrative realms
after logging in with a single password. With the new au-
thentication mechanism, every user has an ordinary Schnorr
public signature key on file wherever the user has an ac-
count. The corresponding private key is split between the
user and an authentication server of the user’s choice. If the
user’s password is ever compromised, he can immediately
block further unauthorized access to all of his accounts by
updating his password and private key halves on this sin-
gle authentication server. Moreover, from the server’s logs,
the user can determine exactly what servers an attacker has
accessed, where on the network those accesses came from,
and whether the attacker has changed the user’s login infor-
mation at any sites. Thus, even accounts the user may have
forgotten about will be brought back to his attention if there
is any risk of an attacker having accessed them.

The next section describes SFS and related work in user
authentication and proactive signature schemes. Section 3
describes the 2Schnorr protocol and gives a proof of secu-
rity. Section 4 describes the implementation of our user-
authentication mechanism in SFS. Section 5 reports on
the performance of 2Schnorr and our user-authentication
scheme. Section 6 concludes.

2. Related Work
A vast number of systems have dealt with the problem

of user authentication. This section describes SFS and the
motivation for a new SFS user authentication mechanism.
We then highlight a few other systems that have tackled user
authentication on a large scale. Finally, we discuss related
work in cryptography.

2.1. SFS Overview

SFS is a secure network file system designed for decen-
tralized control and easy sharing of files across organiza-
tional boundaries. In SFS’s administrative model, servers
are grouped into administrativerealms that recognize the
same set of authorized users. Realms can be as large as
an entire campus or as small as a single server behind a
DSL line. While a simple mechanism allows one realm to
“import” or recognize users from another, realms in gen-
eral need not trust each other, coordinate with each other, or
even know of each other’s existence.

Each SFS user may have accounts in many different ad-
ministrative realms. From a single client machine, users can

simultaneously access servers in multiple realms. The SFS
client itself has no notion of belonging to a particular realm.
(In fact, SFS has no client-side configuration options that
would differentiate one client from another.) Users simply
access files based on whatever realms they belong to. If a
user accesses a file on a server the client has never heard of,
an “automounting” mechanism causes the file to spring into
existence before the access completes.

SFS users have public signature keys which they register
with any realms in which they have accounts. User authen-
tication consists of digitally signing an authentication re-
quest with the corresponding private key. Each user runs a
program,sfsagent, that attempts to authenticate her to every
file server she accesses. In this way, by registering the same
public key in every administrative realm, a user can trans-
parently access files from multiple realms without worrying
about administrative boundaries. Unfortunately, if a user’s
private key is ever compromised, the user may have to up-
date her public key in a large number of realms. The mech-
anism described in this paper makes it considerably more
difficult to compromise a user’s key.

SFS comes bundled with a remote execution utility,rex,
with similar functionality to the popularssh[37]. Between
the file system andrex, any SFS user authentication mech-
anism can cover a large fraction of the day-to-day network
accesses people make to their servers.

2.2. User Authentication

Of widely used network file systems, SFS’s goals are
probably most similar to those of AFS [22]. AFS is a file
system designed to work over the wide-area network. AFS
has been particularly successful in large organizations—for
instance permitting the user community of an entire univer-
sity to share access to the same file systems. Unfortunately,
AFS does not adapt as well to settings with many differ-
ent administrative realms. AFS’s security is based on the
centralized Kerberos [33] authentication system in which a
central authority manages all of the accounts and servers in
a given administrative realm. Cross-realm authenticationis
possible, but requires cooperation from realm administra-
tors. Thus, users must typically type a separate password
for each realm in which they wish to access servers. Since
the central Kerberos server stores a secret that is effectively
equivalent to the user’s password, it is inadvisable for users
to have the same password in different Kerberos realms.

The SSH remote login tool supports a mode of au-
thentication based on public keys. The user registers
his private key with an agent process on the local ma-
chine, and stores the corresponding public key in a file
.ssh/authorized keys in his home directory on the
server. SSH public key authentication is very convenient.
Users therefore typically end up copying theirautho-
rized keys file to all of their different accounts. Unfor-



tunately, changing public keys requires many accounts to be
updated, and users are likely to forget to update accounts on
infrequently used machines.

Perhaps most relevant toP2SS are the various hardware-
based user-authentication systems. As smart cards and other
physical security devices gain more computational power, it
will become increasingly practical for them to compute dig-
ital signatures. Such configurations will be even more desir-
able if they can keep an audit trail of all signed messages in
case the device is stolen or otherwise compromised.P2SS
schemes enable such scenarios, while additionally allowing
users to recover from compromised devices without chang-
ing their public keys. To compromise a user’s public key
permanently, an attacker would need to break the user’s
hardware device (or steal a backup of the user’s share)and
compromise the centralized signature server before the user
had an opportunity to recover from the first event.

2.3. Related Cryptography

Related work in cryptography includes proactive cryp-
tosystems, two-party signature schemes, and in particular
several specialized two-party signature schemes designedto
remain secure under various models of device compromise.

Proactive signatures. Basic multi-party signature
schemes remain secure only as long as a sufficient num-
ber of parties remain uncompromised. Unfortunately, the
longer the lifetime of a public key, the more realistic the
threat that enough parties will be compromised to render
the public key completely insecure.Proactive cryptosys-
tems[29, 21] address the problem by allowing a potentially
unbounded number of compromises, so long as not too
many of them happen simultaneously. Specifically, there
is an efficient shareupdateprotocol which allows parties to
refresh the way in which they share the secret key. As long
as a bounded number of servers are compromised between
any two successive refreshes, the system remains secure.

Most proactive signatures are threshold schemes, which
assume an honest majority of players. Such schemes only
function in the case ofn � 3 players. In fact, most threshold
techniques and even definitions (e.g., robustness) are inap-
plicable to the two-party setting.

Two-party signature schemes. Building an ordinary
two-party signature scheme is trivial. Given a secure
one-party signature algorithm, let the client and server
each generate its own key pair—call themhK;K�1 i andhKs;K�1s i, respectively. The two-party public key then
consists of the two public keyshK;Ksi. A two-party sig-
nature of a messagem just consists of two independent sig-
natures ofm usingK�1 andK�1s . The first signature can
only be produced by the client, and the second only by the
server.

Most previous work on two-party signatures has therefore
focused on the problem of generating signatures that are

compatible with existing one-party algorithms. Such two-
party schemes allow systems to interoperate with verifiers
that cannot be updated to understand new signature types.
While 2Schnorr and 2GQ are the first two-party schemes
compatible with Schnorr and GQ, they are hardly the first
schemes to interoperate with standard one-party algorithms.
Bellare and Sanhdu [6] and MacKenzie and Reiter [26] con-
sider several flavors of two-party generation of the RSA
(full domain hash) signatures (building on some previous
less formal work, e.g. [10, 18]). The schemes are simple,
elegant, and in most cases reducible to the basic RSA as-
sumption. MacKenzie and Reiter [27] also give a protocol
for two-party generation of DSA signatures [16]. Two-party
signatures can also be viewed as a special case of general
secure two-party computation [36].

