
A report written by PERICLES Project partners in collaboration with

participants of the Community of Practice (CoP) on Software-Based Art.

Interdisciplinary
Discussions about the
Conservation of Software-
Based Art

Community of Practice on Software-Based Art

1

A report by: Annet Dekker (Tate), Patricia Falcao (Tate)

From discussions with:

Agathe Jarczyk (Hochschule der Künste Bern), Arnaud Obermann (Staatsgalerie Stuttgart), Ben

Fino-Radin (MoMA), Deena Engel (NYU), Dragan Espenschied (Rhizome), Emanuel Lorrain

(Packed), Gaby Wijers (Lima), Joanna Phillips (Guggenheim), Katarina Haage (Tate), Kate Lewis

(MoMA), Klaus Rechert (University of Freiburg/bwFLA), Mark Hellar (Hellar Studios LLC /

SFMOMA), Martina Haidvogl (SFMOMA), Morgane Stricot (ZKM-Centre for Art and Media

Karlsruhe), and Tom Ensom (Tate/ Kings College London)

Final edit by: Esther Harris (Tate)

Table of Contents

Introduction and Aims.. 2

Discussion Outcomes ... 3

Classification and Terminology .. 3

Role of the conservator, programmer and artist ... 5

Source code .. 6

Preservation Techniques: Disk Imaging, Emulation and Virtualisation 8

Video as a documentation tool .. 12

Implicit Knowledge ... 13

Capturing Change ... 14

Case Study: Dependency on external data .. 15

Case Study: Reconsidering previous preservation efforts ... 16

Concluding remarks ... 18

Appendix ... 20

2

Introduction and Aims

In 2015/16 Tate organised a series of virtual discussions related to the preservation of software-

based art as part of Tate’s partnership in PERICLES, a European-funded project which focuses on

the long-term digital conservation and preservation of digital resources, with particular focus on

actively managing change and risk as part of this process. The idea for this series arose from the

realisation that managing technical change in software-based art is not only a common concern

for practitioners working in the field but also of interest to the research community. A group of

engaged expert practitioners and researchers were invited to consider a set of topics at the core

of the conservation of software-based artworks. Six discussion sessions were organised over a

period of one year.

This report summarises the outcomes of these meetings and examines some of the key points.

The discussions were informed by a series of questions that we posed based on our collective

experience of working with software-based artworks, as well as a survey of related studies in

the conservation of new media, complex installations and software, in relation to art, digital

forensics and archiving (see appendix). One of the main goals was to move beyond specific

approaches or case studies and work towards more general statements about the conservation

of software-based art. To achieve this, we organised the discussions around the following

topics:

1. Analysis and classification: How do we currently analyse software-based artworks and

identify risks for conservation and display? How might we develop our protocols? Can

we develop general basic guidelines for this assessment? What do they need to include?

2. Current preservation techniques: Disk imaging, emulation and virtualisation and re-

coding. What are the roles of artist, developer and conservator in the preservation

process?

3. Documentation and reporting: How do we, and how might we in the future describe or

model a digital environment? How do we currently capture and report on change within

(existing) management systems or preservation workflows? How might we develop and

improve these workflows?

4. Quality control: Once a conservation approach is chosen (for example to recode,

virtualise or emulate) and executed, how can the ‘new’ version be compared and

assessed against the ‘original’? What is the status of the original source code and its

hardware dependencies?

3

The focus group consisted of people from diverse backgrounds (ranging from computer science

to time-based media conservation, digital conservation, and curation), working with different

collections (in some cases without collections) and in different organisations (from large

international and mid-size contemporary art museums, to universities and small specialised

organisations). This variety was apparent throughout the discussions, as the experience and

views expressed were directly related to the institutions and collections that people were

involved with. For example, those in institutions engaged with software-based installation art

felt the need to understand the individual details of each work. In this situation conservators

will usually have a fairly small number of works and will have elements and instructions supplied

by the artist. On the other hand, the concerns of those working with web-based or CD-ROM art

were more focused on understanding a wider range of technical environments that would

support as many works as possible. This reflects the fact that the collections mentioned

(Rhizome and Transmediale) consist of hundreds of works, and also that these type of works

were meant to be seen on most computers of a specific period in history. This report reflects

these different approaches and acknowledges that each will benefit from understanding the

other and where possible adopting common strategies.

The other key goal of this Community of Practice was to establish an international network of

professionals with different backgrounds to share knowledge and develop practice. This was

achieved, as evidenced by this report and the other outcomes of the project.

Discussion Outcomes

Classification and Terminology

There are many ways of looking at and trying to understand the new forms of art that have

emerged alongside the rapid development of digital technologies. The metaphors used for

understanding new media art depend on the cultural history professionals come from (Cook and

Graham 2010:1) and also the purpose served by the classification and terminology. For example,

conservation practitioners might find it useful to group works that share technical features

relevant to particular preservation challenges, whereas a curator or art historian may wish to

draw different types of connections, for instance around different types of visitor interaction.

4

This report focuses on discussions about classification and terminology as they relate to the

current and developing conservation practice.

