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Disentanglement is a runtime property of parallel programs intuitively guaranteeing that parallel tasks

remain oblivious to each other’s allocations. As demonstrated in the MaPLe compiler and run-time system,

disentanglement can be exploited for fast automatic memory management, especially task-local garbage

collection with no synchronization between parallel tasks. However, as a low-level property, disentanglement

can be difficult to reason about for programmers. The only means of statically verifying disentanglement

so far has been DisLog, an Iris-fueled variant of separation logic, mechanized in the Rocq proof assistant.

DisLog is a fully-featured program logic, allowing for proof of functional correctness as well as verification of

disentanglement. Yet its employment requires significant expertise and per-program proof effort.

This paper explores the route of automatic verification via a type system, ensuring that any well-typed

program is disentangled and lifting the burden of carrying out manual proofs from the programmer. It

contributes TypeDis, a type system inspired by region types, where each type is annotated by a timestamp,

identifying the task that allocated it. TypeDis supports iso-recursive types, as well as polymorphism over both

types and timestamps. Crucially, timestamps are allowed to change during type-checking, at join points as

well as via a form of subtyping, dubbed subtiming. The paper illustrates TypeDis and its features on a range of

examples. The soundness of TypeDis and the examples are mechanized in the Rocq proof assistant, using an

improved version of DisLog, dubbed DisLog2.

Additional Key Words and Phrases: disentanglement, parallelism, type system, separation logic

1 Introduction
A recent line of work has identified a key memory property of parallel programs called disen-
tanglement [Acar et al. 2015; Arora et al. 2024, 2021, 2023; Guatto et al. 2018; Moine et al. 2024;

Raghunathan et al. 2016; Westrick et al. 2022, 2020]. Roughly speaking, disentanglement is the prop-

erty that concurrent tasks remain oblivous to each other’s memory allocations. As demonstrated

by the MaPLe compiler [Acar et al. 2020], this property makes it possible to perform task-local

memory management (allocations and garbage collections) independently, in parallel, without

any synchronization between concurrent tasks. MaPLe in particular features a provably efficient

memory management system for a dialect of Parallel ML—a parallel functional programming

language—and offers competitive performance in practice relative to low-level parallel code written

in languages such as C/C++ [Arora et al. 2023].

The key idea behind disentanglement is to coschedule memory and computation, taking ad-

vantage of structured fork-join parallelism. Memory is organized into a dynamic tree of heaps

mirroring the parent/child relationship between tasks: as tasks fork and join, the tree grows and

contracts, respectively. Each task thus has its own task-local heap, in which it allocates memory

objects and may perform garbage collection independently, in parallel. On this tree of heaps, disen-

tanglement can be defined as a “no cross-pointers” invariant. Specifically, disentanglement allows

for up-pointers from descendant heaps to ancestors, as well as down-pointers from ancestors to

descendants, but disallows cross-pointers pointers between concurrent tasks (siblings, cousins, etc.).

The existence of cross-pointers is called entanglement.

Authors’ Contact Information: AlexandreMoine, alexandre.moine@nyu.edu, NewYork University, NewYork, USA; Stephanie

Balzer, balzers@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, USA; Alex Xu, alexxu@andrew.cmu.edu, Carnegie

Mellon University, Pittsburgh, USA; Sam Westrick, shw8119@nyu.edu, New York University, New York, USA.
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Entanglement arises from a particular communication pattern, where one task allocates a local

heap object and then another task (executing concurrently, relative to the first task) acquires a

pointer to the object. At this point, the task-local memories of the two concurrent tasks have become

intertwined and neither task can perform garbage collection without synchronizing with the other.

These additional synchronizations lead to significant performance degradation in the automatic

memory management system [Arora et al. 2023]. In this sense, entanglement is a performance

hazard.

One way to rule out entanglement is to disallow side effects entirely. Indeed, the original study

of disentanglement emerged out of an interest in improving the performance of parallel functional

programming techniques, which naturally have a high rate of allocation and whose scalability

and efficiency is largely determined by the performance of automatic memory management. In

this setting, disentanglement is guaranteed by construction due to a lack of side effects. But the

full power of disentanglement lies in its expressivity beyond purely functional programming—in

particular, disentanglement allows for judicious utilization of side effects such as in-place updates

and irregular and/or data-dependent access patterns in shared memory. Such side effects are crucial

for efficiency in state-of-the-art implementations of parallel algorithms [Abdi et al. 2024; Anderson

et al. 2022; Shun et al. 2012], and all of these implementations have been found to be naturally

disentangled [Westrick et al. 2022].

In these more general settings, where there numerous opportunities for efficient utilization of side

effects, it is easy to accidentally entangle concurrent tasks. To ensure good performance—especially

the efficiency and scalability of automatic memory management—a question immediately arises of

how to verify disentanglement.

