
Improved Randomness Extraction from Two

Independent Sources

Yevgeniy Dodis1 ⋆, Ariel Elbaz2 ⋆⋆, Roberto Oliveira3 ⋆ ⋆ ⋆, and Ran Raz4 †

1 Department of Computer Science
New York University
dodis@cs.nyu.edu

2 Department of Computer Science
Columbia University

arielbaz@cs.columbia.edu
3 Department of Mathematics

New York University
oliveira@cims.nyu.edu

4 Department of Computer Science
Weizmann Institute

ran.raz@weizmann.ac.il

Abstract. Given two independent weak random sources X, Y , with
the same length ℓ and min-entropies bX , bY whose sum is greater than
ℓ + Ω(polylog(ℓ/ε)), we construct a deterministic two-source extractor
(aka “blender”) that extracts max(bX , bY) + (bX + bY − ℓ − 4 log(1/ε))
bits which are ε-close to uniform. In contrast, best previously published
construction [4] extracted at most 1

2
(bX + bY − ℓ − 2 log(1/ε)) bits. Our

main technical tool is a construction of a strong two-source extractor
that extracts (bX + bY − ℓ) − 2 log(1/ε) bits which are ε-close to being
uniform and independent of one of the sources (aka “strong blender”),
so that they can later be reused as a seed to a seeded extractor. Our
strong two-source extractor construction improves the best previously
published construction of such strong blenders [7] by a factor of 2, ap-
plies to more sources X and Y , and is considerably simpler than the
latter. Our methodology also unifies several of the previous two-source
extractor constructions from the literature.

1 Introduction

Imperfect Randomness. Randomization has proved to be extremely useful
and fundamental in many areas of computer science. Unfortunately, in many
situations one does not have ideal sources of randomness, and therefore has to
base a given application on imperfect sources of randomness.

⋆ Partially supported by the NSF CAREER and Trusted Computing Awards.
⋆⋆ Work supported by ISF grant.

⋆ ⋆ ⋆ Funded by a doctoral fellowship from CNPq, Brazil.
† Work supported by ISF grant.

Among many imperfect sources considered so far, perhaps the most general
and realistic source is the weak source [29, 4]. The only thing guaranteed about
a weak source is that no string (of some given length ℓ) occurs with probability
more than 2−b, where b is the so-called min-entropy of the source. We will call this
source (ℓ, b)-weak. Unfortunately, handling such weak sources is often necessary
in many applications, as it is typically hard to assume much structure on the
source beside the fact that it contains some randomness. Thus, by now a universal
goal in basing some application on imperfect sources is to make it work with weak
sources. The most direct way of utilizing weak sources would be to extract nearly
perfect randomness from such a source. Unfortunately, it is trivial to see [4] that
no deterministic function can extract even one random bit from a weak source,
as long as b ≤ ℓ − 1 (i.e., the source is not almost random to begin with). This
observation leaves two possible options. First, one can try to use weak sources
for a given application without an intermediate step of extracting randomness
from it. Second, one can try designing probabilistic extractors, and later justify
where and how one can obtain the additional randomness needed for extraction.

Using a Single Weak Source. A big and successful line of research [26, 24, 4,
5, 29, 2] following the first approach showed that a single weak source is sufficient
to simulate any probabilistic computation of decision or optimization problems
(i.e., problems with a “correct” output which are potentially solved more effi-
ciently using randomization; That is, all problems in BPP). Unfortunately, most
of the methods in this area are not applicable for applications of randomness,
where the randomness is needed by the application itself, and not mainly for
the purposes of efficiency. One prime example of this is cryptography. For ex-
ample, secret keys have to be random, and many cryptographic primitives (such
as public-key encryption) must be probabilistic. The problem of basing a cryp-
tographic protocol on a single weak random source has only been studied in the
setting of information-theoretic symmetric-key cryptography. In this scenario,
the shared secret key between the sender and the recipient is no longer random,
but comes from a weak source. As a very negative result, McInnes and Pinkas [12]
proved that one cannot securely encrypt even a single bit, even when using an
“almost random” (ℓ, ℓ − 1)-weak source. Thus, one cannot base symmetric-key
encryption on weak sources. Dodis and Spencer [6] also consider the question of
message authentication and show that one cannot (non-interactively) authenti-
cate even one bit using (ℓ, ℓ/2)-weak source (this bound is tight as Maurer and
Wolf [11] showed how to authenticate up to ℓ/2 bits when b > ℓ/2).

