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Abstract
When a deployer of a web application puts that application

on a server (on-prem or cloud), how can they be sure that the

application is executing as intended? This paper studies how

the deployer can efficiently check that the execution is faith-

ful. We seek mechanisms that: (i) work with web applications

that are built with modern event-driven web frameworks,

(ii) impose tolerable computation and communication over-

heads on the web server, and (iii) are complete and sound.

We exhibit such a mechanism, based on a new record-replay

algorithm. We have implemented our algorithm in Karousos,

a system that audits Node.js web applications.

CCS Concepts • Security and privacy → Web applica-
tion security; • Computer systems organization → Re-
liability.
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1 Introduction
Consider a developer, Cam, who writes or trusts source code

for a web application (for example, written in Node.js). On

Cam’s machine, the code runs a certain way; call this ver-

sion of the application the “golden master”. This does not

mean that the application has no bugs, only that it’s the

version Cam wishes to execute. Cam now deploys that code

on-premise (on-prem) or on a remote cloud, and wants to

be sure that the code executes the same way as the golden

master would. Unfortunately, Cam cannot simply assume

such faithful execution. The issues include differences in any
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layer of the stack below the application: language run-time,

operating system, hypervisor, and hardware. Such differ-

ences could result from different versions. Differences could

also result from bugs [47], misconfiguration, operational

error, or—in the case of a remote server—insider [54] and

co-tenant attacks [75]. So how can Cam get assurance that

the application is executing as the golden master would?

The general topic here is execution integrity: giving some

principal (such as Cam) confidence that running a given pro-

gram (such as Cam’s application) on given inputs (in Cam’s

case, requests to a web server) truly produces the alleged

outputs (in Cam’s case, responses from the web server). Note

that this is complementary to program verification, which
is about ensuring that source code meets a specification;

here, we take the code as a given, and want to make sure

that it is actually executed. Solutions to execution integrity

include Byzantine fault-tolerant replication [25], AVMs [48],

and probabilistic proofs [88, Ch.19] (zero-knowledge proofs

and so on). However, these works are not geared to Cam’s

question: they make assumptions about the server’s failure

modes, don’t scale to legacy web applications, or require the

principal to do too much work (see §2.2 and §7).

Attestation using TPMs [26, 49, 62, 63, 73, 76, 79, 84] and

enclaves [13, 16, 20, 52, 77, 81, 83] guarantees that a precise

software stack was running at a given instant. However, as

we argue in the next section (§2.2), placing an entire stack

in an enclave does not solve Cam’s problem. Cam may wish

to use Platform as a Service (PaaS) or serverless deployment

models, in which case not only is the remote stack different

from Cam’s but also Cam has no visibility into the remote

stack. Moreover, the state of a running remote stack can be

corrupted over time, even if initially attested-to.

One work, Orochi [87], proposed a different approach

based on validating outputs, given observed inputs. In Orochi,

a verifier (a machine under Cam’s control) performs a com-

prehensive audit. Orochi requires a collector, situated logi-

cally in front of the server, that captures a ground-truth trace
of exactly the inputs to, and outputs from, the server. One

option is to run the collector on-prem and proxy all traffic

through it; another is to use attestation. Section 2.2 further

discusses the requirement of a collector.

Given this setup, the verifier re-executes from the inputs

in the (trusted) trace, checking that the re-executed outputs

match the outputs in the trace. Crucial to this process is

(untrusted) advice that the verifier receives from the server,

which enables the verifier to accelerate re-execution versus

naive replay, by re-executing requests in batches. The advice
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also helps the verifier make sense of concurrent executions.

This is a harder problem than standard record-replay [29,

30, 33] (§7), in part because the advice can be adversarial.

In fact, approaches to advice validation that seem right can

be misled into wrongly accepting a bogus execution at the

server (see §4.3 and [87, §3.4–3.5] for examples).

Our work is inspired by Orochi. However, Orochi has a

restricted execution model, which limits applicability to a

small subset of web applications. First, each client request

in Orochi must be handled within a single execution con-

text, as in PHP. This rules out web applications that use

event-driven frameworks such as Tornado [4], Node.js [5],

and Phoenix [6]. Without taking a position in the eternal

events-versus-threads debate, we note that most modern web

application frameworks are written in the event-driven style.

Second, Orochi assumes that little state is shared between

execution contexts; if more state were shared, Orochi’s proto-

cols would require the server to send an impractically large

quantity of advice to the verifier. Third, external state in

Orochi, such as a transactional key-value store, is assumed

to meet the strong condition of strict serializability [72]; yet,

many external data stores default to weaker isolation levels

and may not even offer strict serializability [18].

Addressing these restrictions introduces new technical

problems. Defining and solving them is the work of this

paper, which we do in the context of a system calledKarousos.
Karousos borrows the Orochi setting (collector, untrusted

server, verifier). Karousos makes the following contributions:

A new record-replay technique for event-driven systems,
which balances re-execution throughput and server logging.
The more the verifier can batch requests and deduplicate

instructions, the higher the throughput of re-execution. But

the more batching is permitted, the more the re-execution

can be reordered versus the original execution. And the more

reordering, the more the server has to log and transmit to

the verifier (in the advice) to facilitate re-execution.

Karousos shifts the tradeoff curve and identifies a point

on the shifted curve, with several interlocking ideas. First,

Karousos’s verifier batches together requests that induce the

same trees of events (§4.1), regardless of the original order

of the corresponding handlers. Second, Karousos introduces

a notion of 𝑅-ordered (§4.2): two dependent operations dur-

ing execution (for example, a write of a program variable

followed by a read of that variable) are 𝑅-ordered if they are

guaranteed to be re-executed in that same order. The server

then logs only operations that are not 𝑅-ordered. Third, for

unlogged operations, the verifier consults a version history
that it constructs while re-executing (§4.2).

Ensuring that re-executions are sensible. Without further

mechanism, a misbehaving server could make the verifier ac-

cept executions (as embodied in traces) that are inconsistent

with executions of the original code (§4.3, §4.4). Karousos

handles server misbehavior by requiring that requests are

served, program variables are accessed, and transactions are

executed, all in an order consistent with each other—andwith

the program. Note that this is much more easily said than

done, because the verifier must check consistency across

three sources of ordering, only one of which (the trace) is

trusted; the others must be validated with specific kinds of

crosschecks or through the course of re-execution.

Karousos’s techniques include, for program variables, re-

constructing an alleged partial order of variable accesses

while executing (§4.3). For transactional state stores (§4.4),

the principal correctness conditions surround isolation levels

(serializability, read-committed, and so on). But the verifier

cannot simply use existing algorithms for testing isolation,

such as Adya’s [7], because there is no trustworthy source

of internal transaction history. Instead, the Karousos verifier

runs Adya’s algorithms against an alleged history, thereby

contingently justifying that history, and then ensures that

the contingent history is consistent with the rest of the exe-

cution.

Although one might think that existing frameworks [29,

30, 33, 68–70] could substitute for the techniques of Karousos,

our experience has been that first-cut “solutions” subtly fail:

an adversarial server can mislead the verifier or the verifier

cannot validate even an honest server’s execution. Regard-

less, because of the context—arbitrary server behavior while

the verifier is computationally weaker than the server—any

proposal in this context carries the burden of proof. Specifi-

cally, any proposal requires a rigorous proof of both Com-

pleteness (the verifier accepts executions that are faithful

to the original code) and Soundness (the verifier rejects un-

faithful ones, regardless of server misbehavior).

Proof of correctness.We supply such proofs for Karousos

(Appendix C).

Implementation.Our implementation of Karousos supports

web applications that are written in Node.js and use MySQL

as a transactional key-value store. As we explain later (§5),

developers wanting to use our implementation need to an-

notate portions of their code. Our implementation supports

a core of JavaScript, disallowing certain other constructs.

We have evaluated Karousos on a popular wiki applica-

tion [2] and two model web applications (§6). For the wiki

application, Karousos’s server has processing overhead of

1.2–2.8× that of an unmodified server; we believe this is a

reasonable price to pay for execution integrity. By contrast,

probabilistic proofs (succinct arguments, zero-knowledge

proofs, and so on) [17, 37, 38, 43, 44, 53, 64] are, as of this

writing, the only other approach to execution integrity that

does not trust server hardware or assume a fault-free fraction

of replicas; but probabilistic proofs impose server overhead

on the order of 10
6×, despite recent progress (andmarketing);

see [88, Ch.19] for a survey of implementations.

For the wiki application, the Karousos verifier is between

19%–34% faster than an implementation of Orochi for Node.js,
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Figure 1. The problem: efficiently auditing an untrusted server.

and between 1.8×–16.6× faster than an alternative that se-

quentially re-executes. Also, the advice produced by the

Karousos for the wiki application are of reasonable size (24

to 146 MB for 600 requests), and Karousos’s logs are no

larger, and sometimes 50% smaller than, those in our Orochi

implementation.

These results are encouraging, but Karousos has clear

limitations. First, the implemented system requires develop-

ers to manually annotate the program (§5) and update the

annotations with new code releases; this burden could be

lifted by fully automating annotation using a static analyzer,

for example, one built on escape analysis [51, 94]. Second,

JavaScript workers are disallowed; this is not fundamental.

More fundamentally, timers are disallowed, range queries

on transactional state are not supported, and snapshot isola-

tion is not supported. Addressing these restrictions would

require extending our algorithms and proofs; we leave this

to future work. Finally, at the level of architecture, Karousos

verifies only a single web application, not multiple interact-

ing server-side applications.

The bottom line, however, is that Karousos takes a big step

forward: it shows how to get assurance about the execution

of event-driven web applications.

2 Setup and background

2.1 Problem: comprehensive server audit

Here, we define our problem abstractly, to showcase the chal-

lenge while avoiding distracting details. Later (§5), we will

translate it to event-driven web applications. Our presenta-

tion is inspired by, and has some textual debts to, Orochi [87,

§2].

Figure 1 depicts the problem. Some principal (like Cam)

deploys a program 𝑃 on an untrusted server (for example,

running on a cloud platform).
1
Clients make requests to the

server. Requests can be concurrent with each other, and 𝑃

can be a concurrent program. A response is allegedly the

result of invoking 𝑃 against the corresponding request.

The principal has access to a trace of the actual requests
and (possibly unfaithful) responses. The trace is provided by

a collector that is assumed to work correctly (we delve into

1
We are leaving unspecified whether 𝑃 ’s deployment includes a specific

stack chosen by the principal; the problem statement is relevant either way.

collection in the next section). We can think of the trace as

the ground truth record of what enters and leaves the server.

The server is supposed to follow a defined reporting pro-

cedure during execution, which produces advice. However,
the server is untrusted and could either decline to produce

advice, or generate adversarial advice designed to deceive

the system.

Using the (ground truth) trace and the (untrusted) advice,

a verifier that the principal controls conducts an audit pe-
riodically, to determine whether the responses in the trace

could have been produced by executing 𝑃 on the requests in

the trace. A constraint is that the (local) verifier has much

less computational capacity than the (remote) server. Like-

wise, the verifier and server are connected by a network with

limited capacity. The verifier and the advice should satisfy

these properties:

• Completeness. If the server behaved properly during the

time period of the trace (which includes collecting advice

honestly), then the verifier must accept the given trace.

• Soundness. The verifier must reject if the server misbe-

haved. Specifically, the verifier accepts only if there is

some schedule 𝑆 of (possibly concurrent) executions, such

that: (a) executing the given program against the inputs

in the trace, while following 𝑆 , reproduces exactly the re-

spective outputs in the trace, and (b) 𝑆 is consistent with

the ordering in the trace. (Appendix C.2 states Soundness

precisely.) This property means that the server can pass

the audit only by behaving in a way that is, to external

observations, indistinguishable from actually executing

the program on the received requests.

• Efficiency. This means several things in our context. (a) The

verifier, being computationally weaker than the server,

needs to perform less computation than the server; in

particular, the work of the verifier should be computation-

ally less costly than naively re-executing each request in

the trace one-by-one. (b) The advice sent from the server

to the verifier needs to be kept small. (c) Advice collec-

tion should not significantly impact the server’s response

latency. We are willing to tolerate some computational

overhead at the server, as we expect auditability to cost

something.

2.2 Execution integrity

Though it is a crucial property, execution integrity can be

counter-intuitive; for example, it is sometimes confused with

the orthogonal concern of program correctness. So in this

section we aim to clarify some aspects of the model, and

answer natural questions. Before continuing, we want to

be clear: the audit setup does not presume a bug-free appli-

cation. Instead, given that the program in question, when

run on a known stack, behaves a certain way (which might

be buggy), we want to guarantee that: either the untrusted

server ran that same way or else the verifier complains.
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Enclaves and attestation. Although we aren’t taking a

stand against enclaves [13, 16, 20, 31, 40, 45, 52, 77, 81, 83]

in general—indeed, we suggest a limited use of them below—

our view is that putting the entire stack in an enclave is

insufficient to provide a strong notion of execution integrity.

First, the stack in question might not be defined. Cam (as

the verifier) might have one stack while the cloud provider

has another. Indeed, in PaaS and serverless models, the cloud

provider can and does optimize their platform to their hard-

ware infrastructure, and doesn’t release the stack. (AWS,

for example, patches both the operating system executing

Lambda functions [10] and the Node.JS runtime executing

within [11], but neither are available for download.)

Second, stacks are messy. Attestation ensures that the

initial state of the stack is approved. But the attested-to stack
is not formally validated; it has vulnerabilities and thus attack

surface. In particular, it is exposed to all of the traffic directed

to all layers of the stack (IP, TCP, etc.), as well as co-located

applications. For example, adversarial traffic aimed at TCP

could subvert the OS, which enclaves do not prevent.
2

An audit-based verifier, by contrast, is far less likely to

be subverted, because the verifier receives a small subset

of all traffic that the server does: only the application-level

requests and responses (for example, the contents of HTTP

requests). This is the trace, which is “strained out” by the

collector. The verifier then delivers those requests directly

to the re-executing application. Thus, relative to placing the

entire stack in an enclave, the audit setup has a narrower

attack surface, smaller TCB, and fewer assumptions.

Collection. A comprehensive audit solution requires ground-

truth outputs and inputs. This is the role of the collector. One

option for the collector is to run a TLS endpoint in an attested-

to enclave [87, §7]. As argued in DOG [15], this configuration

resists the sort of attacks-on-the-stack that we alluded to

above, because only the TLS implementation, not the stack

itself, is trusted. Notice, however, that the fundamental point

applies beyond attestation and enclaves. The fundamental

point is that trusting a collector (to deliver a ground-truth

trace) is a smaller assumption than trusting the entire stack

(to execute faithfully): the collector does far less. Indeed, in

contrast to the behemoth of code in a modern OS, the collec-

tor could be implemented with only a thin supervisory layer,

or even hardware, deployed as a bump-in-the-wire that has

no stack of its own [87, §1,§4.1§7].

Other approaches to execution integrity. Comprehen-

sive auditing is verifier-efficient: the verifier does less work
than naively re-executing. Two other strands of work share

this property (see also §7): (1) Byzantine fault-tolerant repli-

cation [25], which requires > 2

3
of the replicas to be fault-

free. (2) Probabilistic proofs [17, 37, 38, 43, 44, 53, 64] place

2
Providing attestation certificates in server responses [24, 60, 65, 85, 97]

does not solve the problem, since it is not clear how the principal can enforce

the use or checks of such certificates.

no trust in the server (and would also need a trace). These

theoretical constructs have seen mushrooming implementa-

tions (see [92][88, Ch.19] for surveys). However, probabilistic

proofs would impose immense overhead (factors of 10
6× are

common); they are not close to handling realistic web appli-

cations.

2.3 Our starting point: Orochi

Orochi [87] is a comprehensive server audit that, as stated in

the introduction, re-executes all requests in a trace, checking

that the produced responses match the outputs in the trace.

Orochi addresses the challenge of a computationally lim-

ited verifier by exploiting an aspect of web applications:

many executions follow the same code paths [55, 87]. The

Orochi server is supposed to track control flow, and then

specify (in the advice) control flow groups, meaning which re-

quests have the same control flow as each other. The verifier

then re-executes a single control flow group as a batch, using

SIMD-on-demand. If an instruction has the same operands

across a batch, the verifier re-executes that instruction only

once, and otherwise executes the opcode for each request in

the batch. This technique is facilitated by a datatype called

a multivalue, which collapses when all of the entries in the

multivalue are identical, and expands into a vector when

needed.

Given batching (which can group together a later request

with an earlier one), a read operation may be re-executed

before the dictating write operation is re-executed. Conse-

quently, the advice should tell the verifier how to re-execute

the read. Yet, the advice is untrusted; it could be wrong. This

is oneway inwhich Completeness, Soundness, and Efficiency

are in tension: the advice is necessary (for Efficiency and

Completeness), but possibly wrong (threatening Soundness).

Orochi includes a technique called simulate-and-check.
The advice allegedly contains, for each object shared among

requests, a linear log of the values read and written. When re-

executing a read operation, the verifier feeds that operation

from the most recent write, according to the log. When re-

executing a write operation, the verifier checks that the value

produced by re-execution matches what is in that object’s

log, thereby validating the values that have fed, or will feed,

reads.

Despite this technique, the server could arrange responses

and advice to cause the verifier to accept bogus executions [87,

§3.4]. Consequently, another technique inOrochi is consistent
ordering verification; the verifier builds a graph that includes

every operation, request arrival, and response delivery, with

edges indicating ordering (time-order between requests, pro-

gram order between operations, operation order from the

logs). The verifier then insists that the graph is acyclic.

Orochi’s techniques are provably Complete and Sound (§2.1).

However, Orochi makes simplifying assumptions. First, al-

though the server is concurrent, requests are handled mostly
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in isolation, in straight-line fashion (with the unrealistic as-

sumption that when a response is delivered, the request has

no further effect). This rules out many web application ar-

chitectures and all event-driven frameworks. Second, Orochi

would produce unacceptably verbose logs (contra Efficiency;

§2.1) in a setting where a lot of state is shared between dis-

crete execution units (for example, program variables that

are accessed by multiple event handlers). Third, external

state such as transactional storage must be strongly consis-

tent, and must be accessed synchronously; this too rules out

many deployment scenarios.

3 Execution model
We define an execution model, KEM, for unmodified con-

current web applications. In subsequent sections we use

KEM to describe our core algorithm; the proofs presented

in the Appendix also build on KEM. KEM is intended to cap-

ture the semantics of Node.js programs; it does not model

the behavior of transactional state (for that, see §4.4). Fur-

thermore, KEM models a runtime that can have multiple

concurrent threads executing at a time. This is more gen-

eral than the Node.js runtime (and indeed other JavaScript

runtimes) which is single-threaded, allowing us to minimize

assumptions about the runtime.

KEM models the state of a program as a set of variables,

a set of zero-or-more pending events and a set of zero-or-

more event handlers (defined in the following paragraphs).

Program code can read or update any in-scope variable. How-

ever, similar to JavaScript, functions and closures capture

variables by reference. Consequently, all variables in scope

when a function or closure is defined are in scope for the body

of the function; even local variables might be accessed from

multiple functions. As a result, a variable might be concur-

rently accessed and updated by multiple concurrent threads.

KEM assumes all accesses are sequentially consistent [57].

This assumption is justified; indeed, all extant JavaScript

code assumes sequential consistency.

Events in KEM are associated with a name and a type. Mul-

tiple events of the same type can occur during execution, and

the set of pending events can contain multiple events of the

same type at a time. The runtime adds I/O events, including

ones for new user requests or when a transactional query has

finished running. Program code can add to the set of pend-

ing events by calling a designated emit function. Events are
removed from the set of pending events by the runtime’s dis-

patch loop: each iteration of the loop non-deterministically

selects an event from the set, removes it from the set, and

then uses the selected event’s type to identify and call the

appropriate event handlers.

As in JavaScript, KEM event handlers are closures. Pro-

gram code can add or remove handlers by calling register
or unregister. Both functions take as input an event type

and a closure, which we sometimes refer to, loosely, as the

function associated with the event. Event handlers in KEM

can perform computation, modify in-scope variables, emit

events, and register or unregister handlers. We refer to han-

dlers that are associated with “new user request” events as

request handlers. KEM assumes that event handlers run to

completion and that a handler’s execution is not interrupted

when it emits an event. We use the term handler activation
to refer to the act of the runtime’s dispatch loop calling an

event handler. Each such activation creates a unique handler.

Two separate handlers can, however, have the same code

(for example, if a given function is activated twice).

Programs in KEM begin execution by calling a designated

initialization function. This models the fact that JavaScript

programs, including Node.js programs, generally have static

initialization code outside of function bodies, for example as

part of object declarations. We assume that the initialization

function is deterministic.

Activation partial order. The execution model described

above induces a partial order on handler activations,𝐴. Given

handler activationsℎ0 andℎ1, define the relation activator(ℎ1) =
ℎ0 if and only if ℎ0 emitted the event 𝑒 that led to ℎ1’s acti-

vation or ℎ0 issued the I/O request or transactional request

whose completion resulted in ℎ1’s activation. This defini-

tion implies that any handler activation ℎ without an ac-

tivator (i.e., �ℎ′ s.t. activator(ℎ) = ℎ′) must have been run

in response to a user request. For analytical convenience,

we treat the initialization function’s execution as a han-

dler activation 𝐼 , and use 𝐼 as the activator for all user re-

quest activations. Observe that given our execution model

and this definition, any handler ℎ ≠ 𝐼 must have a unique

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 (ℎ) ≠ ℎ. We use the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 relation to define

the partial order 𝐴 as the transitive closure of the activator

relation. That is, we say (ℎ,ℎ′) ∈ 𝐴 if activator(ℎ′) = ℎ or

there exists ℎ = ℎ0, ℎ1, ℎ2, . . . , ℎ𝑛 = ℎ′ such that 1 ≤ 𝑖 ≤
𝑛, activator(ℎ𝑖 ) = ℎ𝑖−1. We sometimes write (ℎ,ℎ′) ∈ 𝐴 as

ℎ ≺𝐴 ℎ′.
One can visualize each user request activation as inducing

a tree of handlers, with edges given by the activator relation.

Related work. KEM extends 𝜆JS [46] which provides a se-

mantic model for JavaScript.While 𝜆JS does notmodel events,

prior work [61] shows extensions that model several event-

driven frameworks. Similarly, KEM extends 𝜆JS by adding

constructs for registering and unregistering event handlers

(or listeners) and for emitting events. Unlike these works,

KEM does not make assumptions about the order in which

event handlers are executed nor about the number of con-

currently executing event handlers. Thus, our algorithms,

which are designed to check execution integrity for all KEM

executions, can be extended to other languages and event-

driven frameworks. Furthermore, this generality means that

Karousos can be used even with future Node.js runtimes that

adopt different event dispatch loops or use multiple threads.
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(r0,h0) (r0,h1)(r0,h2)

(r3,h0) (r3,h3)(r3,h1)

(r2,h0) (r2,h2)(r2,h1)
function h0(arg) {
  // handler for request
  emit(e1, arg);
  if (arg % 2 == 0)
     emit(e2, arg);
}

function h1(arg) {
  // handler for e1
  if (arg % 7 == 0)
     emit(e3, arg)
}

function h2(arg) {
  // handler for e2
  // …
}

function h3(arg) {
  // handler for e3
  // …
} Time

[r0, r2]

[r1]

h0 h2h1

Batch Re-execution Order

h0 h1

(a) Application pseudocode (b) Request execution timeline. (c) Re-execution batches and ordering.

(r1,h0) (r1,h1)
[r3] h0 h1 h3

Figure 2. Grouped re-execution in Karousos: (a) Pseudocode for a simple application; (b) An example execution trace. A directed arrow between handlers ℎ0

and ℎ1 indicates that ℎ0 ≺𝐴 ℎ1, i.e., the arrows represent the activation partial order; (c) Re-execution groups and the order in which groups are re-executed.

Observe that requests 𝑟0 and 𝑟2 are batched together for replay despite executing handlers ℎ1 and ℎ2 in different orders.

4 Auditing event-driven servers

As in Orochi [87] (§2.3), the Karousos server collects advice

that tells the verifier how to re-execute groups of requests

simultaneously, which the verifier does using the SIMD-on-

demand technique (§2.3). Karousos must address a key ques-

tion: how should it group code to be re-executed? There is an

essential trade-off: the more batching that is permitted (and

hence the more opportunity for re-execution efficiency), the

more there can be reordering in re-execution (relative to the

original execution). However, the more reordering, the more

the server has to collect advice to facilitate faithful replay;

for example, if a read of a program variable is re-executed

before the dictating write for that read, then the re-executed

read would have to be somehow fed from advice.

To highlight the trade-off, consider two extremes. Karousos

could conceivably chop each request into small pieces, and

re-execute structurally identical basic blocks from multiple

requests simultaneously; this would require logging enough

information so that each basic block has enough “context”

to be re-executed faithfully. At the other extreme, Karousos

could group together only identical requests that invoke iden-

tical handlers in the identical order and do not share state

with each other; this would require essentially no logging.

Karousos aims for the midpoint of this trade-off: we want

to enable a lot of reordering (to expose batching opportu-

nities) while controlling the burden of logging. In the re-

mainder of this section, we describe the choice of batching

granularity (§4.1) and how Karousos facilitates faithful re-

play of operations on program variables (§4.2), assuming

an honest server. We then describe how Karousos defends

against an untrusted server (§4.3). Section 4.4 extends the

design to transactional state.

Completeness and Soundness. In the following subsec-

tions, we will not discuss Completeness and Soundness ex-

plicitly, but we do discuss these properties right now. Note

that all of the mechanisms of Karousos are relevant to both

properties, in that the mechanisms must be designed so that

(a) an honest verifier can replay an execution and (b) when

the advice or observed outputs (in the trace) are wrong,

the verifier can detect that fact. Intuitively, the reason that

Karousos’s mechanisms provide Soundness is that its algo-

rithms insist (and reject otherwise) that there is some physi-

cally plausible ordering of events (at an honest server) that

could have been produced by the actual program on the ob-

served inputs. And, the reason that those same mechanisms

provide Completeness is that they give information (for ex-

ample, about scheduling) that allows the verifier to replay

an execution.

The mechanisms in Karousos, taken individually, do not

obviously reflect the underlying complexity, which is sub-

stantial. This complexity derives from the need to handle

arbitrary combinations of adversarial advice. The complex-

ity does need to show somewhere; it appears in the proofs

themselves (Appx C).

4.1 Batched re-execution in Karousos

In Karousos, a re-execution group comprises requests that

have the same tree of handlers—that is, the same 𝐴 rela-

tion (§3)—and the same in-handler control flows, meaning

that corresponding handlers in different requests follow the

same branches. Re-execution respects the 𝐴 relation and

program order within a handler but does not respect tem-

poral order. Specifically, later requests can be re-executed

before, or simultaneously with, temporally earlier ones. For

example, in Figure 2, 𝑟2 is later than 𝑟0 and 𝑟1, yet 𝑟2 is re-

executed together with 𝑟0 and before 𝑟1. Similarly, handlers

within a request, if not ordered by𝐴, can be reordered during

re-execution; for example, (𝑟0, ℎ1) and (𝑟0, ℎ2) in Figure 2.

Section 5 describes how the server tracks the 𝐴 relation

and the control flow within a handler. Having done so, the

server places in the advice a tag for each request in the

trace (§2.1), where requests with the same tags allegedly

belong in the same re-execution group.