Verification of disentanglement. Two approaches to check for and/or verify disentanglement have

been proposed thus far. First, as currently implemented in the MaPLe compiler, the programmer

can rely on a runtime entanglement detector [Westrick et al. 2022]. This approach is similar in

principle to dynamic race detection [Flanagan and Freund 2009]. In the case of entanglement,

dynamic detection has been shown to have low overhead, making it suitable for automatic run-time

management of entanglement [Arora et al. 2023]. However, run-time detection cannot guarantee

disentanglement due to the inherent non-determinism of entanglement, which typically arises

due to race conditions and may or may not occur in individual executions. The second approach,

as developed by Moine et al. [2024], is full-blown static verification of disentanglement using a

separation logic called DisLog, proven sound in Rocq
1
on top of the Iris framework [Jung et al.

2018b]. This approach can be used to statically verify disentanglement, no matter how complex

the program is—for example, even for non-deterministic programs that utilize intricate lock-free

data structures in shared memory. However, static verification with DisLog is difficult, requiring

significant expertise and effort even to verify small examples. Additionally, both of these prior

approaches are inherently low-level, requiring the programmer to reason about disentanglement at

the level of individual memory allocations and accesses, which is not only cumbersome but also

fundamentally at odds with the goal of expressive high-level parallel programming.

In context of this prior work, an interesting question is whether it is possible to guarantee

disentanglement statically through a type system. This would have the advantage of being mostly

automatic, requiring (ideally) only a modest amount of type annotation. Most importantly, a type

system would raise the level of abstraction at which the programmer can reason about disentan-

glement, clarifying how the property interacts with high-level abstractions such as parametric

polymorphism, higher-order functions, algebraic datatypes, and other desirable features.

1
The Rocq prover is the new name of the Coq proof assistant, see https://rocq-prover.org/.
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TypeDis: A Type System for Disentanglement 3

A type system for disentanglement. In this paper, we present TypeDis, the first static type system
for disentanglement. We consider a core ML-like language with a number of expressive features, as

well as in-place atomic operations on shared memory and structured fork-join parallelism. The

language features a single parallel construct, written par(𝑓 , 𝑔), which calls 𝑓 () and 𝑔() in parallel,

waits for both to complete, and returns their results as a pair. Here, we think of the execution of the

two function calls as two child tasks, which themselves might execute par(...) recursively, creating
a dynamic tree (parent-child) relationship between tasks.

TypeDis identifies tasks with timestamp variables 𝛿 , and annotates every value computed during

execution with the timestamp of the task that allocated that value. This is tracked explicitly in the

type of the value. For example, 𝑠 : string@𝛿 indicates that the value 𝑠 is a string that was allocated

by a task 𝛿 . The type system implicitly maintains a partial order over timestamps, written 𝛿 ′ ≼ 𝛿 ,

intuitively corresponding to the tree relationship between tasks. Crucially, TypeDis guarantees an

invariant that we call the up-pointer invariant: for every task running at timestamp 𝛿 , every value

accessed by this task must have a timestamp 𝛿 ′ ≼ 𝛿 , i.e., the value must have been allocated “before”

the current timestamp. In other words, the key insight in this paper is to restrict all memory references
to point backwards in time, which is checked statically. This restriction is a deep invariant over

values: every data structure will only contain values allocated at the same timestamp or a preceding

timestamp. As a result, all loads in the language are guaranteed to be safe for disentanglement.

Although the up-pointer invariant places some restrictions on programs written within TypeDis,

we have nevertheless found it to be surprisingly expressive. The up-pointer invariant is well-suited

for immutable data (which naturally adheres to the invariant), as well as parallel batch processing

of pre-allocated data. Pre-allocation especially is a common pattern in many performance-oriented

parallel programs (to avoid the performance overheads of dynamic allocation along the “hot” path),

and pre-allocation generally leads to more up-pointers. The up-pointer invariant also allows for

structure sharing, even in the presence of mutable state.

Maintaining the up-pointer invariant. To maintain the up-pointer invariant in the presence of

mutable state, TypeDis places a restriction on writes (in-place updates), requiring that the timestamp

of the written value precedes the timestamp of its container. This restriction is implemented in the

type system with a form of subtyping, dubbed subtiming, which affects only the timestamps of

values within their types. The idea is to allow for any value to be (conservatively) restamped with

a newer timestamp. Subtiming makes it possible to express the restriction on writes as a simple

unification over the type of the contents of a mutable reference or array.

Restamping with an older timestamp would be unsound in TypeDis, as it would allow for a

child’s (heap-allocated) value to be written into a parent’s container, potentially making that value

accessible to a concurrent sibling. This is prevented throughout the type system, except in one

place: at the join point of par. At this point, the two sub-tasks have completed and their parent

inherits the values they allocated. To allow the parent task to access these values, TypeDis restamps

the result of par with the timestamp of the parent. We dub this operation backtiming.
TypeDis features first-class function types (𝛼 →𝛿 𝛽), annotated by a timestamp variable 𝛿 ,

indicating which task the function may be called by. Timestamp variables can be universally

quantified, effectively allowing for timestamp polymorphism. For example, pure functions that

have no side-effects are type-able as (∀𝛿. 𝛼 →𝛿 𝛽), indicating that the function may be safely called

by any task. TypeDis also allows for constrained timestamp polymorphism. For example, a

function of type (∀𝛿 ′ ≼ 𝛿. string@𝛿 ′ →𝛿 ()) only accepts as argument strings timestamped at

some 𝛿 ′ that precede the timestamp 𝛿 of the calling task. Typically, such constraints arise from the

use of closures, especially those that close over mutable state.
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Soundness. The soundness of TypeDis is verified in Rocq on top of the Iris separation logic

framework. More precisely, we use the approach of semantic typing [Constable et al. 1986; Martin-