Using Several Weak Sources. Instead, we will assume that we have several
weak sources, each one independent from all the other weak sources. Specifically,
we will try to extract nearly ideal randomness from two weak sources.

The question of extracting randomness from two or more independent ran-
dom sources originated in the works of Sántha and Vazirani [20, 25, 27]. Chor
and Goldreich [4] were the first to consider general weak sources of equal block
length; let us say that the sources X and Y are (ℓX , bX)-weak and (ℓY , bY)-weak,
and for simplicity we also assume ℓX = ℓY = ℓ. It is known [7] that in this setting
it is possible to extract nearly all the entropy (i.e., nearly bX + bY − 2 log(1/ε)

bits) from the two sources, where ε is the required distance from the uniform
distribution. However, best known explicit constructions achieve much weaker
parameters. Specifically, for one bit extractors Chor and Goldreich showed that
the inner product function works provided bX + bY > ℓ + 2 log(1/ε). The
best multi-bit two-source extractor ([4], thm 14) is capable of extracting almost
1
2 (bX + bY − ℓ− 2 log(1/ε)) random bits, but [4] only show how to efficiently im-
plement this extractor when bX + bY > 1.75ℓ. It was also known how to extract
a non-constant bit (or a few bits) from two sources when bX = ℓ(1

2 +o(1)), bY =
O(log(ℓ)) [9, 1], and this method can also be used to extract unbiased bits from
such sources. In a setting of more than two weak sources, Barak et al. [3] re-
cently show how to extract randomness from (1/δ)O(1) independent (ℓ, δℓ)-weak
sources (for any δ > 0), but this improvement does not apply to the case of two
sources considered in this work.

Motivated by cryptographic applications, Dodis and Oliveira [7] recently con-
sidered the problem of extracting random bits from two independent sources
which are (essentially) independent from one of the two sources (called the
“seed”). They termed this two-source extractor a strong blender, since it is a
common generalization of a two-source extractor (which they simply termed
“blender”) and a strong extractor [16], where the seed source is assumed to be
public and truly uniform (and the objective of the latter is to make the seed as
short as possible). They showed the existence of such strong blenders, whenever
bX , bY > log ℓ+2 log(1/ε), which are capable of extracting (bX −2 log(1/ε)) bits
from X which are independent from the (ℓ, bY)-weak seed Y . On a constructive
side, they showed that the constructions from [4] for two-source extractors (i.e.,
“blenders”) and the related work of Vazirani [27] for the so-called SV sources [20]
do extend to give strong blenders. The best such construction in [7] (based on a
similar construction from [4]) is capable of extracting 1

2 (bX +bY − ℓ−2 log(1/ε))
bits independent of one of the sources, but this is again efficient only when
bX + bY > 1.75ℓ.

To summarize, while randomness extraction from two independent sources
is possible, the known constructions and parameters seem far from optimal.
In contrast, there are many efficient constructions of one-source randomness
extractors (with truly random seeds) with nearly optimal parameters (see [10, 17,
21] and the references therein). Our work gives an improvement in the number of
extracted bits, for the case bX +bY > ℓ, allowing for the first time the extraction
of more than half the total randomness that is present in the sources.

Our Results. We give a simple two-source extractor capable of extracting
max(bX , bY)+ (bX + bY − ℓ−4 log(1/ε)) bits whenever the sum of min-entropies
is slightly greater than ℓ: bX + bY ≥ ℓ + Ω(polylog(ℓ/ε)). Our construction is
based on two observations. First, a strong blender with good parameters can give
a two-source extractor (i.e., a “regular blender”) with even better parameters,
when combined with a seeded extractor (with good parameters). Specifically, if
a strong blender extracts k ≥ Ω(polylog(ℓ/ε)) nearly random bits Z which are
independent from the weak seed Y , we can now apply a seeded extractor to Y ,
using the just extracted Z as the seed (since Z is “long enough” to be used

with state-of-the-art extractors such as [17]). This allows us to extract a total of
(k+bY −2 log(1/ε)) bits, which could be very high. While this obvious observation
would already improve the state-of-the-art in the problem of two-source extrac-
tion, even when combined with the known strong blender constructions from
[7], our second observation is a much simpler (and better) construction of strong
blenders. Specifically, we show how to extract (bX +bY −ℓ−2 log(1/ε)) bits which
are independent from one of the sources. Thus our strong blender construction:
(1) improves by a factor of two the best previously published construction of [7];
(2) is very simple and efficient without any limitations on bX and bY (as long as
bX +bY ≥ ℓ+2 log(1/ε)); and (3) uses only trivial properties from linear algebra
in its analysis. By choosing the initial “seed” source to be the one containing
more min-entropy, we get our final two-source extractor.

Our Strong Blender. In fact, we give the following general technique for
constructing our strong blender. Assume we wish to extract k nearly random
bits from X using Y as a seed. Let A1, . . . , Ak be some ℓ × ℓ matrices over
GF [2], specified later. View X and Y as ℓ-bit vectors, and output bits ((A1X) ·
Y, . . . , (AkX) · Y), where · denotes the inner product modulo 2, and AiX is
the matrix-vector multiplication over GF [2]. Of course, the main question is
which condition on matrices A1 . . . Ak would allow us to maximize the value of
k. As we show, all we need is to have every non-empty sum AS =

∑

i∈S Ai

(where S 6= ∅) of these matrices to have “high” rank. In particular, by using a
known linear algebra construction [14, 13, 19]) of such matrices, we can ensure
that all the needed matrices AS will have full rank, which will in turn give us
the desired value k = (bX + bY − ℓ−2 log(1/ε)). However, we also notice that by
using several other simple, but sub-optimal choices of matrices A1 . . . Ak, we will
obtain two of the three constructions from [7] as special cases, as well as several
other constructions which appeared in the literature for related problems (i.e.,
[27]). Thus, our methodology elegantly unifies several of the previous approaches
into one elementary framework.

2 Preliminaries

2.1 Basic notation

We mostly employ standard notation. The symbol log is reserved for the base 2
logarithm. For a positive integer t, Ut denotes a random variable that is uniform
over {0, 1}t and independent of all other random variables under consideration.
We also write [t] ≡ {1, 2, . . . t}. For two random variables A, B taking values in
the finite set A, their statistical distance is ‖A − B‖s ≡ 1

2

∑

a∈A

∣

∣Pr[A = a] −

Pr[B = a]
∣

∣, and the min-entropy of A is H∞ (A) ≡ mina∈A

(

− log(Pr[A = a])
)

.
For a random variable A taking values in {0, 1}t, the bias of A is its statistical
distance from Ut, ‖A − Ut‖s. The L2 norm of a vector v ∈ Rt is ‖v‖2 ≡
√

∑t
i=1(vi)2. For two strings s, t, their concatenation is denoted

(

s , t
)

. For a

vector a ∈ {0, 1}t and 1 ≤ i ≤ t, we say that i ∈ a if ai = 1. Also recall that

an (ℓ, b)-source denotes some random variable X over {0, 1}ℓ with min-entropy
H∞ (X) ≥ b.

2.2 Strong Blenders and Extractors

We start by defining the notion of a randomness extractor [16].

Definition 1 ([16]). Let b ≥ 0, ε > 0. A (b, ε)-extractor Ext : {0, 1}ℓ ×
{0, 1}k → {0, 1}m is an efficient function such that for all (ℓ, b)-sources Y , we
have

‖ Ext(Y, Uk) − Um ‖s ≤ ε

Clearly, one of the main objectives in the area of building explicit extractors
is to minimize the seed length k while still extracting nearly all the randomness
from the source. Many nearly optimal constructions exist by now (see [15, 23, 10,
17, 22, 21] and the references therein). While none of them clearly beats the rest
in all parameters, it is known (e.g., [17]) how to extract m = k + b − 2 log(1/ε)
nearly random bits (which is optimal) using a seed of length k = O(polylog(ℓ/ε)).