Of course, the verifier does not trust that the server is

honest about the claimed grouping. However, the verifier

expects the server to include in its advice a description of the

activation partial order𝐴. Specifically, the advice is supposed

to include, for each request, a handler log, with entries for

each emit, register, and unregister (§3). An entry specifies the

alleged activator (the handler), the alleged event, and (for reg-

ister and unregister) the allegedly registered/unregistered

function. When re-executing an emit, the verifier “trusts”
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0 h0 {
1  x = 0;
2  emit(e1); 
3  emit(e2);
4 }

0 h1 {
1  x = x + 1;
2 }

0 h2 {
1  x = x * 3;
2  respond(“OK”);
3 }

Ex
ec

ut
io

n 
O

rd
er

Physical Execution Handler Logs & Variable Logs

activation h0. activator I.

activation h1. activator h0.

activation h2. activator h0.

Variables

x =  0

x =  1

x =  3 <h2, 1>, read(x) = 1, <h1, 1>
<h2, 1>, write(x) = 3, <h1, 1>

<h1, 1>, write(x) = 1, nil

Figure 3. For program variables, Karousos only logs reads and writes that

are not 𝑅-ordered. Execution points in the figure are depicted as a <handler,

line number> tuple, so <h2, 1> means line 1 in handler ℎ2. Although the

figure shows the full value logged on a read, in fact when logging reads

in a variable log, the server records only the locations of the read and

of the dictating write. When logging writes, the server records the value

being written, and the locations of the write and the write that is being

overwritten.

the handler log, which implicitly indicates which functions

are registered for the given event (all functions that have

been registered but not unregistered before the emit). When

re-executing register and unregister operations, the verifier

checks that these operations are exactly the ones that ap-

pear in the log, thereby vindicating the “trust” placed in the

handler log when re-executing emits. There are additional

checks, for example that all emit entries in the handler log

correspond to events that materialize during re-execution.

Appendix C contains details, including the necessary book-

keeping.

4.2 Trusted recorder, out-of-order replay

How does Karousos faithfully re-execute reads of program

variables? As we saw (§4.1), requests can be re-executed in

the opposite order from what happened originally, which

means that a read can be re-executed before the correspond-

ing write. This section assumes that the server is honest.

What the (honest) Karousos server does. As a straw-

man, the server could include in its advice the values of all

read operations, which the verifier could use to feed each

re-executed read operation [51, 55, 68, 87] (see also §7). How-

ever, in logging every read or write of a program variable,

this solution conflicts with the goal of controlling the log

size (§2.1).

In contrast, the Karousos server decides dynamicallywhether

to log a given operation. Karousos introduces the concept of

𝑅-ordered: two operations are 𝑅-ordered if one is guaranteed
to be re-executed before the other under any possible group-

ing during re-execution. We say that they are 𝑅-concurrent
if they are not 𝑅-ordered. More formally, we define a partial

order 𝑅 over operations. We say that (𝑜, 𝑜 ′) ∈ 𝑅 or 𝑜 ≺𝑅 𝑜 ′

if (a) 𝑜 was executed as a part of handler activation ℎ, 𝑜 ′ was
executed as a part of handler activation ℎ′, and (ℎ,ℎ′) ∈ 𝐴;

Handler & Variable Logs

<h2, 1>, read(x) = 1
<h2, 1>, write(x)= 3

Re
pl

ay
 O

rd
er

0 h0 {
1  x = 0;
2  emit(e1); 
3  emit(e2);
4 }

0 h1 {
1  x = x + 1;
2 }

0 h2 {
1  x = x * 3;
2  respond(“OK”);
3 }

Re-Execution Variable Dictionary

write(x) = 0

read(x) !" 1
write(x) = 3

x@<h0,1>= 0

x@<h2,1>= 3

read(x) !" 0

State Operations

write(x) = 1

activation h0 by I

activation h2 by h0

activation h1 by h0

x@<h1,1>= 1

Read from prev. version Read from log Write to versioned store

<h1, 1>, write(x)= 1

Figure 4. Re-execution in Karousos: During re-execution Karousosmaintains

a dictionary for each variable (the figure shows the dictionary for 𝑥 ) that

contains previous values. Any logged reads return the logged value, while

any unlogged reads use the most recent value (as defined by ≺𝑅 ) from the

variable’s dictionary. The figure depicts an abridged version of the logs from

Figure 3. The notation x@<h0, 1> represents, for example, the value of x
after line 1 of handler ℎ0 was executed.

or (b) 𝑜 and 𝑜 ′ were both executed as part of handler activa-

tion ℎ and 𝑜 was executed before 𝑜 ′. Observe that 𝑅 can be

regarded as the union of 𝐴 and the program order, and that

𝑅 is formalizing the constraints on re-execution that were

stated in Section 4.1.

With this definition, we can now say what the Karousos

server puts in the advice. Each variable notionally has a vari-
able log. Then, as depicted in Figure 3, the server logs reads

of program variables that are not 𝑅-ordered with respect to

the dictating write. The server also logs writes of program

variables that are not 𝑅-ordered with respect to the pre-

ceding write; this helps validate executions from untrusted

servers (§4.3). In both cases, the server logs the function

location and value written by the dictating or preceding

write.

Re-execution. For a given program read, if there is a cor-

responding entry in the variable log, then the re-executor

consumes the value from the log. If that read is not in the

variable log, then (because the server is assumed to be hon-

est), the read must be 𝑅-ordered with its dictating write. This

implies, by definition of 𝑅-ordered, that by the time the read

happens, the write was already re-executed, which means

that in principle the read can be fed from that write.

We say “in principle” because Karousos must solve a prob-

lem: feeding the re-executed read with the correct write

operation. To illustrate the challenge, consider the naive

solution of simply applying re-executed writes to a recon-

structed copy of the variable, and feeding non-logged reads

from that variable. In the re-execution depicted in Figure 4,

this naive solution would cause ℎ1 to incorrectly read x=3
(the most recently re-executed write) rather than x=0, which
is the value faithful to the original execution (Figure 3).

Thus, the Karousos re-executor keeps, for each variable,

all values written during the re-execution, indexed by the

identifier of the handler and the line within the handler. We

call this versioned variable the variable’s dictionary. Figure 4
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depicts the technique. The re-executor knows that if a read

is unlogged, then originally that read must have observed

a write that was prior according to 𝑅. To find that dictating

write, the re-executor looks for the latest write in the vari-

able’s dictionary, where “latest” refers to the 𝑅 relation. One

can think of this as starting at the current handler, looking

for the last write (if any) to the given variable by the current

handler, and then repeating this step for each successive

ancestor in the 𝐴 tree until one encounters a write to the

variable.

Here is a sketch for why this approach works; a full proof

is in the Appendix (§C.3.1). If a read 𝑟 is logged, then re-

execution of course gets the correct value. If 𝑟 is not logged,

the dictionary interrogation, to be correct, needs to find the

immediately prior causal write𝑤 that happened during the

original execution. Meanwhile, we have𝑤 ≺𝑅 𝑟 , otherwise

the read would have been logged. But the dictionary inter-

rogation is following 𝑅 in reverse. Thus, if the dictionary

interrogation stops at a different write 𝑤 ′ ≠ 𝑤 , then we

have𝑤 ′ ≺𝑅 𝑟 , which together with𝑤 ≺𝑅 𝑟 and the fact that

each operation has exactly one immediate predecessor in 𝑅,

implies 𝑤 ≺𝑅 𝑤 ′ ≺𝑅 𝑟 . Now, by definition of 𝑅 (activation

partial order𝐴 and program order), in the original execution,

𝑟 would have observed𝑤 ′ not𝑤 , a contradiction.

Discussion. Recall our goal of conserving log space (§2.1).
First, and most important, the server places in the variable

logs only what is necessary, given the possible reorderings

that can happen from batched re-execution.

Second, we have designed the batching scheme so that

logging is infrequently needed. In particular, looking at a

tree of handlers where each handler touches state, a common

pattern is that only the reads are concurrent with each other:

consider, for example, an execution with one or more writes

in a handler ℎ, followed by a set of 𝑛 reads, each in a handler

ℎ′𝑖 , where ℎ activates each ℎ′
1
, . . . , ℎ′𝑛 . In this example, there is

no logging required because each read is 𝑅-ordered: during

the original execution, each read observes a write from ℎ,

which is an ancestor of the givenℎ′𝑖 . Notice that the preceding
holds regardless of whether the ℎ′𝑖 are re-ordered during re-

execution. Overall, this leads to good batching opportunities

while controlling logging (§6.2–§6.3).

4.3 Untrusted recorder, out-of-order replay

This section relaxes the assumption of a well-behaved server.

To motivate the relevant mechanisms in Karousos, we will

consider several attacks. However, the soundness of the pro-

tocol (§2.1) is not based on reasoning about each thing that

can go wrong but instead on an end-to-end proof (Appen-

dix C.3.2).

Absent further mechanism, an adversarial server could

put arbitrary values in a variable log, thereby causing re-

executed reads to deviate from program execution. Thus, the

verifier checks that the values of re-executed writes match

0 h0 {
1  x = 1;
2  emit(e1);
3  emit(e2);
4 }

0 h1 {
1  y = x;
2  z = x;
3  respond(y-z);
4 }

0 h2 {
1  x = 2;
2  x = 3;
3 }

Program Observed Re-Execution

<h1, 1> y = 3

<h1, 2> z = 2

<h2, 1> x = 2

<h2, 2> x = 3

<h0,1> x = 1

<h0,2> emit(e1)

<h0, 3> emit(e2)
Read-from

h1 activation
h2 activation

activate h0 activator I.

activate h1 activator h0.
activate h2 activator h0.

<h1, 1> read(x) !" 3 <h2, 2>
<h1, 2> read(x) !" 2 <h2, 1>

<h2, 1> write(x, 2)  <h0, 1>
<h2, 2> write(x, 3)  <h2, 1> 

Claimed Handler & 
Variable Logs

Trace

request /vyz
response 1

Figure 5. An example of what the Karousos verifier could observe when re-

executing the given program based on a dishonest server’s advice. Karousos

allows out-of-order re-execution by design, and can thus observe the execu-

tion shown. However, this execution is physically impossible: based on the

execution model (§3) and the possible interleavings, the response should

never be positive. So, the verifier ought to reject it.

alleged writes in the variable log. This is essentially Orochi’s

simulate-and-check (§2.3), adapted to Karousos’s log struc-

ture.

At this point, one might conclude that the worst the server

can do is incriminate itself by failing to justify an execution.

But in fact, by creating both bad advice and bogus outputs,

the server could fool the verifier into accepting impossible

executions, with semantically invalid responses. Figure 5 de-

picts a small example. Other misbehavior is possible too, for

example, the server could arrange for the verifier to wrongly

validate “reads from the future”, which would enable the

server to rationalize an allegedly-read but wrong value, if a

later request writes that value to a shared variable.

To ensure that the executions reproduced by the verifier

are physically possible and consistent with external obser-

vations (meaning the trusted trace; §2.1), the verifier has a

postprocessing phase, where it creates an execution graph

𝐺 covering its entire audit. The graph establishes an alleged

ordering among operations, and the verifier checks that it

is acyclic. This technique creates a cycle in the example:

(ℎ1, 2) → (ℎ2, 2) → (ℎ1, 1). This technique is inspired by

other systems, including Orochi [87] (§2.3); see also Section 7.

Like Orochi, the Karousos verifier includes edges for time

precedence (referring to the ordering of requests in the trace;

§2.1) and program order of operations.

The novel aspects in Karousos are as follows. First, Karousos

includes edges that reflect the alleged activation partial order,

𝐴, based on the handler logs (§4.1). Second, the Karousos

verifier embeds in 𝐺 the alleged operation history of all

variables. (Section 5 describes an optimization whereby our

implementation tracks the history of fewer variables.) No-

tice that the history of accesses to a variable in the original

execution should be a write, followed by zero or more reads,

followed by a write, followed again by zero or more reads,

and so on. The verifier reconstructs this partial order from a

combination of re-executing and the variable logs.

Specifically, for each variable and each write 𝑤 to that

variable, the verifier maintains during re-execution a list
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of read_observers: all the reads 𝑟 that observe 𝑤 in re-

execution, inferred from the variable log (if 𝑟 was allegedly

not 𝑅-ordered with 𝑤 ), or the versioned variable (if 𝑟 was

not present in the variable log). The verifier also maintains

for each write 𝑤 a write_observer: the write 𝑤 ′ that suc-
ceeds 𝑤 . Because 𝑤 ′ and 𝑤 might not be 𝑅-ordered—and

thus the write_observer of𝑤 might not be inferrable from

re-execution—write-write pairs are logged, as stated in Sec-

tion 4.2. Now, after re-executing, the verifier uses these lists

to embed edges in the graph 𝐺 : WR (read-from edges, us-

ing read_observers), WW edges (write-write, using each

write’s write_observer), and RW (anti-dependency edges,

connecting a given write’s read_observers to that write’s

write_observer). Intuitively, these edges encode the his-

tory type mentioned in the prior paragraph.

Provided 𝐺 has no cycles (and together with the verifier’s

other checks), the entire execution (of all requests in the

audit) is well-ordered and physically possible, thus meeting

the requirement of Soundness (§2.1).

4.4 Transactional state

Model We consider a transactional key-value store (KV

store) that provides one of the following isolation levels:

serializability, read committed, or read uncommitted [18].

Snapshot isolation is future work (§1). Each request issues op-

erations to the KV store: tx_start, tx_commit, tx_abort,
PUT, or GET. A transaction might be split across multiple

handlers, but we assume that if multiple handlers issue op-

erations on the same transaction, these handlers are not

concurrent; in practice, the principal can efficiently check

that the program meets this restriction before outsourcing

the program.

Adya’s isolation testing Webuild onAdya’s algorithms [7].

For transactional KV stores, Adya’s algorithms take as input

the history of execution that comprises: (a) the event order
at the KV store, which in this paper we call TxOp order to
avoid confusion. This is a partial order of all operations in

the KV store that preserves the order of operations within

each transaction and includes the dictating write for each

read, and (b) a version order : for each key, a total order of all

committed values.

To test for an isolation level, these algorithms construct

a graph 𝐻 from the history. This is distinct from the graph

𝐺 from earlier (§4.3), though both encode kinds of opera-

tion orders. The nodes of 𝐻 correspond to the committed

transactions in the TxOp order. 𝐻 contains a read-depend
edge ⟨𝑇1,𝑇2⟩ if some operation in transaction 𝑇2 reads from

an operation in transaction 𝑇1. It contains a write-depend
edge ⟨𝑇1,𝑇2⟩ if transaction 𝑇1 writes some version of a key

and transaction 𝑇2 installs the next version. It contains an

anti-depend edge ⟨𝑇1,𝑇2⟩ if transaction𝑇1 reads some version

of a key and transaction 𝑇2 installs the next version.

Each isolation level is defined in terms of properties of

𝐻 and the history. For example, a history is serializable if:

(1) the graph 𝐻 has no cycles, (2) a committed transaction

never reads from an uncommitted transaction in the TxOp

order, and (3) if a committed transaction 𝑇2 reads a value of

a key that is written by a transaction𝑇1, that value is the last

modification (per the version order) that 𝑇1 makes to that

key.

Advice collection To adapt Adya’s algorithms to Karousos,

we augment the server’s advice to include (a) the (alleged)

TxOp order at the KV store, and (b) an (alleged) global order

of writes (which implies an Adya version order). The alleged

TxOp order is encoded as a list, for each transaction, of

operations and the dictating PUT for each GET; we call such
a list a transaction log. We call the alleged global order of

writes, the write order.

Advice validation The verifier executes Adya’s algorithms

on the transaction logs and write order to provisionally verify
the isolation level. Depending on the expected isolation level,

the verifier checks for the relevant phenomena by generating

the graph 𝐻 (see above) and checking for acyclicity. This

verification is provisional because Adya’s algorithms take

as input the true history at the KV store. But the server is

untrusted, so the transaction logs and write order may not

correspond to the true history. The verifier thus needs to

perform additional checks, as follows.

First, similar to Section 4.3, the verifier ensures that all

operations in the transaction logs are produced during re-

execution. Second, the verifier ensures that the transaction

logs are well-formed; specifically the verifier checks, by com-

prehensively inspecting the transaction logs, that transac-

tions observe their own writes. Third, the verifier ensures

consistency between the transaction logs and write order

by checking that the operations in the write order are the

last operations of committed transactions in the transaction

logs.

Finally, the verifier needs to check that the transaction

logs correspond to a legal KV store execution history that

is consistent with the rest of the advice. Consider a server

that claims that request 𝑟1 issues the following operations,

where 𝑘 is a key in the KV store and 𝑥 is a program variable:

op
1
= GET(𝑘); op

2
= write(𝑥, 1), and request 𝑟2 issues: op3 =

read(𝑥); op
4
= PUT(𝑘, 1). Additionally, the server claims that

the dictating write of op
3
is op

2
and that op

1
reads from op

4
.

But op
3
reading from op

2
implies that op

2
originally preceded

op
3
, which implies that op

1
precedes op

4
. Thus, the server

is claiming, preposterously, that op
1
read from an operation

that, according to the rest of the advice, was executed after it.

To detect these types of misbehaviors, the verifier expands

the graph 𝐺 (§4.3) with nodes for external state operations,
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and adds write-read edges from PUTs to the corresponding

GETs.3

5 Implementation
This section describes how the design in Section 4 is instan-

tiated in a built system for auditing Node.js applications that

optionally use MySQL as a transactional KV store.

Our system uses a transpiler to reduce the amount of ef-

fort that the principal needs to expend when using Karousos.

Given an input program, this transpiler generates two pro-

grams: an instrumented version of the server that generates

re-execution advice and can be deployed in an untrusted

environment; and a verifier. We implemented our transpiler

by extending the Babel [1] JavaScript transpiler, via Babel’s

plugin mechanism. Our transpiler supports a core subset

of Node.js, however we currently do not support some fea-

tures, including JavaScript workers and timers, and monkey

patching.

The transpiler does not fully automate the process of

using Karousos. Most significantly, the implementation of

Karousos includes a substantial performance optimization

that requires developer input. Namely, the developer anno-

tates the variables that might be accessed by 𝑅-concurrent

operations; such a variable is called a loggable variable. Now,
if a variable is not annotated, that tells Karousos to assume

every operation on the variable is 𝑅-ordered, allowing the

server to skip the corresponding checks of 𝑅-concurrent

accesses and the verifier not to track that variable’s ver-

sions (§4.2). We note that marking a variable that has no

𝑅-concurrent operations loggable impacts performance but

has no effect on Karousos’s Soundness or Completeness (§2.1).

Conversely, not annotating a loggable variable does not im-

pact Karousos’s Soundness (all unfaithful executions will

be rejected) but compromises Completeness (some faithful

executions might not be accepted).

Beyond that, the developer must change the application

to use Karousos-provided versions of the Knex and Express

libraries. The Karousos versions of these libraries are aug-

mented to aid in advice generation; Express is augmented

to annotate request handlers (§3) while Knex is augmented

to collect TxOp order (§4.4). One can in principle extend the

Karousos transpiler to automate these tasks. Below, we de-

scribe implementations of some of Karousos’s mechanisms.

Identifying batches (§4.1). Recall that the Karousos

server has to group requests (§4.1) with the same 𝐴 relation

and the same control flow within the handlers. To encode

the 𝐴 relation in a way that is invariant across requests, the

server assigns an identifier to each function (functionID), and

3
It would be wrong to augment 𝐺 with write-write edges or read-write

edges between external state operations as Karousos does for program vari-

ables (§4.3). Program variables are sequentially consistent, whereas external

state operations are more weakly ordered even in valid executions. These

types of edges would thus constrain TxOp order artificially, causing the ver-

ifier to mark such executions as invalid, undermining Completeness (§2.1).

computes a handlerID as a digest of the functionID, the event

that activates the handler, and the activator’s handlerID. No-

tice that a handlerID is unique only within a request, and

that if two requests have the same set of handler IDs, they

have the same handler tree. To encode control flow within

a handler, the server (as in Orochi [87, §4.3] and EAR [16,

§3.1]) computes a control flow digest, updating it according
to which branches are taken by the handler (the transpiler

instruments the code that the server executes to enable track-

ing of branches during runtime). Then, the server computes

the top-level tag of a request (§4.1) as a digest of all handler

IDs and their corresponding control flow digests.

Accelerated re-execution (§2.3, §4.1). Karousos bor-
rows SIMD-on-demand (§2.3) from Orochi [87] but imple-

ments it differently. Whereas Orochi modified a PHP runtime

to expose multivalue (§2.3) versions of primitive types, we

use the transpiler to turn program variables into multivalues.

Testing𝐴, computing the activator relation (§3, §4.2).
The Karousos server needs an efficient check of whether two

handlers are ordered by 𝐴; similarly, the verifier needs to

efficiently compute a handler’s activator, when interrogating

the variable dictionary (§4.2). For these purposes, the imple-

mented server assigns a label to each handler so that two

handlers are ordered by 𝐴 iff the label of the one is a prefix

of the other. In contrast to handlerIDs, labels do not corre-

spond across requests; handler labels encode only enough

information to check the 𝐴 relation and compute activator().

Mechanically, a handler’s label is computed at runtime as

parent_label/num where num is the number of children of

the parent that have executed so far.

Non-determinism.Node.js programs often use non-deterministic

operations, which Karousos handles as other record-replay

systems do [29, 30, 33]: the server records the result of each

non-deterministic operation in the advice, and, during re-

execution, the verifier supplies the recorded information in

response to the operation. Karousos does not currently give

soundness guarantees about non-deterministic operations,

but prior works show how to implement basic checks of

well-formedness [13, 20, 27, 50, 87, 96].

Transactional state (§4.4). Karousos uses MySQL as a

transactional KV store by requiring individual queries to

SELECT or UPDATE only a single row, specified by the row’s

primary key. This maps naturally to the abstract PUT-GET
interface from Section 4.4. The server generates the transac-

tion log (§4.4) by logging operations when they are executed

by the application. The server captures the dictating PUT of

each GET operation by storing each row’s last writer in the

row itself.

Our implementation obtains the write order (§4.4) by re-

purposing MySQL’s binary log, or binlog. Repurposing the

binlog required some effort, since it is designed for a dif-

ferent purpose (state replication), is in a format that is not

well-documented, and contains extraneous information.
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LOC, challenge, and limitation. Our implementation

comprises 16,600 lines of JavaScript. In addition to the tran-

spiler (5,700 lines), the implementation includes a library of

helper functions used by the transpiled server and verifier

(10,900 lines) and a program that periodically processes the

MySQL binlog (100 lines of JavaScript).

Maintaining the activation partial order was a significant

source of implementation overheads, and is also a significant

source of runtime overheads (§6.1). It requires endowing each

handler activation with knowledge of its activator’s ID, and

passing that information to all functions called by the handler.

Meanwhile, many JavaScript functions are implemented in

native code, and the transpiled code cannot change their call

signatures or semantics. Our transpiler adopts a variety of

strategies for this purpose some of which are reminiscent of

techniques in Jardis [19] (for example, it saves the activator’s

id in a global variable that can be later retrieved).

6 Evaluation
We evaluate Karousos by answering the following questions:

1. What is the overhead of collecting advice (§6.1)?

2. What speedup does Karousos get from batching re-

quests during verification, and what is the impact of

Karousos’s techniques (§6.2)?

3. What is the size of the advice that the server sends to the

verifier, and what impact does Karousos’s techniques

have (§6.3)?

Applications. We evaluate Karousos with two model appli-

cations that we developed, which are designed to exercise

and evaluate Karousos’s algorithms, and can thus exhibit

pathological behavior. We also evaluate with a real-world

application: Wiki.js[2]. Details follow.

Message of the day:We created an application (executes

∼1.6k LOC, including libraries) with which users can get or

set a “message of the day” (MOTD). When setting the MOTD,

a user specifies whether the message should be displayed

every day or only on a particular day. Messages andmetadata

are stored in a local hashmap rather than in a transactional

store.

Stack dump logging:We created an application (executes

∼9k LOC, including libraries) to track stack dumps. Users can

submit stack dumps, count howmany times a stack dump has

been reported, and get a list of unique dumps. Stack dumps,

and the number of times they have been reported, are stored

in a table (in the transactional store) indexed by the stack

dump’s digest. When a dump is submitted, the application

first checks if a concurrent request has reported the same

dump, in which case it returns a retry error (to avoid dead-

locks). Next, the application checks if the dump is unique, if

so it is added to the table. Otherwise, the number of times the

dump has been submitted is incremented. To respond to list

requests, the application issues a query for each digest in a

particular variable that it maintains; the variable contains all

digests stored in the table. The application thereby exercises

the transactional key-value store interface (§4.4). Our figures

call this application stacks.
Wiki.js [2]: We modified the code to use only the Node.js

features that our implementation supports and to add anno-

tations (§5). These modifications required changing 200 lines

of code (in a project with ∼19k lines of code). The majority

of these changes are simple: we merely needed to identify

and annotate shared variables.

Baselines. We use three baselines:

1. An unmodified server, to evaluate the overhead added

by Karousos.

2. A sequential re-executor, which is the application server,

modified to re-execute from the trusted trace. This helps

evaluate the Karousos verifier, and is pessimistic for

Karousos: any verifier that uses re-execution and does

not batch requests would in addition need to consult

some sort of advice (which this baseline does not do),

and would thus be at least as slow as this baseline.

3. Orochi-JS, which helps evaluate the Karousos verifier,

compared to Orochi. We cannot directly run Orochi,

since its implementation is bound to PHP [87, §4]. In-

stead, we implement Orochi’s algorithms using the

Karousos codebase. Specifically, requests are placed in

a re-executed batch only if they induce the identical

sequence of handlers, not merely a topologically equiv-

alent tree (§2.3, §4.1). Also, all accesses to (loggable)

variables are logged, rather than only the R-concurrent

accesses (§2.3, §4.2).

Workloads. ForWiki.js we use amixed workload consisting

of 25% page creations, 15% comment creations, and 60% ren-

der requests. The ratios are loosely derived from aWikipedia

trace [89]. For the other applications, we use three types of

workloads: (a) read-heavy with 90% read requests and 10%

write requests (90% reads in the figures); (b) write-heavy

with 90% write requests and 10% read requests (90% writes

in the figures); and (c) mixed with 50% write requests and

50% read requests. Across all workloads, write requests to

the stack dump application are split so that 10% of them

report a new stack dump and the remaining 90% report a

previously reported one. Our experiments vary the number

of concurrent requests from 1 to 60, and use 600 requests.

Unless otherwise specified, graphs show the median from

10 experiments, and errors bars show 5
th
and 95

th
percentile

values.

Testbed. All experiments are run on servers equipped with

a 3.7GHz Intel(R) Xeon(R) E5-1630 v3 (4-core) CPU with

32GB RAM and 1TB SSD, running Ubuntu 16.04. We run the

server and verifier using the Node.js v12.20.0 runtime, and

use MySQL 8.0.19 as the transactional store. The application

and MySQL are co-located on the same server and use up to

10 concurrent connections.
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Figure 6. A Karousos server compared to an unmodified server, in terms of processing time, for 480 requests. We show results for workloads with the largest

overheads; overheads are otherwise lower (see text).

6.1 Advice collection overheads

We measure the time taken to serve a request trace while

varying the number of concurrent requests, for Karousos

and the unmodified server. Of the 600-request workload,

each experiment uses the first 120 requests to warm up the

application; we report time taken to serve the remaining 480

requests.

