Polishing a Rough Diamond

An Enhanced Separation Logic for Heap Space under Garbage Collection

<u>Alexandre Moine</u> Arthur Charguéraud François Pottier ASL'22

A program logic to verify heap space bounds...

A program logic to verify heap space bounds...

...for an imperative λ -calculus...

A program logic to verify heap space bounds...

...for an imperative λ -calculus...

...equipped with a Garbage Collector.

A Motivating Example

```
let rec revapp l1 l2 =
  match l1 with
     | [] -> l2
     | x::l1' -> revapp l1' (x::l2)
```

With a GC, what is the heap usage of revapp?

A Motivating Example

```
let rec revapp l1 l2 =
  match l1 with
    [] -> l2
    | x::l1' -> revapp l1' (x::l2)
```

With a GC, what is the heap usage of revapp?

It depends on the call site!

▶ If l1 is used "elsewhere" O(length l₁)

A Motivating Example

```
let rec revapp l1 l2 =
  match l1 with
    [] -> l2
    | x::l1' -> revapp l1' (x::l2)
```

With a GC, what is the heap usage of revapp?

It depends on the call site!

- ▶ If l1 is used "elsewhere" O(length l₁)
- If l1 is not used elsewhere O(1):
 The GC can claim the front cell at each step.

Prior Work

SpaceLang by Madiot and Pottier (2022)

- ► Space as a resource, Space Credits <a>1
- ► Pointed-by assertions to track predecessors $\ell \leftarrow_1 L$
- ► Free as a Ghost Update $\ell \mapsto_1 b * \ell \leftrightarrow_1 \emptyset \Rightarrow \diamond size(b) * \dagger \ell$

Prior Work

SpaceLang by Madiot and Pottier (2022)

- ► Space as a resource, Space Credits <a>>1
- ► Pointed-by assertions to track predecessors $\ell \leftarrow_1 L$
- ► Free as a Ghost Update $\ell \mapsto_1 b * \ell \leftrightarrow_1 \emptyset \Rightarrow \diamond size(b) * \dagger \ell$

But...

- ▶ Target a low level language
- ▶ Bookkeeping of roots with stack cells
- ► Heavy reasoning rules

Contributions

- A Separation Logic with Space Credits for an imperative λ -calculus
- ▶ New Stackable assertion to track roots
- ► Enhancement of pointed-by assertions
 - ▶ Possibly-null fractions
- ▶ Examples: Lists & Stacks
- ▶ Mechanized in Coq with Iris

► Signed multisets

An imperative λ -calculus - Syntax

Values

- Unit & numbers
- ► Memory locations of blocks
- ▶ Closed functions (code pointers). See next paper for closures ☺

An imperative λ -calculus - Syntax

Values

- Unit & numbers
- Memory locations of blocks
- ▶ Closed functions (code pointers). See next paper for closures ☺

Terms

- ► Arithmetic, conditional, code pointer call, let definition
- ▶ Heap allocation, load and store
- ► No explicit deallocation instruction!

An imperative λ -calculus - Semantics

- Standard small-step call-by-value semantics, with a maximal live heap size
 - \rightarrow allocation fails if there is not enough space
- Substitution-based
- ▶ Interleave GC steps with reduction steps

The GC can deallocate unreachable locations.

The location ℓ is unreachable \iff there is no path from a root to ℓ .

The GC can deallocate unreachable locations. The location ℓ is unreachable \iff there is no path from a root to ℓ .

Nontrivial to reason about paths.

Madiot & Pottier's solution: the location ℓ is unreachable when

- \blacktriangleright ℓ is not a root; and,
- $\blacktriangleright \ \ell$ is not pointed by any heap block

About Unreachability: the Free Variable Rule

What is a root?