In this work, however, we are interested in (strong) randomness extraction
from two weak sources. Correspondingly, we define the notion of two-source
extractors (aka “blenders”) and strong blenders. For simplicity, we assume both
sources have the same length ℓ throughout the paper.

Definition 2. A (bX , bY , ε)-strong blender (SB) is an efficient function Ble :
{0, 1}ℓ×{0, 1}ℓ → {0, 1}k such that for all (ℓ, bX)-weak sources X and all (ℓ, bY)-
weak sources Y , we have

∥

∥

(

Y , Ble(X, Y)
)

−
(

Y , Uk

)
∥

∥

s
≤ ε

A (bX , bY , ε)-two-source extractor is an efficient function Two-Ext : {0, 1}ℓ ×
{0, 1}ℓ → {0, 1}m such that for all (ℓ, bX)-weak sources X and all (ℓ, bY)-weak
sources Y , we have

‖Two-Ext(X, Y) − Um‖s ≤ ε

We now observe the following relation among these three primitives which
follows immediately from the triangle inequality: namely, given X, Y , the output
of a strong blender Ble(X, Y) can be used as a random seed for an extractor
Ext, to extract the randomness from Y .

Lemma 1. Let Ble : {0, 1}ℓ × {0, 1}ℓ → {0, 1}k be a (bX , bY , ε)-strong blender
and Ext : {0, 1}ℓ × {0, 1}k → {0, 1}m be a (bY , ε)-extractor. Then the following
function Two-Ext : {0, 1}ℓ × {0, 1}ℓ → {0, 1}m is a (bX , bY , 2ε)-two-source
extractor:

Two-Ext(X, Y) = Ext(Y, Ble(X, Y))

Our final two-source extractor will follow by applying the Lemma above
to the strong blender which we construct in the next section (using any good
seeded extractor, such as the one in [17]). Thus, from now on we concentrate on
improved constructions of strong blenders.

3 Efficient Strong Blender Constructions

In this section we show a construction of an efficient strong blender. In 3.1 we
give a general technique for constructing a strong blender, that requires a set
of ℓ × ℓ matrices over GF [2] with the property that the sum of every subset of
matrices has high rank. In section 3.2 we give an explicit set of matrices (that
appeared in [14, 13, 19]), with the property that the sum of any subset of matrices
has full rank. This gives the best possible result for our technique. In the same
section we also review some previous constructions for two-source randomness
extraction as special cases of our technique.

3.1 General Technique for Constructing Strong Blenders

We now show how to extract many random bits from two weak sources X, Y of
the same length ℓ, such that the bits are random even if one sees Y .
Let A1, . . . , Ak be ℓ×ℓ matrices over GF [2], such that for every nonempty subset

S ⊆ [k], the rank of AS
def
=
∑

i∈S Ai is at least ℓ− r, for 0 ≤ r < ℓ (we will want
to have high rank and keep r as small as possible).

The proposed strong blender is

BleA : {0, 1}ℓ × {0, 1}ℓ → {0, 1}k

(x, y) 7−→
(

(A1x) · y, . . . , (Akx) · y
) (1)

where · is the inner product mod 2 and Aix is a matrix-vector multiplication
over GF [2].

Theorem 1. The function BleA is a (bX , bY , ǫ)-SB with log 1
ǫ

= bX+bY +2−(ℓ+r+k)
2 ,

that is
∥

∥

(

Y , BleA(X, Y)
)

−
(

Y , Uk

)∥

∥

s
≤ 2−

bX+bY +2−(ℓ+r+k)

2

Our main tool for proving theorem 1 is the Parity lemma (also known as the
XOR lemma, see [8, 27]), which relates the bias of a k-bit random variable T
with the sum of squared biases of every subset of the bits in T .