Löf 1982; Timany et al. 2024], and define a logical relation targeting a variation of DisLog [Moine

et al. 2024], from which we reuse the technical parts. As illustrated by RustBelt [Jung et al. 2018a],

semantic typing facilitates manual verification of programs that are correct (e.g. disentangled), but

ill-typed, by carrying out a logical relation inhabitation proof using the program logic—overcoming

incompleteness inherent to any type system. For example, in the case of TypeDis, this allows the

user to verify part of the code that use pointers pointing forward in time. We do not yet make use

of this feature in this paper, but it would be interesting to explore in more detail in future work.

Contributions. Our contributions include:

• TypeDis, the first static type system for disentanglement. It is a type system with the

notion of a timestamp to track which object is accessible by which task. TypeDis includes

(iso-)recursive types as well as polymorphism over types and over timestamps.

• Two mechanisms to update a timestamp annotation: via subtiming, a form of subtyping,

and specifically at join points via the new operation of backtiming.

• A soundness proof of TypeDis mechanized in the Rocq prover using the Iris framework.

We use semantic typing [Timany et al. 2024] and DisLog2, an improved version of DisLog

relying on a new alternative definition of disentanglement.

• A range of case studies, including building and iterating over an immutable tree in parallel,

as well the challenging example of deduplication via concurrent hashing.

2 Key Ideas
In this section, we cover the key ideas of our work. We start by recalling the definition of disen-

tanglement (§2.1). We then present the main idea of TypeDis: adding task identifiers, specifically

timestamp variables, within types (§2.2). We then illustrate with two examples two core principles

of TypeDis allowing for updating timestamps within types: backtiming (§2.3) and subtiming (§2.4).

2.1 Background and Preliminaries
Nested fork-join parallelism and task trees. We consider programs written in terms of a single

parallel primitive: par(𝑓1, 𝑓2), which creates two new child tasks to execute 𝑓1 () and 𝑓2 () in parallel,

waits for both of child tasks to complete, and then returns the results of the two calls as an immutable

pair. Creating the two child tasks is called a fork, and waiting for the two children to complete is

called a join. The behavior of the par primitive guarantees that every fork has a corresponding

join. Any task may (recursively) fork and join, and in this sense the parallelism of the program is

nested, giving rise to a dynamic tree during execution called the task tree. The nodes of the task
tree correspond to (parent) tasks that are waiting for their children to join, and the leaves of the

task tree correspond to tasks which may actively take a step. Whenever two sibling tasks join, the

children are removed from the tree and the parent resumes as a leaf task. The task tree therefore

dynamically grows and shrinks as tasks fork and join. In this paper, we will use the letter 𝑡 to

denote tasks (leaves of the task tree), and will equivalently refer to these as timestamps.

Computation graphs. The evolution of the task tree over time can be recorded as a computation
graph, where vertices correspond to tasks and edges correspond to scheduling dependencies. The

computation graph records not just the current tree of tasks, but also the history of tasks that have

joined. When a task 𝑡 forks into two children 𝑡1 and 𝑡2, two edges (𝑡, 𝑡1) and (𝑡, 𝑡2) are added to the

graph; later when 𝑡1 and 𝑡2 join, two edges (𝑡1, 𝑡) and (𝑡2, 𝑡) are added to the graph. We say that

, Vol. 1, No. 1, Article . Publication date: July 2025.
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𝑡0

𝑡1

𝑡2

𝑡3

𝑡4

𝑡 ′
2

𝑡 ′
0

𝑡5

𝑡6

(a) Standard computation graph

𝑡0

𝑡1

𝑡2

𝑡3

𝑡4 𝑡5

𝑡6

(b) Equivalent “cyclic” approach used in this paper

Fig. 1. Comparison of two computation graphs equivalent for disentanglement

𝑡 precedes 𝑡 ′ in graph 𝐺 , and write 𝐺 ⊢ 𝑡 ≼ 𝑡 ′, when there exists a sequence of edges from 𝑡 to 𝑡 ′.
Note that ≼ is reflexive. Two tasks are concurrent when neither precedes the other.

Standard versus cyclic computation graphs. It is worth mentioning that our presentation of

computation graphs differs slightly from the standard presentation used in prior work [Acar et al.

2016; Moine et al. 2024; Westrick et al. 2020]. The standard approach is to use a fresh task identifier

at each join point, effectively renaming the resumed parent task. In our approach, which we call

the cyclic approach, we instead use the same task identifier after the join point. Figure 1 illustrates

the difference between the two approaches. It presents two computation graphs representing the

same computation: Figure 1a shows the standard approach, and Figure 1b shows the (new) cyclic

approach. The distinction occurs when two tasks join. In Figure 1a tasks 𝑡3 and 𝑡4 join and form a

new task 𝑡 ′
2
whereas in Figure 1b the two tasks join by going back to task 𝑡2. This distinction occurs

again when 𝑡 ′
2
(resp. 𝑡2) join to form 𝑡 ′

0
(resp. 𝑡0).