Figure 6 depicts the results. In the MOTD application,

Karousos’s overheads for the server depend on the type of

workload and the number of concurrent requests. Workload

has a stronger effect. The more writes, the worse Karousos’s

overhead. Specifically, for the write-heavy workload, the to-

tal execution time at the Karousos server is 5.4–6.3× larger

than the baseline. Not depicted are the mixed workload,

where Karousos’s overhead is 3.4–3.7× larger, and the read-

heavy workload, where Karousos’s overhead is 2.5–2.7×
larger (see Appx B). The reason is that recording a write

access to a variable is more expensive on average: an R-

concurrent write induces one or two logged values, whereas

an R-concurrent read induces zero or one logged values (§4.2).

In the stack dump application, the execution time both for

the unmodified server and for the Karousos server decreases

as concurrency increases. This is an artifact of the applica-

tion, in which increasing concurrency leads to more conflicts,

which leads to retry errors (as described earlier), and thus

less useful work. Furthermore, overheads in this application

are higher for workloads with more reads. Consequently,

in the read-heavy workload (depicted) Karousos overheads

are 1.7–3.5×, in the mixed workload (not depicted) they are

1.4–3.6×, and in the write-heavy workload (not depicted)

they are 1.2–2× (see Appx B). For read requests, the bottle-

neck is tracking the activation partial order (§3, §4.1, §5), a

burden that rises with the degree of concurrency. For write

requests, by contrast, write transactions are the bottleneck

for both the Karousos and unmodified servers. Consequently,

Karousos’s overheads have a smaller effect on the applica-

tion’s processing time for write-heavy workloads.

For Wiki.js, the Karousos server’s response latency is 1.2–

2.8× higher than the baseline. Similar to read requests in

the stack dump application, overheads in this application

increase with the number of concurrent requests because

tracking activation order becomes more expensive. However,

in Wiki.js, each request has a smaller number of activations

(each request causes fewer transactions), so we see a smaller

increase in overheads as we increase concurrency.

6.2 Verification performance

We compare Karousos’s verifier to the re-execution and

Orochi-JS baselines, using the 600-request workload, and

measuring total time to verify a trace.

Figure 7 depicts the results. In the MOTD application,

Karousos is worse (∼ 22×) than sequential execution for the

write-heavy workload. For the mixed workload (depicted

in Appx B), Karousos is ∼ 4.3× more expensive; for the

read-heavy workload, Karousos is 30% faster than sequential

execution. The reason is that the bottleneck for re-executing

any request, whether batched or otherwise, is accessing the

hashmap. Meanwhile, accesses to the hashmap are not dedu-

plicated. The write-heavy workload has higher verification

time when using Karousos because the number of writes

dictate the size of the value dictionary (§4.2) and thus the

verifier’s heap size (which in turn dictates allocation and

memory management overheads).

In this application, Karousos has no benefit over Orochi-JS;

the reason is interesting. Because there is only one handler,

all handler executions are user request activations; thus, all

are 𝑅-concurrent with each other, as children of 𝐼 (§3, §4.2).

Indeed, these requests, though not necessarily physically

concurrent, can be re-executed in any order. Now, because

all are 𝑅-concurrent, Karousos logs all of the accesess (as

Orochi-JS does). Batching is also the same because, with no

tree of handlers, Karousos and Orochi-JS group identically.

In the stack dump application, Karousos outperforms se-

quential execution when there is no concurrency. With con-

currency, the comparison is equivocal because advice size

increases, and this effect competes with the benefit from

more batching opportunities (discussed immediately below).

In all workloads for this application, Karousos outperforms

Orochi-JS. By analyzing the workloads, we find that the

higher the number of concurrent handlers activated by re-

quests in the workload, the larger the speedup for Karousos

relative to Orochi-JS. This is because a larger number of con-

currently activated handlers increases the likelihood that
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Figure 7. Karousos verification time vs baselines, on 600-request workload.
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Figure 8. Size of advice, on 600-request workload.

handlers are re-ordered (§4.1), decreasing the grouping op-

portunities for Orochi-JS, thus demonstrating the impor-

tance of Karousos’s design decision.

For Wiki.js, the Karousos verifier outperforms both base-

lines. The Karousos verifier’s re-execution time increases

with the number of concurrent requests (because more con-

currency results in more advice that needs to be processed

by the verifier), but not as dramatically as in stack dump

because Wiki.js activates fewer handlers. Also, as the num-

ber of concurrent requests increases, so do the speedups

of Karousos compared to Orochi-JS: with no concurrent re-

quests the Karousos verifier is 19% faster than the Orochi-JS

verifier while for 60 concurrent requests it is 34% faster.

The speedup of Karousos, relative to both baselines, also

improves as we increase the number of requests being veri-

fied (not depicted). That is because, the more requests, the

more opportunities for batching.

6.3 Advice size

The experimental configuration is the same as in the prior

section. Figure 8 depicts the size of the advice sent by a

Karousos server to a Karousos verifier. In the MOTD applica-

tion, advice size does not vary with the number of concurrent

requests, and is the same for Karousos and Orochi-JS. That

is because nearly all of the advice (∼ 95%) is the variable

log (§4.2) of the hashmap. Meanwhile, every request is logged

in both configurations because all accesses are 𝑅-concurrent,

as explained in Section 6.2.

For Wiki.js, advice size under Karousos increases with the

number of concurrent requests, because more accesses are

logged, and because some of the logged objects (for example,

an object that pools connections to the transactional store)

increase in size with the degree of concurrency. The majority

of the advice is variable logs (65% of total advice for no

concurrent requests, and 95% of total advice for 60 concurrent

requests). Karousos has smaller advice size than Orochi-JS,

by 50%, because Karousos logs less (§4.2), thus demonstrating

the effectiveness of Karousos’s logging technique.

For the stack dump application, we do not report how ad-

vice size depends on the number of concurrent requests. This

is because, for this application, a larger number of concurrent

requests does not result in the execution of more concur-

rent handlers: as mentioned earlier, the application returns a

retry error if one concurrent request reports the same stack

dump as another, which actually leads to fewer concurrent

handlers. Empirically, we observed that the advice size for

this application was similar under Karousos and Orochi-JS,

because although Karousos improves the size of the variable

logs, the size of the handler log remains the same in both

configurations. However, much of this application’s state is

in transactional storage, and variable logs are a relatively

small component of the overall advice.

7 Other related work

We have discussed related works (§3, §4.4, §5) including

those aiming at Karousos’s goal of verifier-efficient execu-

tion integrity (§2.2, §2.3). Here we focus on other related

techniques, primarily record-replay. Record-replay is a vast

area, with several excellent surveys [29, 30, 33]. Karousos

is the first to support the combination of: (a) an untrusted

recorder, (b) accelerated replay, (c) executions with concur-

rency, and (d) controlling the size of advice supplied to the

replayer.

Record-replay for execution integrity. AVM [48], Rip-

ley [91], and Dickerson et al. [32] meet (a) but not (b). In

AVM, an untrusted hypervisor records an execution while a

trusted replayer uses something akin to our trace, together

with VM replay [23, 36], to validate the execution. AVM’s

performance would be similar to the evaluated baseline (see

Fig. 7). In Ripley [91], a web server re-executes client-side

code. In Dickerson et al. [32], miners in a blockchain net-

work execute transactions in parallel while validators re-

execute the transactions in each block deterministically and

concurrently. In DIVA [14], a trusted checker accelerates re-

execution of an untrusted uniprocessor core; this meets (a)

and (b) but not (c).

Record-replaywith a trusted recorder. None of theworks
that we cite in the remainder of this section are designed for

an untrusted server (characteristic (a)); any proposed use of

them for execution integrity would require proof (§1).
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Several works aim at (b). In Poirot [55] and Shortcut [34],

the recorder captures hints that the replayer uses to re-

execute (in Poirot’s case, in a batch, as in Karousos), but

the hints necessitate trust in the recorder.

Many works re-execute concurrent executions while con-

trolling the size of advice supplied to the replayer; they are

geared to (c) and (d). Below, we cover techniques relating

to Karousos’s variable logs (§4.2); for other record-replay

work that targets concurrency, see JaRec [39], Respec [59],

DoublePlay [90], and citations therein.

In Netzer [71], implemented in hardware by FDR [93] (see

also [74]), when a data race occurs, the recorder logs the

conflicting operations; the goal is to log a minimal set of

such races. The replayer synchronizes these data races to

reproduce the original order. In Bugnet [67], implemented in

software by PinSEL [66] (see also [22, 74]), the recorder ap-

plies memory store operations to mainmemory and a shadow
memory; on a load, if the main and shadow values disagree,

the recorder infers that the memory was concurrently modi-

fied (for example by DMA), and logs the load. This technique

also appears in Jalangi [78], which re-executes JavaScript

and shares some of Karousos’s approaches to handling calls

to native code (§5).

These techniques are reminiscent of howKarousos decides

whether to log an access to a program variable. However,

they handle only physical concurrency, not𝑅-concurrency (§4.2).
Notice that 𝑅-concurrency is strictly harder: two accesses

that are not physically concurrent (and hence are recon-

structible with a traditional re-execution) could nevertheless

be 𝑅-concurrent, and hence need logging (§4.2).

A third approach is to log enough information for the

replayer to reconstruct a thread schedule equivalent to the

original. In CREW systems [28, 35, 56, 58, 95], the recorder

logs, for read operations, a current version number; for write

operations, the recorder logs the number of readers before

this write. The replayer then blocks a given write until all

prior readers execute their read. As in Karousos, this ap-

proach has the freedom to re-order concurrent reads, with

the “number of readers” (collected online) playing the same

role as the anti-dependency edges in Karousos (§4.3). How-

ever, CREW reproduces a schedule equivalent to the original

physical one, and thus cannot handle 𝑅-concurrency.

LEAP [51] has a similar log structure to Karousos’s vari-

able logs (§4.2), and thus would be amenable to out-of-order

re-execution. However, LEAP is not designed to control the

size of the logs. ORDER [94] improves on LEAP; it stati-

cally analyzes a program to determine which accesses need

logging. Karousos could borrow these techniques to auto-

matically identify which variables are loggable (§5).

Other related techniques. Prior work uses server-side log-
ging in the JavaScript context to optimize page load times [68,

69], debug web applications [70], and facilitate archives [41].

These works are built on the Scout [68] framework, which

comprehensively tracks server-side data flow. This work,

impressively, shows that such tracking can have negligible

overhead. However, the logs in question are large. This is

acceptable in that context; for example, optimization gener-

ally happens during testing. Karousos’s logging, by contrast,

happens during online use, so is aimed at keeping communi-

cation overhead low, so logs selectively. More fundamentally,

data flow tracking at the server is tantamount to an untrusted

recorder: any proposed use of this mechanism requires rig-

orous proof.

Jardis [19] is a time-travel debugger for JavaScript; it

allows (among other things) stepping from the execution of a

callback backward to the handler that registered that callback.

To do so, Jardis wraps each handler, to pass in information

about where it was registered, enabling the debugger to

“walk up the activation stack.” This is similar to Karousos’s

use of handler labels (§5).

Karousos’s techniques for ensuring well-ordered execu-

tions (§4.3–§4.4) relate to memory checking and consistency

checking: typically there is a dependency graph that the

checker wants to be acyclic [7–9, 12, 21, 42, 72, 80, 82, 86].

8 Summary and discussion
Karousos introduces several new techniques to record-replay

systems, including formalizing (with the definition of 𝑅-

ordered) the kind of reordering that can exist in batched

re-execution systems. The evaluation results show that au-

ditability in this context has a price, primarily in server over-

head. Although it is higher than we might like, it is not

exorbitant, and now we know what the price actually is. Be-

sides, we expect auditability to cost something. The results

also show that Karousos’s individual techniques balance re-

execution throughput and the size of advice, and that inmany

applications and workloads (though not pathological ones)

Karousos benefits over naive baselines and an implemen-

tation of Orochi for Node.js. Our implementation requires

work from the developer to apply Karousos; nonetheless,

Karousos substantially expands the frontier of comprehen-

sive server auditing.
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A Artifact Appendix

A.1 Abstract

The primary purpose of the artifact is to allow reproduction of the results in Figures 6, 7, and 8 of the paper. We also provide

instructions on how to reproduce the results in figures 9, 10, 11, and 12 of Appendix B. All runtime estimates are for a Linux

system with a 3.7GHz Intel(R) Xeon(R) E5-1630 v3 (4-core) CPU, 32GB RAM and 1TB SSD.

After setting up the environment to execute Karousos (takes ≈ 20 minutes), reproducing the results for the paper requires:

(1) compiling each of the target applications to produce the code that the server and verifier execute (takes ≈ 45 minutes). (2)

running both the unmodified and the Karousos server on our target workloads to produce performance results for Karousos

server overheads. Producing results only for Figure 6 takes ≈ 9 hours. Producing results for all figures (Figures 6, 9a, 10a, 11a,

and 12a takes ≈ 20 hours. (3) running the unmodified application, a modified version of the server that collects advice both for

Karousos and Orochi-JS, the Karousos verifier, and the Orochi-JS verifier on our target workloads to produce performance

results for the verifier turnaround time and the advice size. Producing results only for Figures 7 and 8 takex ≈ 7.5 hours.

Producing results for all figures (Figures 7, 8, 9b, 9c, 10b, 10c, 11b, 11c, 12b, and 12c) takes ≈ 13.5 hours.

A.2 Description & Requirements

A.2.1 How to access

Code is publicly available at https://github.com/nyu-systems/karousos/

A.2.2 Hardware dependencies

8G RAM

A.2.3 Software dependencies

Docker if using the artifact. If running locally, Node v12.16.1, NPM 6.13.4, and wrk [3]. However, we advise against this (details

below).

A.2.4 Benchmarks

None

A.3 Set-up

We recommend using docker to run the experiments. Details on how to install docker are in the README at the repo.

You can also run the experiments locally. This requires installing a modified version of MySQL that collects advice for

Karousos. Instructions are in the repo but process is complicated.

A.4 Evaluation workflow

Major claims are Figures 6, 7, and 8. Secondary claims in Figures 9, 10, 11, and 12. Claims can be validated either with docker

or by running in local machine. Docker is recommended. Instructions to execute in local machine are in the README.

Easiest way to reproduce data for Figures 6, 7, and 8 is executing make produce-results. This will set up the environment

in the docker container, compile the applications for Karousos, and produce data for figures 6, 7, and 8.

Alternatively, you can use individual commands to create the container, set it up, and run the experiments. Instructions in

the README. This way, you can also reproduce the data for figures 9, 10, 11, and 12.

https://github.com/nyu-systems/karousos/
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B Additional experimental plots
Below are the graphs for the workload types that are omitted from Section 6. To evaluate server overhead we use the same

setup as in Figure 6. For verification performance we use the same setup as in Figure 7 and for advice size we use the same

setup as in Figure 8.
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Figure 9. Karousos performance for MOTD (mixed)
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Figure 10. Karousos performance for MOTD (90% reads)
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Figure 11. Karousos performance for stacks (mixed)
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Figure 12. Karousos performance for stacks (90% writes)
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C Karousos Algorithms And Correctness Proofs

C.1 Algorithms

In the following, a global handler is a handler that is registered by the initialization function (§3).

C.1.1 Annotating loggable accesses

The principal annotates a program 𝑃 (§4.2) by identifying all loggable variables 𝑆 and placing a special annotation called

OnInitialize right after the initialization of each variable 𝑣 in 𝑆 .

Then, the Karousos compiler produces an annotated program 𝑃𝑎 by taking the program with the OnInitialize annotations

and performing the following modifications:

• It replaces each read of a variable 𝑣 that has an OnInitialize annotation (and is, thus, in 𝑆) with a special annotation called

OnRead

• Right after each write of a variable 𝑣 that has an OnInitialize annotation, it places a special annotation called OnWrite

We use the term annotated operation to refer to an annotation in 𝑃𝑎 along with its corresponding variable operation if it

exists (that is, if the annotation is OnInitialize or OnWrite).

C.1.2 Request ids, Handler ids, Variable IDs, and Transaction ids

During execution, each request has a globally unique id which we denote rid.
Also, the honest server assigns a handler id to each handler that is running. This handler id is unique within a request and

is a tuple (functionID, parent_hid, opnum) where functionID is a globally unique identifier of the handler function (piece of

code), parent_hid is the id of the handler that activates this handler and opnum is the index of the event that activates the

handler within the parent handler. For instance, if a handler with functionID 𝑓 is activated by the third operation of handler

with id hid2, this handler is assigned handler id (𝑓 , hid2, 3). Because each handler function can only be registered once for

each event, handler ids are unique within a request, but not across requests.

Also, the honest server assigns a globally unique variable ID to each variable, and a globally unique transaction id to each

transaction.

C.1.3 Advice collection

The honest server collects the following advice:

• The control flow groupings (𝐶) (§4.1).

• The handler logs HLs (§4.1): for each request, the ordered log of handler operations that the request issued. Each entry

in the log is one of the kinds below. For all of these, hid is the id of the handler that issues the operation and opnum is

the order of this operation among all operations that the handler issues:

– register operations are tuples (hid, opnum, functionID, eventNames), where functionID is the id of the function, and

eventNames is the set that contains the names of the events that the handler is registered for.

– emit operations are tuples (hid, opnum, eventName), where eventName is a string that corresponds to the name of the

event. An emit operation activates all functions that are registered for the event with name eventName (For more

details on events and handler operations check Section 3).

– unregister operations are tuples (hid, opnum, functionID, eventName), where functionID is the id of the function that

is unregistered from event name eventName.
– Check operations is a class of operations that inspect the handlers and the events. The server logs such operations as

tuples (hid, opnum, opInfo), where opInfo is the name of the operation and any arguments that the operation is called

with.

• The variable logs VLs (§4.2): We denote the variable log of a variable id 𝑣 as VL𝑣 . VL𝑣 is a map from triplets (request id,

handler id, opnum) to tuples of type (t: AccessType, v: Value, prec_rid: request id, prec_hid: handler id, prec_anum: Int).

These are created during execution; on each variable access, the server follows the algorithms of Figure 13. AccessType

is READ or WRITE. READ entries contain references to the write that they observe. WRITE entries contain the value

written.

• The transaction logs TXLs (§4.4): for each transaction id, an ordered log of all operations that the transaction executes.

Each entry is of the form:

(hid, opnum, optype, 𝑘𝑒𝑦, opcontents)
where

– hid is the id of the handler that executes this operation
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1: logs are of type (requestid, handlerid,N) → ({𝑟𝑒𝑎𝑑,𝑤𝑟𝑖𝑡𝑒}, value, requestid, handlerid,N)
2: READ entries contain references to the write that they observe.

3: WRITE entries contain the value written.

4: procedure OnInitialize(rid, hid, opnum, 𝑣)
5: Let 𝑣 . log← empty VL
6: Let 𝑣 .value← 𝑛𝑖𝑙 //the most recent written value

7: //Store the most write operation (rid, hid, opnum)
8: Let 𝑣 .rid ← rid
9: Let 𝑣 .hid ← hid
10: Let 𝑣 .opnum← opnum

11: procedure OnRead(rid, hid, opnum, 𝑣)
12: if Rconcurrent ((rid, hid, opnum), (𝑣 .rid, 𝑣 .hid, 𝑣 .opnum)) then
13: //Check that the write that we read from has already been logged. If it has not, log it.

14: if 𝑣 . log{𝑣 .rid, 𝑣 .hid, 𝑣 .opnum} = 𝑛𝑖𝑙 then
15: Let 𝑣 . log{𝑣 .rid, 𝑣 .hid, 𝑣 .opnum} ← (𝑤𝑟𝑖𝑡𝑒, 𝑣 .value, 𝑛𝑖𝑙, 𝑛𝑖𝑙, 𝑛𝑖𝑙)
16: //Log the read

17: Let 𝑣 . log{rid, hid, opnum} ← (𝑟𝑒𝑎𝑑, 𝑛𝑖𝑙, 𝑣 .rid, 𝑣 .hid, 𝑣 .𝑜𝑝𝑛𝑢𝑚)
return 𝑣

18: procedure OnWrite(rid, hid, opnum, opcontents, 𝑣)
19: if Rconcurrent ((rid, hid, opnum), (𝑣 .rid, 𝑣 .hid, 𝑣 .opnum)) then
20: //Check that the write observed by this one has already been logged. If it has not, log it.

21: if 𝑣 . log{𝑣 .rid, 𝑣 .hid, 𝑣 .opnum} = 𝑛𝑖𝑙 then
22: Let 𝑣 . log{𝑣 .rid, 𝑣 .hid, 𝑣 .opnum} ← (𝑤𝑟𝑖𝑡𝑒, 𝑣 .value, 𝑛𝑖𝑙, 𝑛𝑖𝑙, 𝑛𝑖𝑙)
23: //Log the write

24: Let 𝑣 . log{rid, hid, opnum} ← (𝑤𝑟𝑖𝑡𝑒, opcontents, 𝑣 .rid, 𝑣 .hid, 𝑣 .opnum)
25: //This write is the most recent write. So set the 𝑣 fields value, rid, hid, opnum
26: //to those of this write operation.

27: Let 𝑣 .value← opcontents

28: Let 𝑣 .rid ← rid
29: Let 𝑣 .hid ← hid
30: Let 𝑣 .opnum← opnum

Figure 13. Pseudocode for server’s logic on reaching an annotation.

– opnum is the order of this operation among all other operations that the handler executes.

– optype is the type of operation, namely tx_start, tx_commit, tx_abort, PUT or GET,
– 𝑘𝑒𝑦 is the key for PUT and GET operations and null otherwise.

– opcontents are null except for PUT and GET operations: For PUT operations they are the contents that are written and

for GET operations they are the position in the logs of the write that they read from.

• writeOrder (§4.4): a single log that allegedly reflects the order in which the server applied the writes to shared external

state.

• responseEmittedBy: a map from request ids to tuples (hid, opnum) s.t. the handler with id hid is the one that sends back

the response and opnum is the number of operations that hid had issued prior to sending the response.

• opcounts: a map from the id (rid, hid) of every handler that is executed to the total number of operations that the handler

issues (may be zero).

C.1.4 Verifier

The verifier’s algorithms are in Figures 14, 16, 17, 18, 19, 20, 21:
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1: Input Trace Tr, Input Advice A, Input Isolation level 𝐼
2: Global Graph 𝐺

3: Global Map OpMap : (requestid, handlerid,N) → (“handler_log”, requestid,N) ∪ (“tx_log”, txid,N):
4: maps the 𝑖-th operation of a handler to the location of this operation in the logs.

5: Global Map activatedHandlers: (rid, hid, 𝑖) → Set of invoked hids:

6: defined over (rid, hid, 𝑖) s.t. the i-th operation of handler (rid, hid) is an emit operation (§C.1.3); maps these triples to

the set of hids they invoke.

7: Global Set Committed: a set of tuples (requestid, txid) of purported committed transactions,

8: Global Map ReadMap: Map from write ops to the read ops that read from them

9: Global Set GlobalHandlers: Set of tuples (𝑒, 𝑓 ) s.t. 𝑓 is a global handler listening for 𝑒

10: Global Map lastModification: Map from (requestid, handlerid, 𝑘𝑒𝑦) to an integer representing the order of the

11: last operation of the transaction that modifies this key among all other operations that the transaction issues

12:

13: procedure Audit
14: Preprocess()

15: ReExec() // Figure 18

16: Postprocess()

17:

18: procedure Preprocess
19: Check Tr is balanced.

20: Run the initialization phase and log all global handlers.

21: 𝐺Tr ← CreateTimePrecedenceGraph() // [87, Figure 6]

22: SplitNodes() // [87, Figure 6]

23: AddProgramEdges()

24: AddBoundaryEdges() // Figure 15

25: AddHandlerRelatedEdges() // Figure 16

26: AddExternalStateEdges() // Figure 16

27: IsolationLevelVerification() // Figure 17

28:

29: procedure Postprocess
30: AddInternalStateEdges() // Figure 21

31: if CycleDetect(G) then REJECT

32:

33: procedure AddProgramEdges
34: //This procedures adds all the nodes of each handler and program edges

35: //between consecutive operations within a handler.