One of the main points of consensus was that a system of categorisation for software-based

artworks is complex to both develop and use, since these works cover such a broad range of

technologies and platforms. The complexities in and of the artworks themselves relate to the

diversity of software and hardware being used in different ways, from anything that can be

shown online to specific code used by artists for installation in specific physical settings. They

are also related to the fact that different parts of a work can belong to multiple categories. In

short we concluded that a classification would need to:

 Offer flexibility to accommodate diverse artworks

 Cover a broad range of technologies and platforms

 Change over time, through further reflection, research, learning and scholarship

These factors bring into question the viability or usefulness of having a single classification.

For the purpose of emulating software-based artworks it may be useful to consider a

classification based on technical dependencies, for instance specific operating systems or

interfaces. This type of classification can only exist alongside object-based description, and the

understanding of how a work must be presented. Moreover, it was suggested that it is essential

to come to a basic understanding of how computers work – the basic building blocks of

computation – which only then could lead to a useful technical classification. When trying to

conceptualise these building blocks it is helpful to find use-cases that move beyond a single

artwork, to find abstractions that are useful and applicable.

For now, two generic descriptions of software-based art were seen as useful for conservation,

as they point to the presence or absence of web-related dependencies:

 Contained software-based art: In which there is no external data input on the software

 Networked software-based art: In which the functioning of the work depends on data

outside the control of collecting institutions

With regards to technical terminology, we wanted to clarify the meaning and use of the terms

emulation and performance. In the past the term emulation was used by the Variable Media

Network to mean re-creating an artwork by different means; in the context of art conservation

it is often still used in this sense. However, we agreed that it would be more precise to use the

5

term emulation in the manner it is used in an engineering context, which refers to the

recreation of hardware environments by means of software. In this report, emulation is

therefore used in this narrower sense, and we recommend using different terms when referring

to other techniques, for instance re-coding.

The term performance can be used for computer performance, i.e. how well the computer is

doing what it is supposed to do; the performance of the software, i.e. how well the software is

doing what it is supposed to do; or, in the sense that a software-based artwork is a

performance. It is therefore important to clearly signpost the type of performance involved; it is

no less important that artist, conservator and programmer all agree the ways in which these

terms are used at the outset of a conservation process.

Role of the conservator, programmer and artist

The value of working with a programmer to help analyse and understand a software-based

artwork is very clear to all the participants. There is also clear understanding and

acknowledgement that at some point in time the code or software of an artwork may need to

be changed. Eventually artists will not be present to approve specific changes, and therefore it is

always best practice to ask the artist about their attitudes to change and what is important to

preserve about a work. Moreover, dialogue between the conservator and the artist is likely to

be ongoing over a number of years as at different moments decisions will need to be made in

order to keep the piece running. This is no different from the kind of stewardship that is

provided with other time-based artworks, where in the early years of a work and during the first

iterations of the piece, conservators work closely with the artist to develop their knowledge and

experience of the work and its behaviour, and how it may or may not change under different

circumstances, different conditions, different curatorial preferences or against a changing

technological landscape. For software-based artworks these iterations may not only be

triggered by different exhibitions but also by risks associated with obsolescence or

discontinuation of support of hard- and software.

To gain a better understanding of the identity of the work and its inherent vulnerabilities,

collaboration between different disciplines is essential, i.e. the conservator may work closely

with programmers or computer scientists. Based on this dialogue the preservation risks inherent

in a work are identified, the degree and impact of that risk is estimated and mitigation or

treatment options are considered and implemented. This is an engaged and ongoing learning

6

process, a collaboration over an extended period of time where all parties involved learn about

the change, or the type of changes that the artist finds acceptable or not. Maintaining this

thread of discussions is crucial for documenting and tracing key decisions.

Similar to other conservation practices, the conservation of software-based art is an educational

process that needs to be lobbied for within an institution. To facilitate this, as has been

happening for some time in many museums, curators and other staff members need to be

invited to the conservation space to discuss challenges together in order to create more

awareness across departments. In finding people to work with, conservators can approach their

institution’s IT department or staff member, who might be able to collaborate in finding

solutions, or help find other people from their network to assist.

Source code

In computing, source code is described as “any collection of computer instructions, possibly

with comments, written using a human-readable programming language, usually as ordinary

text.”1 In museum practice there has been a great emphasis around preserving source code.

Through our discussions and experience with different types of works and technologies, it

became clear that this approach needs to be nuanced, as the value and usefulness of source

code varies greatly depending on the artwork and the type of software. There was a lot of

discussion about whether it was useful to collect the source code along with a work, or whether

it might in some cases give collectors a false sense of security, or take up too many resources,

possibly without enough returns. For fairly simple applications, for instance the work Colors by

Cory Arcangel2, source code may be used to recompile an artwork’s software, as long as the

chain of programming tools (or toolchain)3 used for production is also available. This is not

necessarily a simple task. Ideally, if an artwork is acquired and accessing the source code is

relevant, then the whole chain of programming tools should also be collected to maintain

access to that code. In many cases the source code can be unobtainable, or useless, for instance

when a work exists within a virtual world such as Minecraft4, or was created using gaming

engines like Unity5.