The cyclic approach considerably reduces the need to manipulate timestamps, not only in our

proofs (for example the soundness proof of backtiming), but also in the design of the type system

itself as well as in the underlying program logic (§5.3). As the name suggests, the cyclic approach

introduces cycles in the graph, which may seem dangerous. However, for the purpose of verifying

disentanglement, we prove the two approaches equivalent.
2

Roots. At any moment, every task has a set of task-local roots which are the memory locations

directly mentioned within a subexpression of that task. For example, the expression ‘let𝑥 =

(ℓ1, ℓ2) in fst(𝑥)’ has roots {ℓ1, ℓ2}, where (formally) ℓ1 and ℓ2 are locations within a the memory

store. Note that the roots of a task change over time: for example, the above expression eventually

steps to ℓ1 at which point it only has one root, {ℓ1}. The set of roots can grow due to allocations

and loads from memory.

Disentanglement. Disentanglement restricts the set of possible task-local roots. A program state
is disentangled if each root of a task has been allocated by some preceding task. More

precisely, a program state with a computation graph 𝐺 is disentangled if, for a root ℓ of a task 𝑡 , ℓ

has been allocated by a task 𝑡 ′ such that 𝐺 ⊢ 𝑡 ′ ≼ 𝑡 , that is, such that 𝑡 ′ precedes 𝑡 in 𝐺 . Following
the computation graph definition, preceding tasks include 𝑡 itself, parent tasks, but also children

tasks that have terminated. The formal definition of disentanglement appears in Section 3.3.

TypeDis, the type system we present, verifies that a program is disentangled, that is, every

reachable program state is disentangled.

2
Intuitively, the two approaches are equivalent because we never need to check reachability between two tasks that have

both completed. We have formally proven this equivalence with a simulation theorem: every reduction in a semantics with

the standard approach implies the existence of a reduction reaching the same expression in the semantics with the cyclic

approach, and vice-versa [Anon. 2025].
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246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

2.2 TypeDis 101: Timestamps in Types
In order to keep track of which task allocated which location, TypeDis incorporates timestamps in

types. More precisely, every heap-allocated (“boxed”) type is annotated by a timestamp variable,
written 𝛿 , which can be understood as the timestamp of the task that allocated the underlying

location. For example, a reference allocated by task 𝛿 on a (unboxed) integer has type ref(int)@𝛿 .

Timestamp polymorphism. Functions in TypeDis are annotated by a timestamp variable, re-

stricting which task they may run on. Such a variable can be universally quantified, allowing for

functions to be run by different tasks. For example, consider the function fun x -> newref(x)
which allocates a new mutable reference containing an integer x. This function can be given the

type ∀𝛿. int→𝛿 ref(int)@𝛿 . The superscript 𝛿 on the arrow indicates that the function must run

on a task at timestamp 𝛿 , and the result type ref(int)@𝛿 indicates that the resulting reference will

be allocated at the same timestamp 𝛿 . By universally quantifying 𝛿 , the function is permitted to

run on any task, with the type system tracking that the resulting reference will be allocated at the

same timestamp as the caller.

Type polymorphism. TypeDis allows for universal quantification over type variables 𝛼 . Consid-

ering again the function fun x -> newref(x), we can give this function the more general type

∀𝛼.∀𝛿. 𝛼 →𝛿 ref(𝛼)@𝛿 , indicating that it is polymorphic over the type 𝛼 of the contents of the

mutable reference. Corresponding get and set primitives for mutable references can then be typed

as shown in Figure 2, all of which are polymorphic over the type variable 𝛼 . Note that, in the type

of the set primitive, we use a notational convention: functions taking multiple arguments only

specify a timestamp variable on the last arrow.

The up-pointer invariant. In Figure 2, the type of get is given as ∀𝛼.∀𝛿 𝛿 ′ . ref(𝛼)@𝛿 ′ →𝛿 𝛼 .

Note that this type is parameterized over both a caller time 𝛿 as well as a (potentially different)

timestamp 𝛿 ′ associated with the input reference. Intuitively, this type specifies that get is safe to
call at any moment, by any task, with any reference given as argument. The design of TypeDis

in general guarantees that all loads from memory, both mutable and immutable, are always safe.

Specifically, this is guaranteed by enforcing an invariant that we call the up-pointer invariant:
all data structures in the language may only contain values allocated at the same timestamp or a

preceding timestamp. For example, given two non-equal timestamps 𝛿1 and 𝛿2 where 𝛿1 ≺ 𝛿2, the
type ref(ref(int)@𝛿1)@𝛿2 is valid, but ref(ref(int)@𝛿2)@𝛿1 is not.

