Diamonds Are Forever: Reasoning about Heap Space in a
Concurrent and Garbage Collected Language

Alexandre Moine Arthur Charguéraud Francois Pottier

Iris’'23

V4

lrreia—

Formal Verification of Heap Space Bounds

Following Hofmann [1999], let {1 represent one space credit.
~> the right to allocate one memory word.

Without GC:
= alloc consumes space = free produces space
{ Osize(b) } £ := alloc(b) {{+— b} {+— b} free(l){ Osize(b) }

With GC: no syntactical point to recover space credits.

1/22

Formal Verification of Heap Space Bounds Under Garbage Collection

Space credits can be recovered as soon as a location becomes unreachable:
~» from the roots following heap paths.

Separation Logic for Heap Space with GC ‘ High-Level ‘ Concurrency

Madiot and Pottier [2022] X v" (no examples)
Moine, Charguéraud and Pottier [2023] v X
This work v v

2/22

A Motivating Example: The Treiber’s Stack

A lock-free linearizable stack implemented as a reference on a immutable list.

- push s vl pop s

What is a space-aware specification for push and pop?

3/22

A Space-Leaking Interleaving for pop

C
BERE

T

T

4/22

A Space-Leaking Interleaving for pop

s

C
ER

pop s pop s; @
Pop S; °

.0
POP 8;

4/22

A Space-Leaking Interleaving for pop

s

C
ER

let 1 = !s in pop s; @
match 1 with Pop s; [)

.0
POP 8;

4/22

A Space-Leaking Interleaving for pop

s

C
ER

let 1 = ¢ in pop s; @
match 1 with Pop s; [)

.0
POP 8;

4/22

A Space-Leaking Interleaving for pop

let 1 = ¢ in
match 1 with

4/22

A Space-Leaking Interleaving for pop

let 1 = ¢ in
match 1 with

4/22

A Space-Leaking Interleaving for pop

let 1 = ¢ in
match 1 with

4/22

A Space-Leaking Interleaving for pop

let 1 = ¢ in
match 1 with

= The sleeping thread maintains reachable a morally dead structure.
= pop cannot produce space credits!

4/22

Contributions

We present the first program logic to reason about

heap space usage for a high-level and concurrent language with GC.

Key contributions:

= A new pointed-by-thread assertion, tracking in which thread a location is a root.
= Examples:

= |ock-free data structures: Treiber's stack, Michael and Scott's queue
= Closures: Concurrent counter

= Theory and examples are fully mechanized in Iris.

5/22

Prior Work: Pointed-by-Heap Assertions to Track Heap Predecessors

From Kassios and Kritikos [2013], Moine et al. [2023]:

{ g L (signed) multiset

€ [0,1]

= (<41 L asserts that L is an over-approximation of the reachable predecessors of /.
= (< () asserts that £ is unreachable from the heap.

0 {+01; +0} € {+01} * £ {+42}
Ly {+0} « Lo {-t} ~ Ly 0

Main invariant: if £ <—¢ L then L must only contain negative elements.
6/22

What Are the Roots?

= We consider an interleaving semantics.

= The GC is interleaved with the per-thread reduction.

The Free Variable Rule (FVR), adapted from

In a substitution-based semantics, the roots of a threadpool consist of
the union of the locations occurring in each thread.

7/22

Separation Logic Triples & Pointed-By-Thread Assertions

We use a ghost thread identifier 7 to identify a thread. {®}m:t{V}

The pointed-by-thread assertion:
¢ <p [1<—— set of thread identifiers

€ (0,1]

s ¢ <y [asserts that 1 is an over-approximation of the threads in which ¢ is a root.

s (< () asserts that £ is not a root.

14 <:I (p1+p2) (|_|1 U |_|2) = /Y <p; My = ¢ p, M,

8/22

Our Logical Deallocation Rule

Cspw x L1 0 « =10 = L, w x Osize(w) x 1/

= Free does not consume the points-to. Useful for:

= Persistent objects
= Closing invariants

9/22

Our Logical Deallocation Rule

¢ is a valid block ¢ is not a root

Cspw x L1 0 « =10 = L, w x Osize(w) x 1/

¢ is unreachable from the heap]

= Free does not consume the points-to. Useful for:

= Persistent objects
= Closing invariants

9/22

Our Logical Deallocation Rule

only applicable in a precondition

|

Cspw x L1 0 « =10 = L, w x Osize(w) x 1/

= Free does not consume the points-to. Useful for:

= Persistent objects
= Closing invariants

9/22

Our Logical Deallocation Rule

space credits

Cspw x L1 0 « =10 = L, w x Osize(w) x 1/

¢ is still a valid blockT £ is unreachable

= Free does not consume the points-to. Useful for:

= Persistent objects
= Closing invariants

9/22

Life of the Pointed-by-Thread Assertion, Part 1

The rule for allocation.

n times

—
{On}m: (alloc n) { Al L= [(),....)] *x £+ 0 x £ {x} }

After a load, a thread points-to the loaded value.