About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule (Morrisett et al., 1995). The roots are:

- ► Syntactically, live bound variables
- ▶ Operationally, live locations in the stackframe

About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule (Morrisett et al., 1995). The roots are:

- Syntactically, live bound variables
- ▶ Operationally, live locations in the stackframe

```
let rec revapp l1 l2 =
  (* l1 is a root according to the FVR *)
  match l1 with
  | [] -> l2
  | x::l1' ->
   (* l1 is not a root anymore according to the FVR *)
   revapp l1' (x::l2)
```

Visible Roots vs Invisible Roots

- ▶ Roots may appear in the evaluation context
- We want to reason locally, on subterms {Φ} t {Ψ} does not involve any evaluation context

Visible Roots vs Invisible Roots

- Roots may appear in the evaluation context
- We want to reason locally, on subterms {Φ} t {Ψ} does not involve any evaluation context

With a subterm t of a program K[t], the location ℓ is not a root:

- ▶ If ℓ is not a visible root $\ell \notin locs(t)$; and,
- ▶ If ℓ is not an invisible root $\ell \notin locs(K)$

Visible Roots vs Invisible Roots

- Roots may appear in the evaluation context
- We want to reason locally, on subterms {Φ} t {Ψ} does not involve any evaluation context

With a subterm t of a program K[t], the location ℓ is not a root:

- If ℓ is not a visible root $\ell \notin locs(t)$; and,
- If ℓ is not an invisible root $\ell \notin locs(K)$

inspect the term *Stackable* assertion

Free as a Ghost Update

New ghost update parameterized by the visible roots.

$$\frac{\Phi \Rightarrow_{locs(t)} \Phi' \quad \{\Phi'\} t \{\Psi\}}{\{\Phi\} t \{\Psi\}}$$

Free as a Ghost Update

New ghost update parameterized by the visible roots.

$$\frac{\Phi \Rightarrow_{locs(t)} \Phi' \quad \{\Phi'\} t \{\Psi\}}{\{\Phi\} t \{\Psi\}}$$

Our logical Free rule.

 $\ell \mapsto_1 b * \ell \leftarrow_1 \emptyset * \lceil \ell \notin V \rceil * Stackable \ell 1 \Rightarrow_V \diamond size(b) * \dagger \ell$

We provide a more general rule to deallocate cycles.

Pointed-by and *Stackable* assertions are created upon allocation.

$$\{\diamond n\} \text{ alloc } n \left\{ \begin{array}{c} \ell \mapsto_1 ()^n \\ \lambda \ell. \quad \ell \leftarrow_1 \emptyset \\ \text{Stackable } \ell 1 \end{array} \right\}$$

Our extended let rule for a simple context.

$$\frac{\{\Phi\} t_1 \{\Psi'\} \quad \forall v. \{ \qquad \Psi' v\} [v/x]t_2 \{\Psi\}}{\{ \qquad \Phi\} \operatorname{let} x = t_1 \operatorname{in} t_2 \{\Psi\}}$$

Our extended let rule for a simple context.

$$\begin{aligned} & locs(t_2) = \{\ell\} \\ & \{\Phi\} \ t_1 \ \{\Psi'\} \qquad \forall v. \ \{ \qquad \Psi' \ v\} \ [v/x]t_2 \ \{\Psi\} \\ & \{ \qquad \Phi\} \ \text{let} \ x = t_1 \ \text{in} \ t_2 \ \{\Psi\} \end{aligned}$$

Our extended let rule for a simple context.

 $locs(t_2) = \{\ell\}$ $\{\Phi\} t_1 \{\Psi'\} \quad \forall v. \{Stackable \ \ell \ p * \Psi' \ v\} \ [v/x]t_2 \ \{\Psi\}$ $\{Stackable \ \ell \ p * \Phi\} \ let x = t_1 \ in \ t_2 \ \{\Psi\}$

Our extended let rule for a simple context.

 $locs(t_2) = \{\ell\}$ $\{\Phi\} t_1 \{\Psi'\} \quad \forall v. \{Stackable \ \ell \ p * \Psi' \ v\} \ [v/x]t_2 \ \{\Psi\}$ $\{Stackable \ \ell \ p * \Phi\} \ let x = t_1 \ in \ t_2 \ \{\Psi\}$

- Stackable ℓ p cannot appear in Φ
- Hence, Stackable ℓ 1 cannot appear in Φ
- Hence, ℓ cannot be logically deallocated in $\{\Phi\} t_1 \{\Psi'\}$

We provide a more general rule for arbitrary contexts.

