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Goal

A program logic to verify heap space bounds...

...for an imperative 𝜆-calculus...

...equipped with a Garbage Collector.
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A Motivating Example

let rec revapp l1 l2 =
match l1 with
| [ ] −> l2
| x : : l1 ’ −> revapp l1 ’ (x : : l2)

With a GC, what is the heap usage of revapp?

It depends on the call site!

I If l1 is used “elsewhere” O(length l1)
I If l1 is not used elsewhere O(1):
The GC can claim the front cell at each step.
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Prior Work

SpaceLang by Madiot and Pottier (2022)

I Space as a resource, Space Credits ◇1
I Pointed-by assertions to track predecessors ℓ←[1 L
I Free as a Ghost Update ℓ ↦→1 b * ℓ←[1 ∅ V ◇size(b) * † ℓ

But...

I Target a low level language
I Bookkeeping of roots with stack cells
I Heavy reasoning rules

3/20



Prior Work

SpaceLang by Madiot and Pottier (2022)

I Space as a resource, Space Credits ◇1
I Pointed-by assertions to track predecessors ℓ←[1 L
I Free as a Ghost Update ℓ ↦→1 b * ℓ←[1 ∅ V ◇size(b) * † ℓ

But...

I Target a low level language
I Bookkeeping of roots with stack cells
I Heavy reasoning rules

3/20



Contributions

I A Separation Logic with Space Credits for an imperative 𝜆-calculus
I New Stackable assertion to track roots
I Enhancement of pointed-by assertions

I Possibly-null fractions I Signed multisets

I Examples: Lists & Stacks

I Mechanized in Coq with Iris
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An imperative 𝜆-calculus - Syntax

Values

I Unit & numbers
I Memory locations of blocks
I Closed functions (code pointers). See next paper for closures,

Terms

I Arithmetic, conditional, code pointer call, let definition
I Heap allocation, load and store
I No explicit deallocation instruction!

5/20



An imperative 𝜆-calculus - Syntax

Values

I Unit & numbers
I Memory locations of blocks
I Closed functions (code pointers). See next paper for closures,

Terms

I Arithmetic, conditional, code pointer call, let definition
I Heap allocation, load and store
I No explicit deallocation instruction!

5/20



An imperative 𝜆-calculus - Semantics

I Standard small-step call-by-value semantics,
with a maximal live heap size
→ allocation fails if there is not enough space

I Substitution-based
I Interleave GC steps with reduction steps
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About Unreachability: Heap Paths

The GC can deallocate unreachable locations.
The location ℓ is unreachable ⇐⇒ there is no path from a root to ℓ.

Nontrivial to reason about paths.
Madiot & Pottier’s solution: the location ℓ is unreachable when

I ℓ is not a root; and,
I ℓ is not pointed by any heap block
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About Unreachability: the Free Variable Rule

What is a root?

The Free Variable Rule (Morrisett et al., 1995). The roots are:

I Syntactically, live bound variables
I Operationally, live locations in the stackframe

let rec revapp l1 l2 =
(* l1 is a root according to the FVR *)
match l1 with
| [ ] −> l2
| x : : l1 ’ −>
(* l1 is not a root anymore according to the FVR *)
revapp l1 ’ (x : : l2)
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Visible Roots vs Invisible Roots

I Roots may appear in the evaluation context
I We want to reason locally, on subterms
{Φ} t {Ψ} does not involve any evaluation context

With a subterm t of a program K[t], the location ℓ is not a root:

I If ℓ is not a visible root ℓ /∈ locs(t); and,

inspect the term

I If ℓ is not an invisible root ℓ /∈ locs(K)

Stackable assertion
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Free as a Ghost Update

New ghost update parameterized by the visible roots.

Φ Vlocs(t) Φ
′ {Φ′} t {Ψ}

{Φ} t {Ψ}

Our logical Free rule.

ℓ ↦→1 b * ℓ←[1 ∅ * pℓ /∈ Vq * Stackable ℓ 1 VV ◇size(b) * † ℓ

We provide a more general rule to deallocate cycles.
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Allocation

Pointed-by and Stackable assertions are created upon allocation.

¶
◇n
©
alloc n

𝜆ℓ.

