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Formal Verification of Heap Space Bounds

Following Hofmann [1999], let ♢1 represent one space credit.
⇝ the right to allocate one memory word.

Without GC:

• alloc consumes space{
♢size(b)

}
ℓ := alloc(b)

{
ℓ 7→ b

} • free produces space{
ℓ 7→ b

}
free(ℓ)

{
♢size(b)

}

With GC: no syntactical point to recover space credits.
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Formal Verification of Heap Space Bounds Under Garbage Collection

Space credits can be recovered as soon as a location becomes unreachable:
⇝ from the roots following heap paths.

Separation Logic for Heap Space with GC High-Level Concurrency
Madiot and Pottier [2022] X ✓ (no examples)

Moine, Charguéraud and Pottier [2023] ✓ X
This work ✓ ✓
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A Motivating Example: The Treiber’s Stack

A lock-free linearizable stack implemented as a reference on a immutable list.

What is a space-aware specification for push and pop?
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A Space-Leaking Interleaving for pop

pop s pop s;
pop s;
pop s;
...

• The sleeping thread maintains reachable a morally dead structure.
• pop cannot produce space credits!
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Contributions

We present the first program logic to reason about

heap space usage for a high-level and concurrent language with GC.

Key contributions:

• A new pointed-by-thread assertion, tracking in which thread a location is a root.
• Examples:

• Lock-free data structures: Treiber’s stack, Michael and Scott’s queue
• Closures: Concurrent counter

• Theory and examples are fully mechanized in Iris.
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Prior Work: Pointed-by-Heap Assertions to Track Heap Predecessors

From Kassios and Kritikos [2013], Moine et al. [2023]:

ℓ←[q L

∈ [0, 1]

(signed) multiset

• ℓ← [1 L asserts that L is an over-approximation of the reachable predecessors of ℓ.
• ℓ← [1 ∅ asserts that ℓ is unreachable from the heap.

ℓ←[1 {+ℓ1; +ℓ2} −∗ ℓ←[ 1
2
{+ℓ1} ∗ ℓ←[ 1

2
{+ℓ2}

ℓ←[ 1
2
{+ℓ1} ∗ ℓ←[0 {−ℓ1} −∗ ℓ←[ 1

2
∅

Main invariant: if ℓ←[0 L then L must only contain negative elements.
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What Are the Roots?

• We consider an interleaving semantics.
• The GC is interleaved with the per-thread reduction.

The Free Variable Rule (FVR), adapted from Felleisen and Hieb [1992]

In a substitution-based semantics, the roots of a threadpool consist of
the union of the locations occurring in each thread.
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Separation Logic Triples & Pointed-By-Thread Assertions

We use a ghost thread identifier π to identify a thread.
{

Φ
}

π : t
{

Ψ
}

The pointed-by-thread assertion:
ℓ⇐\p Π

∈ (0, 1]

set of thread identifiers

• ℓ⇐ \1 Π asserts that Π is an over-approximation of the threads in which ℓ is a root.
• ℓ⇐\1 ∅ asserts that ℓ is not a root.

ℓ⇐ \(p1+p2) (Π1 ∪ Π2) ≡ ℓ⇐\p1 Π1 ∗ ℓ⇐\p2 Π2
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Our Logical Deallocation Rule

ℓ 7→p w⃗ ∗ ℓ←[1 ∅ ∗ ℓ⇐\1 ∅ ⇛ ℓ 7→p w⃗ ∗ ♢size(w⃗) ∗ † ℓ

• Free does not consume the points-to. Useful for:
• Persistent objects
• Closing invariants
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Our Logical Deallocation Rule

ℓ 7→p w⃗ ∗ ℓ←[1 ∅ ∗ ℓ⇐\1 ∅ ⇛ ℓ 7→p w⃗ ∗ ♢size(w⃗) ∗ † ℓ

only applicable in a precondition

• Free does not consume the points-to. Useful for:
• Persistent objects
• Closing invariants
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Our Logical Deallocation Rule

ℓ 7→p w⃗ ∗ ℓ←[1 ∅ ∗ ℓ⇐\1 ∅ ⇛ ℓ 7→p w⃗ ∗ ♢size(w⃗) ∗ † ℓ

ℓ is still a valid block

space credits

ℓ is unreachable

• Free does not consume the points-to. Useful for:
• Persistent objects
• Closing invariants
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Life of the Pointed-by-Thread Assertion, Part 1

The rule for allocation.