0<i<|® w(i)=v

(bW x v 0 Jr i {AV. "V =vTx b=, wx v, {n} }

10/22

Life of the Pointed-by-Thread Assertion, Part 2

The ¢ <, {7} assertion can be cleaned when ¢ does not appear in the focused part of 7.

¢ ¢ locs(t) {0=,0 x d}m:t{V}
{t=p{r} x d}m:t{V}

¢ =, {r} is force-framed when ¢ becomes a root of the evaluation context in 7.

locs(tp) = {¢} {d}m:t {V'} Vv { bsp {n} xV vim: [v/x]{V}
{ <, {n} «d}7m:(letx=t1intr) { WV}

11/22

A fork updates pointed-by-thread assertions.

locs(t) = {¢}
(Va'. {Lap {n'} « ® a’ e {A_. "True™})
{¢<p{r} * ®}m:forkt{A_."Truem}

12/22

The Soundness Theorem

Our semantics

= is parameterized by a maximal heap size S

= interleaves reduction steps and GC steps

An allocation is stuck if, after a full GC, there is not enough free space.

Soundness Theorem

If {OS}m: t{W} holds, then t cannot reach a stuck configuration.

Reformulation: the live heap space of any execution of t cannot exceed S.

13/22

Treiber’s Push — The Standard Specification Using Atomic Triples

Private precondition ——— { stack-inv s }

(VL. content s L) «——— Public precondition
m: push s v
(content s (v::L)) «——— Public postcondition

Private postcondition ———— { A_. "True™ }

= The public precondition is atomically updated into the public postcondition.

= The user can open invariants around a public precondition and postcondition.

14/22

Space-Aware Treiber’s Push

= Stack of unboxed values ~» focus on the space consumption of the structure.

= A fractional access token for the stack (r € (0, 1]):
stack s r

If r =1 then the stack is not being concurrently used.

{stacksr x 02}
(VL. contents L)
m: push s v
(contents (v::L))
{A_.stacksr}

15/22

Space-Aware Treiber’s Pop

{ stack s r }
= pop cannot give back space. (VvL. contents (v:L))
= |t returns virtual credits ¢ 2. T pop s

(contents L)
{AV.TV =v7 % stacksr x 452}

If the stack is not being concurrently used,
virtual credits can be converted to physical credits.

stacks1 x 52 = stacks1l x {2

16/22

Allocation and Deallocation of a Stack

Allocation of a stack:

{01} m:create () { As.stacks 1 = contents[] x s« 0 x s <= {rn}}
Logical deallocation of a stack:

stacks1 % contents L *x s x s 90 =
stacks 1 x O(1+2x |L|)

17/22

Stack With Boxed Values

{stacksr * v¢ig 0 x v, {m} x 02}
(VL. contents L)
m: push s v

(content s ((v,q,p)::L))
{A_.stacksr}

The specification of pop is also richer:

= The pointed-by-heap assertion cannot be returned without an additional write.

= Can the pointed-by-thread assertion be returned?
~> ves, but we need to change the semantics.

18/22

Stack With Boxed Values — Another Dangerous Interleaving

19/22

Stack With Boxed Values — Another Dangerous Interleaving

h 1 H
push s v pop s ...@

19/22

Stack With Boxed Values — Another Dangerous Interleaving

if CAS s c c' op s;
.

then () A 0

else push s vl -- retry

19/22

Stack With Boxed Values — Another Dangerous Interleaving

if true op s;
.

then () A 0

else push s vl -- retry

19/22

Stack With Boxed Values — Another Dangerous Interleaving

s

S
C
B

T

,+_7—#\A

vl
if true ... zE pop s;
then ()
else push s vl -- retry

19/22

Stack With Boxed Values — Another Dangerous Interleaving

v2

F [

if true ... z pop s;

then ()
else push s vl -- retry

The sleeping thread apparently maintains reachable the pushed value.

19/22

Safe Points to the Rescue

The scenario of the previous slide does not occur in OCaml 5.

= The GC is stop-the-world.

= Threads run independently and, at safe points, lookup if a GC is pending.
= The GC runs only when every thread reached a safe point.

= |n particular, no safe point before if true then _ else _

= This expression always releases the roots of the else branch.