1 https://en.wikipedia.org/wiki/Source_code
2 http://www.coryarcangel.com/things-i-made/2009-054-colors-personal-edition
3 A tool chain is the set of programming tools that is used to perform a complex software development task or to
create a software product, which is typically another computer program or a set of related programs. For more
information see: https://en.wikipedia.org/wiki/Toolchain
4 https://minecraft.net
5 https://unity3d.com

https://en.wikipedia.org/wiki/Source_code
http://www.coryarcangel.com/things-i-made/2009-054-colors-personal-edition
https://en.wikipedia.org/wiki/Toolchain
https://minecraft.net/
https://unity3d.com/

7

Besides its value for preservation, the other aspect discussed was what can be learnt from

source code about the creation of a work, how it functions and its technical history. Source code

analysis, as discussed by Engel and Wharton6, can in some respects be considered akin to the

chemical composition of a painting, to use Ben Fino-Radin’s metaphor. The choice of language

and platform, the coding style and structure, or the comments in the code are often reflections

on an artist’s practice and interests. The analysis of the source code is also often crucial for

preservation, making it possible to re-create a work, or migrate it to different technologies. An

experienced programmer familiar with a specific language will be able to find useful information

about the functions being performed.

There are a few different techniques that can possibly be applied if original source code is
available:

 The source code can be translated to Pseudocode, “an informal high-level description of

the operating principle of a computer program or other algorithm. It uses the structural

conventions of a normal programming language, but is intended for human reading rather

than machine reading. (...)The purpose of using Pseudocode is that it is easier for people to

understand than conventional programming language code, and that it is an efficient and

environment-independent description of the key principles of an algorithm.”7

 If the source code is available it may be possible to recompile or transpile it. In both

techniques the original code is translated either to machine code (compiling) or to a

different language (transpiling). There weren’t any art-related examples of these

techniques actively being used, and with the currently available tools and techniques a lot

of resources would be necessary to use these techniques successfully.

 If no source code is available, in some cases it may be possible to decompile an executable

file. The results are often unreliable, or may require extensive analysis to be understood,

but depending on the technologies it may be worth an attempt. “Simple compiled script

languages, such as Flash/SWF/ActionScript binary objects can be decompiled quite well.

Other useful decompile scenarios (technically better termed 'disassembly') would be the

preparation of ‘binary patches’, e.g. to understand and exchange specific external

references which are hard coded and maybe don't exist anymore, breaking DRM (Digital

Rights Management), or simply to understand specific routines” (Klaus Rechert).

6 Deena Engel and Glenn Wharton, "Source Code Analysis as Technical Art History," Journal of the American
Institute of Conservation, 54 – 2 (2015), 91-101.
7 https://en.wikipedia.org/wiki/Pseudocode

https://en.wikipedia.org/wiki/Pseudocode

8

Even if collecting and keeping source code accessible can be time-consuming, for many works it
is nevertheless a sound step, as it opens a series of different options for preservation that would
not be available otherwise. Institutions and conservators must assess their collections and
artworks and assess if the source code is available, usable and relevant, and if it makes sense to
collect it for their purposes.

When thinking of the preservation of a work, it is important to apply other techniques in
parallel; we discuss this further in the following chapter.

Preservation Techniques: Disk Imaging, Emulation and

Virtualisation

In this section the focus is on software-based artworks that currently run on specific hardware,

as is the case with many interactive installations displayed in a Museum context. The strategies

described here are already being systematically applied to different types of software-based

artworks, more specifically in web-based or CD-ROM collections.

We agreed that creating a disk image of any computer hard-drive supplied with an artwork is an

essential first step to safeguard the information contained in such a fragile object. This disk

image can be stored as documentation of the running system delivered by an artist, and it can

also be run on an emulator or virtualiser to partially test for technical dependencies and

significant properties. A complementary technique is the creation of a new disk image to run an

artwork’s software. In this process, a new disk image is created within an emulation or

virtualisation platform8, the appropriate generic operating system is installed, and the artwork’s

software is then tested on that system. The most likely initial result is that some libraries or

drivers will be missing, and this will be made very visible by error messages. Those missing

libraries and drivers can then (depending on the age of the system and obscurity of the

software) be added, or in some cases replaced, so that the artwork’s software runs.

8 QEMU would be an example of a platform that can be used both for emulation and virtualisation, while VirtualBox is
a common Virtualisation platform.

9

The following step is to confirm that any significant or work-defining properties identified for a

specific artwork can be maintained in the emulated version9. The best way to do this is to

compare a native and an emulated version, but this will eventually become impossible once the

original hardware is no longer available. This type of comparison is often a challenge and

requires an understanding of the artwork at both a technical and conceptual level. Not only

must the software be tested for its in- and outputs, which can mean testing sound, interactivity

and image quality, but often the outputs are not audio visual at all. The main challenge is often

to find, and recognise, the properties that are not obvious, and that you did not expect.