ℓ ↦→1 ()
n

ℓ← [1 ∅
Stackable ℓ 1



11/20



The Stackable Assertion

Our extended let rule for a simple context.

locs(t2) = {ℓ}

{Φ} t1 {Ψ′} ∀v. {

Stackable ℓ p *

Ψ′ v} [v/x]t2 {Ψ}
{

Stackable ℓ p *

Φ} let x = t1 in t2 {Ψ}

I Stackable ℓ p cannot appear in Φ

I Hence, Stackable ℓ 1 cannot appear in Φ

I Hence, ℓ cannot be logically deallocated in {Φ} t1 {Ψ′}

We provide a more general rule for arbitrary contexts.
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Triples with Souvenir

Stackable assertions seems difficult to manage in practice.

Introducing triples with souvenir ⟨R⟩ {Φ} t {Ψ}
“Give a Stackable assertion once and thats it”

locs(t2) = {ℓ}
⟨R ∪ {ℓ}⟩ {Φ} t1 {Ψ′} ∀v. ⟨R⟩ {Stackable ℓ p *Ψ′ v} [v/x]t2 {Ψ}

⟨R⟩ {Stackable ℓ p * Φ} let x = t1 in t2 {Ψ}

locs(t2) = {ℓ} ℓ ∈ R
⟨R⟩ {Φ} t1 {Ψ′} ∀v. ⟨R⟩ {Ψ′ v} [v/x]t2 {Ψ}

⟨R⟩ {Φ} let x = t1 in t2 {Ψ}
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Proving that a Location is not a Visible Root

The goal ℓ /∈ V is not trivial: one must take aliasing into account.

ℓ ↦→1 b * ℓ←[1 ∅ * pℓ /∈ Vq * Stackable ℓ 1 VV ◇size(b) * † ℓ

Thankfully

I We are developing a Separation Logic
I We can use the separating conjunction
I With ℓ ↦→1 b and ℓ←[1 L and Stackable ℓ 1
I Simple cases can be automated!
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Possibly Null Fractions & Signed Multisets

ℓ3 ←[q {+ℓ1; +ℓ1; +ℓ2 }
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Possibly Null Fractions & Signed Multisets
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≡ ℓ3 ← [(q+0)
(
{+ℓ1; +ℓ1; +ℓ2 } ⊎ {−ℓ1}
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What are we Proving?

The soundness theorem is about safety.

Theorem
If ⟨∅⟩ {◇S} t {Ψ} holds, then, with S initial memory words, t is safe.

Safety means that if t reduces to t′, then either,

I t′ is a value; or,
I after a full garbage collection, t′ can reduce.

In other words: the maximal live heap size never exceeds S.
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The List Predicate

Pointed-by and Stackable assertions often go together.

v ←˒p L , v ←[p L * Stackable v p

The predicate List, for lists without sharing

List L l , match L with
| [] ⇒ l ↦→ [0]
| (v,p) :: L′ ⇒ ∃l′.
l ↦→ [1; v; l′] * v ←˒p {l} * l′ ←˒ 1 {l} * List L′ l′
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Back to the Example: Destructive Specification

⟨ ∅ ⟩
®
List L1 l1 * l1 ←˒ 1 ∅
List L2 l2 * l2 ←˒ 1 ∅

´
revapp (l1, l2)

®
𝜆l. List (rev L1 ++ L2) l

l ←˒ 1 ∅ * ◇1

´
I Consumes its two arguments
I Generates one space credit
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Back to the Example: Non-Destructive Specification

⟨ {l1} ⟩
®
List L1 l1 * ◇(3× |L1|)
List L2 l2 * l2 ←˒ 1 ∅

´
revapp (l1, l2)

𝜆l.
List ( 12L1) l1

List (rev ( 12L1) ++ L2) l
l ←˒ 1 ∅



I A souvenir of l1: requires the framing of Stackable l1 p assertion
I Requires space credits
I Split fractions
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Conclusion & Future Work

I A Separation Logic with Space Credits for a 𝜆-calculus with a GC.

Future Work

I See next paper for closures,
I Weak Pointers & Ephemerons
I Concurrency
I Link with the cost semantics of CakeML
(Gómez-Londoño et al., 2020)
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Thank you for your attention!



The Bind Rule

Stackables M , *
(ℓ, p)∈M

Stackable ℓ p

Bind
dom(M) = locs(K)

{Φ} t {Ψ′} ∀v. {Ψ′ v * Stackables M} K[v] {Ψ}
{Φ * Stackables M} K[t] {Ψ}
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