Resisting compromise.Two-party signatures are also re-
lated to the notion ofkey-insulated signature schemes[13].
In this model, a server helps the client update its secret key
from period to period. Though public keys remain the same
across updates, signatures reflect the period in which they
were created. Thus, a verifier can reject signatures produced
in periods during which the client was known to be compro-
mised. Within a given period, the client performs all signa-
tures on its own. This has the advantage of not requiring
the server’s cooperation on each signature, but for our ap-
plication we specificallywant all signatures to go through
the server for approval and logging. Involving the server on
each signature also allows for immediate recovery from a
compromised password, without the need to notify all veri-
fiers of compromised periods.

Recent work of Itkis and Reyzin [24] on intrusion-
resilient signatures combines the properties of key-insulated
and proactive signatures. However, as in the key insulated
model, the server only helps the client update its secret key
from one time-period to the next; all the signing is done
by the client alone. In theP2SS model, the actual secret
does not change from one time period to the next; only the
sharing of the secret changes.

The most closely related work was proposed in [25],
where MacKenzie and Reiter extend their schemes
from [26] to allow for delegationof password-checking
services. Their paper describes a protocol for a novel
hardware-based user-authentication mechanism. In their
model, the server is almost stateless, the device contains
a password protected private key, yet an attacker who cap-
tures the device cannot mount an off-line password guessing
attack. By contrast, the authentication system described in
this paper assumes a stateful server and is designed to work
with stateless clients—as in the case of a user with only a
password who wants to sit down at a new workstation and
access all of her files.

Embedded in the MacKenzie and Reiter protocol is ac-
tually a fully general-purposeP2SS version of RSA. We



believe that their RSA algorithm could be used to build a
user-authentication system similar to the one described in
this paper. Similarly, our 2Schnorr and 2GQ schemes could
replace RSA within their protocols. We note, however, that
in the case of RSA, proactivization costs some efficiency
because of the need to employ techniques from [17] to share
the secret exponent over a much larger modulus than�(n).

In both 2Schnorr and 2GQ, the share update protocol is
very simple: a client simply sends a random element of an
appropriate group to the server over a secure channel. Of
course, this does not mean that proactivization is generally
simple in the two-party case. Indeed, there seems to be no
way to “proactivize” the trivial double signature two-party
scheme. The question ofgenericproactive two-party signa-
tures is not as trivial as in the non-proactive case. Other than
the two-party RSA scheme in [25], previous two-party sig-
natures do not appear to “proactivize” in as simple a manner
as 2Schnorr and 2GQ.

3. The 2Schnorr Signing Protocol

This section specifies the 2Schnorr signing protocol and
analyzes its security. Like the standard Schnorr signature
scheme, 2Schnorr relies on a cryptographic hash function,H , which for the proofs we will assume behaves like a
random oracle (a common assumption in cryptographic re-
search, first formalized in [4]. Before going into the de-
tails of 2Schnorr, we briefly describe the standard Schnorr
scheme.

The Schnorr signature scheme [31] was first proposed as
an application of the Fiat-Shamir transformation [14]. It
can be instantiated on any groupG of prime order in which
the discrete log problem is believed to be hard. Schnorr
has been proven secure under the standard notion ofexis-
tential unforgeability against an adaptive chosen-message
attack[19] in the Random Oracle Model. The security has
been analyzed, among other places, in [32, 30]. For con-
creteness, we will consider cyclic subgroups ofZ�p (for large
primesp) of prime orderq.

The key generation algorithm produces two large primesp andq such thatqj(p � 1), and an elementg in Z�p of or-
der q. Then it picks a random elementx in Z�q , and setsy = gx mod p. The public key ishp; q; g; yi, while the cor-
responding private key isx. The group parametersp; q; g
can be safely shared between a community of users, so thaty by itself can be thought of as the public key correspond-
ing to private keyx. Schnorr additionally relies on a cryp-
tographic hash function,H , mapping arbitrary strings to el-
ements ofZ�q . We will assumeH has been specified as a
parameter of the scheme.

To sign a messagem, the holder of the private keyx picks
a randomk 2 Z�q and setsr = gk mod p. It then computese = H(m; r), s = k+xe mod q, and outputs the signaturehr; si. Note thatk must be kept secret and chosen anew

each time; disclosing or reusing the value ofk would allow
recovery of the secret keyx.

To check whether a givenhr; si is indeed a signature for
some messagem, it suffices to know the corresponding pub-
lic key hp; q; g; yi and verify thatgs = rye mod p, wheree = H(m; r).

2Schnorr is a simple two-party proactive variation of the
above scheme. We call the two parties theclient and the
server. We assume the client is the party that wants the
digital signature—it starts with the message and ends with
the signature. The server simply wants to log or approve all
signed messages.

The main issue in generalizing Schnorr to two parties is
that if one party, say the server, could control the choice of
one of the secret quantitiesx or k, or their public counter-
partsy andr, then the server would gain an advantage over
the client and the resulting scheme might not be secure.

Fortunately, the parties need only agree on random val-
ues, a task usually referred to ascoin flipping[8]. This can
be implemented by first having each party choose a random
share, then exchanging and combining the shares to produce
the agreed upon value. Of course, the two parties might not
reveal their shares simultaneously. To prevent the second
party, say the server, from choosing its share after learning
the client’s, the server can first “commit” to its share, then
“open” the commitment upon receiving the client’s share.

The simplest commitment scheme for a random sharer
is to revealG(r) for some hash functionG that behaves
like a random oracle. The client cannot learn anything fromG(r), but will be able to checkr’s consistency at the end
of the exchange.G need not be a random oracle, however.
Any “extractable” commitment scheme will do (for instance
“committing” encryption [12], which can be implemented
without random oracles). However, since Schnorr relies on
random oracleH anyway,G might as well be a random or-
acle, too. Note further thatG andH take inputs of different
lengths, and thus will never be evaluated on the same in-
put. An implementation can therefore use the same crypto-
graphic hash function—e.g.,SHA-1 [15]—for bothH andG.

We remark that the use of extractable commitment to
chose randomness in Schnorr and GQ generalizes to other
probabilistic signature schemes in which the security re-
sult depends on honestly chosen public randomness (e.g.,
PSS [5], PFDH [11]).

Key generation. A 2Schnorr public key is just an ordi-
nary Schnorr public key,hp; q; g; yi. However, the corre-
sponding Schnorr private key,x, is split between two key
halves,x andxs, such thatx � x + xs (mod q). A pub-
lic 2Schnorr key can be centrally generated along with two
halves for the corresponding private key as follows:



q  a large primep a larger prime such thatqj(p� 1)g  an element ofZ�p of orderqx; xs  random elements ofZqy = g(x+xs) mod p
The two private key halves arex andxs.

For distributed key generation between the client and
server, the client choosesp, q, g, andx, computesy =gx mod p, and sends the serverfp; q; g;G(y)g. The
server then picksxs and sends the clientys = gxs mod p.
Finally, the client revealsy, both parties computey =yys mod p, and the public key ishp; q; g; yi. To prevent
the client from (maliciously) choosing “bad” group param-
eters [7], the server may require the client to prove it has
generated the valuesp; q; g according to some specific al-
gorithm. In the implementation described in Section 4, we
use the method proposed by the NIST in [16], for which
such a proof can be easily provided.