36: for all (rid, hid) in A.opcounts do
37: if rid does not appear in Tr then REJECT

38: //Add the handler end, start nodes

39: 𝐺.add_node((rid, hid, 0))
40: 𝐺.add_node((rid, hid,∞))
41: for 𝑖 ← 1, . . . ,A.opcounts[(rid, hid)] do
42: 𝐺.add_node((rid, hid, 𝑖))
43: 𝐺.add_edge((rid, hid, 𝑖 − 1), (rid, hid, 𝑖))
44: 𝐺.add_edge((rid, hid,A.opcounts[(rid, hid)]), (rid, hid,∞))

Figure 14. Pseudocode for verifier’s audit procedure in Karousos.
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1: // Global Variables are the ones in Figure 14

2:

3: procedure AddBoundaryEdges
4: // For all (rid, hid) that are request handlers, add edge from (rid, 0) to (rid, hid, 0)
5: for all (rid, hid) in A.opcounts do
6: if hid .parent_hid = null then
7: 𝐺.add_edge((rid, 0), (rid, hid, 0))
8: // For each rid, (rid,∞) represents delivering the response. For the handler (rid, hid𝑟 )
9: // that delivers the response for rid (according to A), add an edge to (rid,∞)
10: // from the operation of hid𝑟 just prior to delivering the response, and an edge from (rid,∞) to the

11: // operation of hid𝑟 just after delivering the response.
12: for all rid in Tr do
13: if A.responseEmittedBy [rid] = null or A.responseEmittedBy is not of type (handler id, i) where 𝑖 ∈ N then
14: REJECT

15: Parse A.responseEmittedBy [rid] as (hid𝑟 , opnum𝑟 )
16: if (rid, hid𝑟 , opnum𝑟 ) ∉ 𝐺 .Nodes then REJECT

17: 𝐺.add_edge((rid, hid𝑟 , opnum𝑟 ), (rid,∞))
18: if opnum𝑟 = A.opcounts[(rid, hid𝑟 )] then
19: //In this case the handler’s next operation is handler exit

20: 𝐺.add_edge((rid,∞), (rid, hid𝑟 ,∞))
21: else
22: 𝐺.add_edge((rid,∞), (rid, hid𝑟 , opnum𝑟 + 1))

Figure 15. Pseudocode for verifier’s AddBoundaryEdges procedure in Karousos.
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1: // Global Variables are the ones in Figure 14

2:

3: procedure AddHandlerRelatedEdges
4: //add edges between consecuting operations in handler logs and activation edges

5: for all rid in A.HL do
6: if rid does not appear in Tr then REJECT

7: Registered ← new Set()

8: for 𝑖 ← 1, . . . ,A.HLrid .length do
9: op← A.HLrid [𝑖]
10: CheckOpIsValid(rid, op)
11: OpMap[(rid, op.hid, op.opnum)] ← (“handler_log”, rid, 𝑖)
12: //Add the handler op precedence edge

13: if 𝑖 ≠ 1 then
14: Let prev_op← (rid,HLrid [𝑖 − 1] .hid,HLrid [𝑖 − 1] .opnum)
15: 𝐺.add_edge(prev_op, op)
16: if op is a register operation then
17: for all eventName in op.eventNames do
18: Registered .add (eventName, op.functionID)
19: else if op is an unregister operation then
20: Registered .remove(op.eventName, op.functionID)
21: else if op is an emit operation then
22: for all (op.eventName, functionID) in Registered ∪ GlobalHandlers do
23: hid′ ← (functionID, op.hid, op.opnum)
24: //Check that the server has reported the activated handler

25: if A.opcounts[(rid, hid′)] = ∅ then REJECT

26: activatedHandlers[rid, op.hid, op.opnum] .add (hid′)
27: //add the activation edge

28: 𝐺.add_edge((rid, op.hid, op.opnum), (rid, hid′, 0))
29:

30: procedure AddExternalStateEdges
31: //Bookkeeping for external state and edges described in Section 4.4

32: for all (rid, tid) in A.TXL do
33: //Check if the transaction is allegedly committed or not

34: if last operation in the log TXL(rid,tid ) is of type commit then
35: Committed .add (rid, tid)
36: Initialize map MyWrites
37: for all 𝑖 ← 1, . . . , TXL(rid,tid ) do
38: Let op← TXL(rid,tid ) [𝑖]
39: CheckOpIsValid(rid, op)
40: OpMap[(rid, op.hid, op.opnum] ← (“tx_log”, tid, 𝑖)
41: if 𝑖 ≠ 1 then
42: if op.optype = GET then
43: Let (rid𝑤 , tid𝑤 , 𝑖𝑤) ← op.opcontents
44: Let op𝑤 ← A.TXL(rid𝑤 ,tid𝑤 ) [𝑖𝑤]
45: CheckOpIsValid(rid, op𝑤 )
46: 𝐺.add_edge((rid𝑤 , op𝑤 .hid, op𝑤 .opnum), (rid, op.hid, op.opnum) //Add a read-from edge

47: // Add this op to the dictating write’s list of readers

48: if op𝑤 .optype ≠ PUT ∨ op𝑤 .𝑘𝑒𝑦 ≠ op.𝑘𝑒𝑦 then REJECT

49: ReadMap[(rid, tid𝑤 , 𝑖𝑤)] .add (rid, tid, 𝑖)
50: //Make sure that if it reads a key that it has modified, it reads the last modification

51: if op.𝑘𝑒𝑦 ∈ MyWrites ∧MyWrites[𝑘𝑒𝑦] ≠ (rid𝑤 , tid𝑤 , 𝑖𝑤) then REJECT

52: else if op.optype = PUT then
53: //update MyWrites

54: MyWrites[op.𝑘𝑒𝑦] ← (rid, tid, 𝑖)
55: if (rid, tid) ∈ Committed then
56: lastModification[rid, tid, 𝑘𝑒𝑦] ← 𝑖

57:

58: procedure CheckOpIsValid(rid: request id, op: operation)
59: if A.opcounts[(rid, op.hid)] = ∅ then REJECT

60: if op.opnum < 1 ∨ op.opnum > A.opcounts[(rid, op.hid)] ∨ OpMap[(rid, op.hid, op.opnum)] exists then
61: REJECT

Figure 16. Pseudocode for verifier’s AddHandlerRelatedEdges and AddExternalStateEdges in Karousos
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1: // Global Variables are the ones in Figure 14

2:

3: procedure IsolationLvlVer
4: Initialize DG to an empty graph

5: //Add a node for each committed transaction

6: for all (rid, tid) ∈ Committed do
7: DG.add_node((rid, tid))
8: writeOrderPerKey ← ExtractWriteOrderPerKey()

9: if 𝐼 = READ UNCOMMITTED then
10: AddWriteDependencyEdges(writeOrderPerKey)
11: if CycleDetect(DG) then REJECT

12: else if 𝐼 = READ COMMITTED then
13: AddWriteDependencyEdges(writeOrderPerKey)
14: AddReadDependencyEdges()

15: if CycleDetect(DG) then REJECT

16: else if 𝐼 = SERIALIZABILITY then
17: AddWriteDependencyEdges(writeOrderPerKey)
18: AddReadDependencyEdges()

19: AddAntiDependencyEdges(writeOrderPerKey)
20: if CycleDetect(DG) then REJECT

21:

22: procedure ExtractWriteOrderPerKey

23: if writeOrder .length ≠ |lastModification| then REJECT

24: Initialize writeOrderPerKey ←Map from keys to lists

25: for all (rid, tid, 𝑖) in A.writeOrder in order do
26: Let op← TXL(rid,tid ) [𝑖]
27: if lastModification[(rid, tid, op.𝑘𝑒𝑦)] ≠ 𝑖 then REJECT

28: writeOrderPerKey [op.𝑘𝑒𝑦] .append (rid, tid, 𝑖)
29: return writeOrderPerKey
30:

31: procedure AddReadDependencyEdges // w-r edges
32: for all (rid𝑤 , tid𝑤 , 𝑖𝑤) in ReadMap do
33: //check that if the write is not the last modification, no committed transaction reads from it

34: if (rid𝑤 , tid𝑤 , 𝑖𝑤) ∉ writeOrder then
35: for all (rid𝑟 , tid𝑟 , 𝑖𝑟 ) in ReadMap[(rid𝑤 , tid𝑤 , 𝑖𝑤)] do
36: if (rid𝑟 , tid𝑟 ) ∈ Committed then REJECT

37: else
38: for all (rid𝑟 , tid𝑟 , 𝑖𝑟 ) in ReadMap[(rid𝑤 , tid𝑤 , 𝑖𝑤)] do
39: if (rid𝑤 , tid𝑤) ∈ Committed ∧ (rid𝑤 ≠ rid𝑟 ∨ tid𝑤 ≠ tid𝑟 ) then
40: DG.add_edge(⟨(rid𝑤 , tid𝑤), (rid𝑟 , tid𝑟 )⟩)
41:

42: procedure AddWriteDependencyEdges(writeOrderPerKey) // w-w edge

43: for all 𝑘𝑒𝑦 ∈ writeOrderPerKey do
44: Let 𝑜 ← writeOrderPerKey [𝑘𝑒𝑦]
45: for 𝑗 = 1, . . . , 𝑜 .length − 1 do
46: //check that there’s only one version per transaction

47: DG.add_edge(⟨(𝑜 [ 𝑗] .rid, 𝑜 [ 𝑗] .tid), (𝑜 [ 𝑗 + 1] .rid, 𝑜 [ 𝑗 + 1] .tid)⟩)
48:

49: procedure AddAntiDependencyEdges(writeOrderPerKey) // r-w edges

50: for all 𝑘 ∈ writeOrderPerKey do
51: Let 𝑜 ← writeOrderPerKey [𝑘]
52: for 𝑗 = 1, . . . , 𝑜 .length − 1 do
53: for all (rid, tid, _) ∈ ReadMap[𝑜 [ 𝑗]] do
54: Let 𝑇1 = (rid, tid) and 𝑇2 = (𝑜 [ 𝑗 + 1] .rid, 𝑜 [ 𝑗 + 1] .tid)
55: if 𝑇1 ≠ 𝑇2 ∧𝑇1 ∈ Committed then
56: DG.add_edge(⟨𝑇1,𝑇2⟩)

Figure 17. Pseudocode for verifier’s isolation level verification in Karousos (§4.4)
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1: //Global Variables are the ones in Figure 14

2: procedure ReExec
3: Re-execute Tr in groups according to A.𝐶
4: (1) Initialize a group as follows:

5: Read in inputs for all requests in the group. Let in be these inputs

6: Allocate program structures for each request in the group

7: Initialize active: a queue of tuples (handler id, inputs)
8: Find the functionIDs of the request handlers.
9: if the functionIDs of the request handlers don’t line up across requests then REJECT

10: for all functionID in functionIDs do
11: Let hid ← (functionID, null, 0)
12: active.Enqueue(hid, in)
13: if ∃rid in the group s.t. A.opcounts[(rid, hid)] = ∅ then REJECT

14: (2) Execute the requests in the group with SIMD-on-demand:

15: while active ≠ ∅ do
16: (a) The runtime picks the next handler 𝑐 to execute

17: if 𝑐 ≠ null then
18: Compute hid from the functionID of the function, the parent handler and the event.

19: if hid ∉ active then
20: continue;//Do not execute this handler.

21: else
22: Name the handler hid and set the inputs to the ones associated with hid in active
23: Remove hid from active
24: idx [hid] ← 1

25: Execute the activated handler for all requests in the group

26: else
27: //Pick the next handler to be executed from active
28: (hid, in) ← active.Dequeue
29: idx [hid] ← 1

30: Execute the function hid .functionID for all requests in the group with inputs in
31: (b) ReExecute hid for all requests:

32: if execution within the group diverges then REJECT

33: if the group makes an external state operation then
34: optype← the type of state operation

35: for all rid in the group do
36: opcontents, tid, txnum← parameters from execution

37: 𝑠 ← CheckStateOp(rid, hid, idx [hid], optype, tid, txnum, 𝑘𝑒𝑦, opcontents)
38: if optype = GET then
39: state op result← s

40: idx [hid] = idx [hid] + 1
41: if the group reaches an annotated operation then
42: For all rid in the group:

43: if opnum > A.opcounts[(rid, hid)] then REJECT

44: if it is a write or initialization then
45: Execute the operation

46: Execute the annotation according to Figure 20 where opnum is set to idx [hid]
47: idx [hid] = idx [hid] + 1
48: if the group makes a handler operation then
49: optype← the type of handler operation

50: for all rid in the group do
51: info← parameters from execution

52: CheckHandlerOp(rid, hid, idx [hid], optype, info)
53: if optype = emit then ActivateHandlers(hid, idx [hid], active)
54: Execute the handler operation

55: idx [hid] = idx [hid] + 1
56: if the group sends back a response then
57: if ∃rid in the group s.t. A.responseEmittedBy [rid] ≠ (hid, idx [ℎ𝑖𝑑]) then REJECT

58: Write out the produced outputs

59: (c) When the execution of the handler hid exits

60: if ∃rid in the group s.t. idx [hid] < A.opcounts[(rid, hid)] then REJECT

61: (3) for all rid in the group do
62: if the produced outputs are not exactly the responses in Tr then REJECT

63: //Check that there are no handlers in the advice that we did not execute

64: if ∃rid s.t. ∃hid : A.opcounts[(rid, hid)] but (rid, hid) was not executed by ReExec then REJECT

65: return ACCEPT

Figure 18. Pseudocode for verifier’s ReExec in Karousos
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1: //Global Variables are the ones in Figure 14

2:

3: procedure CheckStateOp(rid, hid, opnum, optype, tid, txnum, 𝑘𝑒𝑦, opcontents)
4: //Simulate and check logic for state operations (§2.3, §4.4)

5: if opnum > A.opcounts[(rid, hid)] then REJECT

6: Let (𝑡, tid𝑐 , txnum𝑐 ) ← OpMap[(rid, hid, opnum)]
7: if 𝑡 ≠ “tx_log” ∨ tid𝑐 ≠ tid ∨ txnum𝑐 ≠ txnum then REJECT

8: Let op← A.TXLridtid [txnum]
9: if op.optype ≠ optype ∧ op.optype ≠ tx_abort ∧ optype ≠ tx_commit then REJECT

10: if op.𝑘𝑒𝑦 ≠ 𝑘𝑒𝑦 then REJECT

11: if optype ≠ GET then
12: if op.opcontents ≠ opcontents then REJECT

13: else
14: Let (rid𝑤, tid𝑤, 𝑖𝑤) ← op.opcontents
15: Let op𝑤 ← A.TXLrid𝑤 tid𝑤 [𝑖𝑤] return op𝑤 .opcontents
16:

17: procedure CheckHandlerOp(rid, hid, opnum, optype, info)
18: //Check that the handler operation matches the entry in the logs (§4.1)

19: if opnum > A.opcounts[(rid, hid)] then REJECT

20: Let (𝑡, rid𝑐 , 𝑖) ← OpMap[(rid, hid, opnum)]
21: if 𝑡 ≠ “handler_log” ∨ rid𝑐 ≠ rid then REJECT

22: Let op← A.HLrid [𝑖]
23: if info does not match the fields in op then REJECT

24:

25: // The following procedure is called by ReExec while it is executing a control flow group

26: // when it encounters an emit operation.

27: // It checks that all requests in the group induce the same handlers,

28: // and adds the handlers to active.
29: procedure ActivateHandlers(hid, 𝑖, active)
30: //Check that (hid, 𝑖) activates the same handlers across all requests, according to the advice (§4.1)

31: if exist rid1, rid2 in the group s.t. activatedHandlers[rid1, hid, 𝑖] ≠ activatedHandlers[rid2, hid, 𝑖] then REJECT

32: Let in the set of values of the emit operation across all requests.

33: for all hid′ ∈ activatedHandlers[rid, hid, 𝑖] for some rid in the group do
34: active.Enqueue(hid′, in)

Figure 19. Pseudocode for verifier’s check op routines and activateHandlers routine in Karousos
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1: all_variables← {} // A set of all variables.

2: procedure OnInitialize(rid, hid, opnum, 𝑣)
3: Let 𝑣 . log← VL𝑣 .variableID
4: Let 𝑣 .rid ← rid
5: Let 𝑣 .hid ← hid
6: Let 𝑣 .opnum← opnum

7: Let 𝑣 .var_dict ← {} // Map from rid, hid, opnum to values.

8: Let 𝑣 .read_observers← {} // maps from a write op to all readers who allegedly observed that op,

9: // based on both server-supplied advice, and re-execution.

10: Let 𝑣 .write_observer ← {} // maps from a write op to 0 or 1 writers who allegedly observed that op,

11: // based on either server-supplied advice or re-execution.

12: Let 𝑣 .initializer ← nil
13: all_variables.insert(𝑣)
14:

15: procedure OnRead(rid, hid, opnum, opcontents, 𝑣)
16: if 𝑣 . log .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (rid, hid, opnum) then
17: // if a read is logged, then the server was supposed to

18: // have logged the dictating write. So find the dictating

19: // write in the log, and feed its value to the read.

20: op, _, rid𝑜𝑝 , hid𝑜𝑝 , opnum𝑜𝑝 ← 𝑣 . log{rid, hid, opnum}
21: if op is not 𝑟𝑒𝑎𝑑 or !𝑣 . log .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (rid𝑜𝑝 , hid𝑜𝑝 , opnum𝑜𝑝 ) then
22: return nil

23: 𝑜𝑝, value, _ , _ , _← 𝑣 . log{rid𝑜𝑝 , hid𝑜𝑝 , opnum𝑜𝑝 }
24: if 𝑜𝑝 is not𝑤𝑟𝑖𝑡𝑒 then
25: return nil

26: 𝑣 .read_observers{(rid𝑜𝑝 , hid𝑜𝑝 , opnum𝑜𝑝 )}.insert((rid, hid, opnum))
27: return value
28: else
29: //Below FindNearestRPrecedingWrite returns the last write by the nearest ancestor handler

30: //by climbing up the handler tree and checking 𝑣 .var_dict.
31: Let rid𝑝 , hid𝑝 , opnum𝑝 , value← FindNearestRPrecedingWrite(𝑣, rid, hid, opnum)
32: if rid𝑝 = 𝑛𝑖𝑙 and hid𝑝 = 𝑛𝑖𝑙 then
33: return nil

34: 𝑣 .read_observers{(rid𝑝 , hid𝑝 , opnum𝑝 )}.insert((rid, hid, opnum))
35: return 𝑣

Figure 20. Code that verifier executes upon an annotated operation (§4.3), I
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1: procedure OnWrite(rid, hid, opnum, opcontents, 𝑣)
2: Let 𝑣 .var_dict{(rid, hid, opnum)} ← opcontents

3: if 𝑣 . log .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (rid, hid, opnum) then
4: Let op, value, rid𝑜 , hid𝑜 , opnum𝑜 ← 𝑣 . log{rid, hid, opnum}
5: if op is not𝑤𝑟𝑖𝑡𝑒 or value ≠ opcontents then
6: return false // Operations or values don’t agree.

7: if rid𝑜 ≠ 𝑛𝑖𝑙 and hid𝑜 ≠ 𝑛𝑖𝑙 and 𝑜𝑝𝑛𝑢𝑚𝑜 ≠ 𝑛𝑖𝑙 then
8: if 𝑣 .write_observer{𝑟𝑖𝑑𝑜 , hid𝑜 , opnum𝑜 } ≠ 𝑛𝑖𝑙 then
9: return false // Two handlers cannot overwrite the same value.

10: else
11: Let 𝑣 .write_observer{𝑟𝑖𝑑𝑜 , hid𝑜 , opnum𝑜 } ← (rid, hid, opnum)
12: return true

13: else
14: Let (rid𝑝 , hid𝑝 , opnum𝑝 , value) ← FindNearestRPrecedingWrite(𝑣, rid, hid, opnum)
15: if rid𝑝 ≠ 𝑛𝑖𝑙 and hid𝑝 ≠ 𝑛𝑖𝑙 and opnum𝑝 ≠ 𝑛𝑖𝑙 then
16: Let 𝑣 .write_observer{𝑟𝑖𝑑𝑝 , hid𝑝 , opnum𝑝 } ← (rid, hid, opnum)
17: else
18: Let 𝑣 .initializer ← (rid, hid, opnum)
19: return true

20: procedure AddInternalStateEdges
21: for all 𝑣 ← all_variables do
22: Let (rid, hid, opnum) ← 𝑣 .initializer
23: while rid ≠ 𝑛𝑖𝑙 and hid ≠ 𝑛𝑖𝑙 and opnum ≠ 𝑛𝑖𝑙 do
24: // Add WR (write-read) edges.

25: for all (rid𝑟 , hid𝑟 , opnum𝑟 ) ← 𝑣 .read_observers{rid, hid, opnum} do
26: 𝐺.add_edge((rid, hid, opnum), (rid𝑟 , hid𝑟 , opnum𝑟 ))
27: if 𝑣 .write_observer{rid, hid, opnum} ≠ 𝑛𝑖𝑙 then
28: // Add RW (anti-dependency) edges.

29: for all (rid𝑟 , hid𝑟 , opnum𝑟 ) ← 𝑣 .read_observers{rid, hid, opnum} do
30: 𝐺.add_edge((rid𝑟 , hid𝑟 , 𝑜𝑝𝑛𝑢𝑚𝑟 ), 𝑣 .write_observer{rid, hid, opnum})

// Add WW edge.

31: 𝐺.add_edge((rid, hid, opnum), 𝑣 .write_observer{rid, hid, opnum})
32: Let (rid, hid, opnum) ← 𝑣 .write_observer{rid, hid, opnum}

Figure 21. Code that verifier executes upon an annotated operation (§4.3), II
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C.2 Correctness Properties

Definition 1 (Request/Response trace Tr). An ordered list of the request and response events. The events appear in the list in

chronological order. A request event is a tuple (REQ, rid, 𝑥) where rid is the request id of the request that was issued and 𝑥 is

the input data. A response event is a tuple (RESP, rid, 𝑦) where rid is the request id of the request that corresponds to this

response and 𝑦 are the contents of the response.

Definition 2 (Completeness). An advice collection procedure and an audit procedure are defined to be Complete if the
following holds: If the server serves the requests according to the annotated program 𝑃𝑎 and executes the given advice

collection procedure, then the given audit procedure (applied to the resulting trace and advice) passes.

Definition 3 (Request Schedule). A request schedule is an ordered list of request ids that models the execution schedule.

Notice that request ids are permitted to repeat in the schedule.

Definition 4 (Operation-wise execution). Consider a model where, instead of requests arriving and departing, the executor

has access to all request ids in a trace Tr and their inputs. Operation-wise execution means executing the program 𝑃 by

following a request schedule 𝑆 ; the output of operation-wise execution is a trace Tr
′
. Specifically:

• The executor runs the initialization process of 𝑃 .

• Then, for each request id rid in the request schedule 𝑆 in order:

– If it is rid’s first appearance, the executor reads in the request’s inputs 𝑥 , appends (REQ, rid, 𝑥) to Tr
′
and initializes

the active handlers set of rid with the request handlers for this request

– Otherwise, the executor non-deterministically chooses one of the handlers in the active handlers set of rid and runs it

up to and including its next special operation.

After the execution of a request’s handler, the request is held, until the executor reschedules it. If a request is scheduled

but the request has no active handlers, the executor immediately yields and chooses the next rid in 𝑆 .

• At the end, output Tr′.
Our operation-wise execution differs from the one in given in Orochi [87] in that it explicitly constructs an alternate trace

instead of consulting the observed one.

Moreover, because of the non-deterministic choices flagged above, this procedure can produce multiple ouput traces for the

same starting schedule 𝑆 .

Definition 5 (𝑂𝑆 ). For a request schedule 𝑆 , 𝑂𝑆 is the set of all possible output traces that Operation-wise execution on

request schedule 𝑆 can generate.

Definition 6 (Soundness). An advice collection procedure and an audit procedure are defined to be sound if the following

holds: If the given audit procedure accepts a trace Tr and advice A, then there exists a request schedule 𝑆 such that Tr ∈ 𝑂𝑆 .

C.3 Proofs

We need the following definitions:

Definition 7 (𝑅-precedes). An operation op = (rid, hid, opnum) 𝑅-precedes an operation op′ = (rid′, hid′, opnum′), written
op <𝑅 op′, iff
• rid = rid′ and hid = hid′ and opnum < opnum

′
, or

• rid = rid′ and hid is an ancestor of hid′ in the handler tree.

Definition 8 (𝑅-ordered, 𝑅-concurrent). Two operations op and op′, with op ≠ op′, are 𝑅-ordered iff op <𝑅 op′ or op′ <𝑅 op.
They are 𝑅-concurrent iff op ≮𝑅 op′ and op′ ≮𝑅 op.

Definition 9 (Op Schedule). An op schedule is a map:

𝑆 : N→ requestid × ({0,∞} ∪ {handlerid × (N ∪ {∞})})
For example:

(1, 0), (23, 0), (1, hid1, 0), (23, hid2, 0), (1,∞), (1, hid1, 1) . . .
where hid1, hid2 are handler ids as defined in Section 3.2 of the paper, and the natural number domain is implicit in the

order.

Definition 10 (Well formed op schedule). An op schedule 𝑆 is well formed (with respect to a trace Tr and set of advice A) if:
1. it is a permutation of the graph 𝐺 that is constructed by Preprocess,
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2. it respects program order (that is, if there exists a program edge added by AddProgramEdges or a boundary edge added

by AddBoundaryEdges in 𝐺 from node 𝑛1 to node 𝑛2, then 𝑛1 appears before 𝑛2 in 𝑆), and

3. it respects activation order (that is, if there exists an activation edge from node 𝑛1 to node 𝑛2 in 𝐺 , 𝑛1 appears before 𝑛2
in 𝑆)

Remark. Notice that any topological sort of the graph 𝐺 constructed by Preprocess in Audit(Tr,A) is well-formed. This is

immediate from the definition.

OOOAudit This procedure is shown in Figure 22.

Lemma 1 (Equivalence of well formed op schedules). For all op schedules 𝑆1, 𝑆2 that are well-formed (with respect to Tr and

advice A)

OOOAudit(Tr,A, 𝑆1) = OOOAudit(Tr,A, 𝑆2).

Proof. The schedule does not affect the OOOAudit until the line where OOOExec is invoked. So up until then, either both

executions accept or both reject.

Now, assume that OOOExec(𝑆1) and OOOExec(𝑆2) are equivalent, meaning that (a) either both accept or both reject and (b)

they access the same variables setting the initializer , write_observer and read_observers of each variable to the same values.

Now examine the execution of Postprocess. (b) implies that the edges that are added to𝐺 by AddInternalStateEdges are the

same in both executions and, thus, the constructed graph𝐺 is the same in both executions. CycleDetect thus runs the same in

both executions. Therefore, either both executions accept or both reject.

Now we need to prove that OOOExec(𝑆1) and OOOExec(𝑆2) are equivalent: The two schedules contain the same operations

because they are constructed from the same graph 𝐺 . We need to prove that each operation is executed in the same way in

both executions. We will prove this by induction on the operations of each request.

1. Fix a request rid.
2. First notice that the only global state that is modified during OOOExec is the active map, per-variable dictionaries, lists

of read_observers, write_observers, and initializer.

3. Base case: Because both schedules are well-formed, the first operation of a request is (rid, 0): none of the data that
this execution depends on get modified throughout OOOExec. So the execution of this operation is independent of its

position in the log, and it is executed in the same way in both executions.

4. Induction: If both executions are about to execute operation 𝑘 of request rid, and neither has rejected so far, the execution
of operation 𝑘 will proceed in the same way in both executions.

• Assume that the next operation is (rid,∞): The handler hid which both executions of OOOExec execute is the one in

A.responseEmittedBy. Moreover, because the schedules are well formed, the latest operation of (rid, hid) that has been
executed so far on both executions is

(rid, hid,A.responseEmittedBy [rid] .opnum). Thus, both executions will execute the handler that allegedly sends back

the response, from the (allegedly) last operation prior to the response up until the next operation. Because of the

induction hypothesis and the fact that the execution of a handler between operations is deterministic, the two

executions will proceed in the same way up until right before the next event, producing the same state. Moreover, the

next event will be the same in the two executions. If this event is not the emission of a response, both executions will

reject. Otherwise, because both executions have the same state, the produced outputs will be the same.

• Operations (rid, hid, 𝑖):
– If it is a handler start operation (𝑖 = 0) then the executions do not depend on state that is modified except for the

check in line 25. We will show that either both executions accept or both reject: Assume that this does not hold.

Then, without loss of generality assume that the check passes in OOOExec(𝑆1) and fails in OOOExec(𝑆2). So in

OOOExec(𝑆2), hid is not in active[rid], either because (i) hid was in active[rid] and removed from it, or (ii) hid was

never added to active[rid]. We can rule out case (i) because the only place where hid could be removed is line 32

which, if it were executed, would mean that (hid, rid,∞) appears before (hid, rid, 0) in 𝑆2, which is not possible,

since 𝑆2 is well-formed and in particular respects program order. So case (ii) holds.

Now, in OOOExec(𝑆1), hid is in active[rid]. There are two places where hid could have been inserted: (a) line 16

during execution of (rid, 0) or (b) line 49 during the execution of an emit operation (rid, parent, 𝑗). Consider case (a).
Because 𝑆1 and 𝑆2 are well-formed, (rid, 0) appears before (rid, hid, 0) in both 𝑆1 and 𝑆2. Also, as argued above, both

OOOExec(𝑆1) and OOOExec(𝑆2) execute (rid, 0) the same way, initializing active[rid] to the same value. Therefore,

if case (a) holds for OOOExec(𝑆1) then correspondingly, hid would have been inserted in OOOExec(𝑆2) in the same

line, in contradiction to case (ii) above. So case (b) holds.
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1: //Global Variables are the ones in Figure 14

2: procedure OOOAudit(op schedule 𝑆)
3: Preprocess() // Figure 14

4: OOOExec(𝑆)
5: Postprocess() // Figure 14

6:

7: procedure OOOExec(op schedule 𝑆)
8: for each op in 𝑆 do
9: if 𝑜𝑝 = (rid, 0) then
10: Read inputs in of the request

11: Allocate program structures

12: active[rid] ← new Map

13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid ← (functionID, null, 0)
16: active[rid] [hid] ← in
17: if A.opcounts[(rid, hid)] = ∅ then REJECT

18: else if op = (rid,∞) then
19: Let hid ← A.responseEmittedBy [rid] .hid
20: Run the handler (rid, hid) until the next event
21: if the next event is not a send response operation then REJECT

22: write out the produced outputs

23: else if op = (rid, hid, 𝑖) then
24: if 𝑖 = 0 then
25: if (hid is not in active[rid]) then REJECT

26: //It is the first operation

27: Set the handler’s inputs to active[rid] [hid].
28: Allocate structures for running the handler

29: else if 𝑖 = ∞ then
30: Run the handler (rid, hid) until the next event
31: if it is not a handler exit operation then REJECT

32: Remove hid from active[rid]
33: else
34: Run the handler (rid, hid) until the next event
35: if the next event is an external state operation then
36: optype← the type of state operation

37: opcontents, tid, txnum← parameters from execution

38: 𝑠 ← CheckStateOp(rid, hid, 𝑖, optype, tid, txnum, opcontents)
39: if optype = GET then
40: state op result← s

41: else if the next event is an annotated operation then
42: if it is a write or initialization then
43: Execute the operation

44: Execute the annotation according to Figure 20 where opnum is set to 𝑖
45: else if the next event is a handler operation then
46: info← parameters from execution

47: CheckHandlerOp(rid, hid, 𝑖, optype, info)
48: if the event is an emit operation then
49: for all hid′ ∈ activatedHandlers[(rid, hid, 𝑖)] do active[rid] [hid′] ← value of the emit

50:

51: if ∃rid s.t. ∃hid : A.opcounts[(rid, hid)] but (rid, hid) was not executed by OOOExec then REJECT

52: if the produced outputs exactly match the responses in Tr then return ACCEPT

53: return REJECT

Figure 22. Pseudocode for OOOAudit in Karousos.

