Polishing a Rough Diamond

An Enhanced Separation Logic for Heap Space under
Garbage Collection

Alexandre Moine Arthur Charguéraud Francois Pottier
ASL'22

V4

lrrzia—

Goal

A program logic to verify heap space bounds...

1/20

Goal

A program logic to verify heap space bounds...

..for an imperative A-calculus...

1/20

Goal

A program logic to verify heap space bounds...
..for an imperative A-calculus...

..equipped with a Garbage Collector.

1/20

A Motivating Example

let rec revapp 11 12 =
match 11 with
| [1 ->12
| x::11" -> revapp 11" (x::12)

With a GC, what is the heap usage of revapp?

2/20

A Motivating Example

let rec revapp 11 12 =
match 11 with
| [1 ->12
| x::11" -> revapp 11" (x::12)

With a GC, what is the heap usage of revapp?

It depends on the call site!

» If11is used “elsewhere” O(length ;)

2/20

A Motivating Example

let rec revapp 11 12 =
match 11 with
| [1 ->12
| x::11" -> revapp 11" (x::12)

With a GC, what is the heap usage of revapp?

It depends on the call site!

» If11is used “elsewhere” O(length ;)

» If 11 is not used elsewhere O(1):
The GC can claim the front cell at each step.

2/20

Prior Work

Spacelang by Madiot and Pottier (2022)

» Space as a resource, Space Credits o1
» Pointed-by assertions to track predecessors 4+ L
» Free asa Ghost Update £+ b % £+ 0 = osize(b) x 14

3/20

Prior Work

Spacelang by Madiot and Pottier (2022)

» Space as a resource, Space Credits o1
» Pointed-by assertions to track predecessors 4+ L
» Free asa Ghost Update £+ b % £+ 0 = osize(b) x 14

But...

» Target a low level language
» Bookkeeping of roots with stack cells
» Heavy reasoning rules

3/20

Contributions

» A Separation Logic with Space Credits for an imperative A-calculus
» New Stackable assertion to track roots

» Enhancement of pointed-by assertions
» Possibly-null fractions » Signed multisets

» Examples: Lists & Stacks

» Mechanized in Coq with Iris Ir(*S

4/20

An imperative A\-calculus - Syntax

Values

» Unit & numbers
» Memory locations of blocks

» Closed functions (code pointers). See next paper for closures ©

5/20

An imperative A-calculus - Syntax

Values

» Unit & numbers
» Memory locations of blocks

» Closed functions (code pointers). See next paper for closures ©

Terms

» Arithmetic, conditional, code pointer call, let definition
» Heap allocation, load and store

» No explicit deallocation instruction!

5/20

An imperative \-calculus - Semantics

» Standard small-step call-by-value semantics,
with a maximal live heap size
— allocation fails if there is not enough space

» Substitution-based

» Interleave GC steps with reduction steps

6/20

About Unreachability: Heap Paths

The GC can deallocate unreachable locations.
The location £ is unreachable <= there is no path from a root to /.

7/20

About Unreachability: Heap Paths

The GC can deallocate unreachable locations.
The location £ is unreachable <= there is no path from a root to /.

Nontrivial to reason about paths.
Madiot & Pottier’s solution: the location ¢ is unreachable when

» /s nota root; and,

» /is not pointed by any heap block

7/20

About Unreachability: the Free Variable Rule

What is a root?

8/20

About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule (Morrisett et al,, 1995). The roots are:

» Syntactically, live bound variables
» Operationally, live locations in the stackframe

8/20

About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule (Morrisett et al,, 1995). The roots are:

» Syntactically, live bound variables
» Operationally, live locations in the stackframe

let rec revapp 11 12 =
(* 11 is a root according to the FVR =)
match 11 with
[[] ->12
[x::11" ->
(* 11 is not a root anymore according to the FVR)
revapp 11’ (x::12)

8/20

Visible Roots vs Invisible Roots

» Roots may appear in the evaluation context
» We want to reason locally, on subterms
{®} t {¥} does not involve any evaluation context