= |nterleaving of small steps is too fine. We need a coarser interleaving.

For now: an atomic ifCAS primitive.

20/22

Not Shown Here

More meta-theory:

= Encoding of the logic for sequential programs
= Simplified mode where no deallocation is required

= Closures

More examples (with the indirect help of some of you!):

= Michael & Scott’s queue, based on the proof of Vindum and Birkedal [2021]
= Async-Finish library (proof involving later credits [Spies et al., 2022])

~» Some automation thanks to Diaframe [Mulder et al., 2022]

21/22

Conclusion & Future Work

We present the first program logic to reason about

heap space usage for a high-level and concurrent language with GC.

Please talk to me if you know data structures with a cool space usage under GC!

Independently of heap space, our logic allows reasoning about unreachability.
~ Can we apply our ideas to other areas?

22/22

Thank you for your attention!

alexandre.moine [at] inria.fr
arthur.chargueraud [at] inria.fr
francois.pottier [at] inria.fr

We handle cycles following the approach of Madiot and Pottier [2022].
"Truem — () @° P

D&"P

B ~ ({eyuD) @I p i cp
Cp Vs b= Lx 020

D&"D = On x (% 1) if DN locs(t) =10
teb

Proof Insight: Liveness-Based Cancellable Invariants

® vV lfi]”

We can define liveness-based invariants: Linv, ® £

Recall standard cancellable invariants: Clnv? ¢

= The user can access the invariant as long as the location is logically allocated.
= Deallocation cancels the invariant.

= Useful to avoid another fractional token.

¢ € locs(t)

{1} m:t{WV}

The semantics ensures no dangling pointers.

Triples with Souvenir

Pointed-by-thread assertions are easy to manage in practice.

Introducing triples with souvenir [R]{® }m: t { W}
“Give a pointed-by-thread assertion once and that’s it”

locs(tp) = {¢}
[RU{GT S Im: e {V'} Vv.[RI{Ls, {m}xV v}m: [v/x]{V}
[R{C<=p {n}*xd}m:letx=trint {V}

locs(tz) = {¢} {eR
[R{®}m:t {W'} V. [R{V v}m:[v/x]{V}
[R{®}m:letx =tiintr { W}

The NoFree Mode

If the user pledges not to clean, framing pointed-by-thread assertions is not needed.

LETNOCLEAN
[NoClean]{® }m: ts { W'} Vv.[RN{V'v}m:[v/x]a{WV}

[R{®}m:letx=tinta {WV}

References i

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235-271, 1992.
URL https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf.

Martin Hofmann. Linear types and non-size-increasing polynomial time computation. In
Logic in Computer Science (LICS), pages 464—473, July 1999. URL
https://doi.org/10.1109/LICS.1999.782641.

loannis T. Kassios and Eleftherios Kritikos. A discipline for program verification based
on backpointers and its use in observational disjointness. In European Symposium on
Programming (ESOP), volume 7792 of Lecture Notes in Computer Science, pages
149-168. Springer, March 2013. URL
https://doi.org/10.1007/978-3-642-37036-6_10.

https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf
https://doi.org/10.1109/LICS.1999.782641
https://doi.org/10.1007/978-3-642-37036-6_10

References| References

Jean-Marie Madiot and Francois Pottier. A separation logic for heap space under
garbage collection. Proceedings of the ACM on Programming Languages, 6(POPL),
January 2022. URL http://cambium.inria.fr/~fpottier/publis/
madiot-pottier-diamonds-2022.pdf.

Alexandre Moine, Arthur Charguéraud, and Francois Pottier. A high-level separation
logic for heap space under garbage collection. Proc. ACM Program. Lang., 7(POPL),
jan 2023. doi: 10.1145/3571218. URL https://doi.org/10.1145/3571218.

http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
https://doi.org/10.1145/3571218

[

Ilke Mulder, Robbert Krebbers, and Herman Geuvers. Diaframe: Automated verification
of fine-grained concurrent programs in iris. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2022, page 809-824, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392655. doi: 10.1145/3519939.3523432. URL
https://doi.org/10.1145/3519939.3523432.

Simon Spies, Lennard Gaher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars
Birkedal, and Derek Dreyer. Later credits: Resourceful reasoning for the later

modality. Proc. ACM Program. Lang., 6(ICFP), aug 2022. doi: 10.1145/3547631.
URL https://doi.org/10.1145/3547631.

https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3547631

01

Simon Friis Vindum and Lars Birkedal. Contextual refinement of the Michael-Scott
queue. In Certified Programs and Proofs (CPP), pages 76-90, January 2021. URL
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf.

https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf

	Appendix