In this case, because OOOExec(𝑆1) adds hid to active[rid] during the execution of an emit operation (rid, parent, 𝑗) at
line 49, hid ∈ activatedHandlers[(rid, parent, 𝑗)]. This, in turn, implies that there is an activation edge ⟨(rid, parent, 𝑗), (rid, hid, 0)⟩
in 𝐺 . So, because 𝑆2 is well-formed, operation (rid, parent, 𝑗) appears before (rid, hid, 0) in 𝑆2. This means that
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OOOExec(𝑆2) executes operation (rid, parent, 𝑗) prior to executing (rid, hid, 0) but during its execution it does not

add hid to active[rid]. This can only be the case if during OOOExec(𝑆2), hid ∉ activatedHandlers[(rid, parent, 𝑗)]. But
this is impossible because activatedHandlers is the same across both executions (it is initialized during preprocessing

and is not modified after preprocessing), and hid ∈ activatedHandlers[(rid, parent, 𝑗)] during OOOExec(𝑆1).
– If it is a handler end operation (𝑖 = ∞), the execution does not depend on any objects that are modified during

OOOExec so both executions proceed in the same way.

– If it is an external state operation: same argument as 𝑖 = ∞.
– If it is an annotated operation (and hence interacting with, the aforementioned per-variable dictionaries and lists):

∗ The parameters of the operation are the same across both executions because of the induction hypothesis and the

fact that OOOExec proceeds deterministically from operation to operation.

∗ If the operation is in the advice, then the execution proceeds in the same way in both executions.

∗ If the operation is not in the advice, then both executions will find the nearest 𝑅-preceding write. Because of the

induction hypothesis, and the fact that both schedules respect activation and program order, the nearest ancestor

write will be the same in both executions, regardless of the order in which concurrent handlers are re-executed. This
means that reading from the nearest ancestor will be the same in both executions (the same ancestor, the same

value read) and, for this operation, both executions will add the same value to the variable dictionary (if it’s a

write operation) and both update read_observers, write_observer and initializer in the same way.

– If it’s a handler operation: Same argument as 𝑖 = ∞ and external state.

□

C.3.1 Completeness

At a high level, we need to show that if the server honestly executes the given program and the advice collection procedure,

producing trace Tr and advice 𝐴, then Audit(Tr,A) accepts. We will do this in two steps:

1. First, we establish that for any well-formed op schedule 𝑆 , OOOAudit(Tr,A, 𝑆) accepts (Lemma 2).

2. Next, we show that Audit(Tr,A) is equivalent to OOOAudit(Tr,A, 𝑆 ′) for a specific well-formed op schedule 𝑆 ′ (Lemma 3).

We take 𝑆 ′ to be the op schedule that results from a “flattened” batch execution.

Lemma 2 (OOOAudit Completeness). If the executor executes the given program (under the execution model given in

Section 3 and the given advice collection procedure, producing trace Tr and advice A, then for any well-formed op schedule 𝑆

(with respect to Tr and A), OOOAudit(𝑆) accepts.

Proof. Because of Lemma 1, it is sufficient to prove that there exists some well-formed op schedule 𝑆 ′ (with respect to Tr and

A) for which OOOAudit(𝑆 ′) accepts.
We will derive the op schedule 𝑆 ′ from the online execution at the honest server. Define the following events during online

execution:

• A request event happens when a request rid reaches the server, and is notated as (rid, 0).
• A response event happens when the server issues a response for a request rid, and is notated as (rid,∞).
• A handler start event happens when the server starts executing a handler (rid, hid), and is notated as (rid, hid, 0).
• A handler end event happens when the server finishes executing a handler (rid, hid), and is notated as (rid, hid,∞).
• A (rid, hid, 𝑖) event happens when the server either collects advice associated with a handler op or a state op, or when

the handler executes an annotated operation.

We observe that there exists a partial order in which these events happen during online execution. The order is partial because

some events may happen concurrently from the perspective of the system; for example, even if the trace shows that a particular

event (such as a request’s arrival) is earlier than another (such as a different request’s arrival or response), the server may have

“seen” those two events in the opposite order. Define a total order on these events by ordering concurrent events according to

Tr if the events are both request/response events and arbitrarily otherwise. Take the op schedule 𝑆 ′ to be this total order.

Sub-lemma 2.1. 𝑆 ′ is well-formed, with respect to the Trace Tr and advice A produced by the online execution.

Proof. First, we show that 𝑆 ′ is a permutation of the nodes in graph 𝐺 . Since the server is honest, 𝑆 ′ contains exactly one

request event and exactly one response event for each request in Tr; so does 𝐺 (from the logic of CreateTimePrecedenceGraph

and SplitNodes). Moreover, 𝑆 ′ contains exactly one handler start event and exactly one handler end event for each handler

(rid, hid) that is executed; so does𝐺 . This follows from the logic of AddProgramEdges, specifically, lines 39 and 40 of Figure 14,

and the fact that the server faithfully executes the advice collection procedure, and sets the entries of A.opcounts to exactly the

handlers that are executed during online execution. Last, 𝑆 ′ will contain exactly one entry for each handler operation/state
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operation/annotated operation that it executes. Because the honest server faithfully reports A.opcounts, 𝑆 ′ will contain exactly

one (rid, hid, 𝑖) for each 𝑖 < A.opcounts. So will𝐺 (line 42 of Figure 14). 𝑆 ′ contains no other entries other than the ones above

and 𝐺 contains no other nodes other than the ones above. Thus, 𝑆 ′ is a permutation of the nodes of 𝐺 , as required.

Moreover, 𝑆 ′ respects program order (Definition 10): The server faithfully executes the given program and collects the advice.

This means that the relevant order of events within a handler implied by the opnum field of the corresponding operations in

the logs, and the order of the response event relative to the other events of the handler that issues the response implied by

the contents A.responseEmittedBy reflect what happened online. As a result, from the logic of AddProgramEdges of Figure 14

and AddBoundaryEdges of Figure 15, the existence of a program edge or boundary edge ⟨𝑛1, 𝑛2⟩ in 𝐺 implies that 𝑛1 happens

before 𝑛2 during online execution. Thus, 𝑛1 also appears before 𝑛2 in 𝑆 ′, by construction of 𝑆 ′.
Last, we argue that 𝑆 ′ respects activation order (Definition 10). Since 𝑆 ′ reflects the order of events during online execution,

it is sufficient to show that if there exists an activation edge

⟨(rid, parent_hid, 𝑖), (rid, hid, 0)⟩

in 𝐺 , then the emit event 𝑒 = (rid, parent_hid, 𝑖) activates handler (rid, hid) during online execution (because during a faithful

execution a handler cannot start running until after the event that activates it is emitted). The activation edge is added to 𝐺 at

line 28 of Figure 16 only if hid .functionID is registered for the event 𝑒 according to GlobalHandlers or according to Registered.
We will show that in both cases, hid .functionID is registered for the event 𝑒 during online execution and, thus, 𝑒 activates

handler (rid, hid). In the former case, hid .functionID is registered for 𝑒 at the end of the initialization procedure at the verifier.

Because the initialization procedure is deterministic, hid .functionID is registered for 𝑒 at the end of the initialization procedure

at the online server and, because requests don’t modify global handlers, it is still registered when 𝑒 is emitted, as required. In

the latter case, hid .functionID is registered for 𝑒 according to Registered only if there exists a register operation prior to 𝑒 in

HLrid . Because the server executes the advice collection procedure faithfully, the order of operations in HLrid reflects the order
in which they are executed at the online server. This implies that hid .functionID is registered for 𝑒 during online execution. □

Sub-lemma 2.2. Preprocess passes.

Proof. Consider all the lines in which OOOAudit may reject during Preprocess. We need to show that if the server is well-

behaved then all of the checks pass.

• Line 19 of Figure 14: Passes because the honest server always sends back a response for each request it receives.

• Line 37 of Figure 14: When the server is honest, it does not execute nor collect advice for any requests that are not in Tr.

• Lines 14 and 16 of Figure 15: The honest server executes exactly the requests in Tr and sends back responses for exactly

those requests. Moreover, it faithfully executes the advice collection procedure setting the contents ofA.responseEmittedBy [rid]
for each rid that appears in the trace to a tuple: (hid𝑟 , opnum𝑟 ) s.t. 0 ≤ opnum𝑟 ≤ A.opcounts[(rid, hid)]. Consequently,
the check of line 14 passes. Moreover, notice that because of the logic of AddProgramEdges and the fact that the honest

server correctly sets the A.opcounts, (rid, hid𝑟 , opnum𝑟 ) is added to 𝐺 before the check of line 16 which implies that the

check passes.

• Line 6 of Figure 16: Because the server is well-behaved, it never includes a handler operations log in A for a request that

is not in Tr.

• Line 25 of Figure 16: As argued in the proof of lemma 2.1, if a functionID is registered for an event 𝑒 when 𝑒 is emitted

according to Registered or GlobalHandlers during AddHandlerRelatedEdges, this functionID is registered for 𝑒 during

online execution. This implies that all handler ids for which line 25 is executed are handler ids that are actually activated

by this operation during online execution. Moreover, the server, being well-behaved, has these ids as keys in A.opcounts.
Thus, the check passes.

• Invocation of CheckOpIsValid in Line 10 of Figure 16: When the server is honest, it correctly sets opcounts for each
request in Tr and the contents of the logs so that each operation appears exactly once in the logs. Under these conditions

the checks pass.

• Line 48 of Figure 16: When the server is honest, each GET(𝑘𝑒𝑦) operation reads the contents of a PUT(𝑘𝑒𝑦, ·) operation.
Moreover, the honest server correctly logs state operations in A.TXL. Under these conditions, the check passes.

• Line 51 of Figure 16: When the server is well-behaved, the execution at the database is internally consistent (Section D)

meaning that if a transaction modifies a 𝑘𝑒𝑦 and later reads it, it reads its latest modification. Moreover, the well-behaved

server correctly sets the opcontents field of each GET operation to the position of its dictating write in A.TXLs. This
implies that for each GET operation op that appears in some A.TXL𝑡 after a PUT operation op′ with op′ .𝑘𝑒𝑦 = op.𝑘𝑒𝑦,
op.opcontents corresponds to the last PUT operation to op.𝑘𝑒𝑦 that precedes op in A.TXL𝑡 . Meanwhile, from the logic

of AddExternalStateEdges, when a GET operation op ∈ A.TXL𝑡 is processed, op.𝑘𝑒𝑦 ∉ MyWrites iff there are no PUT
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operations to op.𝑘𝑒𝑦 prior to op in A.TXL𝑡 . Otherwise,MyWrites[op.key] is the last PUT operation to op.𝑘𝑒𝑦 that precedes

op in A.TXL𝑡 . Thus, either op.𝑘𝑒𝑦 ∉ MyWrites or MyWrites[op.𝑘𝑒𝑦] = op.opcontents. So, the check passes.

• Lines 23 and 27 of Figure 17: We show that both checks pass by showing that the entries (rid, tid, 𝑖) of A.writeOrder
are exactly the set of (rid, hid, 𝑖) s.t. ∃𝑘𝑒𝑦 : lastModification[rid, tid, 𝑘𝑒𝑦] = 𝑖 . First, notice that because the server is

well-behaved the entries (rid, tid, 𝑖) of A.writeOrder correspond to the PUT operations that the server applied to the

external state. These are exactly the last modifications of committed transactions: that is, the PUT operations op s.t.

op belongs to a committed transaction and op is the last operation of the transaction that modifies a key. Moreover,

the honest server correctly sets the entries of A.TXLs. Thus, the entries (rid, tid, 𝑖) of A.writeOrder are exactly the

operations op = A.TXL(rid,tid ) [𝑖] s.t. (1) the last operation of (rid, tid) is tx_commit, and (2) there exists no 𝑗 > 𝑖

s.t. A.TXL(rid,tid ) [ 𝑗] is a PUT on op.𝑘𝑒𝑦. From the logic of AddExternalStateEdges, these are exactly the (rid, hid, 𝑖) s.t.
∃𝑘𝑒𝑦 : lastModification[rid, tid, 𝑘𝑒𝑦] = 𝑖 , as required.

• Line 36 of Figure 17: First, observe that from the logic of AddExternalStateEdges, ReadMap maps each PUT operation
that appears in the logs to the set of GET operations that read from it according to the advice. Thus, to show that this

check passes for all GET operations in the range of ReadMap, we show that for each GET operation op that appears

in some A.TXL𝑡 either 𝑡 ∉ Committed or op.opcontents ∈ A.writeOrder . Observe that this line is executed only when

the purported isolation is READ COMMITTED or SERIALIZABILITY. Consider the history of execution (Section D)

at the honest server. The history is consistent with the isolation level and, thus, does not exhibit phenomena G1a

and G1b. Consequently, during online execution, GET operations of committed transactions only read from operations

that correspond to last modifications of committed transactions. These latter operations are exactly the ones that the

honest server places in the A.writeOrder . Thus, GET operations of committed transactions only read from operations

that are in the A.writeOrder . Because the server correctly logs state operations in A.TXLs, we deduce that for each GET
operation op that appears in some A.TXL𝑡 either the last operation in A.TXL𝑡 is tx_abort and, thus, 𝑡 ∉ Committed or

op.opcontents ∈ A.writeOrder , as required.
• Line 11 of Figure 17: We need to show that if the server is honest, then the graph DG when this line is executed is

acyclic. This line is executed only when the purported isolation level is READ UNCOMMITTED. Consider the history of

execution 𝐻 at the honest server (Section D). Because the server is well-behaved, 𝐻 exhibits READ UNCOMMITTED

which implies that 𝐻 does not exhibit phenomenon G0: DSG(𝐻 ) contains no cycles consisting of write depend edges.

We show that DG is acyclic by showing that DG is the subgraph of DSG(𝐻 ) that contains only write depend edges.

First, DG and DSG(𝐻 ) have the same nodes: DG has a node for each transaction that commits during online execution

whereas DSG(𝐻 ) has a node for each transaction in Committed. Because the honest server collects advice for each
transaction that it executes and the last operation of each committed transaction 𝑡 in A.TXL𝑡 is a tx_commit operation,

AddExternalStateEdges adds exactly the transactions that commit during online execution to Committed (line 35 of

Figure 16). Thus, DG and DSG(𝐻 ) have the same nodes, as required. Now we argue that the edges of DG which are the

write dependency edges (added at line 47 of Figure 17) are exactly the write depend edges of DSG(𝐻 ): Observe that the
write depend edges of DSG(𝐻 ) are the edges⟨𝑡1, 𝑡2⟩ s.t. 𝑡1 writes a key and 𝑡2 writes the next version of the key according

to 𝐻 (Section D). That is, DSG(𝐻 ) has a write depend edge ⟨𝑡1, 𝑡2⟩ iff there exist operations op
1
= (𝑡1, 𝑖) and op2 = (𝑡2, 𝑗)

s.t.

1. op
1
appears before op

2
in the version order of 𝐻 ,

2. op
1
.𝑘𝑒𝑦 == op

2
.𝑘𝑒𝑦, and

3. for each operation op′ that appears between op
1
and op

2
in the version order of 𝐻 , the key that op′ writes is not 𝑘𝑒𝑦.

Moreover, a well-behaved server sets A.writeOrder to the version order of 𝐻 , and correctly logs state operations in

A.TXLs. Thus, the write depend edges of DSG(𝐻 ) are exactly the edges ⟨𝑡1, 𝑡2⟩ for which there exist indexes 𝑖 and 𝑗 s.t.

1. (𝑡1, 𝑖) appears before (𝑡2, 𝑗) in A.writeOrder ,
2. A.TXL𝑡1 [𝑖] .𝑘𝑒𝑦 = A.TXL𝑡2 [ 𝑗] .𝑘𝑒𝑦, and
3. for each operation (𝑡, 𝑘) that appears between (𝑡1, 𝑖) and (𝑡2, 𝑗) in A.writeOrder , A.TXL𝑡 [𝑘] .𝑘𝑒𝑦 ≠ A.TXL𝑡1 [𝑖] .𝑘𝑒𝑦.
Meanwhile, from the logic of ExtractWriteOrderPerKey, 𝑡1 and 𝑡2 are consecutive in some writeOrderPerKey [𝑘𝑒𝑦] iff they

meet the above conditions. Thus, 𝑡1 and 𝑡2 are consecutive in some writeOrderPerKey [𝑘𝑒𝑦] iff ⟨𝑡1, 𝑡2⟩ is a write depend
edge of DSG(𝐻 ). Moreover, from the logic of AddWriteDependEdges the edges of DG are exactly the edges ⟨𝑡1, 𝑡2⟩ s.t.
𝑡1 and 𝑡2 are consecutive in some writeOrderPerKey [𝑘𝑒𝑦]. Thus, the edges of DG are exactly the write depend edges of

DSG(𝐻 ), as required.
• Line 15 of Figure 17: As in the previous case, we need to show that the graph DG when this line is executed is acyclic.

This line is executed only when the purported isolation level is READ COMMITTED. Consider the history of execution

𝐻 at the honest server (Section D). Because the server is well-behaved, 𝐻 exhibits READ COMMITTED which implies

that 𝐻 does not exhibit phenomenon G1c: DSG(𝐻 ) contains no cycles consisting of write depend edges and read depend
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edges. We show that DG is acyclic by showing that DG is the subgraph of DSG(𝐻 ) that contains the write depend and

read depend edges of DSG(𝐻 ). Specifically, we show:
1. that DG and DSG(𝐻 ) have the same nodes,

2. that the write dependency edges of DG (added at line 47 of Figure 17) are exactly the write depend edges of DSG(𝐻 ),
and

3. that the read dependency edges of DG (added at line 40 of Figure 17) are exactly the read depend edges of DSG(𝐻 ).
We show 1 and 2 as above (in the proof that the check at line 11 of Figure 17 passes). Now we show 3: First, observe that

the read depend edges of DSG(𝐻 ) are the edges ⟨𝑡1, 𝑡2⟩ s.t. some operation of 𝑡2 reads a value written by 𝑡1. Moreover,

because the server is well-behaved, the history 𝐻 does not exhibit phenomenon G1b: as explained above (in the proof

that the checks at lines 23 and 27 of Figure 17 pass), this implies that all GET operations of committed transactions read

from operations that are in 𝐻 ’s version order. Thus, the read depend edges of DSG(𝐻 ) are the edges ⟨𝑡1, 𝑡2⟩ for which
there exist an operation op

1
that 𝑡1 issues and an operation op

2
that 𝑡2 issues s.t.

– op
2
reads the value written by op

1
,

– op
1
appears in 𝐻 ’s version order,

– 𝑡2 commits, and

– 𝑡1 ≠ 𝑡2
Because the server is well-behaved, it correctly logs all state operations in the A.TXLs and sets A.writeOrder to 𝐻 ’s

version order. Moreover, as argued above (in the proof that the check at line 11 of Figure 17 passes), when the server is

honest, Committed contains exactly the transactions that commit during online execution. Thus, the read depend edges

of DSG(𝐻 ) are exactly the edges ⟨𝑡1, 𝑡2⟩ for which there exist operations (𝑡1, 𝑖) and (𝑡2, 𝑗) s.t.:
– For op = A.TXL𝑡2 [ 𝑗] it holds that op.optype = GET and op.opcontents = (𝑡1, 𝑖),
– (𝑡1, 𝑖) ∈ A.writeOrder ,
– 𝑡2 ∈ Committed, and
– 𝑡1 ≠ 𝑡2
These are exactly the read dependency edges of DG: from the logic of AddExternalStateEdges, ReadMap maps each PUT
operation (𝑡1, 𝑖) to the set of GET operations (𝑡2, 𝑗) s.t. A.TXL𝑡2 [ 𝑗] .opcontents = (𝑡1, 𝑖). Moreover, AddReadDependen-

cyEdges examines all (𝑡1, 𝑖) and (𝑡2, 𝑖) s.t. (𝑡2, 𝑗) ∈ ReadMap[(𝑡1, 𝑖)] and adds an read dependency edge ⟨𝑡1, 𝑡2⟩ to DG iff

A.TXL𝑡2 [ 𝑗] .opcontents = (𝑡1, 𝑖), (𝑡1, 𝑖) ∈ A.writeOrder , 𝑡2 ∈ Committed, and 𝑡1 ≠ 𝑡2. Thus, the read dependency edges of

DG are exactly the read depend edges of DSG(𝐻 ), as required.
• Line 20 of Figure 17: As in the previous case, we need to show that the graph DG when this line is executed is acyclic.

This line is executed only when the purported isolation level is SERIALIZABILITY. Consider the history of execution

𝐻 at the honest server (Section D). Because the server is well-behaved, 𝐻 exhibits SERIALIZABILITY which implies

that 𝐻 does not exhibit phenomena G1c and G2 and, thus, DSG(𝐻 ) contains no cycles. We show that DG is acyclic by

showing that DG is exactly DSG(𝐻 ). Specifically we show 1, 2, and 3 as in the previous case and, additionally, we show

that the anti dependency edges of DG (added at line 56 of Figure 17) are exactly the anti depend edges of DSG(𝐻 ): The
anti depend edges of DSG(𝐻 ) are the edges ⟨𝑡1, 𝑡2⟩ s.t. 𝑡1 reads some version of a 𝑘𝑒𝑦 and 𝑡2 writes the next version of

𝑘𝑒𝑦 according to the 𝐻 ’s version order. Thus, the anti depend edges of DSG(𝐻 ) are exactly the edges ⟨𝑡1, 𝑡2⟩ for which
there exist a transaction 𝑡3, and operations op

1
, op

2
, and op

3
issued by 𝑡1, 𝑡2, and 𝑡3 respectively:

– op
3
appears before op

2
in the version order of 𝐻 ,

– op
3
.𝑘𝑒𝑦 = op

2
.𝑘𝑒𝑦,

– for each operation op′ that appears between op
3
and op

2
in the version order of 𝐻 , the key that op′ writes is not

op
3
.𝑘𝑒𝑦,

– op
1
reads the value written by op

3
,

– 𝑡1 ≠ 𝑡2, and

– 𝑡1 commits

Because the server is well-behaved, it correctly logs all state operations in the A.TXLs and sets A.writeOrder to 𝐻 ’s

version order. Moreover, as argued above, when the server is honest Committed contains exactly the transactions that

commit during online execution. Thus, the anti depend edges of DSG(𝐻 ) are the edges ⟨𝑡1, 𝑡2⟩ for which there exists a

transaction 𝑡3 and operations (𝑡1, 𝑖), (𝑡2, 𝑗), and (𝑡3, 𝑘) s.t.:
– (𝑡3, 𝑘) appears before (𝑡2, 𝑗) in the version order of 𝐻 ,

– A.TXL𝑡2 [ 𝑗] .𝑘𝑒𝑦A.TXL𝑡3 [𝑖] .𝑘𝑒𝑦
– for each operation (𝑡, ℓ) that appears between (𝑡3, 𝑖) and (𝑡2, 𝑗) in A.writeOrder , A.TXL𝑡 [ℓ] .𝑘𝑒𝑦! = A.TXL𝑡3 [𝑖] .𝑘𝑒𝑦.
– A.TXL𝑡1 [𝑖] .optype = GET and A.TXL𝑡1 [𝑖] .opcontents = (𝑡3, 𝑖),
– 𝑡1 ≠ 𝑡2
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– 𝑡1 ∈ Committed
From the logic of AddExternalStateEdges, ExtractWriteOrderPerKey and AddAntiDependencyEdges, these are exactly

the anti dependency edges of DG.

□

Sub-lemma 2.3. The invocation of OOOExec(𝑆 ′):
• reproduces the program state of online execution

• passes all checks

Proof. Proof outline: Induct on 𝑆 ′:

Base case: The first operation in 𝑆 ′ has no ancestors in 𝐺 ′. It can only be an operation (rid, 0) for some rid ∈ Tr. OOOExec
handles this operation by allocating structures for running and reading in the inputs. This is the same behavior as online

execution. Moreover, OOOExec finds all request handlers for rid, computes their handler ids and checks that for each handler

id there is an entry in opcounts (Line 17). This check will pass because the honest server sees the same request handlers for the

request during online execution, computes their handler ids in the same way as the verifier (the computation is deterministic),

and has entries for each of them in opcounts.

Inductive step: Assume that the claim holds for the first ℓ − 1 operations in 𝑆 ′. Let op be the ℓ-th operation in 𝑆 ′:

• Case I: op = (rid, 0): Same reasoning as in the base case.

• Case II: op = (rid, hid, 0) where handler (rid, hid) is a request handler (that is, hid .parent_hid = null): Because 𝑆 ′ obeys
program order, this operation appears after (rid, 0) and before (rid, hid,∞). This means that, because this handler is a

request handler, when OOOExec executes this operation, hid has already been added to active[rid] in line 16, has not

been removed yet, and active[rid] [hid] has been set to the request inputs. Thus, the check of line 25 passes, OOOExec

sets the handler’s inputs to the request inputs and allocates structures for running the handler. This is the same behavior

as online execution.

• Case III: op = (rid, hid, 𝑖) where 𝑖 = 1 and handler (rid, hid) is a request handler (that is, hid .parent_hid = null) By the

induction hypothesis and the fact that 𝑆 ′ obeys program order, OOOExec and online execution had the same program

state at (rid, hid, 0). Because the server is well-behaved, both online execution and OOOExec will take the same next step

in terms of handler op, handler exit event, external state op, or annotated operation. Since the server is well-behaved

and opcounts[rid] [hid] > 1, the next operation is a handler op, an external state op, or an annotated operation in both

executions.

– Handler Op: Similar arguments to the ones in case III of Sub-lemma 7b of Orochi [87]. The determinism of passing

from (rid, hid, 0) to (rid, hid, 1) and the induction hypothesis imply that the program state of online execution and the

program state of OOOExec right before executing the handler operation are the same. Being well-behaved, the server

recorded this operation correctly inHLrid and this is the operation that the verifier checks in CheckHandlerOp.Moreover,

the contents of the log entry (optype and info) are the ones produced during online execution and consequently the

ones produced during by OOOExec. Under these conditions CheckHandlerOp passes. Moreover, if the operation is an

emit operation, the handler ids in activatedHandlers are exactly the ones that this operation activated and their inputs

in active will be set to the inputs during online execution.