Nonetheless, if a disk image can be run correctly on either an emulation or virtualisation

platform, and if it is comparable with an approved version of an artwork, then hardware

dependencies can be considered to have been removed, or at least decreased, and the risks to

the longevity of the software can be better managed. If any dependencies are identified during

the process of emulation, then a future move to a different emulator or virtualiser is less likely

to be problematic. 10

The choice between emulation and/or virtualisation platforms is dependent on the technical

requirements of an artwork and the present development of the emulation or virtualisation

platforms. This is the primary reason why the choice for either virtualisation or emulation is

often defined by the historicity of the material, and the type of CPU. The aim, which as

previously outlined may not always be achievable due to age and/or obscurity of software and

hardware, is to create disk images of an artwork’s software systems that can be transferred

between emulation and virtualisation platforms without loss. This would enable the

identification of the essential technical dependencies of the original environment, and some of

the long-term risks for preservation.

Virtualisation is driven by the information technology industry and its aim is to facilitate the

management of current work environments and servers. “Virtualisers (such as VirtualBox and

VMWare), are only able to run Intel-based x86 VMs” (Rechert 2016). Emulation, on the other

hand is aimed at running older operating systems on newer platforms, and emulators cover

almost any technical platform, in particular obsolete ones. Emulation has been gathering

9 For more information about the ‘work-defining properties’ see Pip Laurenson, “Authenticity, change and loss in the
conservation of time-based media installations,” Tate Papers Issue 6, 2006,
http://www.tate.org.uk/research/publications/tate-papers/06/authenticity-change-and-loss-conservation-of-time-based-
media-installations
10 For an in-depth analysis of emulation, including the differences between emulation and virtualization, and their
limitations in terms of access to peripherals, see “Introduction to an Emulation-based Preservation Strategy for
Software-based Artworks” (Rechert et al. 2016), a position paper on the topic based on the CoP discussions and the
goals of PERICLES.

http://www.tate.org.uk/research/publications/tate-papers/06/authenticity-change-and-loss-conservation-of-time-based-media-installations
http://www.tate.org.uk/research/publications/tate-papers/06/authenticity-change-and-loss-conservation-of-time-based-media-installations

10

momentum as a preservation method, and new frameworks have been developed to support its

use, by projects like the BwFLA11, EMIL12, the Olive Executable Archive13 and the Internet

Archive14.

In general, emulation and virtualisation can be considered as medium-term solutions to

preserve technical elements of many types of artwork, but the conceptual elements of an

artwork must also be described and captured in other ways, which leads to the following

discussion about documentation.

Documentation

There are many different ways how and reasons why to document a software-based artwork,

and this section suggests some strategies that were found relevant and useful by the

participants. Some of the key types of documentation fall under the following categories:

 Documentation of the constituents of an artwork

Documenting the constituents of an artwork, both software and hardware, means having a

basic knowledge of what the components of a work consist of, and their location and

movements. This usually does not require expert knowledge but is essential in an

institution.

 Documentation of the production and display technologies

This type of documentation should identify the technologies of production and display of

the artwork and identify risks for preservation, for instance dependency on specific

hardware. It requires a deeper understanding of the technologies involved and often

demands research into the history of a work and evolution of specific technologies.

 Documentation of the installation process

This is particularly important for complex works that may require unique hardware, or

calibration of software. A detailed installation manual, diagrams of technical connections,

screen recordings of the work being setup or a video of the installation process may be

essential to ensure that an artwork is displayed properly.

11 http://bw-fla.uni-freiburg.de
12 http://www.multimedia-emulation.de/index.html
13 https://olivearchive.org
14 https://archive.org/details/softwarelibrary_msdos_games

http://bw-fla.uni-freiburg.de/
http://www.multimedia-emulation.de/index.html
https://olivearchive.org/
https://archive.org/details/softwarelibrary_msdos_games

11

 Documentation as reference

Documentation can be created in order to provide a reference points regarding how a

work is supposed to look and function, or how it evolved through different iterations. This

is particularly important for software-based artworks, because having software running

does not mean that it is running correctly, nor is having the software running correctly

always enough to ensure that an artwork is correctly presented. This type of

documentation usually requires the use of video or screencasts, but virtualisation or

emulation can also be used as a form of reference documentation.

 Documentation of the visitor experience

It is important to show or describe how people experience the artwork, so that in the

future the artwork can be contextualised. This can be done with video recordings of

visitors interacting with a work, but also through interviews with those same visitors.15

All of the documentation listed above should, if possible, be defined in collaboration with the

artist, through interviews, or more frequently through communication during the acquisition

process, or ahead of a display of a work.

Without previous knowledge of the artwork and without additional information, it can be very

hard to recognise if something is missing or just not working properly. Ideally the artist is

involved in these steps, to ensure that details are correctly captured. If there is access to an

approved version of the work on display, then a video documentation of the artwork running

can be a good option for documentation.