Lemma 2 (Parity lemma [8]). For any k-bit random variable T , ‖T − Uk‖s

is upper bounded by
√

∑

0k 6=a∈{0,1}k

‖T · a − U1‖
2
s

where T · a is the inner product (mod 2) of T and a.

We also use a relation between the rank of a matrix L and the min-entropy
of LX .

Lemma 3. Let L be an ℓ× ℓ matrix over GF [2]. If the rank of L is ℓ− r, then
for any random variable X over {0, 1}ℓ, H∞ (LX) ≥ H∞ (X) − r.

Proof. Note that for any z ∈ {0, 1}ℓ, there are at most 2r different values
x ∈ {0, 1}ℓ such that Lx = z. Thus, maxz∈{0,1}ℓ Pr[LX = z] ≤ 2r ·
maxx∈{0,1}ℓ Pr[X = x].

Proof. [of Theorem 1] Following [4, 7], it is sufficient to consider the case when
Y is uniformly distributed on some set SY , |SY | = 2bY , and X is uniformly
distributed on some set SX , |SX | = 2bX .

‖
(

Y , BleA(X, Y)
)

−
(

Y , Uk

)

‖ =
1

|SY |

∑

y∈SY

‖BleA(X, y) − Uk‖s

(by parity lemma) ≤
∑

y∈SY

1

|SY |

√

∑

0k 6=a∈{0,1}k

(‖BleA(X, y) · a − U1‖s)
2

(by concavity) ≤

√

√

√

√

√

∑

0k 6=a∈{0,1}k

1

|SY |

∑

y∈SY

(‖BleA(X, y) · a − U1‖s)
2

We now proceed to upper bound each of the (above) bracketed terms by
2−(bX+bY +2−ℓ−r); the final result then follows from simple addition. Fixing a
value of a = a1a2 . . . ak ∈ {0, 1}k\{0k}, and identifying a with the set of all
i ∈ [k] for which ai = 1, we have

BleA(X, y) · a =
∑

i∈a

BleA(X, y)i =
∑

i∈a

(AiX) · y =

(

(

∑

i∈a

Ai

)

X

)

· y

where all sums are taken modulo 2.

Now define Aa
def
=
∑

i∈a Ai (mod 2), and recall that the rank of Aa is at

least ℓ − r. As a proof tool, we introduce the 2ℓ × 2ℓ matrix M whose rows
and columns are labeled by the elements of {0, 1}ℓ, and whose (x, y)th entry is

Mx,y = (−1)(Aax)·y (for x, y ∈ {0, 1}ℓ). We also let
−→
Mx be the xth row of M .

The following two properties are the key to what follows.

1. Every row of M is equal to at most 2r other rows of M . Indeed, if x, x′ ∈

{0, 1}ℓ satisfy
−→
Mx =

−→
Mx′ , then it must be that Aax = Aax′ (mod 2), i.e.

x + x′ (mod 2) is in the kernel of Aa. Since the rank of Aa is at least ℓ − r,
the kernel of Aa has at most 2r elements.

2. Rows of M that are distinct are orthogonal (in the Euclidean inner product

sense). For if x 6= x′ ∈ {0, 1}ℓ are such that
−→
Mx 6=

−→
Mx′ , then z

def
= Aa(x +

x′) 6= 0ℓ (mod 2), and the R-valued Euclidean inner product of
−→
Mx and

−→
Mx′ = (

−→
Mx)T (

−→
Mx′) =

∑

y∈{0,1}ℓ(−1)z·y (mod 2) is 0.