9/20

Visible Roots vs Invisible Roots

» Roots may appear in the evaluation context
» We want to reason locally, on subterms
{®} t {¥} does not involve any evaluation context

With a subterm t of a program Kt], the location ¢ is not a root:

» If £is notavisible root ¢ ¢ locs(t); and,
» If £is notan invisible root ¢ ¢ locs(K)

9/20

Visible Roots vs Invisible Roots

» Roots may appear in the evaluation context
» We want to reason locally, on subterms
{®} t {¥} does not involve any evaluation context

With a subterm t of a program Kt], the location ¢ is not a root:

» If £ is not a visible root ¢ ¢ locs(t); and, inspect the term
» If £ is not an invisible root ¢ ¢ locs(K) Stackable assertion

9/20

Free as a Ghost Update

New ghost update parameterized by the visible roots.

o Elocs(t) P’ {@I} t {\Ij}
{0} t{v}

10/20

Free as a Ghost Update

New ghost update parameterized by the visible roots.

o Elocs(t) P’ {@I} t {\II}
{0} t{v}

Our logical FREE rule.

Cr1b % L0 % "0 ¢V % Stackable 1 =y osize(b) * ¢

We provide a more general rule to deallocate cycles.

10/20

Allocation

Pointed-by and Stackable assertions are created upon allocation.

V4 = (>n
{on} allocn S 0440
Stackable ¢ 1

11/20

The Stackable Assertion

Our extended let rule for a simple context.

{®} t1 {¥'} wv.{ U v} v/x|t {T}
{ d} letx =tyint, {U}

12/20

The Stackable Assertion

Our extended let rule for a simple context.
locs(ty) = {¢}
{®} t; {¥'} w. { U v} v/x|t {T}
{ d} letx =tyint, {U}

12/20

The Stackable Assertion

Our extended let rule for a simple context.
locs(ty) = {¢}
{®} 4, {¥'} Wv.{Stackable ¢ p x ¥’ v} [v/X]t; {¥}
{Stackable ¢ p « ®} letx = tyint, {¥}

12/20

The Stackable Assertion

Our extended let rule for a simple context.

locs(ty) = {¢}
{®} 4, {¥'} Wv.{Stackable ¢ p x ¥’ v} [v/X]t; {¥}

{Stackable ¢ p « ®} letx = tyint, {¥}

» Stackable ¢ p cannot appear in ®
» Hence, Stackable ¢ 1 cannot appear in ®

» Hence, ¢ cannot be logically deallocated in {®} t; {9’}

We provide a more general rule for arbitrary contexts.

12/20

Triples with Souvenir

Stackable assertions seems difficult to manage in practice.

Introducing triples with souvenir (R) {®} t{¥}
“Give a Stackable assertion once and thats it”

13/20

Triples with Souvenir

Stackable assertions seems difficult to manage in practice.

Introducing triples with souvenir (R) {®} t{¥}
“Give a Stackable assertion once and thats it”

locs(ty) = {¢}
(RU{HY {®}t:{¥'} Vv.(R){Stackable ¢ p x V' v} [v/x]t; {¥}
(R) {Stackable ¢ p x ®} letx = tyint, { ¥}

13/20

Triples with Souvenir

Stackable assertions seems difficult to manage in practice.

Introducing triples with souvenir (R) {®} t{¥}
“Give a Stackable assertion once and thats it”

locs(ty) = {¢}
(RU{HY {®}t:{¥'} Vv.(R){Stackable ¢ p x V' v} [v/x]t; {¥}
(R) {Stackable ¢ p x ®} letx = tyint, { ¥}

locs(ty) = {4} teR
(RY {2}t {¥} Wv.(R){¥' v} [v/X]ta { ¥}
(Ry{®}letx =t1int, {T}

13/20

Proving that a Location is not a Visible Root

The goal ¢ ¢ V is not trivial: one must take aliasing into account.

lr1b x L+ x "0 &V x Stackable £1 =, osize(b) * ¢

14/20

Proving that a Location is not a Visible Root

The goal ¢ ¢ V is not trivial: one must take aliasing into account.