Signature generation. To sign a messagem, the client
and the server each select a random element ofZq—k for
the client,ks for the server. The two parties then exchange
the three messages shown in Figure 1. First the server picks
at random an ephemeral private keyks from Z�q , computes
the corresponding ephemeral public keyrs = gks mod p,
and sendsG(rs) (message1). Similarly, the client com-
putes its ephemeral key pairhk; ri and sends the second
flow of the protocol, consisting of the valueG(rs) it got in
message1, its ephemeral public keyr, and the messagem it wishes to sign. Upon receiving message2, the server
checks thatr belongs to the group specified byp; q andg by verifying the equalityrq mod p ?= 1, then computesr = rrs mod p, e = H(m; r), ss = ks + xse mod q,
and replies with message3, which reveals the value ofrs.
The client computesG(rs) and verifies that it matches the
value received in message1; if so, it verifiesrs and com-
putess in a way analogous to that described above forss.
Finally, the client setss = s + ss mod q, and obtains the
pair hr; si—an ordinary Schnorr signature.

The protocol in Figure 1 requires three messages. The
first message can be precomputed and sent to the client in
advance, reducing network latency to a single round trip
from the time the client receives the message to be signed.
As discussed later, however, a system with a constant bound
on the number of concurrent signatures requested by the
client can simply eliminate the first message of the proto-
col (and removeG(rs) from the second message). The re-
sulting two-message protocol may be more convenient to
implement.

Signature verification. Signature verification is identical
to Schnorr. Given a public keyhp; q; g; yi, a messagem,
and a signaturehr; si, the signature is valid if and only ifgs � rye (mod p), wheree = H(m; r). It can be easily
checked that signatures obtained from an honest execution

k R Zq ks R Zqr = gk mod p rs = gks mod pr = rrs mod p e = H(m; r)s = k + xe mod q ss = ks + xse mod qs = s + ss mod q
1

2

3

G(rs)r; rs; ssG(rs); r; m ServerClient

Figure 1. 2Schnorr signature protocol. m is the
message being signed. k is chosen by the
client. ks is chosen by the server. The final sig-
nature is hr; si.

of the signing protocol do indeed verify correctly.
Key update. The aim of key updates is to tolerate multi-

ple compromises of each party. Clearly, any adversary that
compromises both parties between two successive key up-
dates will learn the entire state of the system and completely
break the security of the public key. However, the system
should be able to withstand multiple break-ins as long as
onehonest key updatehappens in between.

Key updates are considerably simpler in the two-party
case than in general proactive signatures. Since either party
can already destroy the private key by erasing its own share,
there is no need to preserve the private key when the client
or server misbehaves. Further simplifying the problem,
our update protocol assumes a secure channel between the
client and server, because our system already requires such
a channel for other purposes. (Otherwise, the client and
server could use a 2Schnorr signature as part of negotiating
a secure channel.)

To update the key halvesx andxs, the client picks a ran-
domÆ 2 Zq and sends it to the server over a secure chan-
nel. The new key halvesx0 andx0s are simply computed as:x0 = x � Æ mod q x0s = xs + Æ mod q

This update algorithm is not only simple, but also quite
effective in completely re-randomizing the state of the sys-
tem, thus simplifying the arguments for the security proofs
in the following subsections.

GQ signatures. The Schnorr signature scheme is often
studied together with the GQ scheme, its “twin” based on
the RSA assumption. The two can be thought of as varia-
tions of the same basic theme. Semantically, the difference
between the two is that in Schnorr, all secrets are drawn
from the additive groupZq and their public counterparts



are obtained by exponentiation on a fixed base; with GQ,
private data is instead taken from the multiplicative groupZ�N (whereN is the product of two big primes) and public
quantities are obtained by exponentiating to a fixed expo-
nent. Syntactically, this is equivalent to converting all addi-
tions in Schnorr into multiplications, and all multiplications
(involving secrets) into exponentiations. A mechanical ap-
plication of such conversion rules to our 2Schnorr protocol
(described below) yields the 2GQ protocol, which enjoys
analogous security guarantees based on the RSA assump-
tion.

3.1. Security against Malicious Clients

Theorem 1 If a malicious client can forge a signature with-
out the approval of the server in probabilistic polynomial
time (PPT) with non-negligible probability, then we can
also compute discrete logs in PPT with non-negligible prob-
ability.
Proof. Let p, q, andg be as in Schnorr public keys. Lety, in the group generated byg, be an element of which we
wish to compute the discrete log. LetA be an adversary
that behaves like a 2Schnorr client but then outputs a forged
signature (which the server did not approve) in PPT (with
non-negligible probability).

Choose a random elementx 2 Zq . Let y = gx mod p
andys = yy�1 mod p. GiveA public keyhp; q; g; yi and
private keyx. Now askA to forge a signature.A can make four types of oracle query we must respond
to. It can make random oracle queries to the hash func-
tionsH andG. It can make update queries to refresh the
key halves. It can ask the server to start a signature (corre-
sponding to message1 in the protocol.) Finally, it can ask
the server to endorse a signature (i.e., return the third flow
in the protocol.)

Without loss of generality, we will assume throughout
this paper thatA does not ask for the same hash query to the
same oracle twice (A could simply store previously com-
puted values in a table). All oracle queries toG are an-
swered with random values. As for oracle queries toH , we
reply to them with random but consistent answers: however,
during certain other queries (described below), we set the
value of the random oracleH on certain inputs to specific,
though uniformly distributed, values.

We keep a running total,�, of all the update requestsA
makes. Initially,� = 0, but for each update requestÆ, we
addÆ to� (modq).

WhenA makes a start signature query, we choose two
random numbers�; � 2 Zq and computers = g�y�s modp. We now fix some random output for the value ofG(rs),
and return this toA. Notice thatA cannot learn anything
aboutrs from the random valueG(rs), unless it has pre-
viously asked for the hash ofrs to the oracleG; however,
the chance ofA having already asked forG(rs) is negligi-

ble, sincers is uniformly distributed in the group of orderq
generated byg.

When A asks us to endorse a signature with queryfG(rs); r;mg, we computer = rrs mod p, and fix the
random oracle value ofe = H(m; r) such thatH(m; r) ��� (mod q). Notice that the probability of having al-
ready set this value due to a previous hash query toH
is negligible, since up to this pointrs is a random ele-
ment unknown toA (A just sawG(rs), a random value
that doesn’t not leak any information aboutrs) and sor
is also uniformly distributed in the group generated byg.
We setss = � +�e mod q, and returnfrs; ssg. If A was
talking to an ordinary server, the server would reply withss = ks+(xs+�)e mod q, whereks is the discrete log ofrs andxs is the discrete log ofys. Even though we cannot
computeks andxs, we are still computing the correct value
of ss by returning�+�e:g�y�s � rs (mod p)g� � rsy��s (mod p)g� � gks (gxs)�� (mod p)g� � gksgxse (mod p)� � ks + xse (mod q)�+�e � ks + (xs +�)e (mod q)

Because our responses toA’s oracle queries are indistin-
guishable from those of a real server and random oracles,A
will output with non-negligible probability some message
and forged signaturem; hr; si.

