Polishing a Rough Diamond

An Enhanced Separation Logic for Heap Space under Garbage Collection

Alexandre Moine Arthur Charguéraud François Pottier ASL'22

A program logic to verify heap space bounds...

A program logic to verify heap space bounds...

...for an imperative λ -calculus...

A program logic to verify heap space bounds...

...for an imperative λ -calculus...

...equipped with a Garbage Collector.

A Motivating Example

```
let rec revapp l1 l2 =
  match l1 with
  | | | -> 12
  | x : : l1' −> revapp l1' (x : : l2)
```
With a GC, what is the heap usage of revapp?

A Motivating Example

```
let rec revapp l1 l2 =
  match l1 with
  | | | -> 12
  | x : : l1' −> revapp l1' (x : : l2)
```
With a GC, what is the heap usage of revapp?

It depends on the call site!

If **11** is used "elsewhere" $O(\text{length } l_1)$

A Motivating Example

```
let rec revapp l1 l2 =
  match l1 with
  | | | -> 12
  | x : : l1' −> revapp l1' (x : : l2)
```
With a GC, what is the heap usage of revapp?

It depends on the call site!

- If **11** is used "elsewhere" $O(\text{length } l_1)$
- If **I1** is not used elsewhere $O(1)$: The GC can claim the front cell at each step.

Prior Work

SpaceLang by [Madiot and Pottier \(2022\)](#page-46-0)

- \triangleright Space as a resource, Space Credits \diamond 1
- **►** Pointed-by assertions to track predecessors $\ell \leftarrow_1 L$
- **►** Free as a Ghost Update $\ell \mapsto_1 b * \ell \leftrightarrow_1 \emptyset \Rightarrow \emptyset$ $\geq \emptyset$ $\geq \ell$

Prior Work

SpaceLang by [Madiot and Pottier \(2022\)](#page-46-0)

- \triangleright Space as a resource, Space Credits \diamond 1
- **►** Pointed-by assertions to track predecessors $\ell \leftarrow_1 L$
- **►** Free as a Ghost Update $\ell \mapsto_1 b * \ell \leftrightarrow_1 \emptyset \Rightarrow \emptyset$ $\geq \emptyset$ $\geq \ell$

But...

- \blacktriangleright Target a low level language
- \triangleright Bookkeeping of roots with stack cells
- \blacktriangleright Heavy reasoning rules

Contributions

- \triangleright A Separation Logic with Space Credits for an imperative λ -calculus
- **INEXED Stackable** assertion to track roots
- \blacktriangleright Enhancement of pointed-by assertions
	- \triangleright Possibly-null fractions \triangleright Signed multisets
- Examples: Lists & Stacks
- \blacktriangleright Mechanized in Coq with Iris

An imperative λ -calculus - Syntax

Values

- \blacktriangleright Unit & numbers
- \blacktriangleright Memory locations of blocks
- \triangleright Closed functions (code pointers). See next paper for closures \odot

An imperative λ -calculus - Syntax

Values

- \blacktriangleright Unit & numbers
- ▶ Memory locations of blocks
- \triangleright Closed functions (code pointers). See next paper for closures \odot

Terms

- \triangleright Arithmetic, conditional, code pointer call, let definition
- \blacktriangleright Heap allocation, load and store
- \triangleright No explicit deallocation instruction!

An imperative λ -calculus - Semantics

- \triangleright Standard small-step call-by-value semantics, with a maximal live heap size \rightarrow allocation fails if there is not enough space
- \blacktriangleright Substitution-based
- \blacktriangleright Interleave GC steps with reduction steps

The GC can deallocate unreachable locations.

The location ℓ is unreachable \iff there is no path from a root to ℓ .

The GC can deallocate unreachable locations. The location ℓ is unreachable \iff there is no path from a root to ℓ .

Nontrivial to reason about paths.

Madiot & Pottier's solution: the location *ℓ* is unreachable when

- **►** ℓ is not a root; and,
- \blacktriangleright ℓ is not pointed by any heap block

About Unreachability: the Free Variable Rule

What is a root?