– External State Op: First, observe that the operation has the same tid and txnum under both executions: If optype

is tx_start then both online execution and OOOExec compute the same tid as (hid, opnum) and set txnum = 0,

as required. Otherwise, because of the induction hypothesis, both executions have assigned the same tid to this

transaction. Meanwhile, the operations of a transaction are not concurrent meaning that the order of operations within

a transaction is consistent with program order and activation order. Because both online execution and OOOExec(𝑆 ′)
follow program order and activation order, the transaction tid issues the same number of operations prior to op under

both executions. Thus, txnum is the same under both executions as required. This implies that during OOOExec(𝑆 ′),
the operation is checked against the entry in the logs that the honest server records for this operation during online

execution. Moreover, the determinism of passing from (rid, hid, 0) to (rid, hid, 1) and the induction hypothesis imply

that the program state of online execution and the program state of OOOExec right before executing the state operation

are the same. This implies that the parameters of the operation (optype, opcontents, 𝑘𝑒𝑦) are the same under both

executions except in the case where optype = tx_commit: in this case the recorded operation in the logs may be

tx_abort because during online execution, the transaction could not successfully commit. Meanwhile, because the

server is well behaved, it correctly logs the operation in A.TXL(rid,tid ) . Thus, all checks of CheckStateOp pass. Moreover,

the well behaved server correctly sets the opcontents field of a GET operation to (rid𝑤, tid𝑤, 𝑖𝑤) s.t. A.TXL(rid𝑤 ,tid𝑤 ) [𝑖𝑤]
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is the dictating PUT operation. This implies that the value that OOOExec reads is the one written by the dictating PUT,
which is the value read at online execution. Thus, the two executions have the same program state after executing the

state operation.

– Annotated Operation: Both online execution and OOOExec execute the operation and call the annotation with

arguments (rid, hid, 𝑖) for the same variable 𝑣 . We will argue that the claim holds after executing the annotation for

any handler hid and any 𝑖 .

∗ Initialization: In this case both executions execute the operation and then execute the annotation, which performs

no checks. Thus, the two executions result in the same program state.

∗ Write operation: Both executions execute the operation, assigning the same value to the 𝑣 , and then execute the

annotation. If during the execution of the annotation by OOOExec the operation is found in the logs, then the

server, being well-behaved, has correctly recorded the operation in 𝑣 . log. As a result, all checks of OOOExec pass.

Otherwise, the verifier does no checks.

∗ Read operation: We need to show that the value that OnRead returns in OOOExec is the value of 𝑣 when the

annotation is executed by online execution, which is the value written by its dictating write.

If during the execution of the annotation the read operation is in 𝑣 . log then the online server, being well-behaved,

has correctly logged both the read operation and its dictating write. As a result, all checks pass and OnRead sets the

value of 𝑣 to its value during online execution.

We will now argue that OnRead returns the value of 𝑣 at online execution when the operation is not in 𝑣 . log. If the

operation is not in 𝑣 . log, then this is because when the operation is executed by the honest server, op reads the value
written by some operation op′ that is not 𝑅-concurrent with op (Definition 8). Thus, op′ <𝑅 op. Meanwhile, because

OOOExec(𝑆 ′) follows program order and activation order, it executes op′ prior to executing op. Furthermore, from

the induction hypothesis, OOOExec(𝑆 ′) and online execution have the same program state when they execute

op′, meaning that the parameters of op′ that OOOExec(𝑆 ′) records in 𝑣 .var_dict (at line 2 of Figure 21) are exactly
the parameters of op′ during online execution. Thus, when OOOExec(𝑆 ′) executes op, there exists an entry in

𝑣 .var_dict that maps op′ to the value written during online execution. If op′ is not the nearest 𝑅-preceding write
of op in 𝑣 .var_dict, then there is a later ancestor, call it op′′, such that op′ was re-executed before op′′, which
was re-executed before op. Since op′ and op′′ 𝑅-precede op and since each handler has only one parent, we must

have op′ <𝑅 op′′ <𝑅 op. But <𝑅 never inverts online execution, so op′′ was also executed in between op′ and
op online, in which case op could not have observed op′ without violating causality. Thus, there is no such op′′.
FindNearestRPrecedingWrite therefore returns op′ and reads the value written by op′ during online execution, as
required.

• Case IV: op = (rid, hid, 𝑖)where 𝑖 ∈ [2,A.opcounts[(rid, hid)]] and handler hid is a request handler (that is, hid .parent_hid =

null) Same arguments as in case III.

• Case V: op = (rid, hid,∞) where hid is a request handler (that is, hid .parent_hid = null) An argument similar to one

made elsewhere (Orochi [87], Sub-lemma 7b, Case II) establishes that the next operation is handler exit both in online

execution and in OOOExec. OOOExec handles handler exit events in the same way as online execution.

• Case VI: op = (rid, hid, 0) where hid is not a request handler. We need to show that the check of line 25 of Figure 22

accepts and that the inputs on which the handler is executed by OOOExec are the ones of online execution. Because

(rid, hid) is not a request handler it is activated by some emit operation op′ during online execution and, since the

server is well-behaved, op′ is executed before op during OOOExec. From the induction hypothesis, the program state of

OOOAudit when it executes op′ is the one of online execution. This implies that if line 49 of Figure 22 is executed for hid,
active[rid] [hid] is set to the handler’s inputs according to online execution. In order for this line to be executed for hid, it
must be that hid ∈ activatedHandlers[op′]. This can only happen if when op′ is parsed during AddHandlerRelatedEdges

hid .functionID is registered for op′ .eventName according to GlobalHandlers or Registered. We will now argue that this is

indeed the case. Because op′ activates (rid, hid) during online execution, hid .functionID is registered for op′ .eventName
when op′ is executed at the online server. hid .functionID is either a global handler, or there exists some operation op′′

executed by the request rid that registers op′ .eventName for hid .functionID during online execution. In the former case

per the determinism of the initialization procedure (op′ .eventName, hid .functionID) ∈ GlobalHandlers. In the latter case,

because the server is well-behaved, op′′ appears before op′ in HLrid and (op′ .eventName, hid .functionID) ∈ Registered
when op is examined during AddHandlerRelatedEdges.

• Case VII: op = (rid, hid, 𝑖) where hid is not a request handler and 𝑖 ∈ [1,A.opcounts[(rid, hid)]]. We can show this using

the same arguments as in cases III and IV above.

• Case VIII: op = (rid, hid,∞) where hid is not a request handler. We can show this using the same arguments as in case V

above.
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• Case IX: op = (rid,∞). Because 𝑆 ′ is well-formed,

(rid,A.responseEmittedBy [rid] .hid,A.responseEmittedBy [rid] .opnum)

is the last operation of (rid,A.responseEmittedBy [rid] .hid) that OOOExec has executed when it encounters op. Because
the server is well-behaved, it correctly sets the contents of A.responseEmittedBy and because of the induction hypothesis,

the program state of handler (rid,A.responseEmittedBy [rid] .hid) at the time when op is encountered is the one of online

execution. Under these conditions, the next operation of handler (rid,A.responseEmittedBy [rid] .hid) is the issue of the
response and the check of line 21 passes. Moreover, because execution between operations is deterministic, the produced

outputs are the ones of online execution.

Moreover, the check in line 51 passes because 𝑆 ′ being well-formed contains operations for all (rid, hid) in A.opcounts and,
thus, all (rid, hid) ∈ A.opcounts are executed by OOOExec.

Last, as argued in case IX, all responses will match the ones of online execution and OOOExec accepts at line 52 of

Figure 22. □

Sub-lemma 2.4. Postprocess passes.

Proof. Postprocess rejects only when the graph𝐺 has a cycle. So our task is to show that, when the server is honest, graph𝐺

is acyclic. We have already argued (earlier) that the events that happen during online execution have a partial order. Below, we

will show that if there exists an edge ⟨𝑛1, 𝑛2⟩ in 𝐺 , then 𝑛1 precedes 𝑛2 in that partial order. Now, if there were a cycle in 𝐺 ,

that would imply that some event precedes itself in the partial ordering, which contradicts the definition of partial order.

Consider the edges that are added to 𝐺 during Preprocess:

• Procedure SplitNodes: An edge ⟨(rid1,∞), (rid2, 0)⟩ is added to the graph only if the response for rid1 appears in the

trace before the request rid2 is issued. This implies that the response for rid1 was issued by the server before the request

rid2 reached the server. Thus, (rid1,∞) happened before (rid2, 0), as required.
• Line 7 of Figure 15: An edge ⟨(rid, 0), (rid, hid, 0)⟩ is added because hid is a request handler for rid. All handlers for a
request start executing after the request reaches the server, so the event (rid, 0) happened before the event (rid, hid, 0)
during online execution

• Lines 43 and 44 of Figure 14: An edge ⟨𝑛1, 𝑛2⟩ is added to the graph because according to the advice, 𝑛1 preceded 𝑛2
during the execution of a handler. Because the server is honest, 𝑛1 indeed preceded 𝑛2 during online execution.

• Lines 17, 20 and 22 of Figure 15: For some rid, let hid be the handler that issued the response according to responseEmittedBy
and 𝑛 be the last operation of hid prior to issuing the response according to responseEmittedBy. Because the honest
server correctly sets the contents of responseEmittedBy and send_response is a synchronous operation at the server,

these lines add edges to indicate that a response is issued after 𝑛 and before the next event of hid during online execution

• Line 15 of Figure 16: such edges are added because according to the advice a handler operation preceded another handler

operation. Since the server is honest, this precedence held during online execution as well.

• Line 28 of Figure 16: such an edge ⟨(rid, parent_hid, opnum), (rid, hid, 0)⟩ is added only if according to the advice

the emit operation (rid, parent_hid, opnum) activates handler (rid, hid). Because the server is well-behaved the emit

operation (rid, parent_hid, opnum) activates handler (rid, hid) during online execution, and, because a handler does

not start running until the event that activates it is emitted, the handler start operation (rid, hid, 0) happens after
(rid, parent_hid, opnum) during online execution as required.

• Line 46 of Figure 16: Such an edge ⟨𝑛1, 𝑛2⟩ is added only if the operation 𝑛2 reads a value written by operation 𝑛1
according to the advice. Because the server is well-behaved, 𝑛2 truly reads from 𝑛1 during online execution and, because

an operation cannot read from the future, the operation 𝑛1 executes before operation 𝑛2 during online execution.

Meanwhile, during online execution, the server collects advice for PUT operations before issuing them to the database

and it collects advice for GET operations after their execution at the database completes. Thus, event 𝑛1 precedes event

𝑛2 during online execution, as required.

Now consider the edges added in 𝐺 during Postprocess. That is, edges added during AddInternalStateEdges.

First, we argue that if at the beginning of Postprocess for two operations 𝑛1, 𝑛2, 𝑣 .write_observer{𝑛1} = 𝑛2 or 𝑛2 ∈
𝑣 .read_observers{𝑛1} for some variable 𝑣 , then 𝑛1 happens before 𝑛2 during online execution. We will only argue this in

the case where 𝑣 .write_observer{𝑛1} = 𝑛2 because the read_observers case is similar. 𝑣 .write_observer{𝑛1} can be set to 𝑛2 at

only two locations during OOOExec(𝑆 ′). First, in line 11 of Figure 21 which is executed if 𝑛2 is in the logs and the server

has recorded 𝑛1 as the previous write. Because the server is well-behaved, 𝑛1 happens before 𝑛2 during online execution.

Second, in line 16 of Figure 21, which is executed if 𝑛1 is identified as the nearest write by some ancestor of 𝑛2. In this case 𝑛1
appears before 𝑛2 in 𝑆 ′. Because 𝑛1 and 𝑛2 operate on the same variable and we assume that variables are serializable, 𝑛1 and
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𝑛2 are ordered during online execution and, because 𝑆 ′ follows the order of online execution on non-concurrent operations, 𝑛1
happens before 𝑛2 during online execution.

Now, we argue that for each edge ⟨𝑛1, 𝑛2⟩ added during AddInternalStateEdges, it holds that 𝑛1 happens before 𝑛2 during

online execution. For ww and wr edges, this follows immediately from our previous argument about write_observer and
read_observers: a ww-edge is added iff 𝑣 .write_observer{𝑛1} = 𝑛2 for some 𝑣 and awr edge is added iff𝑛2 ∈ 𝑣 .read_observers{𝑛1}.
Last, we need to argue this about rw edges. We will do this by contradiction. A rw edge ⟨𝑛1, 𝑛2⟩ can be added to 𝐺 only if

there exists some 𝑛 ∉ {𝑛1, 𝑛2} s.t. 𝑛1 ∈ 𝑣 .read_observers{𝑛} and 𝑣 .write_observer{𝑛} = 𝑛2. Assume toward a contradiction that

𝑛2 happens before 𝑛1 during online execution. Because honest servers don’t allow reads from the future, 𝑛1 either (i) reads

from 𝑛2 or (ii) reads from some write that happened subsequently to 𝑛2.

In case (i), we claim that 𝑛1 ∈ 𝑣 .read_observers{𝑛2}. There are two sub-cases: either 𝑛2 is an ancestor of 𝑛1 during online

execution, or 𝑛2 and 𝑛1 are concurrent during online execution. For the first sub-case: because OOOExec(𝑆 ′) follows activation
order, 𝑛2 is an ancestor of 𝑛1 during OOOExec and 𝑛1 is added to 𝑣 .read_observers{𝑛2} at line 34 of Figure 20. For the

second sub-case: because a faithful server logs concurrent accesses for which at least one is a write, OOOExec adds 𝑛1 to

𝑣 .read_observers{𝑛2} at line 26 of Figure 20. Combining 𝑛1 ∈ 𝑣 .read_observers{𝑛2} with 𝑛1 ∈ 𝑣 .read_observers{𝑛} (from the

fact of an rw edge ⟨𝑛1, 𝑛2⟩), we have a contradiction, as an operation is only added to one 𝑣 .read_observers.
In case (ii), there exist 𝑛′

1
, . . . , 𝑛′

𝑘
s.t.

𝑣 .write_observer{𝑛2} = 𝑛′
1

𝑣 .write_observer{𝑛′𝑖−1} = 𝑛′𝑖 ,∀𝑖 ∈ [2, 𝑘]
𝑛1 ∈ 𝑣 .read_observers{𝑛′𝑘 }

Notice that because of our previous argument about write observers, the above equations imply that 𝑛2 happens before 𝑛
′
𝑘

during online execution. In order for the rw edge to exist, since 𝑛1 can only appear in one 𝑣 .read_observers it should hold

𝑣 .write_observer{𝑛′
𝑘
} = 𝑛2. This implies that 𝑛′

𝑘
happens before 𝑛2 during online execution which is a contradiction. □

□

Lemma 3 (Equivalence of OOOAudit and Audit). If the server executes the given program and advice collection procedure,

producing trace Tr and adviceA, then there exists a well-formed op schedule 𝑆 ′ (with respect to Tr andA) such that Audit(Tr,A)
and OOOAudit(Tr,A, 𝑆 ′) are equivalent.

Proof. We use the control flow groupings to create an op schedule 𝑆 ′ as follows: Initially 𝑆 ′ is empty. For each control flow

group 𝐶 we add each request’s operations in layers as follows:

1. For each request id 𝑟 in 𝐶 , append (𝑟, 0) to 𝑆 ′
2. Pick some request id rid∗ in the group 𝐶

3. Initialize a set 𝑅 that contains tuples (event name, function ID).

4. Initialize active to the ids of the request handlers of rid∗. .
5. 𝐼 ← active.
6. While active ≠ null:
a. If 𝐼 ≠ null:

i. Pick some hid from 𝐼 and remove this hid from I.

ii. If hid ∉ active, go to step 6.

Otherwise, pick some hid from active.
b. For opnum = 0 . . .A.opcounts[(rid∗, hid)]:

i. For all requests 𝑟 in the group, append (𝑟, hid, opnum) to 𝑆 ′.
ii. If A.responseEmittedBy [rid∗] = (hid, opnum), then for all requests 𝑟 in 𝐶 , append (𝑟,∞) to 𝑆 ′.
iii. (𝑡, rid∗𝑐 , 𝑖) ← OpMap[(rid∗, hid, opnum)].
iv. if 𝑡 = “handler_log” and A.HLrid∗ [𝑖] .optype = register, for all eventName ∈ A.HLrid∗ [𝑖] .eventNames

𝑅.𝑎𝑑𝑑 (eventName,A.HLrid∗ [𝑖] .functionID)
v. if 𝑡 = “handler_log” and A.HLrid∗ [𝑖] .optype = unregister,

𝑅.𝑟𝑒𝑚𝑜𝑣𝑒 (A.HLrid∗ [𝑖] .eventName,A.HLrid∗ [𝑖] .functionID)

vi. If (rid∗, hid, opnum) is in activatedHandlers,
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A. add all hid′ in activatedHandlers[(rid∗, hid, opnum)] to active.
B. (𝑡, rid∗𝑐 , 𝑖) ← OpMap[(rid∗, hid, opnum)].
C. eventName← A.HLrid∗ [𝑖] .eventName.
D. For all 𝑓 s.t. (eventName, 𝑓 ) ∈ 𝑅 ∪ GlobalHandlers, add (𝑓 , hid, opnum) to 𝐼

c. For all requests 𝑟 in the group, append (𝑟, hid,∞) to 𝑆 ′.
d. Delete hid from active

Now we must argue that 𝑆 ′ is well-formed.

First, we need to show that 𝑆 ′ is a permutation of the nodes of 𝐺 , that is

𝐺.nodes = set (𝑆 ′) (1)

where set (𝐴) = {𝑎 | ∃𝑖𝐴[𝑖] = 𝑎}.
We do this through two more relations (2) and (3). Specifically, we will show: that relation (2) implies (1), that relation (3)

implies relation (2), and finally that relation (3) holds. The relations are:

∀rid∗ ∈ 𝑅 : {𝑛 | 𝑛 ∈ 𝐺.nodes ∧ 𝑛.rid = rid∗} = {𝑛 | 𝑛 ∈ set (𝑆 ′) ∧ 𝑛.rid = rid∗} (2)

and

∀rid∗ ∈ 𝑅 : hid ∈ active⇔ A.opcounts[(𝑟𝑖𝑑∗, hid)] ≠ null (3)

where 𝑅 is the set of rids picked at step 2 above.

First, we show that relation (2) implies relation (1): Because the server is well-behaved, two requests are in the same group

only if they activate the same handlers, take the same control flow path on each handler, and activate the same handlers using

corresponding emit operations. Thus, requests in the same group have the same A.opcounts and the same A.responseEmittedBy,
which implies that they have corresponding nodes in𝐺 and corresponding operations in 𝑆 ′. Consequently, if relation (2) holds,

then relation (1) holds, as required.

Now we show that relation (3) implies relation (2): Specifically, we show that the backward direction of relation (3) implies

that

∀rid∗ ∈ 𝑅 : {𝑛 | 𝑛 ∈ 𝐺.nodes ∧ 𝑛.rid = rid∗} ⊆ {𝑛 | 𝑛 ∈ set (𝑆 ′) ∧ 𝑛.rid = rid∗}
and that the forward direction implies that

∀rid∗ ∈ 𝑅 : {𝑛 | 𝑛 ∈ set (𝑆 ′) ∧ 𝑛.rid = rid∗} ⊆ {𝑛 | 𝑛 ∈ 𝐺.nodes ∧ 𝑛.rid = rid∗}
Consider arbitrary rid∗ and denote 𝐺rid∗ the set of nodes associated with rid∗, that is {𝑛 | 𝑛 ∈ 𝐺.nodes ∧ 𝑛.rid = rid∗}.
Observe that from the logic of AddHandlerProgramEdges, 𝐺rid∗ contains the nodes (rid∗, 0), (rid∗,∞) and (rid∗, hid, 𝑖), for
𝑖 = 0, . . . ,A.opcounts[(rid∗, hid)],∞ for all hid s.t. A.opcounts[(rid∗, hid)] ≠ null.

First, we show that when the backward direction of relation (3) holds, then each of the nodes in 𝐺rid∗ is added to 𝑆 ′: First,
(rid∗, 0) is added to 𝑆 ′ at step 1. Second, the backward direction of relation (3) implies that all handler ids that have entries in

A.opcounts are added to active. Moreover, from the logic of step 6a, steps 6b and 6c are executed for each hid ∈ active. Thus,
steps 6b and 6c are executed for each hid s.t. A.opcounts[(rid∗, hid)] ≠ null. Thus, for all hid s.t. A.opcounts[(rid∗, hid)] ≠ null
the operations (rid∗, hid, 𝑖), for 𝑖 = 0, . . . ,A.opcounts[rid∗] [hid],∞ are added to 𝑆 ′. Last, denote A.responseEmittedBy [rid∗] as
(hid𝑟 , opnum𝑟 ). Because the honest server correctly sets the contents of A.responseEmittedBy, A.opcounts[(rid∗, hid𝑟 )] ≠ null.
Because the backward direction of relation (3) holds, hid𝑟 is added to active and step 6b is executed for hid𝑟 . Moreover,

because the server is well behaved, opnum𝑟 ∈ [0,A.opcounts[(rid∗, hid𝑟 )] which implies that step 6(b)ii is executed for

(rid∗, hid𝑟 , opnum𝑟 ) and (rid∗,∞) is added to 𝑆 ′.
Now we show that when the forward direction of relation (3) holds, then each of the operations of 𝑆 ′ associated with

rid∗ are in 𝐺rid∗ . Assume that the forward direction of relation (3) holds. We will argue that in each of the steps in which

an operation is added to 𝑆 ′, the operation exists in 𝐺rid∗ . Operations are added to 𝑆 ′ in steps 1, 6(b)i, 6(b)ii and 6c. Steps 1

and 6(b)ii add (rid∗, 0) and (rid∗,∞) respectively to 𝑆 ′ and each of these operations appears in 𝐺rid∗ . Because the forward

direction of relation (3) holds, each hid that is added to active has an entry in A.opcounts. Moreover, steps 6(b)i and 6c are

only executed for hid ∈ active and, consequently, these steps add operations (rid∗, hid, 𝑖) s.t. A.opcounts[(rid∗, hid)] ≠ null
and 𝑖 = 0, . . . ,A.opcounts[rid∗] [hid],∞. Each of these operations exists in 𝐺 .

Now we show that relation (3) holds. The forward direction holds because an hid is added to active if it is a request handler
or it is in activatedHandlers[rid∗, hid′, 𝑖] for some hid′. In the former case there is an entry in A.opcounts[rid∗] because the
server is well-behaved and in the latter there is an entry in A.opcounts[rid∗] because all entries in activatedHandlers are in
A.opcounts as argued in the proof of lemma 2.2. For the backwards direction of (3), notice that if hid is in A.opcounts[rid∗],
then because the server faithfully sets the contents of A.opcounts[rid∗], hid is activated for rid∗ during online execution. If
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hid is a request handler then it is added to active at the beginning of the process. Otherwise let op
1
, . . . , op𝑛 be the sequence

of emit operations that led to the activation of hid during online execution. Because the server correctly logs the handler

operations to reflect what happened during online execution, activatedHandlers[op𝑖 ] for each 𝑖 will contain the handler that

emits op𝑖+1. Moreover, op
1
is issued by a request handler. Under these conditions, the above process will add all handlers that

execute op
1
, . . . , op𝑛 to active, will examine each operation, and when it encounters op𝑛 it will add hid to active, as required.

Now, we show that 𝑆 ′ respects program order (Definition 10). This holds by construction: for each request 𝑟 , (𝑟, 0) appears
before any other operation of 𝑟 in 𝑆 ′, all operations of each handler are added in ascending order of opnum and (𝑟,∞)
is added right after the last operation of the handler that emits the response prior to emitting the response according to

A.responseEmittedBy [𝑟 ].
Last, we show that 𝑆 ′ respects activation order (Definition 10) as follows: Consider a request 𝑟 of a control flow𝐶 where rid∗

is the request that “drives” the construction of 𝑆 ′ as above. Let an activation edge ⟨(𝑟, hid, 𝑖), (𝑟, hid′, 0)⟩. We will show that

(𝑟, hid, 𝑖) appears before (𝑟, hid′, 0) in 𝑆 ′. The existence of this activation edge implies that activatedHandlers[(𝑟, hid, 𝑖)] = hid′.
Because an honest server puts in the same group requests that activate the same handlers from corresponding operations and,

thus, they have the same entries in activatedHandlers we infer that activatedHandlers[(rid∗, hid, 𝑖)] = hid′. This implies that

hid′ is added to active after (rid∗, hid, 𝑖) and (𝑟, hid, 𝑖) are added to 𝑆 ′. Because the first operation of hid′ is added to 𝑆 ′ after
hid is added in active, we conclude that (𝑟, hid′, 0) appears after (𝑟, hid, 𝑖) in 𝑆 ′ as required.

Now we need show that OOOAudit(Tr,A, 𝑆 ′) and Audit(Tr,A) are equivalent. The two executions are the same except for

the following differences between OOOExec and ReExec. These differences are superficial in terms of affecting the program

state of execution and the output:

1. ReExec checks that the number of operations that each handler issued matches the purported number of operations in

the advice. OOOExec has no such explicit check but it does have an (rid, hid,∞) case. An argument similar to the one in

case (i) of Theorem 10 of Orochi [87] implies that the difference is superficial.

2. OOOExec executes the requests in a Round-Robin fashion whereas ReExec does SIMD-style execution. An argument

similar to the one in case (ii) of Theorem 10 of Orochi [87] implies that the difference is superficial.

3. ReExec checks that the execution of requests does not diverge inside each handler. An argument similar to the one in

case (iii) of Theorem 10 of Orochi [87] implies that the difference is superficial.

4. When OOOExec starts executing a handler, it checks that it is in active. ReExec does not do this check. The difference is

superficial because due to the fact that the server is well-behaved, the check always passes during OOOExec.

5. ReExec checks that when a group makes an emit operation, all requests in the group activate the same handlers. This

difference does not affect the execution because when the server is honest all requests in the same group activate the

same handlers from corresponding emit operations which means that requests in the same group have the same entries

in activatedHandlers and, thus, ReExec’s check passes.

6. ReExec keeps track of the number of ops that a handler has executed so far in idx. OOOExec uses the 𝑖 field in the op

schedule entry as the number of ops that the handler has issued so far. The difference is superficial: 𝑖 = idx at all times

because idx and 𝑖 are both the running counter of operations that the handler has executed so far.

7. When a group sends back a response, ReExec checks that the contents of A.responseEmittedBy match re-execution. In

OOOExec there is no such check, but there is a (rid,∞) case. This difference is superficial: both executions reject if the

contents of A.responseEmittedBy do not match the ones produced during re-execution and reject otherwise.

8. ReExec lets the runtime pick the next handler to execute at line 16 of Figure 18, whereas OOOExec picks itself the next

handler to execute from 𝑆 ′. Observe that from the logic of ReExec and the way 𝑆 is constructed, in both cases, the handler

that is executed is a handler whose id is in active. Moreover, the two executions pick the same handler to execute under

the condition that the activated handlers under ReExec are exactly the handlers that are in 𝐼 when the operation is added

to 𝑆 ′ (during the construction of 𝑆 ′). We now show that this condition holds: Initially 𝐼 contains exactly the request

handlers of the request which are exactly the handlers that the request activates under ReExec. Now, we show that the

handlers that each emit operation activates during ReExec are exactly the handlers that are added in 𝐼 : The handlers that

are activated by each emit operation under ReExec are exactly the handlers registered for the event by the request and

the global handlers registered for the event. Meanwhile, from the logic of the algorithm that we use to construct 𝑆 ′, and
the semantics of handler operations, when each operation is executed by ReExec, the set of handlers that are registered

by the request contains exactly the entries of 𝑅 when the operation is added to 𝑆 ′. Thus, the handlers activated by each

emit operation are the ones registered for the emitted event in GlobalHandlers and the ones in 𝑅 when the operation is

added to 𝑆 ′. These are exactly the handlers that are added in 𝐼 when the emit operation is added to 𝑆 ′, as required.