We can now rewindA’s state to the first time it queried
the random oracle fore = H(m; r), and return some new,
randomly chosen valuee0 6= e. Such rewinding argu-
ment is quite common in analyzing the security of similar
schemes [23, 3, 2]: intuitively, sinceA only makes poly-
nomially many oracle queries ande0 is statistically indistin-
guishable frome, there is a non-negligible probability thatA will again forge a signature for the samem andr, yield-
ing a second signaturehr; s0i for m, with s0 6= s. The exact
probabilistic analysis is based on theforking lemmaof [30],
and is quite similar to the one for the standard Schnorr sig-
nature scheme.

By the verification property,hr; s; ei andhr; s0; e0i satisfy
the following two congruences:gs � rgxe (mod p)gs0 � rgxe0 (mod p)

By memberwise division of the above congruences,

we can computex, the discrete log ofy, as follows:gs�s0 � gx(e�e0) (mod p)s� s0 � x(e� e0) (mod q)x = (s� s0)(e� e0)�1 mod q



3.2. Security against Malicious Servers

Theorem 2 If a malicious server can forge a signature
without the client’s help in PPT with non-negligible prob-
ability, then we can also compute discrete logs in PPT with
non-negligible probability.
Proof. Let p; q; g; y be a challenge in which we need to find
the discrete log ofy. Let A be an adversary that acts as
a 2Schnorr server and can forge signatures. We choose a
randomxs 2 Zq and computeys = gxs mod p andy =yy�1s mod p. GiveA public keyhp; q; g; yi and private keyxs, and ask it to forge a signature.

As before,A can make four types of oracle query: ran-
dom oracle queries (toH or toG), update queries, asking
the client to initiate the signature of a particular message,
and asking the client to finish computing the signature of a
message for which an initiate query was previously done.

The two random oracles are treated as before. For update
queries, we are now even allowed to choose a randomÆ our-
selves: since the client refreshes its key half by subtractingÆ, here� is defined as the running total of the valuesq � Æ
for each update (modq).

WhenA asks to initiate the protocol, we choose two ran-
dom numbers�; � 2 Zq and computer = g�y�s mod p.
Notice that we allowA to choose the messagem it wants
to sign, but still,A must provide its “commitment”G(rs).
SinceG behaves like a random oracle,A must have asked
for the value ofG(rs)—otherwise it will have only a negli-
gible chance of guessing the correct value needed to open,
in the third flow of the protocol, the commitment sent in the
first message. Hence, upon receiving an initiate query, we
can perform a simple lookup forG(rs) in the table contain-
ing the pairshquery, answeri for all the oracle queries thatA has done toG so far.1 Then, we computer = rrs mod p
and fix the random oracle value ofe = H(m; r) such thatH(m; r) � �� (mod q): e is still uniformly distributed inZq since we chose� at random.

The complete signature queries are handled virtually
identically to the proof of Theorem 1, reversing thes and subscripts in variables. The only difference is that when
completing a signature, we must returnhr; si instead ofhr; si. r ands are easy to compute givenr; rs; s; ss,
all of which we have.

Since the interaction ofA with the oracles thus simulated
is indistinguishable from a real attack on the 2Schnorr
signing protocol, with non-negligible probabilityA will
forge a signaturehr; si for a messagem that the client
didn’t finish signing. Therefore, using the same technique
as in Theorem 1, we can compute the discrete log ofy with
non-negligible probability.

1As we mentioned, we can replaceG by any “extractable” commitment
which would also allow us to recoverrs in our simulation.

3.3. Security against Mobile Adversaries

In practice, an attacker may compromise both the client
and the server, as long as there is an honest refresh be-
tween two successive compromises. Such a mobile adver-
sary can be modeled in two different ways, depending on
whether it sees any commitment to the valuesy andys. If,
for example, message3 of a signature is sent in cleartext
over the network and the adversary subsequently compro-
mises either the client or the server before an intervening
update, then the adversary can verify thatgss = rsyes orgss = rs(yy�1 )e.

In the model we consider here, the adversary is slightly
weaker and cannot see the values ofrs and ss commu-
nicated when neither party has been compromised. This
model was inspired by our implementation, which always
encrypts traffic between the client and server. However,
there is a small subtlety—the adversary may capture en-
crypted copies of message3, and later obtain the session
key for decrypting them when it compromises the client
or server. Even if the client and server quickly erase any
keys used to encrypt messages to each other, in reality there
will be a small window of vulnerability after the message
is transmitted and before the key is erased. For this reason,
we believe that the stronger adversary is actually the more
useful model. We will consider such adversaries in future
work.

One convenient property of the model with weaker ad-
versaries is that a simulator can always assume a key is re-
freshed right before a party is compromised—the adversary
will have no way to notice thaty andys have just changed.
That, in turn, means that one can assume without loss of
generality that the adversary always compromises either the
client or the server, which reduces the number of cases to
consider. (If there is a period when neither is compromised,
we can pretend the adversary has asked to compromise, say,
the client; if the adversary then wants to compromise the
server, we pretend it also asks for a key refresh.)
Theorem 3 The three-message 2Schnorr protocol is secure
against an adversary that selectively compromises both the
client and the server, provided an honest share update has
occurred before the other party has been compromised.
Proof. To prove the theorem, we might assume that if a
mobile PPT adversaryA could forge a signature, then we
could construct a new algorithmA0 that could compute dis-
crete logs with non-negligible probability. In this case, our
construction ofA0 would involve answeringA’s random or-
acle queries, update queries, server initiation queries, and
queries corresponding to three flows of the protocol. In
other words, this newA0 would combine the techniques
in Theorems 1 and 2. To avoid repetition of previous ar-
guments, we instead use a higher-level approach and prove
that the existence of a PPT mobile forger contradicts at least
one of the previous two theorems.



Suppose that by repeatedly compromising the client and
server (while always permitting an honest key update in
between), some PPT adversaryA is able to forge signa-
tures with non-negligible probability". If A outputs forgerym; hr; si, it must with all but negligible probability have
queried the random oracle fore = H(m; r). Call this the
crucial query. Since the client and server can never be si-
multaneously compromised, one (or both) of them will have
probability� 1=2� negl of being uncompromised during
crucial queries. We distinguish the two cases.
Case 1. Suppose that at least half of the time,A makes
crucial queries whilenot in control of the server. In
other words, with probability"=2, after several (non-
simultaneous) compromises of both parties,A successfully
forges a signaturehr; si for some messagem after querying
the oracle fore = H(m; r) at a time when the server was
not compromised.

We now show how to construct a malicious clientA0
that, usingA as a black box, forges signatures without the
server’s approval with (non-negligible) probability"=2.A0 is given the public key PK= hp; q; g; yi, the client’s
sharex, and access to hash oraclesH andG and to a server
oracle willing to engage in as many protocol runs asA0
wishes. In order to forge a signature,A0 runsA, giving
it public key PK. Each timeA asks for access to a compro-
mised client,A0 givesA its own secret sharex (which must
have been refreshed since the last server compromise).A0
then responds to any oracle queries fromA by simply for-
warding them to the real server,H andG oracles.