Closures. In TypeDis, functions are first-class values and may be passed as argument to other

functions, or stored in data structures, etc. Function values are implemented as heap-allocated

closures [Appel 1992; Landin 1964], and must be given a timestamp indicating when they were

allocated. For example, consider the definition of function 𝑓 in Figure 3, which closes over a mutable

reference 𝑟 and an immutable string𝑤 , both allocated at timestamps 𝛿0 which (in this example) is

the timestamp of the current task. We can give 𝑓 the type (∀𝛿. () →𝛿 ())@𝛿0, indicating that 𝑓

itself was allocated at timestamp 𝛿0. Additionally, the type of 𝑓 specifies that it may be freely called

at any timestamp; this is safe for disentanglement because 𝑓 preserves the up-pointer invariant,

regardless of when it will be called. Contrast this with the definition of function 𝑔, which (when

called) allocates a new string and writes this string into the reference 𝑟 . If 𝑔 were called at some

timestamp 𝛿1 where 𝛿0 ≺ 𝛿1, then this would violate the up-pointer invariant for 𝑟 . The function 𝑔

does however admit the type (int→𝛿0 ())@𝛿0, indicating that 𝑔 may be safely called only by tasks

at time 𝛿0 (the same timestamp as the reference 𝑟 ).
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newref : ∀𝛼.∀𝛿. 𝛼 →𝛿 ref(𝛼)@𝛿
get : ∀𝛼.∀𝛿 𝛿 ′ . ref(𝛼)@𝛿 ′ →𝛿 𝛼

set : ∀𝛼.∀𝛿 𝛿 ′ . ref(𝛼)@𝛿 ′ → 𝛼 →𝛿 ()
Fig. 2. Example: typing reference primitives

let r = newref "hello" 𝑟 : ref(string@𝛿0)@𝛿0
let w = "world" 𝑤 : string@𝛿0
let f () = set r w 𝑓 : (∀𝛿. () →𝛿 ())@𝛿0
let g i = 𝑔 : (int→𝛿0 ())@𝛿0

set r (Int.to_string i)

Fig. 3. Example: typing closures

type tree@𝛿 = ( int + (tree@𝛿 × tree@𝛿)@𝛿 )@𝛿
let leaf x = inj1 x leaf : (∀𝛿. int→𝛿 tree@𝛿)@𝛿0
let node x y = inj2 (x,y) node : (∀𝛿. tree@𝛿 → tree@𝛿 →𝛿 tree@𝛿)@𝛿0
let rec build n x = build : (∀𝛿. int→ int→𝛿 tree@𝛿)@𝛿0

if n <= 0 then leaf x else
let n' = n - 1 in
let (l,r) = par (fun () -> build n' x) (fun () -> build n' (x + pow2 n')) in
node l r

Fig. 4. Example: building a tree in parallel

2.3 Backtiming the Result of a par
As explained earlier (§2.1), we consider in this paper the parallel primitive par(...), which executes

two closures in parallel and returns their result as an immutable pair. The par primitive can be

used to build data structures in parallel. Consider the code presented in Figure 4. The recursive

type tree@𝛿 = ( int + (tree@𝛿 × tree@𝛿)@𝛿 )@𝛿 describes a binary tree with integer leaves. It

consists of an immutable sum of either an integer (a leaf) or a product of two subtrees (a node). All

the parts of a tree are specified in the type to have been allocated at the same timestamp 𝛿 . A leaf is

built with the first injection, and a node with the second injection. The function build n x builds

in parallel a binary tree of depth 𝑛, with leaves labeled from 𝑥 to 𝑥 + 2𝑛 − 1 in left-to-right order.

TypeDis type-checks build with the type ∀𝛿. int → int →𝛿 tree@𝛿 . The reader may be

surprised: we announced that the type tree@𝛿 has all of its parts allocated at the same timestamp 𝛿 ,

but we are showing a function that builds a tree in parallel, hence with some parts allocated by

different tasks at different timestamps. What’s the trick?

The key observation is that we can pretend that the objects allocated by a completed sub-task
were instead allocated by its parent. Indeed, disentanglement prevents sharing of data allocated in

parallel, but as soon as the parallel phase has ended, there is no restriction anymore!

In TypeDis, the par primitive implements backtiming, meaning that it replaces the timestamp

of the child task by the timestamp of the parent task in the return type of the closures executed in

parallel. Indeed, the par primitive admits the following, specialized for build, type:

∀𝛿 𝛿𝑙 𝛿𝑟 . (∀𝛿 ′ . () →𝛿 ′ tree@𝛿 ′)@𝛿𝑙 → (∀𝛿 ′ . () →𝛿 ′ tree@𝛿 ′)@𝛿𝑟 →𝛿 (tree@𝛿 × tree@𝛿)@𝛿

This type for par does exactly what we need: it returns the result of the two closures in a pair as-if

they were called at time 𝛿 . Backtiming is a powerful feature: it reduces parallelism to almost an

implementation detail. Indeed, the type of build does not reveal its internal use of parallelism.