□

Composing Lemmas 2 and 3, we have proved:
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1: //Global Variables are the ones in Figure 14

2: procedure ActualHandlerOps(op schedule 𝑆)
3: Preprocess()

4: return ActualHandlerOpsExec(𝑆)

5:

6: procedure ActualHandlerOpsExec(op schedule 𝑆)
7: Tr

′ ← []
8: for each op in 𝑆 do
9: if 𝑜𝑝 = (rid, 0) then
10: Read inputs in of the request from Tr

11: Allocate program structures

12: Tr
′ .𝑎𝑝𝑝𝑒𝑛𝑑 ((REQ, rid, inputs))

13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid ← (functionID, null, 0)
16: Name the instance of the handler hid
17: else if op = (rid,∞) then
18: Let hid ← A.responseEmittedBy [rid] .hid
19: Run the handler (rid, hid) up to and including the next event

20: if it is not a send response operation then REJECT

21: Tr
′ .𝑎𝑝𝑝𝑒𝑛𝑑 ((RESP, rid, outputs))

22: else if op = (rid, hid, 𝑖) then
23: if 𝑖 = 0 then
24: if (hid is not an activated handler) then REJECT

25: Read in the handler’s inputs and allocate structures for running the handler

26: else if 𝑖 = ∞ then
27: Run the handler (rid, hid) until the next event
28: if it is not a handler exit operation then REJECT

29: else
30: Run the handler (rid, hid) until the next event
31: if the next event is an external state operation then
32: optype← the type of state operation

33: opcontents, tid, txnum← parameters from execution

34: 𝑠 ← CheckStateOp(rid, hid, 𝑖, optype, tid, txnum, 𝑘𝑒𝑦, opcontents)
35: if optype = GET then
36: state op result← s

37: else if the next event is an annotated operation then
38: if it is a write or initialization then
39: Execute the operation and skip the annotation

40: else
41: Return the current value of the variable

42: else if the next event is a handler operation then
43: Execute the handler operation

44: if the operation is an emit operation then
45: for all functions that the operation activates do
46: hid′ ← (functionID, hid, 𝑖)
47: Name the instance of the handler that is activated hid′
48:

return Tr
′

Figure 23. Pseudocode for ActualHandlerOps

Theorem 1 (Audit Completeness). If the executor executes the given program (under the concurrency model given in Section 3

of the paper) and the given advice collection procedure, producing trace Tr and advice A, then Audit(Tr,A) accepts. □

C.3.2 Soundness

In the following we assume no external state operations. To show that Definition 6 is satisfied, we will show that whenever the

verifier accepts an input trace Tr and advice A, there exists a well formed op schedule (with respect to Tr and A) that causes
OOOAudit to accept (Lemma 5) which in turn implies the existence of a request schedule RS s.t. Tr ∈ 𝑂RS (Lemma 4).
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Lemma 4 (OOOAudit Soundness). Given trace Tr and advice A, if there exists a well-formed op schedule 𝑆 for which

OOOAudit(Tr, A, 𝑆) accepts then there exists a request schedule RS s.t. Tr ∈ 𝑂RS .

Proof. If OOOAudit(Tr,A, 𝑆) accepts, then there are no cycles in graph 𝐺 . We consider an op schedule 𝑆 ′ that is a topological
sort of 𝐺 in which the order of (rid, 0) and (rid,∞) events matches Tr. We show that such an op schedule exists (Lemma 4.1).

𝑆 ′ is well-formed (which follows from the remark after Definition 10). Thus, by Lemma 1, OOOAudit(Tr,A, 𝑆 ′) accepts. Then,
we define an execution ActualHandlerOps as in Figure 23. ActualHandlerOps is the same as OOOExec of Figure 22 but:

1. It does fewer checks

2. It constructs a trace Tr
′
while it is executing and outputs it

3. It executes handler operations instead of simulating them

4. It skips all annotations. This means that all operations on variables observe the most recently-written value.

Then, we prove that if OOOAudit(Tr,A, 𝑆 ′) accepts, then ActualHandlerOps(Tr,A, 𝑆 ′) outputs Tr (Lemma 4.2).

Subsequently, we define an execution Actual as in Figure 24 that is the same as ActualHandlerOps of Figure 23 except

that it executes external state operations against a database instead of simulating them by reading from the A.TXLs. Because
the execution at the database is non deterministic, each GET operation that Actual issues may return more than one outputs

meaning that Actual has many possible output traces.

Then, we show that if ActualHandlerOps(Tr,A, 𝑆 ′) outputs Tr then Tr is a possible output of Actual(Tr,A, 𝑆 ′) (Lemma 4.3).

Last, we show that if one of the possible outputs of Actual(Tr,A, 𝑆 ′) is Tr, then Tr ∈ 𝑂RS , where RS is the request schedule
derived from 𝑆 ′ by discarding the handler id and opnum components (Lemma 4.4).

Sub-lemma 4.1. If 𝐺 is acyclic, then there exists a topological sort 𝑆 ′ of𝐺 in which the order of (rid, 0) and (rid,∞) events
matches Tr.

Proof. In the following we will move between request/response nodes in 𝐺 (that are also the entries of the op schedule) and

request/response events in Tr. We will say that the node of 𝐺 that corresponds to a request event (REQ, rid, ·) (resp., response
event (RESP, rid, ·)) in the trace Tr, is the node (rid, 0) (resp., (rid,∞)) of 𝐺 and vice versa. We sometimes abuse notation by

writing that (rid, 0) or (rid,∞) is in the trace instead of specifying that we are referring to the entries that correspond to these

nodes.

We create an ordered list 𝑆 ′ as in Figure 25.

If the procedure ConstructS of Figure 25 does not reject, the constructed 𝑆 ′ is a topological sort of 𝐺 with the required

property: It is a topological sort because a node 𝑣 is not added to 𝑆 ′ until after all nodes that have a path to 𝑣 have been

removed from 𝐺 and added to 𝑆 ′. Moreover, from construction, nodes that correspond to request/response events are always

added in the order that they appear in Tr.

We now prove that ConstructS of Figure 25 does not reject. Assume that it does reject. This can happen only if all nodes in

frontier correspond to request/response events (that is, items in Tr) and none of them is the node 𝑢 that corresponds to Tr[𝑖].
Claim: There exists a request or response node 𝑣 such that 𝑣 appears in Tr after 𝑢 yet 𝑣 has a directed path in to 𝑢 in 𝐺 . We

now justify this Claim. Denote as 𝐺𝑖 the graph 𝐺 at line 3 of Figure 25 is executed for the 𝑖-th iteration. Because 𝑢 is in 𝐺𝑖

but not in frontier , 𝑢 has in-degree larger than 0 in 𝐺𝑖 . Because𝐺𝑖 is acyclic (being a subgraph of 𝐺), there exists a path in𝐺𝑖 ,

and hence also in 𝐺 , to node 𝑢 from some node 𝑣 that has in-degree 0 in 𝐺𝑖 . By inspection of the algorithm, 𝑣 is in frontier .
Because all nodes in frontier are request or response nodes, there exists a 𝑗 s.t. Tr[ 𝑗] corresponds to 𝑣 . Meanwhile, for 𝑗 < 𝑖 , all

nodes that correspond to Tr[ 𝑗] are not in 𝐺𝑖 (again by inspection of the algorithm). Thus, 𝑗 > 𝑖 , which implies that the node 𝑣

appears in Tr after 𝑢.

In the following, we use 𝑣1
𝐺
{ 𝑣2 to denote that there is a directed path from 𝑣1 to 𝑣2 in 𝐺 and rid1 <Tr rid2 to denote that

(RESP, rid1, ·) appears before (REQ, rid2, ·) in the trace Tr. Similar arguments as in the proof of Lemma 2 of Orochi [87] imply

that

(rid1,∞)
𝐺
{ (rid2, 0) ⇐⇒ rid1 <Tr rid2 (4)

Now we use this observation to analyze cases:

1. 𝑢 = (rid1,∞), 𝑣 = (rid2, 0): Because 𝑢 precedes 𝑣 in Tr, rid1 <Tr rid2. The right-to-left direction of relation (4) implies

that there exists a path from 𝑢 to 𝑣 in 𝐺 . Consequently, 𝐺 has a cycle, which is a contradiction.

2. 𝑢 = (rid1,∞), 𝑣 = (rid2,∞). From the construction of 𝐺 , all outgoing edges of 𝑣 are to nodes (rid3, 0) s.t. rid2 <Tr rid3.
Since there exists a path from 𝑣 to 𝑢, there exists a path from some node 𝑣 ′ = (rid3, 0) to 𝑢. On the other side,

a. 𝑢 = (rid1,∞) appears before 𝑣 = (rid2, 0) in Tr,

b. Because a request always appears before its corresponding response, (rid2, 0) appears before (rid2,∞) in Tr, and

c. Since rid2 <Tr rid3, (rid2,∞) appears before (rid3, 0) in Tr.
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1: //Global Variables are the ones in Figure 14

2: procedure Actual(op schedule 𝑆)
3: Preprocess()

4: return ActualExec𝑆)

5:

6: procedure ActualExec(op schedule 𝑆)
7: Tr

′ ← []
8: for each op in 𝑆 do
9: if 𝑜𝑝 = (rid, 0) then
10: Read inputs in of the request from Tr

11: Allocate program structures

12: Tr
′ .𝑎𝑝𝑝𝑒𝑛𝑑 ((REQ, rid, inputs))

13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid ← (functionID, null, 0)
16: Name the instance of the handler hid
17: else if op = (rid,∞) then
18: Let hid ← A.responseEmittedBy [rid] .hid
19: Run the handler (rid, hid) up to and including the next event

20: if it is not a send response operation then REJECT

21: Tr
′ .𝑎𝑝𝑝𝑒𝑛𝑑 ((RESP, rid, outputs))

22: else if op← (rid, hid, 𝑖) then
23: if 𝑖 = 0 then
24: if (hid is not an activated handler) then REJECT

25: Read in the handler’s inputs and allocate structures for running the handler

26: else if 𝑖 = ∞ then
27: Run the handler (rid, hid) until the next event
28: if it is not a handler exit operation then REJECT

29: else
30: Run the handler (rid, hid) until the next event
31: if the next event is an external state operation then
32: Execute the state operation against the database

33: else if the next event is an annotated operation then
34: if it is a write or initialization then
35: Execute the operation and skip the annotation

36: else
37: Return the current value of the variable

38: else if the next event is a handler operation then
39: Execute the handler operation

40: if the operation is an emit operation then
41: for all functions that the operation activates do
42: hid′ ← (functionID, hid, 𝑖)
43: Name the instance of the handler that is activated hid′
44:

return Tr
′

Figure 24. Pseudocode for Actual

These imply that (rid1,∞) appears before (rid3, 0) in Tr and consequently rid1 <Tr rid3 and, thus, from the right-to-left

direction of relation (4), there is a path in 𝐺 from 𝑢 to 𝑣 ′. Consequently, 𝐺 has a cycle, which is again a contradiction.

3. 𝑢 = (rid1, 0), 𝑣 = (rid2,∞). Since there is a path from 𝑣 to 𝑢 in 𝐺 , the left-to-right direction of relation (4) implies that

rid2 <Tr rid1. This implies that 𝑣 appears before 𝑢 in Tr, which is a contradiction.

4. 𝑢 = (rid1, 0), 𝑣 = (rid2, 0). From the construction of𝐺 , the only incoming edges to 𝑢 are from nodes (rid3,∞) that appear
before 𝑢 in Tr. Thus, 𝑣

𝐺
{ 𝑣 ′ for some 𝑣 ′ = (rid3,∞). Meanwhile, 𝑣 ′ appears before 𝑣 in Tr (because 𝑣 ′ appears before 𝑢

and 𝑢 appears before 𝑣), so 𝑣 ′
𝐺
{ 𝑣 , hence a cycle exists between 𝑣 and 𝑣 ′, impossible.

□

.



EuroSys ’24, April 22–25, 2024, Athens, Greece Tzialla et al.

1: procedure ConstructS(graph 𝐺)
2: Initialize 𝑆 ′ to empty, a set frontier to the set of all in-degree 0 nodes of 𝐺 , and set 𝑖 = 0;

3: while 𝐺 is not empty do
4: while there exists a node 𝑣 in frontier which is not request/response do
5: ProcessFrontier(𝑣 , 𝐺 , 𝑆 ′, frontier);
6: Let 𝑢 be the node that corresponds to Tr[𝑖] in frontier . If 𝑢 is not in frontier then REJECT

7: ProcessFrontier(𝑢, 𝐺 , 𝑆 ′, frontier)
8: 𝑖 ← 𝑖 + 1
9:

10: procedure ProcessFrontier(Graph 𝐺 , Node 𝑣 , op Schedule 𝑆 ′, frontier)
11: Remove 𝑣 from frontier and from 𝐺 . Also remove the outgoing edges of 𝑣 from 𝐺
12: Append 𝑣 to 𝑆 ′

13: Add all nodes of 𝐺 that have in-degree 0 to frontier

Figure 25. Algorithm for creating 𝑆 ′

Sub-lemma 4.2. If OOOAudit(Tr,A, 𝑆 ′) accepts, ActualHandlerOps(Tr,A, 𝑆 ′) outputs the trace Tr.

Proof. First, we show that the two runs have the same program state after each schedule step by inducting over the sequence 𝑆 ′.
Specifically, we show that the executions after processing each operation (that is, OOOAudit at line 50 and ActualHandlerOps

at line 48) preserve the following invariants:

1. they have the same program state (program state does not include the list of registered handlers, the list of activated

handlers, or the set of emitted events).

2. the set of handler ids in active under OOOExec is exactly the set of handler ids that are activated under ActualHandlerOps.

Base case: Before processing any operation, the two runs have the same program state (because we assume that initialization

is deterministic), active is empty in OOOAudit and there are no activated handlers in ActualHandlerOps. Thus, the invariants

hold before processing the first operation of 𝑆 ′. The first operation in 𝑆 ′ has the form (rid, 0). Both executions read inputs

from Tr, allocate program structures and, subsequently, perform operations that do not affect program state. Thus, since both

executions start from the same program state, the two executions have the same program state after processing op. Moreover,

because invariant 2 holds prior to processing op, it holds after processing op: both executions compute the same handler ids

for rid’s request handlers, which OOOAudit adds to active at line 16 of Figure 22 and ActualHandlerOps uses to name the new

activated handlers at line 16 of Figure 23.

Induction step: Consider the 𝑖-th operation of 𝑆 ′ and denote it as op. Assume that the invariants hold for all operations 𝑗 s.t.

𝑗 < 𝑖 . We will show that for any type of op, after processing op the invariants hold:

• Case op = (rid, 0): A similar argument as the one used in the base case implies that the invariants hold after processing

op.
• Case op = (rid,∞): Let hid = A.responseEmittedBy [rid] .hid. Since invariant 1 holds, prior to processing op, the two
executions have executed handler (rid, hid) up until the same operation op𝑙 and have the same program state. From the

logic of OOOAudit and ActualHandlerOps, the two executions resume the execution of (rid, hid) from op𝑙 until its next
special operation. Since both executions proceed deterministically between operations, the program state of OOOAudit

when it reaches line 21 of Figure 22 is the same as the program state of ActualHandlerOps when it reaches line 20 of

Figure 23. This implies that the next operation will be the same in both executions and, thus, either both checks at the

aforementioned lines pass or both fail. Because the work that the two executions perform past these checks does not

affect program state, we conclude that the two executions have the same program state after op.
Moreover, observe that invariant 2 holds prior to processing op, OOOAudit does not modify active as part of handling
op and ActualHandlerOps does not modify the activated handlers as part of handling op. These imply that invariant 2

holds after processing op.
• Case op = (rid, hid, 0): The two executions handle this operation in the same way except that OOOExec checks if hid
is in active and ActualHandlerOps checks if hid is the name of some activated handler. Because from the induction

hypothesis the ids of all activated handlers of ActualHandlerOps are exactly the handler ids in active, either both checks

pass or both fail. Thus, the two executions reach the same program state after processing op. Moreover, invariant 2 holds

prior to processing op and while processing op neither the activated handlers are modified by ActualHandlerOps nor

active is modified by OOOAudit. Thus, invariant 2 holds after processing op.
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• Case op = (rid, hid,∞): The two executions start from the same program state, pick the same handler, run it until the

next event and check that it is a handler exit event. Thus, the two executions result in the same program state. Moreover,

upon reaching the handler exit event, ActualHandlerOps truly executes the handler exit operation, and this operation

removes the handler with id hid from the activated handlers. On the other side, OOOAudit removes hid from active at
line 32. This implies that the invariant holds after processing op.
• Case op = (rid, hid, 𝑖) where op is an external state operation: The result follows from the induction hypothesis, the fact

that execution proceeds deterministically between operations and the fact that both executions handle external state

operations in the same way.

• Case op = (rid, hid, 𝑖) where op is a handler operation. From the induction hypothesis and the fact that execution

proceeds deterministically between operations we conclude that the two executions have the same program state right

before they process op. The processing of op in ActualHandlerOps and OOOAudit does not affect program state (which,

recall, excludes the set of registered handlers and emitted events). Thus, invariant 1 holds after processing op.
Now we argue that invariant 2 holds. From the induction hypothesis the invariant holds before processing op. If op is not

an emit operation, ActualHandlerOps does not modify the activated handlers while processing and OOOAudit does not

modify active. Thus, invariant 2 holds after processing op. On the other hand, assume op is an emit operation. We will

argue that the handler ids that are in activatedHandlers[(rid, hid, 𝑖)] (which are the ones added to active by OOOAudit

at line 49) are exactly the ones activated in ActualHandlerOps at lines 45–47 of Figure 23. Let eventName be the event
that op emits. Let 𝐶 be the set of function ids 𝑐 s.t. (eventName, 𝑐) ∈ Registered ∪ GlobalHandlers when op is processed

by AddHandlerRelatedEdges and 𝐶′ the set of function ids that op activates during ActualHandlerOps. In the following

we will sometime abuse notation and refer to the handler’s function as handler.

Claim: 𝐶 = 𝐶′. Denote 𝐶𝑔 the set of function ids 𝑐 s.ts. (eventName, 𝑐) ∈ GlobalHandlers and 𝐶𝑟 the set of function ids 𝑐

s.t. (eventName, 𝑐) ∈ Registered. Obviously,
𝐶 = 𝐶𝑔 ∪𝐶𝑟 .

Moreover, because each function that op activates during ActualHandlerOps is either a global handler or a function

registered for eventName by rid,
𝐶′ = 𝐶′𝑔 ∪𝐶′𝑟 ,

where 𝐶′𝑔 is the set that contains the ids of all global handlers that are registered for event eventName, and 𝐶′𝑟 is the set
that contains the ids of all functions that are registered for event eventName over the course of rid. To establish the

Claim, we show that 𝐶𝑔 = 𝐶′𝑔 and 𝐶𝑟 = 𝐶′𝑟 :
1. 𝐶𝑔 = 𝐶′𝑔: First, observe that 𝐶𝑔 is exactly the ids of the functions registered for eventName over the course of the

initialization procedure of OOOExec. Because the initialization procedure is deterministic, it registers the same

functions for eventName under both OOOExec and ActualHandlerOps. Thus, 𝐶𝑔 is exactly the ids of the functions

registered for eventName over the course of the initialization procedure of ActualHandlerOps. Because requests don’t

modify global handlers, 𝐶𝑔 = 𝐶′𝑔.
2. 𝐶𝑟 = 𝐶′𝑟 : 𝐶

′
𝑟 contains the ids of the functions that are registered by rid for eventName at the time when op is executed.

Because ActualHandlerOps follows 𝑆 ′, these are exactly the ids of the functions 𝐻 s.t.

a. There exists an operation op𝑟 that registers 𝐻 for eventName and appears before op in 𝑆 ′, and
b. For all operations op′ between op𝑟 and op in 𝑆 ′, op′ .rid ≠ rid or op′ does not unregister 𝐻 from eventName.
Meanwhile, the induction hypothesis and the fact that execution proceeds deterministically between operations imply

that OOOExec and ActualHandlerOps have the same program state right before executing every register and unregister

operation that precedes op. This implies that the parameters of each register or unregister operation op′ (these are
the functionID and eventNames for register operations, and functionID and eventName for unregister operations) are
the same under ActualHandlerOps and under OOOExec. Moreover, OOOExec checks these parameters against the

corresponding entry in A.HLrid (line 23 of Figure 19). The above implies that 𝐶′𝑟 contains exactly the function ids 𝑐 s.t.:

a. There exists a register operation op𝑟 with parameters 𝑐 and eventNames in A.HLrid that appears before op in 𝑆 ′ and
for which eventName ∈ eventNames, and

b. For all operations op′ between op𝑟 and op in 𝑆 ′, either op′ .rid ≠ rid or the entry in A.HLrid that corresponds to op′

is not an unregister operation with parameters 𝑐 and eventName.
Meanwhile, because 𝑆 ′ is a topological sort of the graph 𝐺 and 𝐺 has edges between consecutive handler operations

in A.HLrid (line 15 of Figure 16), the order of the handler ops of rid in 𝑆 ′ matches their order in A.HLrid . Thus, we
conclude that 𝐶′𝑟 contains exactly the function ids 𝑐 s.t.

a. There exists a register operation op𝑟 with parameters 𝑐 and eventNames in A.HLrid that appears before op in A.HLrid
and for which eventName ∈ eventNames, and
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b. For all operations op′ between op𝑟 and op in A.HLrid , op′ is not an unregister operation with parameters 𝑐 and

eventName.
From the logic of AddHandlerRelatedEdges these function ids are exactly the ones in 𝐶𝑟 , as required.

Let

𝐶𝑖𝑑 = {(functionID, op.hid, op.𝑖) | functionID ∈ 𝐶}.
By definition of𝐶 ,𝐶𝑖𝑑 is exactly the set of handler ids that AddHandlerRelatedEdges places in activatedHandlers[(rid, hid, 𝑖)]
at line 26 of Figure 16, and, because𝐶 = 𝐶′, also exactly the handler ids that ActualHandlerOps uses to name the handlers

that op activates at line 47 of Figure 23. So, these two sets are equal, as required.

• Case op = (rid, hid, 𝑖) where op is an annotated operation. Since in this case the activated handlers under Actual-

HandlerOps and active under OOOAudit are not modified, if invariant 2 holds prior to this step, it holds after this

step.

Now, we argue that invariant 1 holds. As argued in some of the previous cases, the induction hypothesis and the

determinism of execution between operations implies that the program state right before op is processed is the same

across executions. If the annotated operation is either a write or initialization, then both executions execute the operation,

which results in the same program state. Then, OOOAudit executes the annotation, which ActualHandlerOps skips.

However, the annotation does not affect program state on OOOAudit and, consequently, the two executions have the

same program state after executing the annotation, as required. Now, we argue that they have the same program state

when op is a read. In this case, ActualHandlerOps reads the current value of the variable whereas OOOAudit reads the

value returned by the OnRead function of Figure 20. We argue that the value of the variable under ActualHandlerOps

(which is the most recent value written) is the value returned from the OnRead annotation in OOOAudit. Let op′ the
write operation that op reads from in OOOAudit and 𝑣 the variable that these operations access. We will show that op′

is the most recent write operation to 𝑣 prior to op in 𝑆 ′. From the logic of OnRead, op ∈ 𝑣 .read_observers{op′}. This
implies that there exists a read edge ⟨op′, op⟩ in𝐺 . Moreover, because𝐺 contains anti-depend edges and write-depend

edges, for any other write op′′ to 𝑣 either there exists a path from op′′ to op′ consisting of write-depend edges or there

exists a path from op to op′′ in which the first edge is an anti-depend edge and the rest are write-depend edges. Thus,

because 𝑆 ′ is a topological sort of 𝐺 , the last write op to 𝑣 prior to op in 𝑆 ′ is op′. Because ActualHandlerOps follows 𝑆 ′,
this implies that op′ is the most recent write to 𝑣 prior to op and, thus, the value of 𝑣 under ActualHandlerOps is the
value written by op′ as requested.

Since every step preserves program state in the two runs and OOOExec does not reject, ActualHandlerOps also does not

reject and thus returns a trace Tr
′
.

Now, we show that Tr
′
is a permutation of Tr. First, we argue that Tr and Tr

′
contain entries for the same request ids: This

follows from (1) the fact that𝐺 ’s (rid, 0) and (rid,∞) nodes are exactly those for which rid ∈ Tr (this follows from the logic of

CreateTimePrecedenceGraph and SplitNodes) (2) the fact that 𝑆 ′ is a topological sort of 𝐺 and (3) that Tr
′
has exactly one

request entry for each (rid, 0) node in 𝑆 ′ and one response entry for each (rid,∞) node in 𝑆 ′. Moreover, the request contents

of each request in Tr
′
are those in Tr because of the logic of lines 10 and 12 of Figure 23. Last, because invariant 1 holds, for

each rid, the program state of OOOExec at line 21 of Figure 22 is the same as the program state of ActualHandlerOps when it

reaches line 20 of Figure 23. This implies that the response contents for rid that ActualHandlerOps writes in Tr
′
are those that

OOOExec checks against Tr at line 52 of Figure 22.

Last, from the construction of 𝑆 ′ (lemma 4.1, Figure 25), the order of (rid, 0) and (rid,∞) operations in 𝑆 ′ corresponds to
their order in Tr. Moreover, the order of the operations in Tr

′
matches their order in 𝑆 ′. Consequently the order of operations

in Tr
′
matches their order in Tr, and Tr

′ = Tr as required. □

Sub-lemma 4.3. If ActualHandlerOps(Tr,A, 𝑆 ′) outputs the trace Tr, then Tr is a possible output of Actual(Tr,A, 𝑆 ′).

Proof. ActualHandlerOps(𝑆 ′) and Actual(𝑆 ′) are the same except that Actual does not simulate external state operations

but, instead, it executes them against a database that exhibits the required isolation level. Observe that the execution of the

program under Actual is identical to the execution of the program under ActualHandlerOps under the condition that each GET
reads the same value under Actual and under ActualHandlerOps. Thus, if this condition is satisfied, then Actual outputs Tr,

as required. Furthermore, observe that the executions at the database in which the dictating write of each GET is the one in
A.TXLs satisfy this condition. We pick one of these executions and show that it is a legal database execution (meaning that its

history obeys all rules of definition 11) and that it is consistent with the required isolation level (Section D). To fully specify

this execution we need to first specify what is the version order of this execution. Second, we need to specify what happens

when the server issues a tx_commit operation: upon a tx_commit operation, the database can either execute the tx_commit
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or, if the transaction cannot commit, the database can instead abort the transaction. We pick the execution whose version order

(definition 11) is consistent with A.writeOrder and whose execution of tx_commit operations is consistent with the A.TXLs.
Consider the TxOp order 𝐸 in the above execution: First, because Actual follows 𝑆 ′, this TxOp order is consistent with

the order of external state operations in 𝑆 ′. Moreover, the contents of the entries in 𝐸 are consistent with the A.TXLs: For
tx_commit operations, this follows from the definition of the execution. For the rest of the parameters, this follows from the

fact that the parameters of the operations under Actual and under ActualHandlerOps are the same, and ActualHandlerOps

checks that these parameters match the ones in A.TXLs. Formally, if the 𝑖-th external state operation of 𝑆 is op, then for the

𝑖-th entry of 𝐸 it holds:

• if op.optype ∈ {tx_start, tx_commit, tx_abort}, it is (op.rid, op.tid, op.optype),
• if op.optype = PUT, it is (op.rid, op.tid, PUT, op.𝑘𝑒𝑦,𝑚, op.opcontents), where𝑚 is the order of op among all PUT operations
in A.TXLop.ridop.tid,
• if op.optype = GET, it is (op.rid, op.tid, GET, op.𝑘𝑒𝑦, op𝑤 .rid, op𝑤 .tid,𝑚), where op𝑤 = op.opcontents and𝑚𝑤 is the order

of op𝑤 among all PUT operations in A.TXL(op𝑤 .rid,op𝑤 .tid) .