{
♢n

}
π : (alloc n)

{
λ ℓ. ℓ 7→ [

n times︷ ︸︸ ︷
(), ..., () ] ∗ ℓ←[ ∅ ∗ ℓ⇐\ {π}

}

After a load, a thread points-to the loaded value.

0 ≤ i < |w⃗ | w⃗(i) = v{
ℓ 7→r w⃗ ∗ v ⇐\p ∅

}
π : ℓ[i ]

{
λ v ′. ⌜v ′ = v⌝ ∗ ℓ 7→r w⃗ ∗ v ⇐\p {π}

}
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Life of the Pointed-by-Thread Assertion, Part 2

The ℓ⇐\p {π} assertion can be cleaned when ℓ does not appear in the focused part of π.

ℓ /∈ locs(t)
{

ℓ⇐\p ∅ ∗ Φ
}

π : t
{

Ψ
}{

ℓ⇐\p {π} ∗ Φ
}

π : t
{

Ψ
}

ℓ⇐\p {π} is force-framed when ℓ becomes a root of the evaluation context in π.

locs(t2) = {ℓ}
{

Φ
}

π : t1
{

Ψ′ }
∀v .

{
ℓ⇐\p {π} ∗Ψ′ v

}
π : [v/x ]t2

{
Ψ

}
{

ℓ⇐\p {π} ∗ Φ
}

π : (let x = t1 in t2)
{

Ψ
}

11/22



Forking!

A fork updates pointed-by-thread assertions.

locs(t) = {ℓ}(
∀π′.

{
ℓ⇐\p {π′} ∗ Φ

}
π′ : t

{
λ _. ⌜True⌝

}){
ℓ⇐\p {π} ∗ Φ

}
π : fork t

{
λ _. ⌜True⌝

}
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The Soundness Theorem

Our semantics

• is parameterized by a maximal heap size S
• interleaves reduction steps and GC steps

An allocation is stuck if, after a full GC, there is not enough free space.

Soundness Theorem

If
{
♢S

}
π : t

{
Ψ

}
holds, then t cannot reach a stuck configuration.

Reformulation: the live heap space of any execution of t cannot exceed S.

13/22



Treiber’s Push – The Standard Specification Using Atomic Triples

{ stack-inv s }
⟨ ∀ L. content s L ⟩

π : push s v
⟨ content s (v ::L) ⟩
{ λ _. ⌜True⌝ }

Private precondition
Public precondition

Public postcondition
Private postcondition

• The public precondition is atomically updated into the public postcondition.
• The user can open invariants around a public precondition and postcondition.
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Space-Aware Treiber’s Push

• Stack of unboxed values ⇝ focus on the space consumption of the structure.
• A fractional access token for the stack (r ∈ (0, 1]):

stack s r

If r = 1 then the stack is not being concurrently used.

{ stack s r ∗ ♢2 }
⟨ ∀ L. content s L ⟩

π : push s v
⟨ content s (v ::L) ⟩
{ λ _. stack s r }
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Space-Aware Treiber’s Pop

• pop cannot give back space.
• It returns virtual credits ♦s 2.

{ stack s r }
⟨ ∀ v L. content s (v ::L) ⟩

π : pop s
⟨ content s L ⟩

{ λ v ′. ⌜v ′ = v⌝ ∗ stack s r ∗ ♦s 2 }

If the stack is not being concurrently used,
virtual credits can be converted to physical credits.

stack s 1 ∗ ♦s 2 ⇛ stack s 1 ∗ ♢2
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Allocation and Deallocation of a Stack

Allocation of a stack:{
♢1

}
π : create ()

{
λ s. stack s 1 ∗ content s [] ∗ s ←[ ∅ ∗ s ⇐\ {π}

}

Logical deallocation of a stack:

stack s 1 ∗ content s L ∗ s ←[ ∅ ∗ s ⇐\ ∅ ⇛

stack s 1 ∗ ♢(1 + 2× |L|)
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Stack With Boxed Values

{ stack s r ∗ v ←[q ∅ ∗ v ⇐\p {π} ∗ ♢2 }
⟨ ∀ L. content s L ⟩

π : push s v
⟨ content s ((v , q, p) ::L) ⟩
{ λ _. stack s r }

The specification of pop is also richer:

• The pointed-by-heap assertion cannot be returned without an additional write.
• Can the pointed-by-thread assertion be returned?
⇝ yes, but we need to change the semantics.
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Stack With Boxed Values – Another Dangerous Interleaving

push s v1 pop s;
...