Ors1b x L+) x "0 ¢ VT x Stackable 1 =y osize(b) x {¢

Thankfully
» We are developing a Separation Logic
» We can use the separating conjunction

» With ¢4 b and ¢ < L and Stackable ¢ 1

» Simple cases can be automated!

14/20

Possibly Null Fractions & Signed Multisets

11 N

\‘ 13
7

12 —

U3 g { +b1; +01; +4 }

15/20

Possibly Null Fractions & Signed Multisets

11 “

12 .—/

13

U3 g { +41; +01; +0} * l3 <=9 {1t}

15/20

Possibly Null Fractions & Signed Multisets

11 “

12 .—/

U3 =g { +b1; +b1; +02} * L3 <0 {—1}
=03 igro) ({05 +61; +6} W {—4))
=/ g {+€1§ +£2}

15/20

What are we Proving?

The soundness theorem is about safety.

Theorem ,
If (0) {oS}t{¥} holds, then, with S initial memory words, t is safe.

16/20

What are we Proving?

The soundness theorem is about safety.

Theorem ,
If (0) {oS}t{¥} holds, then, with S initial memory words, t is safe.

Safety means that if t reduces to t/, then either,

» t’'isavalue; or,

» after a full garbage collection, t’ can reduce.

In other words: the maximal live heap size never exceeds S.

16/20

The List Predicate

Pointed-by and Stackable assertions often go together.

Veop L £ v, L x Stackablev p

17/20

The List Predicate

Pointed-by and Stackable assertions often go together.

Veop L £ v, L x Stackablev p

The predicate List, for lists without sharing

List L1 £ match L with
] = [+~ [0]
| (v,p):: " = 3.

L= [v;l] % veop {1« U =g {1} = List L[

17/20

Back to the Example: Destructive Specification

LI'Sthlz*ZzPH@ l(—’1®*<>1

<®> {Llst L1 11 * [1 1 @

} revapp (1. 1) {)\l. List (rev Ly ++ Ly) l}

» Consumes its two arguments

» Generates one space credit

18/20

Back to the Example: Non-Destructive Specification

List Ly l; % o(3 x |Lq]) List (3L9) &y
{3y "% revapp (b, L) { AL List (rev (1L7) ++ L) |
List Ly lrx [<=1 0 a
;

» A souvenir of [;: requires the framing of Stackable [; p assertion
» Requires space credits
» Split fractions

19/20

Conclusion & Future Work

» A Separation Logic with Space Credits for a A-calculus with a GC.

20/20

Conclusion & Future Work

» A Separation Logic with Space Credits for a A-calculus with a GC.

Future Work

» See next paper for closures @
» Weak Pointers & Ephemerons
» Concurrency

» Link with the cost semantics of CakeML
(Gomez-Londono et al., 2020)

20/20

Thank you for your attention!

The Bind Rule

Stackables M & %k Stackable ¢ p
¢, p)eM

BIND
dom(M) = locs(K)
{®}t {U'} W.{¥'v % Stackables M} K[v] {¥}

{® x Stackables M} K[t] {¥}

References i

Alejandro Gomez-Londono, Johannes Aman Pohjola, Hira Tagdees
Syeda, Magnus O. Myreen, and Yong Kiam Tan. Do you have space
for dessert? A verified space cost semantics for CakeML programs.
Proceedings of the ACM on Programming Languages, 4(O0PSLA):
204:1-204:29, 2020. URL https://doi.org/10.1145/3428272.

Jean-Marie Madiot and Francois Pottier. A separation logic for heap
space under garbage collection. Proceedings of the ACM on
Programming Languages, (POPL), January 2022. URL
http://cambium.inria.fr/~fpottier/publis/
madiot-pottier-diamonds-2022.pdf.

https://doi.org/10.1145/3428272
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf

References ii

Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models
of memory management. In Functional Programming Languages
and Computer Architecture, June 1995. URL
https://www.cs.cmu.edu/~rwh/papers/gc/fpcads. pdf.

https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf

	Appendix