Moreover, the version order is the sequence of operations 𝑉 s.t. 𝑉 [𝑖] = (op.rid, op.tid,𝑚) where op = A.writeOrder [𝑖], and
𝑚 is the order of op among all PUT operations in A.TXLop.ridop.tid.

We now show that the history 𝐻 = (𝐸,𝑉 ) satisfies all the constraints of definition 11:

1. Constraint 1a: First, because CheckStateOp at ActualHandlerOps does not reject when called for external state operations

and ActualHandlerOps follows 𝑆 ′, the order of the operations of a transaction 𝑡 in 𝑆 ′ is consistent with their order in

A.TXL𝑡 . This implies that 𝑆 ′ preserves the order of all operations within the transaction. Because 𝐸 is consistent with 𝑆 ′,
so does 𝐸, as required.

2. Constraint 1b: Because 𝑆 ′ is a topological sort of 𝐺 and 𝐺 contains read-from edges (line 46 of Figure 16), for each

GET operation op in 𝑆 ′, op𝑤 = op.opcontents, precedes op in 𝑆 ′. Because the order of operations in 𝐸 is consistent with

their order in 𝑆 ′, op𝑤 precedes op in 𝐸, as required. Furthermore, because the check at line 48 of Figure 16 passes,

op𝑤 .𝑘𝑒𝑦 = op.𝑘𝑒𝑦, and op𝑤 .optype = PUT, as required.
3. Constraint 1c: From the logic of AddExternalStateEdges (Figure 16), when the 𝑖-th operation op of A.TXL𝑡 is examined,

MyWrites has an entry for each 𝑘𝑒𝑦 for which there exists at least one PUT operation op′ prior to op in A.TXL𝑡 with
op′ .𝑘𝑒𝑦 = 𝑘𝑒𝑦. Moreover, MyWrites maps each such 𝑘𝑒𝑦 to the latest PUT operation that modifies it according to A.TXL𝑡 .
Because ActualHandlerOps passes, the check at line 51 of Figure 16 passes which implies that for each op ∈ A.TXLs:
if op.optype = GET and op.𝑘𝑒𝑦 ∈ MyWrites then op.opcontents = MyWrites[op.𝑘𝑒𝑦]. Thus, the dictating write of each

operation op of transaction 𝑡 that reads a key that has been previously modified by 𝑡 according to A.TXL𝑡 , is the operation
op′ that last writes this key according to A.TXL𝑡 . Meanwhile, because CheckStateOp does not reject when called for

external state operations and ActualHandlerOps follows 𝑆 ′, the order of the operations of a transaction 𝑡 in 𝑆 ′ is consistent
with their order in A.TXL𝑡 . Thus, the dictating write of each operation op of transaction 𝑡 that reads a key that has

been previously modified by 𝑡 according to 𝑆 ′, is the last PUT operation op′ issued by 𝑡 that modifies 𝑘𝑒𝑦 according to

𝑆 ′. Furthermore, from the definition of 𝐸, the order of operations is consistent with 𝑆 ′ and the dictating write of each

operation is consistent with the A.TXLs. Thus, 𝐸 is internally consistent, as required.

4. The version order 𝑉 is a list of unique tuples (rid, tid,𝑚) s.t. (rid, tid,𝑚) ∈ 𝑉 iff (a) (rid, tid, PUT, 𝑘𝑒𝑦,𝑚, 𝑣) in 𝐸, (b)

there exists no (rid, tid, PUT, 𝑘𝑒𝑦,𝑚′, ·) in 𝐸 with 𝑚′ > 𝑚, and (c (rid, tid, tx_commit) in 𝐸: First, observe that 𝑉 is

consistent with A.writeOrder . Furthermore, observe that because the checks at lines 23 and 27 of Figure 17 pass, the

entries in A.writeOrder are exactly the entries (rid, tid,𝑚) s.t. there exists a 𝑘𝑒𝑦 s.t. lastModification[rid, tid, 𝑘𝑒𝑦] =𝑚.

Meanwhile, from the logic of AddExternalStateEdges, the entries in lastModification are exactly the (rid, tid, 𝑘𝑒𝑦) s.t.
transaction (rid, tid) modifies 𝑘𝑒𝑦 according to A.TXL(rid,tid ) and (rid, tid) ∈ Committed. lastModification maps each

such entry (rid, tid, 𝑘𝑒𝑦) to the index of the last operation that writes 𝑘𝑒𝑦 in A.TXL(rid,tid ) . Furthermore, from the logic

of AddExternalStateEdges, (rid, tid) ∈ Committed iff it issues a tx_commit operation according to A.TXL(rid,tid ) . Thus,
the entries of lastModification (which correspond to the entries in the version order) correspond to exactly the PUT
operations op s.t. (a) there exists a transaction (rid, tid) s.t. op ∈ A.TXL(rid,tid ) , (b) there exists no PUT operation op′ to
op.𝑘𝑒𝑦 that appears after op in A.TXL(rid,tid ) , and (c) there exists a tx_commit operation in A.TXL𝑡 . Meanwhile, as argued

above, the operations in 𝐸 correspond to exactly the operations in A.TXLs, and the order of operations in 𝐸 is consistent

with the order of the corresponding operations in A.TXLs. Thus we conclude that the entries in the version order 𝑉 are

exactly the operations (rid, tid,𝑚) s.t. (a) (rid, tid,𝑚) appears in 𝐸 (b) there exists no (rid, tid, PUT, 𝑘𝑒𝑦,𝑚′, ·) in 𝐸 with

𝑚′ > 𝑚, and (c) (rid, tid, tx_commit) in 𝐸, as required.

We now need to show that 𝐻 = (𝐸,𝑉 ) exhibits the required isolation level.

First, observe that:
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1. when the isolation level is READ COMMITTED or SERIALIZABILITY, 𝐻 does not exhibit phenomena G1a and G1b:

Phenomena G1a and G1b require that each read of a committed transaction in 𝐸 should read from an operation in 𝑉 . As

argued above, the entries of 𝐸 correspond to the entries of A.TXLs and the operations in 𝑉 correspond exactly to the

entries in lastModification. Thus, we need to show that each GET operation in A.TXL𝑡 s.t. 𝑡 ’s last operation is tx_commit,
reads from an entry in lastModification. This is exactly the check that IsolationLvlVer performs in the case of READ

COMMITTED or SERIALIZABILITY in line 27 of Figure 17.

2. DSG(𝐻 ) and DG have the same nodes: DSG(𝐻 ) contains exactly the transactions that commit according to𝐻 . Meanwhile,

from the construction of 𝐻 , these transactions are exactly the transactions 𝑡 s.t. there exists a tx_commit operation in

A.TXL𝑡 . From the logic of AddExternalStateEdges these are exactly the transactions in Committed which IsolationLvlVer

adds to 𝐺 . Thus, DSG(𝐻 ) and DG have the same nodes as required.

3. the edges that AddWriteDependencyEdges adds to DG are exactly the write depend edges of DSG(𝐻 ): the write depend
edges of DSG(𝐻 ) are exactly the edges between 𝑇1 and 𝑇2 s.t. 𝑇1 installs a version of some key and 𝑇2 installs the next

version according to 𝑉 . On the other side, from the logic of ExtractWriteOrderPerKey and AddWriteDependencyEdges,

the white dependency edges of DG are exactly the edges ⟨𝑇1,𝑇2⟩ s.t. 𝑇1 installs a version of some key and 𝑇2 installs the

next version according to A.writeOrder . Because𝑉 exactly matches the A.writeOrder , we conclude that the write depend
edges of DSG(𝐻 ) are exactly the write dependency edges of DG.

4. the edges that AddReadDependencyEdges adds to DG are exactly the read depend edges of DSG(𝐻 ) when the isolation

level is READ COMMITTED or SERIALIZABILITY: Observe that for these isolation levels, because the history does not

exhibit phenomena G1a and G1b, the dictating write of each GET of a committed transaction is an operation in 𝑉 . This

implies that the read depend edges of DSG(𝐻 ) are exactly the edges ⟨𝑇1,𝑇2⟩ for which there exist operations op
1
∈ 𝑇1

and op
2
∈ 𝑇2 s.t. op2 reads from op

1
according to 𝐸, op

1
∈ 𝑉 and 𝑇2 commits according to 𝐸. Meanwhile, 𝑉 matches

A.writeOrder and the dictating writes of operations in 𝐸 match A.TXLs from construction. Moreover, the committed

transactions according to 𝐸 are exactly those in Committed: from the logic of AddExternalStateEdges, Committed contains
exactly the committed transactions according to A.TXLs and, from the definition of the execution above, these are exactly

the transactions that commit according to 𝐸. Thus, the read depend edges of DSG(𝐻 ) are exactly the edges ⟨𝑇1,𝑇2⟩ for
which there exist op

1
∈ A.TXL𝑇1 and op

2
∈ A.TXL𝑇2 s.t. op2.opcontents = op

1
, op

1
∈ A.writeOrder and 𝑇2 ∈ Committed.

From the logic of AddExternalStateEdges and AddReadDependencyEdges, these are exactly the read dependency edges

of DG as required.

5. the edges that AddAntiDependencyEdges adds to DG are exactly the anti depend edges of DSG(𝐻 ): The anti depend
edges of DSG(𝐻 ) are exactly the edges ⟨𝑇1,𝑇2⟩ for which there exists a transaction 𝑇3 and operations op

1
∈ 𝑇1, op2 ∈ 𝑇2,

op
3
∈ 𝑇3 s.t. the dictating write of op1 is op3 according to 𝐸,𝑇1 commits according to 𝐸, and op

3
installs a version of a key

and op
2
installs the next version according to 𝑉 . Meanwhile 𝑉 exactly matches A.writeOrder , and the dictating writes of

GET operations in 𝐸 exactly match their dictating writes according to A.TXLs. Last, as argued above Committed contains

exactly the committed transactions according to 𝐸. Thus we conclude that the anti depend edges of DSG(𝐻 ) are exactly
the edges ⟨𝑇1,𝑇2⟩ for which there exists a transaction𝑇3 and operations op

1
∈ A.TXL𝑇1 , op2 ∈ A.TXL𝑇2 , op3 ∈ A.TXL𝑇3 s.t.

the dictating op
1
.opcontents = op

3
, 𝑇1 ∈ Committed, and op

3
installs a version of a key and op

2
installs the next version

according to A.writeOrder . These are exactly the anti dependency edges of DG as required.

When the required isolation level is READ UNCOMMITTED, 𝐻 exhibits the isolation level because it does not exhibit

phenomenon G0: First, the results 2 and 3 imply that the subgraph of DSG(𝐻 ) that contains only write depend edges is exactly

DG. Moreover, DG is acyclic because the check at line 11 of Figure 17 accepts. This implies that DSG(𝐻 ) does not exhibit
phenomenon G0 as required.

When the required isolation level is READ COMMITTED, 𝐻 exhibits the isolation level because it does not exhibit

phenomenon G1: First, result 1 implies that 𝐻 does not exhibit phenomena G1a and G1b. Moreover, the results 2, 3, and 4 imply

that the subgraph of DSG(𝐻 ) that contains only write depend and read depend edges is exactly DG. Moreover, DG is acyclic

because the check at line 15 of Figure 17 accepts. This implies that DSG(𝐻 ) does not exhibit phenomenon G1c, as required.

When the required isolation level is SERIALIZABILITY, 𝐻 exhibits the isolation level because it does not exhibit phenomena

G1 and G2: First, result 1 implies that 𝐻 does not exhibit phenomena G1a and G1b. Moreover, the results 2, 3, 4, and 5 imply

that DSG(𝐻 ) is DG. Moreover, DG is acyclic because the check at line 20 of Figure 17 accepts. This implies that DSG(𝐻 ) is
acyclic and, thus, does not exhibit phenomena G1c and G2, as required. □

Sub-lemma 4.4. If Tr is a possible output of Actual(Tr,A, 𝑆 ′), then Tr is a possible output of Operation-wise execution on

input Tr by following RS.

Proof. Observe that Operation-wise execution is the same as Actual except for the following differences:
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• Operation-wise executes the program 𝑃 whereas Actual executes the annotated program 𝑃𝑎 .

• All checks in Actual are discarded in Operation-wise.

• Operation-wise is only presented with rids. The most important consequence of this is that whenever Operation-wise

executes a request, it is free to pick which handler to execute from the activated handlers.

First, observe that 𝑃𝑎 differs from 𝑃 only in that it contains annotations (Section C.1.1). Actual skips all these annotations

which implies that both executions effectively execute 𝑃 .

Second, observe that since Actual passes all checks, eliminating these checks from Operation-wise does not affect the flow

of execution.

Denote ActualTr the execution of Actual that outputs Tr on input Tr and 𝑆 ′. ActualTr captures both the execution at the

server and the execution at the database. To show that Tr is a possible output of Operation-wise, we will show that there exists

an execution of Operation-wise on input Tr and RS that is identical to ActualTr. We do the proof by induction: we show that if

ActualTr and Operation-wise have proceeded in the same way up until the (𝑖 − 1) step, the next step of ActualTr is a step that

Operation-wise can take that will result in the two executions having the same program state and database state after step 𝑖 .

Induction Base. Because initialization is deterministic, ActualTr and Operation-wise have the same program state prior to

executing any operation. Moreover, ActualTr and Operation-wise issue the same operations to the database during initialization.

Thus, there exists an execution of these operations in the database of Operation-wise that leads to the database state of ActualTr.

Induction Step. Assume that up until the (𝑖 − 1) step, the two executions have taken identical steps, they have the same

program state, and the same database state. Let the 𝑖-th operation of RS be rid.
If this is the first occurrence of rid in RS, then because RS is constructed from 𝑆 ′ and the first operation of rid in 𝑆 ′ is (rid, 0)

(𝑆 ′ is a topological sort of𝐺 and𝐺 contains boundary edges) the 𝑖th operation of 𝑆 ′ is (rid, 0). Because ActualTr handles (rid, 0)
operations in the same way that Operation-wise handles the first occurrence of rid in RS, the two executions will result in the

same state.

Now assume that this is not the first occurrence of rid in RS. Because RS is constructed from the well formed 𝑆 ′ by dropping

all fields other than rid, the corresponding operation in 𝑆 ′ is either of the form (rid, hid, 𝑖) or (rid,∞). In either case, ActualTr

“resumes” the execution of a handler that is activated. Because the two executions are identical up to step 𝑖 − 1, the activated
handlers are the same. This implies that the activated handler that ActualTr picks to execute is an activated handler in

Operation-wise. Thus, Operation-wise can take the same next step as ActualTr executing the same handler up until its next

special operation. Because execution between special operations is deterministic and does not modify the database state, both

executions have the same program state and database state up until they execute the next special operation. Moreover, the

handling of all special operations other than external state operations is the same in ActualTr and Operation-wise and such

operations don’t modify database state. Thus, both executions reach the same program state and database state after step 𝑖

when the special operation at step 𝑖 is not a state operation. It remains to show that ActualTr and Operation-wise reach the

same program state and database state after step 𝑖 , when the special operation at step 𝑖 is an external state operation: Because

the two executions have the same program state up until executing the 𝑖-th special operation, the parameters of the state

operation are the same across executions and, thus, both executions issue the same operation to the database. Because two

databases that start from the same state and receive the same operation can execute this operation identically, we conclude

that the 𝑖-th state operation can be executed by Operation-wise in the same way that it was executed by ActualTr. In this case,

the database returns the same result under Operation-wise that it returns under ActualTr, and the two executions have the

same program state and database state after executing the 𝑖-th operation as required. □

□

Lemma 5. Given trace Tr and advice A, if Audit(Tr,A) accepts, then there exists a well-formed op schedule 𝑆 that causes

OOOAudit(Tr,A, 𝑆) to accept.

Proof. Use the control flow groupings A.𝐶 to construct op schedule 𝑆 as follows: Initialize 𝑆 to empty. Then run Audit(Tr,A)
and

• Every time Audit begins re-executing a control flow group 𝑡 , add to 𝑆 entries (rid, 0) for each rid in t

• Every time Audit begins re-executing a handler hid for control flow group 𝑡 , add to 𝑆 entries (rid, hid, 0) for all rid in 𝑡

• Every time a group 𝑡 does an operation from inside a handler hid (all requests in the group issue operations together

because execution does not diverge), add (rid, hid, opnum) to 𝑆 for all rid in 𝑡 where opnum is the running tally of

operations for the handler hid
• Every time Audit finishes executing a handler hid for requests in group 𝑡 (all requests finish executing hid together), add

(rid, hid,∞) to 𝑆 for all rid in 𝑡



EuroSys ’24, April 22–25, 2024, Athens, Greece Tzialla et al.

• Every time the requests in a group 𝑡 write their outputs (all requests in the group send responses together because

execution does not diverge), add (rid,∞) to 𝑆 for all rid in 𝑡

We now argue that 𝑆 is well-formed. First, 𝑆 contains exactly the nodes of 𝐺 :

• It contains all nodes (rid, 0) and (rid,∞) s.t. rid ∈ Tr otherwise the produced outputs are not exactly the outputs in the

trace and ReExec rejects in line 62 of Figure 18.

• 𝑆 contains nodes (rid, hid, 0), (rid, hid,∞) for each (rid, hid) ∈ A.opcounts: Notice that 𝑆 contains nodes (rid, hid, 0) and
(rid, hid,∞) for each (rid, hid) that is executed by ReExec. To show that these nodes are exactly the handler start and

handler end nodes of𝐺 (lines 39 and 40 of Figure 14) we need to prove that for each rid, the set 𝐻 of all hid s.t. (rid, hid)
in A.opcounts and the set 𝐻 ′ of all hid that are executed by ReExec are equal. We show that 𝐻 ′ ⊆ 𝐻 and that 𝐻 ⊆ 𝐻 ′.
𝐻 ′ ⊆ 𝐻 : Notice that from the logic of ReExec, 𝐻 ′ is exactly the hids that are in active during the execution of

the group in which rid belongs to. We will show that for each hid that is added in active during the execution

of rid, opcounts[(rid, hid)] ≠ ∅. active is initially empty and entries are added to it in line 12 of Figure 18 and in

ActivateHandlers. In the former case, ReExec rejects if (rid, hid) is not in opcounts (line 13 of Figure 18). In the latter case,

hid is added to active from activatedHandlers(rid, ·, ·). Notice that hid can only be added to activatedHandlers(rid, ·, ·)
at line 26 of Figure 16 after the check at line 25 of Figure 16 passes. Thus, for any hid ∈ activatedHandlers(rid, ·, ·),
A.opcounts[rid] [hid] ≠ ∅ as required.
𝐻 ⊆ 𝐻 ′: This follows from the fact that ReExec does not reject at line 64 of Figure 18.

• For each (rid, hid) in A.opcounts it contains all nodes (rid, hid, 𝑗) s.t. 𝑗 ∈ [0,A.opcounts[(rid, hid)]]. This follows from
the previous bullet and the fact that for each (rid, hid) the value of 𝑗 in 𝑆 prior to the insertion of (rid, hid,∞) is
A.opcounts[(rid, hid)]: ReExec does not reject at line 60 of Figure 18 and, thus 𝑗 ≥ A.opcounts[(rid, hid)]. Moreover,

𝑗 ≤ A.opcounts[(rid, hid)] because otherwise ReExec rejects in line 43 of Figure 18, in CheckStateOp or CheckHandlerOp.
Moreover 𝑆 respects program order and activation order (Definition 10) because Audit executes operations according to this

order.

Now, we prove that OOOAudit(Tr,A, 𝑆) accepts. OOOAudit(Tr,A, 𝑆) (Figure 22) is the same as Audit(Tr,A) (Figure 18)
except the differences that we describe below. For each of them, we show that they do not result in different program state or

OOOAudit rejecting.

1. ReExec executes the requests in SIMD style whereas OOOExec round-robins the execution from operation to operation

for a group of requests. This does not affect program state; the flow and ordering is the same across both executions.

Thus, the produced output is the same.

2. When ReExec executes a group, it picks the next handler to run from active whereas OOOExec picks the next handler to
run from 𝑆 . This difference is superficial because 𝑆 is derived from ReExec.

3. There is a difference in how handler end events are processed. In OOOExec there is an (rid, hid,∞) case that checks that
the next event is a handler exit operation. In ReExec handler exit events are processed in case 2c where the number of

operations issued by the handler is checked against A.opcounts (line 60 of Figure 18). Similar arguments to those made

elsewhere (Orochi [87], lemma 8) establish that this difference is superficial.

4. When OOOExec starts executing a handler, it checks that it is in active. ReExec does not do this check but picks which

handler to run from active. The difference does not result in different program state because both executions just require

that when a handler starts executing, it must be in active.
5. ReExec keeps track of the number of ops that a handler hid has executed so far in idx [hid]. OOOExec uses the 𝑖 field in

the op schedule entry as the number of ops that the handler has issued so far. The difference does not result in different

program state because both 𝑖 and idx [hid] correspond to the running counter of operations that the handler issues and

thus 𝑖 = idx [hid] at all times.

6. When a group sends back a response, ReExec checks that the contents of A.responseEmittedBy match re-execution. In

OOOExec there is no such check, but there is a (rid,∞) case. The difference is superficial; both executions reject if

A.responseEmittedBy does not match re-execution.

□

D Definitions of isolation levels according to Adya
In this section we briefly present Adya’s definitions for consistency models [7]. We should note that we modify these definitions

to make them consistent with our terminology. Additionally, we modify them to make them suitable for transactional key-value

stores; for instance, we erase the parts of the definitions that refer to predicates.

In order to define the isolation levels, we need the notion of history:
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Definition 11. History: A history 𝐻 captures what happens in the execution of the system. It consists of:

1. An ordered list of operations (TxOp order 𝐸). Each such operation can be:

• (rid, tid, tx_start): transaction start operation for transaction 𝑇rid,tid
• (rid, tid, tx_abort) (resp. (rid, tid, tx_commit) ): transaction abort (resp. commit) operation for transaction 𝑇rid,tid
• (rid, tid, PUT, 𝑘𝑒𝑦,𝑚, 𝑣): The𝑚-th PUT operation of transaction 𝑇rid,tid on 𝑘𝑒𝑦 that writes value 𝑣 .

• (rid, tid, GET, 𝑘𝑒𝑦, rid′, tid′,𝑚): GET operation of transaction 𝑇rid,tid to a data item 𝑘𝑒𝑦 that reads the value that was

written by the𝑚-th PUT operation of transaction 𝑇rid′,tid′ ) (i.e. 𝑘𝑒𝑦rid′,tid′,𝑚)
The TxOp order must obey the following constraints:

a. It preserves the order of all operations within a transaction including its commit and abort operations

b. A transaction 𝑇rid,tid cannot read version 𝑘𝑒𝑦rid′,tid′ before it has been produced by 𝑇rid′,tid′ . Formally, if an operation

(rid, tid, GET, 𝑘𝑒𝑦, rid′, tid′,𝑚) exists in 𝐻 , it is preceded by (rid′, tid′, PUT, 𝑘𝑒𝑦,𝑚, · · · ) in 𝐻 .

c. If a transaction modifies a key and later reads it, it will observe its last update to the key. Formally, if an operation

(rid, tid, PUT, 𝑘𝑒𝑦,𝑚, · · · ) is followed by an operation (rid, tid, GET, 𝑘𝑒𝑦, rid′, tid′,𝑚′) in 𝐻 without the interleaving

of an operation (rid, tid, PUT, 𝑘𝑒𝑦,𝑚′′, · · · ), it should be rid = rid′ and tid = tid′ and𝑚 = 𝑚′. We call this property

internal consistency
2. An order all key versions (version order) 𝑉 created by committed transactions in 𝐸 i.e. a list of unique tuples (rid, tid,𝑚)

s.t. (rid, tid,𝑚) ∈ 𝑉 iff (a) (rid, tid, PUT, 𝑘𝑒𝑦,𝑚, 𝑣) in 𝐸, (b) there exists no (rid, tid, PUT, 𝑘𝑒𝑦,𝑚′, ·) in 𝐸 with𝑚′ > 𝑚, and

(c (rid, tid, tx_commit) in 𝐸.

Adya defines the following types of conflicts between different committed transactions:

• Read Depends: A transaction 𝑇 read depends on transaction 𝑇 ′ if 𝑇 reads an object version that 𝑇 ′ writes
• Anti Depends: A transaction 𝑇 anti depends on transaction 𝑇 ′ if 𝑇 ′ reads a version of an object and 𝑇 writes its next

version

• Write Depends: A transaction 𝑇 write depends on transaction 𝑇 ′ if 𝑇 ′ writes a version of an object and 𝑇 writes its next

version

Given a history𝐻 , theDirect Serialization Graph (DSG) arising from𝐻 is as follows: Each node in DSG(𝐻 ) corresponds to
a committed top-level transaction in 𝐻 and directed edges correspond to read, anti or write conflicts. There is a read/anti/write

depend edge from the node that corresponds to 𝑇 to the node that corresponds to 𝑇 ′ if 𝑇 ′ read/anti/write depends on 𝑇 .
With the above definitions in mind we define the following phenomena:

• Phenomenon G0 (Write Cycles). The history 𝐻 exhibits phenomenon G0 if DSG(𝐻 ) contains a directed cycle consisting

entirely of write-depend edges.

• Phenomenon G1a (Aborted Reads). The history 𝐻 exhibits phenomenon G1a if it contains an aborted transaction 𝑇1 and a

committed transaction 𝑇2 s.t. 𝑇2 has read some object modified by 𝑇1.

• Phenomenon G1b (Intermediate Reads). The history 𝐻 exhibits phenomenon G1b if it contains a committed transaction𝑇1
that has read a version of an object written by transaction 𝑇2 that was not 𝑇2’s final modification of the object.

• Phenomenon G1c (Circular Information Flow). The history 𝐻 exhibits phenomenon G1c if DSG(𝐻 ) contains a directed
cycle formed without anti-dependency edges.

• Phenomenon G1. The history 𝐻 exhibits phenomenon G1 if it exhibits phenomenon G1a or G1b or G1c

• Phenomenon G2 (Anti-depend cycles). The history 𝐻 exhibits phenomenon G2 if DSG(𝐻 ) contains a directed formed from

at least one anti-dependency edge. Note that G1c and G2 are separate: neither implies the other.

Now we define when a history 𝐻 exhibits each of the isolation levels we support:

• Serializability: 𝐻 does not exhibit phenomena G1 and G2.

• Read Committed: 𝐻 does not exhibit phenomenon G1

• Read Uncommitted: 𝐻 does not exhibit phenomenon G0

In order for an execution of a key value store to be consistent with Isolation Level 𝐼 , there should exist a version order s.t.

the TxOp order along with this version order define a history 𝐻 that exhibits isolation level 𝐼 .
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