2.4 Making Something New out of Something Old with Subtiming
A common practice (especially in functional programming) is data structural sharing, where
components of an old structure are reused inside part of a new structure. In the context of TypeDis,

data structural sharing is interesting in that it mixes data of potentially different timestamps within

the same structure. Here we consider one such example and a describe a key feature of TypeDis

which enables such “mixing” of timestamps.
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let rec selectmap p f t = selectmap : (∀𝛿 𝛿𝑝 𝛿𝑓 𝛿𝑡 . (∀𝛿 ′ . int→𝛿 ′ bool)@𝛿𝑝
match t with → (∀𝛿 ′ . int→𝛿 ′ int)@𝛿𝑓
| inj1 x -> if p x then leaf (f x) else t → tree@𝛿𝑡 →𝛿 tree@𝛿)@𝛿0
| inj2 (l,r) ->

let (nl,nr) = par (fun () -> selectmap p f l) (fun () -> selectmap p f r) in
if nl == l && nr == r then t else node nl nr

Fig. 5. Example: the selectmap function

Figure 5 presents the selectmap p f t function, which selectively applies the function f to

the leaves of the tree t, following a predicate p on integers. The selectmap function traverses the

tree in parallel and crucially preserves sharing as much as possible. Specifically, when none of the

leaves of the tree satisfy the predicate, the function returns the original input tree as-is, instead of

building another identical tree. To type this function within TypeDis, it may not be immediately

clear what the timestamp of the resulting tree should be: selectmap might directly return the

argument passed as argument (potentially coming from an older task), or it might return a new

tree. TypeDis typechecks selectmap with the type

∀𝛿 𝛿𝑝 𝛿 𝑓 𝛿𝑡 . (∀𝛿 ′ . int→𝛿 ′ bool)@𝛿𝑝 → (∀𝛿 ′ . int→𝛿 ′ int)@𝛿 𝑓 → tree@𝛿𝑡 →𝛿 tree@𝛿

This type universally quantifies over 𝛿 (the timestamp at which selectmap will run), 𝛿𝑝 and 𝛿 𝑓 (the

timestamps of the two closure arguments), and 𝛿𝑡 (the timestamp of the tree argument). Crucially,

the result is of type tree@𝛿 , as-if the whole result tree was allocated by 𝛿 . What’s the trick?

TypeDis supports subtiming, that is, a way of “advancing” timestamps within a type, following

the precedence. The rules of subtiming are as follows. For amutable type (e.g. an array or a reference),

subtiming is shallow: the outermost timestamp can be updated, but not the inner timestamps; this

is due to well-known variance issues [Pierce 2002, §15]. For an immutable type (e.g. products and

sums), subtiming is deep: any timestamp within the type can be advanced, as long as the up-pointer

invariant is preserved.

In the case of selectmap, we need to use deep subtiming on the recursive immutable type

tree@𝛿𝑡 in order to update it to tree@𝛿 . How can we be sure that 𝛿𝑡 , the timestamp of the tree,

precedes 𝛿 , the timestamp at which we call selectmap? We unveil a key invariant of TypeDis: every

timestamp in the typing environment precedes the “current” timestamp, that is, the timestamp of

the task executing the function. In our case the current timestamp is precisely 𝛿 . We hence deduce

that 𝛿𝑡 precedes 𝛿 , allowing us to use subtiming to “restamp” the value 𝑡 : tree@𝛿𝑡 as 𝑡 : tree@𝛿 .
To allow the user to express additional knowledge about the dependencies between timestamps,

TypeDis annotates universal timestamp quantification with a set of constraints, which are supposed

to hold while typing the function body, and are verified at call sites. For example, the following

function let par' f g = ignore (par f g) that executes two closures f and g from unit to

unit in parallel and ignore the result can be given the type:

∀𝛿 𝛿1 𝛿2. (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ ())@𝛿1 → (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ ())@𝛿2 →𝛿 ()

This type says that, if par' gets called at timestamp 𝛿 with arguments 𝑓 and 𝑔, then 𝑓 and 𝑔 can

assume that they will be called at timestamp 𝛿 ′ such that 𝛿 ≼ 𝛿 ′. These constraints are discussed in

Section 4, and the fully general type of par is presented in Section 4.6.

3 Syntax and Semantics
The formal language we study, dubbed DisLang2, can be understood as an extension of DisLang,

the language studied by Moine et al. [2024]. DisLang2 adds support for immutable pairs and sums,
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Values 𝑣,𝑤 ::= () | 𝑏 ∈ {true, false} | 𝑖 ∈ Z | ℓ ∈ L | vfold 𝑣
Blocks 𝑟 ::= ®𝑤 | (𝑣, 𝑣) | inj𝜄∈{0,1} 𝑣 | 𝜇𝑓 . 𝜆®𝑥 . 𝑒
Primitives ⊲⊳ ::= + | − | × | ÷ | mod | == | < | ≤ | > | ≥ | ∨ | ∧
Expressions 𝑒 ::= 𝑣 | 𝑥 ∈ V | let𝑥 = 𝑒 in 𝑒 | if 𝑒 then 𝑒 else 𝑒 | 𝑒 ⊲⊳ 𝑒