About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule [\(Morrisett et al., 1995\)](#page-47-0). The roots are:

- \triangleright Syntactically, live bound variables
- \triangleright Operationally, live locations in the stackframe

About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule [\(Morrisett et al., 1995\)](#page-47-0). The roots are:

- \triangleright Syntactically, live bound variables
- \triangleright Operationally, live locations in the stackframe

```
let rec revapp l1 l2 =
  (* 11 is a root according to the FVR *)match l1 with
  | [ ] −> l2
  | x : 11' - \rangle(* 11 is not a root anymore according to the FVR *)revapp l1' (x::l2)
```
Visible Roots vs Invisible Roots

- \triangleright Roots may appear in the evaluation context
- \triangleright We want to reason locally, on subterms {Φ} *t* {Ψ} does not involve any evaluation context

Visible Roots vs Invisible Roots

- \triangleright Roots may appear in the evaluation context
- \triangleright We want to reason locally, on subterms {Φ} *t* {Ψ} does not involve any evaluation context

With a subterm *t* of a program *K*[*t*], the location *ℓ* is not a root:

- If ℓ is not a visible root $\ell \notin \text{locs}(t)$; and,
- If ℓ is not an invisible root $\ell \notin \text{locs}(K)$

Visible Roots vs Invisible Roots

- \blacktriangleright Roots may appear in the evaluation context
- \triangleright We want to reason locally, on subterms {Φ} *t* {Ψ} does not involve any evaluation context

With a subterm *t* of a program *K*[*t*], the location *ℓ* is not a root:

- **►** If ℓ is not a visible root $\ell \notin \text{locs}(t)$; and, inspect the term
- **►** If ℓ is not an invisible root $\ell \notin \text{locs}(K)$ Stackable assertion

Free as a Ghost Update

New ghost update parameterized by the visible roots.

$$
\frac{\Phi \Rrightarrow_{\text{locs}(t)} \Phi' \qquad \{\Phi'\} \ t \{\Psi\}}{\{\Phi\} \ t \{\Psi\}}
$$

New ghost update parameterized by the visible roots.

$$
\frac{\Phi \Rrightarrow_{\text{locs}(t)} \Phi' \qquad \{\Phi'\} \ t \{\Psi\}}{\{\Phi\} \ t \{\Psi\}}
$$

Our logical Free rule.

 $\ell \mapsto_1 b * \ell \leftarrow_1 \emptyset * \lceil \ell \notin V \rceil * Stackable \ell \ 1 \Rightarrow_V \text{ } osize(b) * \dagger \ell$

We provide a more general rule to deallocate cycles.

Pointed-by and *Stackable* assertions are created upon allocation.

$$
\{\infty n\} \text{ allow } n \left\{\lambda \ell. \begin{array}{c} \ell \mapsto_1 ()^n \\ \lambda \ell. \quad \ell \leftarrow_1 \emptyset \\ \text{Stackable } \ell 1 \end{array} \right\}
$$

Our extended let rule for a simple context.

$$
\frac{\{\Phi\} t_1 \{\Psi'\}}{\{\Psi'\ \Phi\} \text{let } x = t_1 \text{ in } t_2 \{\Psi\}}\
$$

Our extended let rule for a simple context.

$$
\begin{array}{cc}\n\text{locs}(t_2) = \{\ell\} \\
\{\Phi\} \ t_1 \{\Psi'\} & \forall v. \{\n\begin{array}{c}\n\Phi\} \text{ let } x = t_1 \text{ in } t_2 \{\Psi\} \\
\end{array}\n\end{array}
$$

Our extended let rule for a simple context.

 $locs(t_2) = \{ \ell \}$ $\{\Phi\}$ *t*₁ $\{\Psi'\}$ $\forall v$. {Stackable ℓ $p * \Psi'$ v } $[v/x]$ *t*₂ $\{\Psi\}$ {*Stackable* $\ell p * \Phi$ } let $x = t_1$ in t_2 $\{\Psi\}$

12/20

Our extended let rule for a simple context.

 $locs(t_2) = \{ \ell \}$ $\{\Phi\}$ *t*₁ $\{\Psi'\}$ $\forall v$. {Stackable ℓ $p * \Psi'$ v } $[v/x]$ *t*₂ $\{\Psi\}$ ${stackable \ell p * \Phi} let x = t_1 in t_2 {\Psi}$

- I *Stackable ℓ p* cannot appear in Φ
- I Hence, *Stackable ℓ* 1 cannot appear in Φ
- \blacktriangleright Hence, ℓ cannot be logically deallocated in $\{\Phi\}$ t_1 $\{\Psi'\}$

We provide a more general rule for arbitrary contexts.

Triples with Souvenir

Stackable assertions seems difficult to manage in practice. Introducing triples with souvenir ⟨*R*⟩ {Φ} *t* {Ψ} *"Give a Stackable assertion once and thats it"*

Triples with Souvenir

Stackable assertions seems difficult to manage in practice. Introducing triples with souvenir ⟨*R*⟩ {Φ} *t* {Ψ} *"Give a Stackable assertion once and thats it"*

 $locs(t_2) = \{ \ell \}$ ⟨*R* ∪ {*ℓ*}⟩ {Φ} *t*¹ {Ψ ′ } ∀*v.*⟨*R*⟩ {*Stackable ℓ p* * Ψ ′ *v*} [*v/x*]*t*² {Ψ} $\langle R \rangle$ {*Stackable* ℓ *p* $*$ Φ } let $x = t_1$ in t_2 { Ψ }

Triples with Souvenir

Stackable assertions seems difficult to manage in practice. Introducing triples with souvenir ⟨*R*⟩ {Φ} *t* {Ψ} *"Give a Stackable assertion once and thats it"*

 $locs(t_2) = \{ \ell \}$ ⟨*R* ∪ {*ℓ*}⟩ {Φ} *t*¹ {Ψ ′ } ∀*v.*⟨*R*⟩ {*Stackable ℓ p* * Ψ ′ *v*} [*v/x*]*t*² {Ψ} $\langle R \rangle$ {*Stackable* ℓ *p* $*$ Φ } let $x = t_1$ in t_2 { Ψ } $locs(t_2) = \{ \ell \}$ $\ell \in R$ $\langle R \rangle$ { Φ } t_1 { Ψ' } $\forall v$. $\langle R \rangle$ { Ψ' v } [v/x] t_2 { Ψ } $\langle R \rangle$ { Φ } let $x = t_1$ in t_2 { Ψ }

Proving that a Location is not a Visible Root

The goal $\ell \notin V$ is not trivial: one must take aliasing into account.

^ℓ ↦→¹ *^b* * *^ℓ* [←][¹ ∅ * ^p*ℓ /*[∈] *^V*^q * *Stackable ^ℓ* ¹ ^V*^V* ◇*size*(*b*) * † *^ℓ*

Proving that a Location is not a Visible Root

The goal $\ell \notin V$ is not trivial: one must take aliasing into account.

^ℓ ↦→¹ *^b* * *^ℓ* [←][¹ ∅ * ^p*ℓ /*[∈] *^V*^q * *Stackable ^ℓ* ¹ ^V*^V* ◇*size*(*b*) * † *^ℓ*

Thankfully

- \triangleright We are developing a Separation Logic
- \triangleright We can use the separating conjunction
- ^I With *^ℓ* ↦→¹ *^b* and *^ℓ* [←][¹ *^L* and *Stackable ^ℓ* ¹
- \blacktriangleright Simple cases can be automated!

Possibly Null Fractions & Signed Multisets

$\ell_3 \leftarrow q \{ +\ell_1; +\ell_1; +\ell_2 \}$

Possibly Null Fractions & Signed Multisets

$\ell_3 \leftarrow_q {\{\ +\ell_1; \ +\ell_1; \ +\ell_2\} \ * \ \ell_3 \leftarrow_q {\{-\ell_1\}}$

Possibly Null Fractions & Signed Multisets

$$
\ell_3 \leftarrow_q \{ +\ell_1; +\ell_1; +\ell_2 \} * \ell_3 \leftarrow_0 \{-\ell_1\}
$$

\n
$$
\equiv \ell_3 \leftarrow_{(q+0)} (\{ +\ell_1; +\ell_1; +\ell_2 \} \uplus \{-\ell_1\})
$$

\n
$$
\equiv \ell_3 \leftarrow_q \{ +\ell_1; +\ell_2 \}
$$

The soundness theorem is about safety.

Theorem *If* ⟨∅⟩ {◇*S*} *t* {Ψ} *holds, then, with S initial memory words, t is safe.* The soundness theorem is about safety.

Theorem *If* ⟨∅⟩ {◇*S*} *t* {Ψ} *holds, then, with S initial memory words, t is safe.*

Safety means that if *t* reduces to *t* ′ , then either,

- \blacktriangleright *t'* is a value; or,
- ▶ after a full garbage collection, t' can reduce.

In other words: the maximal live heap size never exceeds *S*.

The List Predicate

Pointed-by and *Stackable* assertions often go together.

$$
v \leftrightarrow_{p} L \quad \triangleq \quad v \leftrightarrow_{p} L \ast \text{Stackable } v \text{ } p
$$

The List Predicate

Pointed-by and *Stackable* assertions often go together.

$$
v \leftrightarrow_{p} L \quad \triangleq \quad v \leftrightarrow_{p} L \ast \text{Stackable } v \text{ } p
$$

The predicate *List*, for lists without sharing

List
$$
L \triangleq
$$
 match L with
\n
$$
|\n\begin{bmatrix}\n\end{bmatrix} \Rightarrow l \mapsto [0]
$$
\n
$$
|\n\begin{bmatrix}\n\end{bmatrix} (v, p) :: L' \Rightarrow \exists l'.
$$
\n
$$
l \mapsto [1; v; l'] \ast v \leftrightarrow_{p} \{l\} \ast l' \leftrightarrow_{1} \{l\} \ast List L'l'
$$

Back to the Example: Destructive Specification

$$
\langle \emptyset \rangle \left\{ \begin{matrix} List \ L_1 \ l_1 * l_1 \leftrightarrow \cdots \ 1 \\ List \ L_2 \ l_2 * l_2 \leftrightarrow \cdots \ 0 \end{matrix} \right\} \text{ revapp} \left(l_1, l_2 \right) \left\{ \lambda l. \begin{matrix} List \ (rev \ L_1 + l_2) \ l \\ l \leftrightarrow \cdots \ 0 \end{matrix} \right\}
$$

- \blacktriangleright Consumes its two arguments
- \blacktriangleright Generates one space credit

Back to the Example: Non-Destructive Specification

$$
\langle \{l_1\} \rangle \left\{ \begin{matrix} \text{List } L_1 & l_1 * \diamond (3 \times |L_1|) \\ \text{List } L_2 & l_2 * l_2 \leftrightarrow_1 \emptyset \end{matrix} \right\} \text{ revapp } (l_1, l_2) \left\{ \begin{matrix} \text{List } (\frac{1}{2}L_1) & l_1 \\ \lambda l. \text{ List } (\text{rev } (\frac{1}{2}L_1) + l_2) & l \\ l \leftrightarrow_1 \emptyset & \end{matrix} \right\}
$$

- \blacktriangleright A souvenir of l_1 : requires the framing of *Stackable* l_1 p assertion
- \blacktriangleright Requires space credits
- \blacktriangleright Split fractions

Conclusion & Future Work

A Separation Logic with Space Credits for a λ -calculus with a GC.

Conclusion & Future Work

 \triangleright A Separation Logic with Space Credits for a λ -calculus with a GC.

Future Work

- \triangleright See next paper for closures \odot
- ► Weak Pointers & Ephemerons
- \blacktriangleright Concurrency
- \blacktriangleright Link with the cost semantics of CakeML [\(Gómez-Londoño et al., 2020\)](#page-46-1)

Thank you for your attention!

Stackables
$$
M \triangleq \underset{(\ell,p)\in M}{\ast}
$$
 Stackable ℓ p

BIND

\n
$$
dom(M) = locs(K)
$$
\n
$$
\{\Phi\} t \{\Psi'\} \quad \forall v. \{\Psi' v * Stackables M\} K[v] \{\Psi\}
$$
\n
$$
\{\Phi * Stackables M\} K[t] \{\Psi\}
$$

References i

Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Magnus O. Myreen, and Yong Kiam Tan. Do you have space for dessert? A verified space cost semantics for CakeML programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA): 204:1–204:29, 2020. URL <https://doi.org/10.1145/3428272>.

Jean-Marie Madiot and François Pottier. A separation logic for heap space under garbage collection. Proceedings of the ACM on Programming Languages, (POPL), January 2022. URL [http://cambium.inria.fr/~fpottier/publis/](http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf) [madiot-pottier-diamonds-2022.pdf](http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf).

Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory management. In Functional Programming Languages and Computer Architecture, June 1995. URL <https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf>.