For the purpose of conservation several guidelines have been created in the past to aid the

creation of documentation (see appendix for some examples), these are not necessarily specific

for software-based artwork, but relevant nevertheless. In general, the available documentation

frameworks or guidelines can be useful as an aid to prompt relevant questions or highlight

specific information. However due to the variability of software-based artworks, these generic

resources should not be used as a standardised questionnaire but adapted to respond to the

work being considered. Just as the artwork evolves, so will the thinking of the conservator and

artist change over time about what is necessary to change and what must not be altered. Trying

to adhere to a strict documentation framework presents the following limitations:

15 The Daniel Langlois Foundation and the DOCAM project published a series of case studies on this type of
documentation. Most relevant is Lizzie Muller, “Towards an Oral History of New Media Art,” Daniel Langlois
Foundation for Art, Science, and Technology, 2008, http://www.fondation-
langlois.org/html/e/page.php?NumPage=2096. Another interesting example is Rolf Wolfensberger, “Paul Sermon,
Telematic Vision (1993 -). Documentary Collection,” Daniel Langlois Foundation for Art, Science, and Technology,

2009, http://www.fondation-langlois.org/html/e/page.php?NumPage=2179.

http://www.fondation-langlois.org/html/e/page.php?NumPage=2096
http://www.fondation-langlois.org/html/e/page.php?NumPage=2096
http://www.fondation-langlois.org/html/e/page.php?NumPage=2179

12

 A rigid template makes it difficult to fit something in the scheme that has not been

previously encountered;

 The type of information to be included is likely to be either very general or extremely

detailed;

 It can be difficult to represent relations between different elements;

 It does not reflect the iterative nature of documentation practice as a work evolves over

time, and in relation to different activities it will encounter such as being displayed in

different spaces and contexts, conservation activity and also research.

Partly due to these challenges, most conservators have come to rely on their own experience,

rather than actively using standardised documentation frameworks that may require

information irrelevant for a specific artwork while omitting information essential to a software-

based artwork. Conservators, or the teams responsible for these works, strive to have the

information necessary to manage works in a collection, for the re-installation of each artwork,

and their preservation for the foreseeable future. This is a significant challenge, particularly

when considering the rapid development and evolution of technology. A useful documentation

framework should clearly define the objective of the documentation, reflect the iterative nature

of documentation, and accommodate change.

Video as a documentation tool

Video has been used to document complex artworks with a temporal aspect for as long as video

exists, albeit initially this meant recording human performances, rather than software-based

artworks. Software-based artworks can display a wide variety of behaviours, the only limitation

to those being the in- and output devices and interfaces. These behaviours are determined by

the artwork’s software, including programming errors, bugs and technical limitations

encountered at time of production. The whole underlying system of software and hardware is

often of integral importance, to run the software but also to understand its production history.

Settings and interfaces will also influence how a software-based artwork manifests itself. Given

all these variables it can be difficult to understand whether a software is behaving as it was

meant to, or designed to do. This is a characteristic particularly relevant to software-based art,

and documentation must be adapted to reflect this. Traditional conservation documentation,

listing components and technical specifications, is often inadequate, and even thorough display

instructions can be insufficient.

13

The key point discussed was that video is essential to document not only the behaviour of these

works, but also their installation processes. This can mean recording different hardware

components being connected or screencasts demonstrating how to set-up an artwork’s

software. For example, if a work is being installed for the first time in an institution, video

documentation of a previous installation process and a video of the work running are likely to

be more helpful than a documentation folder. The caveat here is that even a screencast of the

software set-up may be insufficient, as it will not necessarily show the whole software

environment, namely underlying dependencies, like for instance the version of DirectX. It must

be recognised that there is a limit to what video, as a linear medium, can capture. For instance,

video is unlikely to fully capture the behaviours of very complex, interactive, or variable works.

Implicit Knowledge

With variable and complex artworks, it can be hard to judge what type of information has to be

captured, or the level of detail one needs to document. These two factors also depend on the

purpose of the documentation being created. It is always easy to miss implicit information,

whether technical or non-technical. It is the obvious and trivial that is often neglected.

For example, the way a mouse is used, or what keys on a keyboard are pressed, are very

obvious behaviours for current users of computers, but in the future, once mice are no longer

used as a standard, it will be very important to understand their use, and artworks may have to

be adapted to accommodate this change in user habits. Another instance is the use of a scrolling

bar in the work Scrollbar Composition by Jan Robert Leegte16, which did not pose an obvious

problem until scrolling bars stopped being common features on web browsers.

Also, sometimes there are implicit external dependencies in a software environment that are

not necessarily described, such as the Internet Protocol (IP), which have evolved over time.

Although some software may only work in a specific environment, when such context is not

documented or directly visible, it is easily forgotten. Next to hardware dependencies, data

protocols can also be important to document; for example, network latencies or how a network

is set up can affect how works run. Because the stability and speed of the connection to the

network is often variable, it is thus crucial to understand the protocols and the definitions of

how the software communicates with any web resources. In other words, documenting

software-based art is ideally also about documenting context: the context of creation, as well as

16 http://www.scrollbarcomposition.com

http://www.scrollbarcomposition.com/

14

the behaviour, the environment in which the works functions, and the social and technical

historical context.

Capturing Change

Following initial work carried out by Deena Engel and Mark Hellar, an approach for documenting

change that is starting to be discussed and tested in museums is the use of Git.17 Git is a version

control system, commonly used in software development. Using this type of version control

tools allows artists and collecting institutions to keep track of changes to an artwork’s software

throughout its life. It also allows for a return to earlier versions of the software, if a change has

unexpected consequences or is unwanted.

Museums have more experience of preserving things that change much more slowly due to

material deterioration, such as charcoal drawings or marble sculpture. With software-based

artworks there are often deep changes at different moments of the artwork’s life, and such

changes can be made by the artist/programmer and/or the museum. These changes can be very

difficult to capture, as they often take place under tight deadlines (typically before an exhibition

opening) and are typically carried out by the artist or a programmer outside the institution. By

using Git, code changes are documented, and can be undone, according to the artist and the

museum’s need.

Further experience and research from conservation practitioners using tools such as Git for

tracking and documenting change within software based artworks will help to evaluate how

they might be used to create valuable documentation relevant to preservation. In the end

though, Git is only a tool for documentation, so its content and the value for a collecting

institution will depend on its correct use.

17 Deena Engel and Mark Hellar, “Computational Provenance and Computational Reproducibility: What Can We Learn
About the Conservation of Software Art From Current Research in the Sciences?” (paper presented at EMG
(Electronic Media Group of the American Institute of Conservation of Historic and Artistic Works), Miami, Florida, May
16, 2015).

15

Case Study: Dependency on external data

One specific risk for preservation that was identified very early on in the discussions, was

related to works that depend on live feeds from specific sites, such as chat rooms18, Twitter

feeds, Google searches19, or Google Maps. These types of data sources raise a series of both

technical and ethical questions and we will briefly discuss those here. It is relevant that these

data sources are beyond the control of the artist or the museum, and that they usually display

live results. In most cases the connection to the online data happens through an Application

Programming Interface (API), so not only must the source website be live, but it must also still

be using that specific API.

From the discussions it became apparent that many artworks that use live feeds often rely on a

database to store the collected data. This intermediate database is then queried by the

artwork’s software. This is usually a practical solution to issues related to slow/lack of Internet

connections and the overall reliability of a work when on display. This process means an artwork

can be run even without live access to data, and also that the data that is captured is stored.

Adding a database can have a series of advantages for conservation, so even if a database is not

initially part of the system, one can be added to record live data sets.

Preserving such data sets means a historical version of the artwork is captured through the

saved results, and allows their use for exhibition in the future, should the API no longer work.

The implication is that the ’live‘, contemporary aspect of an artwork may then be lost. For

example, a work that is meant to “react” to current events might lose meaning if using

preserved data. However, some artists might feel that data sets should remain static in the

future as the work (and thus the crawls) represents a certain era of the Web.

If the ‘liveness’ of the results is essential, then the other possible approach is to change the

information source. For instance, instead of gathering communication from Google, one may

decide to switch to a different search engine. If a similar platform exists this change can be seen

as straightforward, but in some cases this may mean an important compromise. An example,

described by the curator Hannah Redler in a personal communication, is the work Listening Post

(2001) by Mark Hansen and Ben Rubin. Artists and curators discussed the possibility of changing

the source from IRC chats to Twitter, but the type of sentences extracted are very different. For

18 For instance Listening Post (2001), by Mark Hansen and Ben Rubin, relied on IRC chat rooms, for a discussion of
the piece’s evolution over the last 14 years, see: http://modes.io/listening-post-ten-years-on.
19 An example from the Tate Collection is Brutalism: Stereo Reality Environment 3, 2007 (T13251) by José Carlos

Martinat Mendoza.

http://modes.io/listening-post-ten-years-on

16

instance, IRC chats are centred in conversations between two or more individuals, using

sentences such as “I am …”, “I do…” while on Twitter it is more likely that conversations are less

directed at individuals, and so sentences like “I am…” or “I do…” are not very common. For a

work like Listening Post this can very relevant.

A tool that is being developed to capture online data with the objective of documenting results

is the Webrecorder. Developed by Ilya Kreymer and Dragan Espenschied at Rhizome20, this tool

is currently meant to be used for documenting websites, but can also record web services like

Google Maps, which might provide essential elements to an artwork.

Case Study: Reconsidering previous preservation efforts

Paul Jansen Klomp was invited by the CoP to present a case study on the preservation of the

work Revolution. A Monument for the Television Revolution (1990) by Jeffrey Shaw and Tjebbe

van Tijen and how the approach initially used in 2006 became obsolete and was updated in

2015. Revolution was originally produced for the travelling exhibition IMAGO: fin de siëcle in

Dutch contemporary art, a co-production between the Netherlands Office for Fine Arts (now

RCE) and the Netherlands Media Art Institute (now LIMA) and is now in the collection of the

Cultural Heritage Agency of the Netherlands. Within the scope of the European project Inside

Installation (2004–2007) Paul Jansen Klomp, in collaboration with the Netherlands Media Art

Institute (now LIMA), used Pure Data to re-create the work.21

The installation by Shaw and Van Tijen is fairly simple; visitors can push an extended steel bar

that is attached to a steel column, which holds a built-in monitor. When the bar is rotated, and

the machine moves, the images on the monitor change accordingly. “Pushing the bar forward

triggers 180 images depicting revolutionary moments in human history. Rapidly turning the bar

produces a vague blur of images, and pulling the bar backwards results in an image of two

millstones grinding corn” (Wijers, 85). As Klomp recalls, at the time in 2007, the work seemed

easy to document and emulate with merely one single channel and repetitive sounds that only

changed to the speed of the turns.

To begin the process, Klomp noted down data about the working of the piece, as the original

was still available and in working condition. He measured inputs and outputs, and the response

20 https://webrecorder.io
21 Pure Data is an open source visual programming language for creating interactive computer music and multimedia
works. For more information, see http://puredata.info

https://webrecorder.io/
http://puredata.info/

17

times. In the meantime the original computer failed due to battery leakage. Replacing the PC

proved difficult, no similar PC would work. Only after finding that the original computer had

been hardwired by the artist or his technician was it possible to run the program again. This was

done on the original computer, which was repaired by adding an I/O card to overtake the

function of the damaged components on the motherboard.

“We didn’t get into the code of the original program. We considered the computer and

all the other devices to be a black box and we just monitored the input and the output.

Based on this monitoring we made the simulation.” (Paul Jansen Klomp)

The choice for Pure Data was made because it was open source and could be used in a Linux

environment, thus not requiring a dependency on any licensing from external parties. Another

reason was that the installation worked with sound in different playback speeds and it was very

easy to use in real time with Pure Data. The re-created version was considered successful as the

behaviour was very close to the original. However, in 2015 Klomp tried to run the recreated

version, but it refused to work due to changes in Pure Data. Running the Pure Data version on a

VMWare virtual machine also proved impossible, as Pure Data would not connect correctly to

the audio output. A few different strategies were tested; running the old Ubuntu version in a

virtual machine; running the original Pure Data version in a virtualized Windows XP; migrating to

a newer version of Pure Data in Windows 10; all attempts were unsuccessful. After all these

experiments, Klomp solved the sound problem as it turned out that it was related to a setting in

the host computer: whether or not the sound drive would play multiple sound streams. When

turning off the multiple sound streams option, Pure Data in the virtual machine (VMWare) could

connect to the computer again and the sound worked as before.

While the sound problem was resolved, one issue remained unclear: how does the VMWare

player handle USB connections? When there is a USB connection from a host system, where

should the driver be: should a driver be re-installed in VMWare or can the driver be in a host

computer? Perhaps the answer is documented in the VMWare environment, but so far Klomp

has been unable to find it. In the long term, the dependency on the RS232 communication over

USB to communicate to the sensor (which is in a separate box with its own micro-controller),

could become a problem, so to overcome this Klomp migrated the work into Windows 10. This

meant that the Pure Data programme could stay intact and only the video needed to be re-

encoded to a current Windows media standard.

Whereas in 2007 they expected that the emulated version inside the virtual machine would

easily start after a few years, less than ten years later it turned out that there was neither a

18

working emulation nor a working copy. In conclusion, Klomp remarked that in hindsight he

would not choose to work in Pure Data anymore, but at the time one’s choices are driven by

what is available. The challenge of working with open source initiatives is that one is very

dependent on the energy that a community puts into sustaining and maintaining changes. For a

future project he would rather use C++ open frameworks for example and program it in a more

traditional fashion, so that it potentially would be more stable in the long-term. The experience

also showed the importance of carefully checking the dependencies of the audio hardware, in

similar ways to the other dependencies.

Klomp’s challenges were recognisable, for example, the difficulty of tracking changes or

revisions in Pure Data, as well as the dependency on a serial connection. In general, in reports

and manuals on emulation only the use of software that runs on standard systems is supported,

but as the case of Revolutions showed this becomes difficult to interpret since specific custom-

made changes were made that cannot easily be replicated within the standard emulation

technology.

To conclude, for the time being, it is possible to emulate software, but hardware dependencies

may require custom solutions or be impossible to emulate. Emulators are made to work with a

limited number of standard components that replace the hardware components. If an artwork

requires a non-standard component then other solutions must be found. For example, once

physical connectors (like RS232) and the protocols they use are out of date, many layers come in

between the hardware and the code, which complicates the use of standard emulation

technology. Only if the software part can be isolated from the interfaces, can it be emulated

without a problem. To facilitate a decision-making process, it would be valuable to identify any

external dependency as soon as possible.

Concluding remarks

Throughout our discussions, a recurring theme in our findings involved the difficulties

associated with capturing sufficient and relevant information about software-based artworks.

This information should enable the display and preservation of these works. It became clear

that merely keeping the source code of an artwork is not sufficient to enable the recreation of a

work at a later stage; understanding the technical specificity of each work and capturing its

performance is just as important. This is not to say that a close reading of source code is not

helpful or important, but careful planning is needed to keep specific connections intact over

19

time, especially when a work relies on multiple dependencies between hard- and software.

While emulation and virtualisation are valuable methods to research a work’s behaviour and

functioning, these methods pose their own challenges in relation to obsolescence, and more

effort is needed to adapt these tools for the preservation field. It is important to create a better

understanding of cultural and technical frameworks to aid decision-making processes in order to

be able to interpret and understand software-based artworks in the future.

The challenges that came up in the discussions underscored the need for a professional network

and highlighted the value of being in contact with one another to those involved; sharing

experiences and knowledge to those involved. This exchange opens the possibility to

experiment with different approaches and reflect on each other’s practices. These experiments

could become a way to work towards a shared practice across different organisations, leading to

the development of new conservations strategies. What became very clear is that whilst

understanding and preserving software-based artworks must happen within the context of each

individual organization, it has been tremendously helpful to have these broader discussions.