Now let
−→
D ∈ R2ℓ

be the vector defined by
−→
D

def
= 1

2|SX |

∑

x∈SX

−→
Mx. It is

not hard to see that the yth coordinate Dy of
−→
D is equal to 1

2 (Prx∈SX
[Mx,y =

1]−Prx∈SX
[Mx,y = −1]), so that |Dy| = ‖BleA(X, y) · a − U1‖s. The quantity

we wish to bound is thus

1

|SY |

∑

y∈SY

(‖BleA(X, y) · a − U1‖s)
2 =

1

|SY |

∑

y∈SY

|Dy|
2 ≤

1

|SY |

∥

∥

∥

−→
D
∥

∥

∥

2

2

and
∥

∥

∥

−→
D
∥

∥

∥

2

2
equals the Euclidean inner product

−→
DT−→D over R

∥

∥

∥

−→
D
∥

∥

∥

2

2
=

1

4|SX |2

∑

x,x′∈SX

(
−→
Mx)T (

−→
Mx′)

But properties 1. and 2. above show that for any x ∈ SX

∑

x′∈SX

(
−→
Mx)T (

−→
Mx′) =

∑

x′:
−→
M

x′=
−→
Mx

(
−→
Mx)T (

−→
Mx′) +

∑

x′:
−→
M

x′ 6=
−→
Mx

(
−→
Mx)T (

−→
Mx′)

≤ 2r
∥

∥

∥

−→
Mx

∥

∥

∥

2

2
≤ 2r+ℓ

Hence
∥

∥

∥

−→
D
∥

∥

∥

2

2
≤ 2r+ℓ/4|SX |, and plugging this bound into (3.1) yields

1

|SY |

∑

y∈SY

(‖BleA(X, y) · a − U1‖s)
2 ≤

2r+ℓ

4|SX ||SY |
= 2−(bX+bY +2−(ℓ+r))

which, as noted above, implies the theorem.

We emphasize that the above technique is entirely general: any set of matrices
A1, . . . , Ak such that the sum of any non-empty subset of matrices has rank of at
least ℓ − r, can be used to extract k < bX + bY + 2 − ℓ − r bits from ℓ-bit weak
sources X , Y with respective min-entropies bX , bY .

The following two cases are of special interest (of course, they apply only
when r is “small enough”; that is, when r + k < bX + bY + 2 − ℓ):

1. If the min-entropies bX + bY sum up to ℓ + polylog(ℓ), we can extract poly-

logarithmic (in ℓ) number of bits with bias 2−Ω(polylog(ℓ)).
2. If the min-entropies bX + bY sum up to (1 + c)ℓ, for any constant 0 < c ≤ 1,

we can extract linear (in ℓ) number of bits with exponentially small bias.

3.2 Explicit Strong Blender Instantiations

Theorem 1 subsumes constructions introduced (sometimes implicitly) in pre-
vious works. These constructions are presented below, followed by our more
randomness-efficient construction.

Identity Matrix. This is the simplest case when k = 1 and A1 is the identity
matrix. This gives r = 0 and implies that the inner product function is a strong

blender with bias ε = 2−
(bX+bY +1−ℓ)

2 , reproving the result from [7] (adapting the
result from [4]).

Cyclic Shift matrices. Vazirani [27] used cyclic shift matrices, to extract
randomness from SV sources. When ℓ is a prime with 2 as a primitive root, the
sum of any subset of matrices has rank at least ℓ−1 (that is r = 1, in our notation
above). Formally, let Ai be a linear transformation matrix corresponding to a
cyclic shift by i − 1 bits; That is, the jth row of Ai has a 1 in the j − i + 1
(mod ℓ) column and zero elsewhere. The required property of these matrices is
given below.

Lemma 4 ([27]). Let ℓ be a prime with 2 a primitive root modulo ℓ (i.e. 2 is a
generator of Z∗

ℓ). Let −→u ∈ {0, 1}ℓ \ {0ℓ, 1ℓ} be a vector (which is not the all 0’s
or the all 1’s vector). Let A be an ℓ × ℓ matrix over GF (2), such that the rows
of A are the ℓ right-cyclic-shifts of −→u . Then rank(A) ≥ ℓ − 1.

By Theorem 1, a corresponding strong blender can extract k bits with bias

2−
(bX +bY +1−ℓ−k)

2 , or, equivalently, extract k = (bX + bY + 1− ℓ− 2 log(1/ε)) bits
with bias ε.