The sleeping thread apparently maintains reachable the pushed value.
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Stack With Boxed Values – Another Dangerous Interleaving

if CAS s c c'
then ()
else push s v1 -- retry

pop s;
...

The sleeping thread apparently maintains reachable the pushed value.
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Safe Points to the Rescue

The scenario of the previous slide does not occur in OCaml 5.

• The GC is stop-the-world.
• Threads run independently and, at safe points, lookup if a GC is pending.
• The GC runs only when every thread reached a safe point.
• In particular, no safe point before if true then _ else _.
• This expression always releases the roots of the else branch.
• Interleaving of small steps is too fine. We need a coarser interleaving.

For now: an atomic ifCAS primitive.
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Not Shown Here

More meta-theory:

• Encoding of the logic for sequential programs
• Simplified mode where no deallocation is required
• Closures

More examples (with the indirect help of some of you!):

• Michael & Scott’s queue, based on the proof of Vindum and Birkedal [2021]
• Async-Finish library (proof involving later credits [Spies et al., 2022])

⇝ Some automation thanks to Diaframe [Mulder et al., 2022]

21/22



Conclusion & Future Work

We present the first program logic to reason about

heap space usage for a high-level and concurrent language with GC.

Please talk to me if you know data structures with a cool space usage under GC!

Independently of heap space, our logic allows reasoning about unreachability.
⇝ Can we apply our ideas to other areas?
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Thank you for your attention!

alexandre.moine [at] inria.fr
arthur.chargueraud [at] inria.fr

francois.pottier [at] inria.fr



Cycles

We handle cycles following the approach of Madiot and Pottier [2022].

⌜True⌝ −∗ ∅,0 P

D ,n P
ℓ 7→p v⃗ ∗ ℓ←[ L ∗ ℓ⇐\ ∅

−∗ ({ℓ} ∪ D) ,n+size(v⃗) P if L ⊆ P

D ,n D ⇛ ♢n ∗ (∗
ℓ∈D
†ℓ) if D ∩ locs(t) = ∅



Proof Insight: Liveness-Based Cancellable Invariants

Recall standard cancellable invariants: CInvγ Φ ≜ Φ ∨ 1 γ

We can define liveness-based invariants: LInvℓ Φ ≜ Φ ∨ †ℓ

• The user can access the invariant as long as the location is logically allocated.
• Deallocation cancels the invariant.
• Useful to avoid another fractional token.

The semantics ensures no dangling pointers.
ℓ ∈ locs(t){
† ℓ

}
π : t

{
Ψ

}



Triples with Souvenir

Pointed-by-thread assertions are easy to manage in practice.

Introducing triples with souvenir [ R ]
{

Φ
}

π : t
{

Ψ
}

“Give a pointed-by-thread assertion once and that’s it”

locs(t2) = {ℓ}
[ R ∪ {ℓ} ]

{
Φ

}
π : t1

{
Ψ′ }

∀v . [ R ]
{

ℓ⇐\p {π} ∗Ψ′ v
}

π : [v/x ]t2
{

Ψ
}

[ R ]
{

ℓ⇐\p {π} ∗ Φ
}

π : let x = t1 in t2
{

Ψ
}

locs(t2) = {ℓ} ℓ ∈ R
[ R ]

{
Φ

}
π : t1

{
Ψ′ }

∀v . [ R ]
{

Ψ′ v
}

π : [v/x ]t2
{

Ψ
}

[ R ]
{

Φ
}

π : let x = t1 in t2
{

Ψ
}



The NoFree Mode

If the user pledges not to clean, framing pointed-by-thread assertions is not needed.

LetNoClean
[ NoClean ]

{
Φ

}
π : t1

{
Ψ′ }

∀v . [ R ]
{

Ψ′ v
}

π : [v/x ]t2
{

Ψ
}

[ R ]
{

Φ
}

π : let x = t1 in t2
{

Ψ
}
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