| 𝜇𝑓 .Λ®𝛿 Δ. 𝜆®𝑥 !𝛿. 𝑒 | 𝑒 ⟨ ®𝛿⟩ ®𝑒 | Λ𝛼 :: 𝜅. 𝑒 | 𝑒 ⟨𝜌⟩ closures and universal types
| (𝑒, 𝑒) | proj𝜄∈{1,2} 𝑒 pairs
| inj𝑖∈{1,2} 𝑒 | match 𝑒 with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 end sums

| alloc 𝑒 𝑒 | 𝑒 [𝑒] | 𝑒 [𝑒]←𝑒 | length 𝑒 arrays
| fold 𝑒 | unfold 𝑒 iso-recursive types
| par(𝑒, 𝑒) | 𝑒 ∥ 𝑒 | CAS 𝑒 𝑒 𝑒 𝑒 parallelism and concurrency

Contexts 𝐾 ::= let𝑥 = □ in 𝑒 | if□ then 𝑒 else 𝑒 | alloc □ 𝑒 | alloc 𝑣 □ | length□
| □[𝑒] | 𝑣 [□] | □[𝑒]←𝑒 | 𝑣 [□]←𝑒 | 𝑣 [𝑣]←□
| □ ⊲⊳ 𝑒 | 𝑣 ⊲⊳ □ | □ ®𝑒 | 𝑣 (®𝑣 ++ □ ++ ®𝑒) | fold□
| unfold□ | (□, 𝑒) | (𝑣,□) | proj𝜄 □ | inj𝑖 □
| match□with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 end | par(□, 𝑒) | par(𝑣,□)

| CAS□ 𝑒 𝑒 𝑒 | CAS 𝑣 □ 𝑒 𝑒 | CAS 𝑣 𝑣 □ 𝑒 | CAS 𝑣 𝑣 𝑣 □

Fig. 6. Syntax of DisLang2. Constructs in red are source-level and constructs in blue are runtime-level.

iso-recursive types, and directly offers the par primitive for fork-join parallelism. We present the

syntax of DisLang2 (§3.1), its semantics (§3.2), and the formal definition of disentanglement (§3.3).

3.1 Syntax
The syntax of DisLang2 appears in Figure 6. The constructs in red occur only in the source program

and are erased at runtime; conversely, the constructs in blue are forbidden in the source program

and occur only at runtime.

A value 𝑣 ∈ V can be the unit value (), a boolean 𝑏 ∈ {true, false}, an idealized integer 𝑖 ∈ Z, a
memory location ℓ ∈ L, where L is an infinite set of locations, or a folded value vfold 𝑣 , witnessing
our use of iso-recursive types [Pierce 2002, §20].

A block describes the contents of a heap cell, amounting to either an array of values, written ®𝑤 ,

an immutable pair (𝑣, 𝑣), the first injection inj
1
𝑣 or the second injection inj

2
𝑣 of an immutable sum,

or a 𝜆-abstraction 𝜇𝑓 . 𝜆®𝑥 . 𝑒 . Lambdas can close over free variables, compilers of functional languages

usually implement them as closures [Appel 1992; Landin 1964]. A closure is a heap-allocated object

carrying a code pointer as well as an environment, recording the values of the free variable. Thus,

acquiring a closure can create entanglement. Moreover, because functions and tuples are heap

allocated, currying and uncurrying—that is, converting a function taking multiple arguments to a

function taking a tuple of arguments and vice-versa—does not come for free. Hence, we chose to

present a version of the language were every function takes possibly multiple arguments.

Expressions 𝑒 range over the usual constructs, but some of them (related to closures and universal

quantification) carry additionally timestamp variables 𝛿 , logical graphs Δ (formally defined as a set

of pairs of timestamps), kinds 𝜅 and types 𝜌 to guide type checking. These annotations disappear

at runtime (§4.1).

Closure allocation is written 𝜇𝑓 .Λ®𝛿 Δ. 𝜆®𝑥 !𝛿. 𝑒 . This notation binds a recursive name 𝑓 , a list of

timestamps
®𝛿 , a logical graph Δ, argument names ®𝑥 and execution timestamp 𝛿 in the expression 𝑒 .

A function call is written 𝑒 ⟨ ®𝛿⟩ ®𝑒 , instantiating the (type-level) timestamps arguments of 𝑒 with ®𝛿
and function arguments with ®𝑒 . Universal quantification is written Λ𝛼 :: 𝜅. 𝑒 , quantifying over type

variable 𝛼 with kind 𝜅 in 𝑒 . Type application is written 𝑒 ⟨𝜌⟩.
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HeadAlloc

0 ≤ 𝑛 ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \alloc 𝑛 𝑣 −→ [ℓ := 𝑣𝑛]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadLoad

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ [𝑖] −→ 𝜎 \𝛼 \𝑣

HeadStore

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ [𝑖]←𝑣 −→ [ℓ := [𝑖 := 𝑣] ®𝑤]𝜎 \𝛼 \ ()

HeadLetVal

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ let𝑥 = 𝑣 in 𝑒 −→ 𝜎 \𝛼 \ [𝑣/𝑥]𝑒