(Non-Cyclic) Right Shift matrices. Let A1, . . . , Ak be linear transforma-
tion matrices such that Ai corresponds to the right shift by i − 1 bits. For any
non-empty subset S ⊆ [k], it is easy to see that the rank of AS =

∑

i∈S Ai is
at least ℓ − k + 1. By theorem 1 one can build a strong blender from those

matrices that extracts k bits with bias 2−
(bX +bY −ℓ−2k)

2 , or, equivalently, extract
k = (bX + bY − ℓ − 2 log(1/ε))/2 bits with bias ε.

The matrices from a general error-correcting code. The construction
of [7] (adapted from [25]) also pertains to the present framework. Let C be
an [ℓ, k, d] linear error correcting code (i.e., having dimension k and minimal
distance d in {0, 1}ℓ). Let A1, . . . , Ak be diagonal matrices, the diagonal of Ai

containing the coordinates of a codeword ci encoding the i-th unit vector in
{0, 1}k. By linearity, the diagonal of AS =

∑

i∈S Ai is also a codeword in C,
which is non-zero when S 6= ∅, and thus has at least d ones, so that rank(AS) ≥
d. Then Theorem 1 applies with r = ℓ−d, and the corresponding strong blender

extracts k bits with bias 2−
(bX+bY +d−2ℓ−k)

2 , or, equivalently, extract k = (bX +
bY + d − 2ℓ − 2 log(1/ε)) bits with bias ε (notice, sometimes this k may not be
achievable due to the coding constraints).

Our construction. We now present our new construction of strong blenders
via Theorem 1. We show that there is a set of matrices A1, . . . Aℓ whose non-
empty sums have full rank, thus achieving the best possible result for using
the technique in section 3.1. This latter fact follows from [14, 13, 19], and we
reproduce its simple proof for completeness. We use the isomorphism {0, 1}ℓ ≈
GF [2ℓ]. Take any basis x1, x2, . . . , xℓ of GF [2ℓ]. (There are many such bases for
GF [2ℓ], since it is isomorphic to the ℓ-dimensional vector space over GF [2]. One
such basis, which is easy to use, is 1, x, x2, . . . , xℓ−1, where x is any primitive
element of GF [2ℓ]; that is, an element that is not the root of any polynomial of

degree < ℓ over GF [2ℓ].) The matrices {Ai}ℓ
i=1 are defined such that matrix Ai

corresponds to left-multiplication by the basis-element xi:

Ai : y ∈ GF [2ℓ] 7→ xiy

Now for each non-empty set S ⊆ [ℓ], xS =
∑

i∈S xi is a non-zero element in

GF [2ℓ], and therefore has an inverse x−1
S in GF [2ℓ]. Let US be the ℓ × ℓ matrix

over GF [2] that corresponds to left-multiplication by x−1
S :

US : y ∈ GF [2ℓ] 7→ x−1
S y

Now, it is easy to see that US is the matrix-inverse of AS =
∑

i∈S Ai, since
left-multiplication by matrix US

∑

i∈S Ai corresponds to multiplication by the

field identity element x−1
S

∑

i∈S xi = 1.
This immediately implies the desired conclusion:

Lemma 5. Let A1, . . . , Aℓ be matrices presented above. Then for all ∅ 6= S ⊆ [ℓ],

the rank of AS
def
=
∑

i∈S Ai is ℓ.

Plugging the first k of the matrices A1, . . . , Aℓ into theorem 1 we deduce
the existence of an explicit strong blender that can extract k bits with bias

2−
(bX +bY +2−ℓ−k)

2 , or, equivalently, extract k = (bX + bY +2− ℓ−2 log(1/ε)) bits.

References

1. N. Alon. Tools from higher algebra. In Handbook of Combinatorics, R.L. Graham,
M. Grtschel and L. Lovsz, eds, North Holland (1995), Chapter 32, pp. 1749-1783.

2. A. Andreev, A. Clementi, J. Rolim, L. Trevisan. Dispersers, deterministic am-
plification, and weak random sources. In SIAM J. on Comput., 28(6):2103–2116,
1999.