Triples with Souvenir

Stackable assertions seems difficult to manage in practice. Introducing triples with souvenir $\langle R \rangle \{ \Phi \} t \{ \Psi \}$ "Give a Stackable assertion once and thats it"

Triples with Souvenir

Stackable assertions seems difficult to manage in practice. Introducing triples with souvenir $\langle R \rangle \{\Phi\} t \{\Psi\}$ "Give a Stackable assertion once and thats it"

 $\begin{array}{c} locs(t_2) = \{\ell\} \\ \hline \langle \mathsf{R} \cup \{\ell\} \rangle \left\{\Phi\right\} t_1 \left\{\Psi'\right\} & \forall v. \left<\mathsf{R} \rangle \left\{ Stackable \ \ell \ p * \Psi' \ v \right\} [v/x] t_2 \left\{\Psi\right\} \\ \hline \langle \mathsf{R} \rangle \left\{ Stackable \ \ell \ p * \Phi \right\} let x = t_1 \ in \ t_2 \left\{\Psi\right\} \end{array}$

Triples with Souvenir

Stackable assertions seems difficult to manage in practice. Introducing triples with souvenir $\langle R \rangle \{\Phi\} t \{\Psi\}$ "Give a Stackable assertion once and thats it"

 $locs(t_{2}) = \{\ell\}$ $\langle R \cup \{\ell\} \rangle \{\Phi\} t_{1} \{\Psi'\} \quad \forall v. \langle R \rangle \{Stackable \ \ell \ p * \Psi' \ v\} [v/x]t_{2} \{\Psi\}$ $\langle R \rangle \{Stackable \ \ell \ p * \Phi\} \text{ let } x = t_{1} \text{ in } t_{2} \{\Psi\}$ $locs(t_{2}) = \{\ell\} \quad \ell \in R$ $\frac{\langle R \rangle \{\Phi\} t_{1} \{\Psi'\} \quad \forall v. \langle R \rangle \{\Psi' \ v\} [v/x]t_{2} \{\Psi\}}{\langle R \rangle \{\Phi\} \text{ let } x = t_{1} \text{ in } t_{2} \{\Psi\}}$

Proving that a Location is not a Visible Root

The goal $\ell \notin V$ is not trivial: one must take aliasing into account.

 $\ell \mapsto_1 b * \ell \leftarrow_1 \emptyset * \lceil \ell \notin V \rceil * Stackable \ell 1 \implies_V \quad \diamond size(b) * \dagger \ell$

Proving that a Location is not a Visible Root

The goal $\ell \notin V$ is not trivial: one must take aliasing into account.

 $\ell \mapsto_1 b * \ell \leftarrow_1 \emptyset * \lceil \ell \notin V \rceil * Stackable \ell 1 \implies_V \diamond size(b) * \dagger \ell$

Thankfully

- ▶ We are developing a Separation Logic
- ▶ We can use the separating conjunction
- With $\ell \mapsto_1 b$ and $\ell \leftarrow_1 L$ and Stackable $\ell \mid 1$
- ▶ Simple cases can be automated!

Possibly Null Fractions & Signed Multisets

$\ell_3 \leftarrow_q \{+\ell_1; +\ell_1; +\ell_2\}$

Possibly Null Fractions & Signed Multisets

$\ell_3 \leftarrow_q \{ +\ell_1; +\ell_1; +\ell_2 \} * \ell_3 \leftarrow_0 \{ -\ell_1 \}$

Possibly Null Fractions & Signed Multisets

$$\begin{split} \ell_3 &\leftarrow_q \{ +\ell_1; +\ell_1; +\ell_2 \} * \ell_3 &\leftarrow_0 \{ -\ell_1 \} \\ &\equiv \ell_3 &\leftarrow_{(q+0)} (\{ +\ell_1; +\ell_1; +\ell_2 \} \uplus \{ -\ell_1 \}) \\ &\equiv \ell_3 &\leftarrow_q \{ +\ell_1; +\ell_2 \} \end{split}$$

What are we Proving?

The soundness theorem is about safety.