When A asks to compromise the server,A0 must give it
some sharexs and then emulate the client in a manner that
will be indistinguishable from a real client. SinceA0 cannot
compromise the server to learn the real value ofxs, it in-
stead employs the technique from Theorem 2:A0 generates
a randomxs 2 Zq and gives thisxs toA. A0 then replies toA’s H-oracle queries with carefully prepared (though still
uniformly distributed) values, instead of returning values
from the real hash oracleH . Because our coin flipping
protocol ensuresr is random, there is only negligible prob-
ability of A using a value ofH(m; r) it requested before
compromising the server.

Since we are assuming an honest key update will occur
between any two consecutive break-ins, and since each time
the sharing of the secret keyx asx + xs is completely
re-randomized, these simulations will proceed exactly asA
expects. Hence, with probability"=2 � negl, A will pro-
duce a forged signaturehr; si for some messagem. By
our assumption,A asked forH(m; r) while not in con-
trol of the server, and the construction ofA0 guarantees thate = H(m; r) is a real random oracle response;A0 only
“fakes” H when the server is compromised. Thus,hr; si
is a real signature form, one that satisfies the verification
property.A0 will therefore outputhr; si as its own forgery.

1

2

r; mr; rs; ssClient Server

Figure 2. A two-message signature protocol, for
applications with a bounded number of concur-
rent signature requests from the client. The con-
stants are computed as in Figure 1.

But the fact thatA0 forges signatures with non-negligible
probability while compromising only the client contradicts
Theorem 1.
Case 2.Suppose now thatA is most successful in its forgery
when it asks for the relevant hash valuee = H(m; r) while
not in control of the client. We can then construct a mali-
cious serverA00 that, usingA as a black box, again forges a
signature with probability"=2� negl. The construction is
analogous to Case 1, where we “swap” the techniques used
to handleA’s compromise requests.A00 uses the simulation
of Theorem 1 whenA breaks into the client, while it givesA xs and returns real values ofH whenA compromises the
server. This leads to a contradiction of Theorem 2.

Since at least one of the two cases above must occur at
least half of the time, it follows that 2Schnorr is secure
against mobile adversaries.

3.4. Two-Message Protocol

In certain cases, it may be desirable to compute signa-
tures with only two messages. If there is a constant bound
on the number of concurrent signatures a client requests, the
first message can be eliminated (and the second flow conse-
quently modified removing the hash valueG(rs)), yielding
the simpler two-message protocol in Figure 2.

From Theorem 1, we see that the two-message protocol
is secure against a malicious client. Indeed, in this case the
malicious client is just less powerful than in the previous
scenario (since it does not have access to the initiate sig-
nature oracle): If an adversaryA could forge signatures by
acting as a two-message client, one could trivially build a
three-message adversaryA0 in terms ofA.

To prove the two-message protocol secure against a ma-
licious server, however, we must rely on a stronger assump-
tion than the difficulty of computing discrete logs, and as-
sume a constant boundt on the number of concurrent runs
of the protocol2. The intuitive reason behind the strengthen-

2More precisely, we assume that the client is willing to initiate an un-



ing of the assumptions is that in the two-message protocol
the server can control the value ofr by (maliciously) choos-
ing rs = rr�1 mod p. In this way, the server can be able to
computeH(m; r) before sending the valuers to the client.
This would break the simulation described in the Subsec-
tion 3.2, so that the proof does not go through. Still, it is
not clear how this attack could help the server in forging a
signaturehr; si, since the choice ofrs = rr�1 leaves the
server with the problem of computing its the discrete log,ks; hence, the server will not be able to compute the cor-
rectss = ks + (xs + �)e mod q needed to complete the
signaturehr; si.

Indeed, we show that the modified schemeis secureun-
der the assumption that theknown-target discrete log prob-
lem (DL-KT) [1] is hard. The DL-KT problem consists
of getting some numbern of discrete log challenges in the
same group, then computing their discrete logs while mak-
ing at mostn � 1 queries to a discrete log oracle. Al-
though the assumption that the DL-KT problem is hard for
any polynomially-boundedn is relatively new, it has al-
ready been used quite a bit in proving the security of various
schemes [1, 3, 2, 9]. However, in all these other cases the
claimed result follows almost trivially from such assump-
tion. On the contrary, our application is considerably more
involved: it requires an additional “twist” in the reduction
argument, namely the assumption on the bounded concur-
rency, and the development of some novel ideas in the prob-
abilistic analysis.
Theorem 4 If a malicious server, interacting with a client
with bounded concurrency, can forge a signature without
the client’s help in PPT with non-negligible probability,
then we can also solve the DL-KT problem in PPT with non-
negligible probability.
Proof. Let p; q; g define a group as usual. Letz0; z1; z2; : : :
be challenges of which we want to compute the discrete
logs. Let t be the concurrency bound of the client. LetA be an adversary that acts as a 2Schnorr server and forges
signatures in PPT. We will compute the discrete logs ofn challenges for some numbern > 0, while making onlyn� 1 queries to a discrete log oracle.

We first choose a randomxs 2 Zq . Let y = z0 (i.e., the
first challenge),ys = gxs mod p, andy = yy�1s mod p.
We giveA public keyhp; q; g; yi and private keyxs. Finally
we askA to forge a signature.

Again,A can make four kinds of oracle queries. It can
query the random oracle, ask for a key update, ask the client
to initiate the protocol on some message, or ask the client
to complete and output a signature. We emulate the ran-
dom oracleH in a completely honest manner, by replying
to each query with a random value. More specifically, we
choose a random (and sufficiently long) list of values for the

bounded number of concurrent executions of the protocol, but it will only
complete one of thet most recent pending runs.

hash oracleH beforewe even start executingA: we will
use these values one after the other to answerA’s queries,
no matter what specific value it’s asking for. Also, we ran-
domly choose andfix the entire random tape ofA. Finally,
we also choose update valuesÆ randomly, and keep a run-
ning sum� = PÆ(q � Æ) mod q. To put it differently, all
the randomness we need for the entire simulation is chosen
and fixed.

WhenA asks us to initiate the signature on a messagem,
we setr = zj for some challengezj we have not yet used,
and we sendA the messagefr;mg.

WhenA wishes us to complete the signature of somem,
it will send usfr = zj ; rs; ssg. Let r = rrs mod p ande = H(m; r). We query our own discrete log oracle to
find the discrete log ofr(yg�)e mod p. Let s be this
logarithm. Letk be the log ofr andx be the log ofy.
Bothk andx are unknown to us. However:gs � r(yg�)e (mod p)gs � gk �gx+��e (mod p)s � k + (x +�)e (mod q)
Thus, s is exactly as it should have been. We computes = s + ss mod q, and output the signaturehr; si.

Since we are exactly simulating the attack scenario,A
will eventually output, with non-negligible probability,a
messagem and forged signaturehr; si.

We then rewindA’s state to the time it queried the random
oracle for the value ofH(m; r) (say this was theith A did
to the oracleH .) Call this querycrucial. This time, instead
of using the value in the “list of randomness” we prepared
before beginning executingA, we discard this value, and
answer suchcrucial query with a new, random value. We
then continue the simulation as in the first execution: in par-
ticular, we will continue using our “list” to reply to random
oracle queries, but will use brand new (already prepared)
challengeszj .

As we will shortly prove in Lemma 5, there is a non-
negligible probability thatA will forge again the same mes-
sagem with randomnessr but different values forH(m; r)
(plus some additional property will hold; see below). Once
we come up with two signatures for the same messagem,
the same randomnessr butdifferenthash valuese 6= e0 (and
hences 6= s0), it is just a matter of modular arithmetic to re-
coverx (see Theorem 1.) Now, givenx, we can answer all
the challengeszj as follows.

For each initiate query that the adversary decided not to
complete (i.e. he initiated a run of the protocol but then it
decidednot to complete it), we have used one of the chal-
lengezj without “consuming” any query to our discrete log
oracle. Therefore, we can use it now to find the discrete log
of zj . So we concentrate on the initiate queries which were
completed byA.

Next, sincey = gx mod p = z0, x itself is the answer to



the challengez0 (and we did not consume any discrete log
queries for gettingx). Moreover, once we know bothx andxs, we can also computex = x�xs mod q. Givenx, we
can recover the valuek—the discrete log of eachzj—from
each of thes = k + (x + �)e mod q values we asked
our discrete log oracle to compute.

There is only one subtle problem: we have to ensure that
we consume at most one discrete log query per each valuezj (for j � 1), i.e. per each (completed) initiation query
of the adversary. Such queries can be divided into three
parts: the queries initiated and completed before the cru-
cial hash queryi, the (at mostt) queries initiated before but
completed after the critical query, and the queries initiated
and completed after the critical query. There is no problem
with the first and the last kind of queries. Indeed, they both
consumed exactly onezj and utilized exactly one call to the
discrete log oracle (recall, we use freshzj ’s in the second
run). However, the second category could present problems:
each query utilizes onezj , but can potentially call the dis-
crete log oracletwice, i.e. once in each run ofA. Here is
where we will use thatt is bounded (by a constant). For
each such “semi-completed” signature querymj , let rj be
the corresponding randomness in the first run, and call thet hash queriesH(mj ; rj) important(in the first run). No-
tice, important queries could appear both before and after
the critical queryi, since the server can control the random-
ness by choosing a “cheating” value ofrs;jrjr�1;j mod p
for eachmj , and queryH(mj ; rj) way before the initia-
tion query formj . Similarly, we can define theset im-
portant hash queries in the second run (corresponding to
the samemj , r;j but possibly different valuesr0j , r0s;j ).
However, since we chose all the randomness for our hash
query answers at the beginning and reused this random-
ness in the second run, we do not have to make the ex-
tra t calls to the discrete log oracle providedthe important
queries in the first and the second run have the same in-
dices. Indeed, in this case we would return the same valueej for the important queryj in both runs, and therefore will
need to compute the discrete log of two very similar valuesr;j(yg�j )ej mod p andr;j(yg�0j )ej mod p. It is clear
that these discrete logs differ by(�j��0j)ej mod q, which
is a known value, so we can compute the discrete logs0;j
by returning(s;j� (�j��0j)ej) mod q. We will argue in
Lemma 5 that (for a boundedt) the important queries will
indeed be the same with non-negligible probability.

To summarize, if we are lucky that the following three
conditions hold during the “double” run ofA, we utilize
one less discrete log query than the number of discrete log
challenges we are computing, thus breaking the DL-KT as-
sumption:

1. A succeeded the first time on some critical queryi.
2. A succeeded the second time on the same critical query

i, but theith response we gave was different.

3. A used thesame(up to)t important queries in the first
and second run.

We argue that the above three conditions hold (with
non-negligible probability) in the following final lemma,
which completes the proof.

Lemma 5 Let " be the probability ofA successfully pro-
ducing a forgery in one run, andÆ be the success probabil-
ity of satisfying the above three conditions in the “double”
run ofA. Assume also thatA makes at mostqhash random
oracle queries in one run, andt is the maximum number
of concurrent signature queries the client initiates. ThenÆ � "2=qt+1hash � negl(k). (herek is the security parameter
andnegl(k) is a negligible function ink).
Proof. Without loss of generality, we will assume through-
out the proof thatA always calls the random oracleH
to validate all issued signatures and its final forgery—
otherwiseA has at most a negligible success of probability,
which is consumed in thenegl(k) term. Leti 2 [1; qhash℄ be
an index andJ � [1; qhash℄ be a subset of at mostt indices.
Let"i;J be the probability that an execution of the adversary
will succeed in forging a signature, and that during this ex-
ecution the crucial query corresponding to the forgery will
be query numberi, and that the set of (at mostt) important
queries will be exactlyJ . It follows that:

Pi;J "i;J = ".
Next, recallÆ is the probability of success of the above

experiment. For anyi andJ defined as above, letÆi;J be the
probability that both executions of the adversary will output
forgeries, and that in both executions the critical query will
be i and the important queries will be exactlyJ . Again, it
follows that

Pi;J Æi;J = Æ.
We claim that if the size of the universe of hash responses

has sizeL � 2`, we have:Æi;J � "2i;J � "i;J2�` (1)

Assuming Equation (1) is true, by using Cauchy-Schwartz
inequality3 we get:Æ = Xi;J Æi;J �Xi;J ("2i;J � "i;J2�`)= Xi;J "2i;J � "2�` � 1qt+1hash �Xi;J "i;J�2 � "2`= "2qt+1hash � "2` = "2qt+1hash � negl(k)
It remains to show the validity of Equation (1). For any
fixed i andJ , consider all the random input to the system,

3Cauchy-Schwartz inequality states that:(8N 2 N)(8a1; : : : ; aN � 0):�Pi a2i � 1=N�Pi ai�2 �



including the random tape of the adversary, theqhash ora-
cle responses for values ofH , and any other randomness
needed by the simulator. Split the random inputs into the
two parts: the value returned in response to theith request
for a value ofH (call it e), and everything else, which we
will call R. Now consider a matrix with one column for
every possible value ofe, and one row for every possible
value ofR. For each cell of the matrix, put a dot in the
cell if on the corresponding input the adversary outputs a
successful forgery withi the crucial query andJ the set of
important queries. Let"i;J;R be the probability of success
conditioned onR, i.e. the density of marks in row numberR of our matrix. We have that:"i;J = 1jRjXR "i;J;R (2)

Next, let Æi;J;R be the probability of success of the whole
experiment (with rewinding), conditioned on the fact that
the row wasR, i.e. conditioned on the fact that the random-
ness used in the entire experiment (except for the answer to
query numberi) is described byR. We want to estimate the
probability that, when we selected at random the answer to
theith querytwice, we got a dot both times and the answers
chosen—e1 ande2—were different. Indeed, sincei andJ
are fixed, in this caseA succeeds twice and uses the same
important/critical queries. Since these two runs are nowin-
dependent, the needed probability is simply computed as:Æi;J;R = "i;J;R("i;J;R � 2�`) = "2i;J;R � "i;J;R2�` (3)

Finally, by conditioningÆi;J on the value ofR, using Equa-
tion (2), (3), and Cauchy-Schwartz again, we get:Æi;J= 1jRjXR Æi;J;R= 1jRj�XR "2i;J;R �XR "i;J;R2�`�=� 1jRjXR "2i;J;R�� "i;J2` �� 1jRjXR "i;J;R�2� "i;J2`= "2i;J � "i;J2�`
Equation (1), and hence the overall bound, follows.

3.5. Security Against Mobile Adversaries in the
Two-Message Protocol

We now show the equivalent of Theorem 3 for the Two-
Message protocol. Unfortunately, our previous analysis no
longer holds. In that earlier proof, we argued thatA0 could
effectively simulate a client without knowing its key. In-
deed,A0 could output phony values ofH(m; r) because
coin-flipping assured thatr is truly random. In the Two-
Message protocol, we have no such assurances. Rather, we
need to consider the lower-level details of the previous re-
duction. Using the same definition of a “mobile adversary”
as above:

Theorem 6 If a mobile bounded-concurrency PPT adver-
sary can forge a 2Schnorr signature with non-negligible
probability, then we can also solve the DL-KT problem in
PPT with non-negligible probability.
Sketch of Proof. Consider the same experimental setup as
in Theorem 4. zi are the discrete log challenges,t is the
concurrency bound of the client, andy = z0 is the first dis-
crete log challenge. Next, assume a PPT mobile adversaryA that can forge 2Schnorr signatures with non-negligible
probability. The goal is now to construct an algorithmA0
that calls uponA to solve the DL-KT problem. When it
runsA, A0 must respond to six different oracle queries. As
usual,A0 must respond to random oracle queries toH . It
does so by outputting a random value except for when it is
preprogrammed to output�� = H(m; r) as seen later. The
other five queries are specific to the two states thatA can
be in:server-compromise state(SCS) orclient-compromise
state(CCS).

If A starts the experiment in SCS, thenA0 choosesxs 2Zq at random, computesy = yy�1s mod p, and givesxs
to A. If A starts in CCS, thenA0 choosesx 2 Zq at
random, computesys, and sendsx. We now consider
both cases.A can ask three oracle queries specific to SCS:
client signature initiation, client signature completion, and
refresh/transition to CCS. In the first two types of queries,A0 follows the simulation used in Theorem 4. It choosesr = zj for some challengezj not yet used and responds to
a completion request with a call to its discrete log oracle.A
can also request a key-refresh, thereby transitioning to CCS.
WhenA requests a refresh,A0 picks a randomx0 2 Zq ,
computingy0s = yg�x0 mod p, and sendingx0 toA.

In CCS,A only asks two queries: server signature en-
dorsement, and refresh/transition to SCS.A0 endorses sig-
natures using they0s it computed in the transition, following
the same simulation used in Theorem 1; it generates at ran-
dom�; � 2 Zq and setsrs = g�y0�s mod p. When it com-
putesr = rsr mod p, A0 storesH(m; r) � �� (mod q)
in a table for future output. WhenA requests a refreshA0
will generate a newx00s and correspondingy00 as usual, re-
turningx00s toA.

The analysis ofA0 proceeds as in Theorem 1 and
Theorem 4. Whether in SCS or CCS,A cannot distinguish
between running withA0’s oracle values and running in
a real system. This is guaranteed byA0’s access to the
discrete log oracle in SCS, the uniform random distribution
of � in CCS, and the random refresh of the system between
the two states. IfA produces a forgery for messagem,
it must have at some point computed acrucial query,H(m; r). If this query occurred whenA was in CCS, we
use the rewinding argument given in Theorem 1 to computex. If in SCS, the rewinding argument given in Theorem 4
applies, andA0 can computex knowing xs, thereby
computingx. In either case,A0 recovers the discrete logs of
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Figure 3. SFS user-authentication architecture.

the otherzi after it recoversx. A variation of Theorem 4’s
bounded concurrency argument applies to guarantee thatA0 did not exhaust its quota of queries to the discrete log
oracle. Thus,A0 is shown to be a PPT algorithm that can
compute DL-KT with non-negligible probability.

4. Implementation

Figure 3 illustrates the major components of SFS in-
volved in user authentication. The file system client and
file server communicate over a TCP connection, encrypt-
ing and MACing all traffic to obtain a secure channel. User
authentication itself is actually performed by processes ex-
ternal to the file system. On the client, every user runs an
agentprogram responsible for authenticating it to remote
servers. On the server side, a programauthdis responsible
for validating authentication requests and translating them
into credentials meaningful to the file server.

When a user accesses a file server for the first time, the file
system client delays the access and asks the user’s agent to
authenticate her to the server. The agent then communicates
with the server’s authd to obtain appropriate privileges for
the user. The agent and authd communicate through the
file system’s secure channel, but the file system views their
messages as opaque byte arrays. Thus, new authentication
protocols can be implemented without modifying the file
system software.

Figure 4 shows the interface between the file system,
agent, and authd. Every secure channel between a client
and server is identified by a unique session ID,SessID. Ses-
sID, when hashed together with the server’s name, public
key, and certain other information, produces a value called
AuthID. When the SFS client asks a user’s agent to authen-
ticate her to a server, it sends the agent the SessID of the
session with that server, a sequence number,Seq#, identify-
ing the authentication request within that session, and sev-
eral other pieces of information including the name of the
server. The agent computes AuthID and then communicates
with the server’s authd. If the authentication protocol suc-

AuthID = SHA-1(SessID, Server, . . .)
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Secure Channel
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4. Seq#, Auth#
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Figure 4. Messages exchanged during the user-
authentication process. The authentication pro-
tocol between the agent and authd is opaque to
the core file system software.

ceeds, the authd informs the file server of the user’s Seq#,
AuthID, and credentials. The server then returns a short
handleAuth# to the client, which the client subsequently
uses to tag all file system requests on behalf of that user.4

In the original SFS authentication system, authd keeps
a mapping of users’ public keys to credentials, while the
agent keeps one or more private keys in memory. The
authentication protocol consists of the user digitally sign-
ing fSeq#, AuthIDg. The original protocol used Rabin-
Williams [34] digital signatures.

In addition to validating file server users, SFS’s authd
plays a separate role as a repository of users’ encrypted pri-
vate keys. SFS users can store encrypted copies of their
private keys with the authd of their “primary” SFS server.
After logging into a client machine, users typically connect
to their primary server’s authd over the network, authenti-
cate themselves through the SRP [35] secure password pro-
tocol, and then retrieve their encrypted private keys. (Users
also end up securely downloading server public keys this
way; see [28] for details.)

4.1. Implementing 2Schnorr in SFS

Integrating 2Schnorr in SFS was relatively straight-
forward, as the original user authentication protocol already
consisted of a simple digital signature onfSeq#, AuthIDg.

On the server side, we made several modifications to au-
thd. We extended it to support both Schnorr and Rabin pub-
lic keys. We modified the server’s encrypted private-key
repository functionality, so that it now optionally holds both
an encrypted half of a user’s private key and an unencrypted
one. We added an option to the RPC by which users update
their login information so as to update the two key halves
whenever users change their passwords. Finally, we added

4SFS could equally well have chosen to tag requests with Seq#,but
Auth# is a shorter and therefore slightly more convenient value.
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a SIGN RPC that implements the server side of the two-
message 2Schnorr protocol.

In order to access the new SIGN RPC, a user must first au-
thenticate himself to the server. The simplest way is through
SRP. When a client downloads a user’s encrypted private
key half, it is permitted to keep the connection open to the
server for issuing SIGN requests. The server is currently
willing to endorse two types of message—login requests,
and requests to change the user’s public key on a particular
server. Both types of messages include an AuthID, which
authd computes and verifies. Computing AuthID involves
hashing, among other things, the name and public key of
the server being accessed and the type of service being re-
quested (remote login, file server, etc.). Authd logs this in-
formation, leaving a complete audit trail in case an attacker
steals a user’s password.

On the client side, rather than hard-code 2Schnorr into
the agent, we instead implemented an extension facility by
which arbitrary external programs can plug into the agent
and offer to attempt user-authentication. Figure 5 illustrates
the complete system. Upon loading the 2Schnorr private
key half, an external authentication processext plugs into
the agent, keeping open a connection to the user’s primary
authd, which we call thesigning authd. When the user ac-
cesses a new file server, the agent queries the ext process,
which executes 2Schnorr with the signing authd to produce
an ordinary Schnorr signature. Theverifying authdon the
server that the user is accessing then verifies the Schnorr
signature to authenticate the user.

Several other implementation details are worth mention-
ing. The new authd can actually store two private keys for a
user. This is important so that a user who changes her pub-
lic key can access both the old and new private keys for a
time. On the client side, while ext is waiting for the server
to endorse a signature, it precomputesgk mod p for the
next signature, to reduce latency. Also, in order to compute
the values = k + xe mod q, the client actually com-

putess = �k �e�1 mod q�+ x� e mod q to thwart any
timing attacks based on non-constant time of the modular
reduction.ss is computed similarly.

5. Performance

This section evaluates the performance of 2Schnorr and
its impact on SFS. The two most important effects of
2Schnorr are on the responsiveness of the client and on
consumption of server CPU time. In both cases, we com-
pare the new 2Schnorr authentication protocol to the orig-
inal SFS authentication protocol, which is based on an op-
timized, non-interactive Rabin signature scheme. While
2Schnorr itself is noticeably slower than Rabin, user-
authentication is not on the critical path for file system per-
formance. Thus, we show that 2Schnorr has an accept-
able impact on client responsiveness. Furthermore, while
2Schnorr is considerably more expensive than Rabin on the
server-side, it is still cheap in absolute terms, given the the
relative infrequency of user authentication requests.

We measured the 2Schnorr and Rabin algorithms both in
isolation and as part of a file system access that required
user authentication. We used three separate machines in
our experiments: averifying-authdserver, asigning-authd
server, and a client. Theverifying-authdmachine served
the file system we used in the file access benchmark, while
thesigning-authdperformed the 2Schnorr server-side pro-
tocol (and hence was not used in the Rabin experiments).
All three machines had 1.75 GHz Athlon processesors and
sufficient memory so that no paging activity was detected
during any of the trials. The three machines were connected
by switched 100 Mbit ethernet, with round trip latencies be-
low 0.2 ms between every pair of machines. Theverifying-
authdwas running FreeBSD 4.6.2, while thesigning-authd
and client were running OpenBSD 3.1. All machines used
GMP version 3.1.1 for large integer arithmetic.

The experiments were conducted using Rabin keys with
a 1024-bit modulus, and Schnorr keys with 1024-bitps and
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160-bitqs. There are no known efficient reductions from the
discrete log problem to factorization or vice-versa. How-
ever, given today’s fastest algorithms, taking discrete logs
over the group in the Schnorr algorithm should be roughly
comparable to factoring the Rabin modulus.

To measure system responsiveness, we timed acd com-
mand on the client to a directory (on theverifying-authd)
that triggered an authentication. Under normal circum-
stances, a user is authenticated to a remote SFS server as
long as that server is mounted and the user does not add
or remove keys from his agent. In our experimental setup,
however, we reset the user’s agent after every successful
authentication. The results of this experiment are shown
by the black bars in Figure 6. Without network latency,
the 2Schnorr protocol is 68% slower. However, in absolute
terms, 2Schnorr is only 7 msec slower, which is a barely
noticeable delay for the first access to a file system. In fact,
when the file system client is not already connected to the
server, there is additional time to connect and negotiate a
session key, which further reduces the relative difference
of Rabin and 2Schnorr. On the other hand, had there been
greater latency between the client andsigning-authd, the
2Schnorr authentication time would increase by the network
round trip time.

Figure 6 also shows the CPU times required to compute
and verify digital signatures. Note that verifying in Ra-
bin is negligible, as no modular exponentiation is required.
The verifying-authdcan verify a Rabin signature in well
under 0.1 msec. By contrast, Schnorr signature verifica-
tion takes approximately 3 msec—a significant increase.
For this reason, Schnorr might be a bad candidate for a
verifying-authdserver that supported huge numbers of users
with high turnover. However, since every client connection
also requires the server to engage in the key negotiation pro-

tocol, SFS servers cannot scale to 1,000s of new connec-
tions per second anyway.

If we compare the cost of signing, the sum of the halves of
the 2Schnorr signature protocol is 102% slower than Rabin.
As 2Schnorr overlaps its calculation ofgk mod p with net-
work latency and server computation, the cost of this com-
putation, about 1.7 msec, is not reflected in the CPU times
shown in the graphs. Note that even given this overlap, the
client requires more computation than the signing server.
The reason is that the client must check the server has been
honest before outputing a signature.

Finally, we should note that key generation with 2Schnorr
is significantly slower. We generated keys on thesigning-
authdand found that Rabin keys can be generated in about
0.2 seconds, while 2Schnorr keysets require about 0.55 sec-
onds to generate a newp, q, g, andy = gx mod p. Since
users rarely need to regenerate keys, this slowdown is ac-
ceptable. If an application needs to generate many keys
(perhaps to create a large batch of user accounts at once),
2Schnorr can actually be made faster than Rabin by reusing
the samep, q, andg parameters for different keys.

Though 2Schnorr is clearly more expensive than the orig-
inal Rabin-based user authentication scheme, the perfor-
mance is still perfectly acceptable for a procedure that only
needs to be invoked when a user first accesses a new file
server. Moreover, we believe the performance impact is
more than offset by the 2Schnorr’s added security.

6. Summary

We study proactive, two-party signature schemes (P2SS)
as an effective tool to address the challenges of user-
authentication in settings with many administrative realms.
We present a three-message protocol, 2Schnorr, which is
provably secure in the random oracle model assuming only



the difficulty of the computational discrete log problem. For
systems with a constant bound on the number of concurrent
signature requests, we also give a two-message version of
2Schnorr, which we prove secure using the stronger one-
more-discrete-log assumption. We argue that similar tech-
niques can be used for aP2SS version of the GQ signature
scheme.

To demonstrate the utility ofP2SS, we integrated
2Schnorr into SFS, a secure network file system. Using
2Schnorr, a user whose password is compromised can re-
cover by simply changing his password on his primary
server. This will immediately block attackers from access-
ing his accounts in all other administrative realms where
he has registered the same public key. Moreover, the user
can also obtain from his primary server a log of all servers
accessed by the attacker—possibly including accounts the
user has forgotten about. While 2Schnorr is slower than
SFS’s original Rabin signature algorithm, we show that the
performance impact is quite acceptable, particularly given
the added security.
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