3. B. Barak, R. Impagliazzo and A. Wigderson. Extracting Randomness from Few
Independent Sources. Manuscript, 2004.

4. B. Chor, O. Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

5. A. Cohen, A. Wigderson. Dispersers, deterministic amplification, and weak ran-
dom sources. In Proc. of FOCS, pp. 14–19, 1989.

6. Y. Dodis, J. Spencer. On the (Non-)Universality of the One-Time Pad. In Proc.
of FOCS, 2002.

7. Y. Dodis, R. Oliveira. On Extracting Private Randomness over a Public Channel.
In RANDOM-APPROX 252-263, 2003.

8. O. Goldreich. Three XOR-Lemmas - An Exposition. Electronic Colloquium on
Computational Complexity (ECCC), 1995.

9. R.L. Graham, J.H. Spencer. A constructive solution to a tournament problem.
In Canad. Math. Bull. 14, 45-48.

10. C. Lu, O. Reingold, S. Vadhan, A. Wigderson. Extractors: Optimal Up to Con-
stant Factors. In Proc. of STOC, 2003.

11. U. Maurer, S. Wolf. Privacy Amplification Secure Against Active Adversaries.
In Proc. of CRYPTO, Lecture Notes in Computer Science, Springer-Verlag, vol.
1294, pp. 307–321, 1997.

12. J. McInnes, B. Pinkas. On the Impossibility of Private Key Cryptography with
Weakly Random Keys. In Proc. of CRYPTO, pp. 421–435, 1990.

13. R. Meshulam. Spaces of Hankel matrices over finite fields. Linear Algebra and its
Applications, 218, 1995.

14. E. Mossel, A. Shpilka, L. Trevisan. On ǫ-biased Generators in NC0. In Proc. of
FOCS, 2003.

15. N. Nisan, A. Ta-Shma. Extracting Randomness: a survey and new constructions.
In JCSS, 58(1):148–173, 1999.

16. N. Nisan, D. Zuckerman. Randomness is Linear in Space. In JCSS, 52(1):43–52,
1996.

17. R. Raz, O. Reingold, S. Vadhan. Extracting all the randomness and reducing the
error in Trevisan’s extractors. Journal of Computer and System Sciences, 2002.

18. L. Rónyai, L. Babai, M. Ganapathy. On the number of zero-patterns in a sequence
of polynomials Journal of the AMS, 2002.

19. R. Roth. Maximum rank array codes and their application to crisscross error
correction. IEEE transactions on Information Theory, 37, 1991.

20. M. Sántha, U. Vazirani. Generating Quasi-Random Sequences from Semi-Random
Sources. Journal of Computer and System Sciences, 33(1):75–87, 1986.

21. R. Shaltiel. Recent developments in Explicit Constructions of Extractors. Bulletin
of the EATCS, 77:67–95, 2002.

22. R. Shaltiel, C. Umans. Simple extractors for all min-entropies and a new pseudo-
random generator. In Proceedings of FOCS 2001, pp.648-657, IEEE Computer
Society, 2001.

23. L. Trevisan. Construction of Extractors Using PseudoRandom Generators. In
Proc. of STOC, pp. 141–148, 1999.

24. U. Vazirani. Randomness, Adversaries and Computation. PhD Thesis, University
of California, Berkeley, 1986.

25. U. Vazirani. Strong Communication Complexity or Generating Quasi-Random
Sequences from Two Communicating Semi-Random Sources. Combinatorica,
7(4):375–392, 1987.

26. U. Vazirani, V. Vazirani. Random polynomial time is equal to slightly-random
polynomial time. In Proc. of 26th FOCS, pp. 417–428, 1985.

27. U. Vazirani. Efficiency Considerations in using semi-random sources. In Pro-
ceedings of the nineteenth annual ACM conference on Theory of computing, pp.
160–168, 1987.

28. A. Wigderson. Open problems. Notes from DIMACS Workshop on Pseudoran-
domness and Explicit Combinatorial Constructions, 1999

29. D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algo-
rithmica, 16(4/5):367-391, 1996.