Theorem If $\langle \emptyset \rangle$ { $\diamond S$ } t { Ψ } holds, then, with S initial memory words, t is safe.

The soundness theorem is about safety.

Theorem If $\langle \emptyset \rangle$ { \diamond S} t { Ψ } holds, then, with S initial memory words, t is safe.

Safety means that if t reduces to t', then either,

- ▶ t' is a value; or,
- after a full garbage collection, t' can reduce.

In other words: the maximal live heap size never exceeds S.

The List Predicate

Pointed-by and Stackable assertions often go together.

$$v \leftrightarrow_p L \triangleq v \leftrightarrow_p L * Stackable v p$$

The List Predicate

L

Pointed-by and Stackable assertions often go together.

$$v \leftrightarrow_p L \triangleq v \leftrightarrow_p L * Stackable v p$$

The predicate List, for lists without sharing

list L l
$$\triangleq$$
 match *L* with
| [] \Rightarrow *l* \mapsto [0]
| (v, p) :: *L'* \Rightarrow ∃*l'*.
l \mapsto [1; v; *l'*] * v \leftrightarrow_p {*l*} * *l'* \leftrightarrow_1 {*l*} * *List L' l'*

Back to the Example: Destructive Specification

$$\langle \emptyset \rangle \begin{cases} \text{List } L_1 \ l_1 \ * \ l_1 \leftrightarrow_1 \emptyset \\ \text{List } L_2 \ l_2 \ * \ l_2 \leftrightarrow_1 \emptyset \end{cases} \text{ revapp} (l_1, l_2) \begin{cases} \lambda l. \ \text{List} (\text{rev } L_1 ++ L_2) \ l \\ l \leftarrow_1 \emptyset \ * \ \diamond 1 \end{cases}$$

- ▶ Consumes its two arguments
- ▶ Generates one space credit

Back to the Example: Non-Destructive Specification

$$\langle \{l_1\} \rangle \begin{cases} \text{List } L_1 \ l_1 \ast \diamond (3 \times |L_1|) \\ \text{List } L_2 \ l_2 \ast l_2 \leftrightarrow_1 \emptyset \end{cases} \text{ revapp } (l_1, l_2) \begin{cases} \text{List } (\frac{1}{2}L_1) \ l_1 \\ \lambda l. \ \text{List } (\text{rev } (\frac{1}{2}L_1) + L_2) \ l \\ l \leftarrow_1 \emptyset \end{cases}$$

- A souvenir of l_1 : requires the framing of *Stackable* $l_1 p$ assertion
- ► Requires space credits
- ► Split fractions

Conclusion & Future Work

• A Separation Logic with Space Credits for a λ -calculus with a GC.

Conclusion & Future Work

• A Separation Logic with Space Credits for a λ -calculus with a GC.

Future Work

- ▶ See next paper for closures ☺
- ▶ Weak Pointers & Ephemerons
- ► Concurrency
- ► Link with the cost semantics of CakeML (Gómez-Londoño et al., 2020)

Thank you for your attention!

Stackables
$$M \triangleq \underset{(\ell, p) \in M}{*}$$
 Stackable ℓp

BIND

$$dom(M) = locs(K)$$

$$\frac{\{\Phi\} t \{\Psi'\}}{\{\Psi \in Stackables M\} K[v] \{\Psi\}}$$

$$\frac{\{\Phi \in Stackables M\} K[t] \{\Psi\}}{\{\Phi \in Stackables M\} K[t] \{\Psi\}}$$

References i

Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees
 Syeda, Magnus O. Myreen, and Yong Kiam Tan. Do you have space
 for dessert? A verified space cost semantics for CakeML programs.
 Proceedings of the ACM on Programming Languages, 4(OOPSLA):
 204:1–204:29, 2020. URL https://doi.org/10.1145/3428272.

Jean-Marie Madiot and François Pottier. A separation logic for heap space under garbage collection. Proceedings of the ACM on Programming Languages, (POPL), January 2022. URL http://cambium.inria.fr/~fpottier/publis/ madiot-pottier-diamonds-2022.pdf. Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory management. In Functional Programming Languages and Computer Architecture, June 1995. URL https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf.