As part of its program to conserve software-based artworks, the Museum of Modern Art undertook a risk analysis of 13 works that use a variety of software programs, programming languages, and code libraries. Risks assessed in this study include the potential impact due to changes and upgrades to hardware, operating systems, and programming languages that would render the software obsolete. The assessment made clear that one of the museum’s primary conservation strategies should be building technical documentation about the artworks. Consequently, the museum undertook a second project to build documentation about the software and hardware dependencies for 13 software-based works. While analyzing artist-rendered source code, the researchers in some cases discovered hidden information about the working methods of the artists and their programmers. This information includes the development of aesthetic properties such as color, movement, and sound. The discovery of these clues to the artists’ concerns broadened the scope of the research to include an argument for source code analysis as a tool for technical art history. In this article the authors describe the potential for adapting documentation methods from software engineering for conservation purposes, and further argue for using these methods in art-historical research.

Keywords: Computer, Digital art, Documentation, Media Conservation, Software, Software-based art, Source Code, Technical art history
MULTIMODALITY IMAGING OF DAGUERREOTYPES AND DEVELOPMENT OF A REGISTRATION PROGRAM FOR IMAGE EVALUATION
Ravines et al.

NATURAL YELLOW CHALK IN TRADITIONAL OLD MASTER DRAWINGS
Mayhew et al.

COMPARISON OF A SOLID-STATE LUMINAIRE TO TUNGSTEN-HALOGEN LAMPS FOR DISPLAYING MUSEUM OBJECTS
Rea et al.

A REVIEW OF COLOR-PRODUCING MECHANISMS IN FEATHERS AND THEIR INFLUENCE ON PREVENTIVE CONSERVATION STRATEGIES
Riedler et al.

EDITORIAL
Hoyo-Meléndez