This is especially so given the new territories of knowledge and the challenges that software-

based artworks pose, as well as the overall scarcity of resources and protocols. The discussions

in this community of practice group have contributed to the development of both conservation

practice for software-based artworks and, and perhaps most crucially, an international

community who are actively engaged in their conservation.

20

Appendix

Some suggestions for further reading

On computation

Paul Ford. “What is Code?” Online: http://www.bloomberg.com/graphics/2015-paul-ford-what-

is-code.

Charles Petzold, Code: The Hidden Language of Computer Hardware and Software. Redmond,

WA: Microsoft Press, 2000.

On emulation and virtualisation

Klaus Rechert, Patricia Falcao and Tom Ensom. “Introduction to an Emulation-based

Preservation Strategy for Software-based Artworks.” 2016.

Patricia Falcao, Annet Dekker, Pip Laurenson, “An Exploration of Significance and Dependency in
the Conservation of Software-based Artworks” (paper presented at EMG (Electronic Media
Group of the American Institute of Conservation of Historic and Artistic Works), Miami, Florida,
May 16, 2015).
Gaby Wijers, “To Emulate or Not? Conservation Case Studies From the Netherlands,” in Inside

Installations. Theory and Practice in the Care of Complex Artworks, eds. Tatja Scholte and Glenn

Wharton (Amsterdam: Amsterdam University Press, 2011), 81–90.

On source code

Deena Engel and Mark Hellar, “Computational Provenance and Computational Reproducibility:
What Can We Learn About the Conservation of Software Art From Current Research in the
Sciences?” (paper presented at EMG (Electronic Media Group of the American Institute of
Conservation of Historic and Artistic Works), Miami, Florida, May 16, 2015).
Deena Engel and Glenn Wharton, “Source Code Analysis as Technical Art History,” Journal of the

American Institute of Conservation, 54 – 2 (2015), 91-101.

Deena Engel and Glenn Wharton, “Reading between the lines: Source code documentation as a

conservation strategy for software-based art,” Studies in Conservation, 59 – 6 (2014), 404-415.

On conservation and documentation of software-based art

Electronic Arts Intermix, resource guide:

http://www.eai.org/resourceguide

Digitising Contemporary Art. 2013. Guidelines for a Long-term Preservation Strategy for Digital

Reproductions and Metadata.

http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
http://www.eai.org/resourceguide/
http://www.eai.org/resourceguide/

21

http://www.dca-

project.eu/images/uploads/varia/DCA_D61_Guidelines_Long_Term_Preservation_Strategy_201

20213_V1.pdf

The Daniel Langlois Foundation for Art, Science, and Technology

http://www.fondation-langlois.org/html/e

DOCAM - Documentation and Conservation of the Media Arts Heritage

http://www.docam.ca

POCOS - Preservation of Complex Objects Symposia

http://www.pocos.org

Tech Focus III:

http://resources.conservation-us.org/techfocus/techfocus-iii-caring-for-computer-based-art-

software-tw

Transformation Digital Art, preservation of born-digital art (September 2016)

http://www.li-ma.nl

Webrecorder, Rhizome:

https://webrecorder.io

Examples of documentation models
Matters in Media Art:

http://mattersinmediaart.org

PREMIS:

http://www.loc.gov/standards/premis

Variable Media Questionnaire:

http://variablemediaquestionnaire.net

Platforms using emulation

bwFLA- Emulation as a Service:

http://bw-fla.uni-freiburg.de

Olive Executable Archive:

https://olivearchive.org

Internet Archive:

https://archive.org/details/softwarelibrary_msdos_games

http://www.dca-project.eu/images/uploads/varia/DCA_D61_Guidelines_Long_Term_Preservation_Strategy_20120213_V1.pdf
http://www.dca-project.eu/images/uploads/varia/DCA_D61_Guidelines_Long_Term_Preservation_Strategy_20120213_V1.pdf
http://www.dca-project.eu/images/uploads/varia/DCA_D61_Guidelines_Long_Term_Preservation_Strategy_20120213_V1.pdf
http://www.dca-project.eu/images/uploads/varia/DCA_D61_Guidelines_Long_Term_Preservation_Strategy_20120213_V1.pdf
http://www.fondation-langlois.org/html/e/
http://www.docam.ca/
http://www.pocos.org/
http://resources.conservation-us.org/techfocus/techfocus-iii-caring-for-computer-based-art-software-tw/
http://resources.conservation-us.org/techfocus/techfocus-iii-caring-for-computer-based-art-software-tw/
http://www.li-ma.nl/
http://www.li-ma.nl/
http://mattersinmediaart.org/
http://mattersinmediaart.org/
http://www.loc.gov/standards/premis/
http://www.loc.gov/standards/premis/
http://variablemediaquestionnaire.net/
http://variablemediaquestionnaire.net/
http://bw-fla.uni-freiburg.de/
http://bw-fla.uni-freiburg.de/

22

This project has received funding from the European Union’s Seventh Framework Programme
for research, technological development and demonstration under grant agreement no 601138.