HeadIfTrue

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ if true then 𝑒1 else 𝑒2 −→ 𝜎 \𝛼 \𝑒1
HeadIfFalse

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ if false then 𝑒1 else 𝑒2 −→ 𝜎 \𝛼 \𝑒2
HeadClosure

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝜇𝑓 . 𝜆®𝑥 . 𝑒 −→ [ℓ := 𝜇𝑓 . 𝜆®𝑥 . 𝑒]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadCall

𝜎 (ℓ) = 𝜇𝑓 . 𝜆®𝑥 . 𝑒 | ®𝑥 | = | ®𝑤 |
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ ®𝑤 −→ 𝜎 \𝛼 \ [ℓ/𝑓 ] [ ®𝑤/®𝑥]𝑒

HeadCallPrim

𝑣1 ⊲⊳ 𝑣2
pure−−−→ 𝑣

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑣1 ⊲⊳ 𝑣2 −→ 𝜎 \𝛼 \𝑣

HeadPair

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ (𝑣1, 𝑣2) −→ [ℓ := (𝑣1, 𝑣2)]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadProj

𝜎 (ℓ) = (𝑣1, 𝑣2)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \proj𝜄 ℓ −→ 𝜎 \𝛼 \𝑣𝜄

HeadInj

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ inj𝑖 𝑣 −→ [ℓ := inj𝑖 𝑣]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadCase

𝜎 (ℓ) = inj𝜄 𝑣

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ (match ℓ with inj
1
𝑥1 ⇒ 𝑒1 | inj2 𝑥2 ⇒ 𝑒2 end) −→ 𝜎 \𝛼 \ [𝑣/𝑥𝜄 ]𝑒𝜄

HeadFold

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ fold 𝑣 −→ 𝜎 \𝛼 \vfold 𝑣
HeadUnfold

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \unfold (vfold 𝑣) −→ 𝜎 \𝛼 \𝑣

Fig. 7. Head reduction (selected rules)

In DisLang2, fork-join parallelism is available via the parallel primitive par(𝑒1, 𝑒2), which re-

duces 𝑒1 and 𝑒2 to closures, calls them in parallel, and returns their result as an immutable pair. This

parallel computation is represented by the active parallel pair 𝑒1 ∥ 𝑒2, appearing only at runtime.

DisLang2 supports a compare-and-swap instruction CAS 𝑒 𝑒 𝑒 𝑒 , which targets an array, and is

parameterized by 4 arguments: the location of the array, the index in the array, the old value and

the new value. A (sequential) evaluation context 𝐾 describes a term with a hole, written □. The
syntax of evaluation contexts dictates a left-to-right call-by-value evaluation strategy. Note that

evaluation contexts 𝐾 in this presentation are sequential. Specifically, we intentionally excluded

active parallel pairs (− ∥ −) from the grammar of 𝐾 . The evaluation strategy for active parallel

pairs allows for interleaving of small steps, which is handled separately by a “scheduler reduction”

relation in the operational semantics (§3.2).

3.2 Operational Semantics
Head reduction relation. A head configuration 𝜎 \𝛼 \𝑒 is composed of a store 𝜎 , an allocation

map 𝛼 , and an expression 𝑒 . The store 𝜎 represents the heap and consists of a finite map of locations

to blocks. The allocation map 𝛼 is a finite map of locations to timestamps, recording the timestamps

at which locations were allocated. Figure 7 presents parts of the definition of the head reduction

relation between two head configurations 𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑒 −→ 𝜎 ′ \𝛼 ′ \𝑒′ occurring at the (local)
task of timestamp 𝑡 in the (global) computation graph 𝐺 . A head configuration consists of the
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SchedHead

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑒 −→ 𝜎′ \𝛼 ′ \𝑒′

𝜎 /𝛼 /𝐺 /𝑡 /𝑒 sched−−−−→ 𝜎′ /𝛼 ′ /𝐺 /𝑡 /𝑒′

SchedFork

𝑡1, 𝑡2 ∉ vertices(𝐺)
𝐺 ′ = 𝐺 ∪ {(𝑡0, 𝑡1), (𝑡0, 𝑡2)} 𝑒′ = 𝑣1 [()] ∥ 𝑣2 [()]

𝜎 /𝛼 /𝐺 /𝑡0 /par(𝑣1, 𝑣2)
sched−−−−→ 𝜎 /𝛼 /𝐺 ′ /𝑡1 ⊗𝑡 𝑡2 /𝑒′

SchedJoin

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼) 𝐺 ′ = 𝐺 ∪ {(𝑡1, 𝑡), (𝑡2, 𝑡)}

𝜎 /𝛼 /𝐺 /𝑡1 ⊗𝑡 𝑡2 /𝑣1 ∥ 𝑣2
sched−−−−→ [ℓ := (𝑣1, 𝑣2)]𝜎 / [ℓ := 𝑡]𝛼 /𝐺 ′ /𝑡 / ℓ

StepSched

𝜎 /𝛼 /𝐺 /𝑇 /𝑒 sched−−−−→ 𝜎′ /𝛼 ′ /𝐺 ′ /𝑇 ′ /𝑒′

(𝜎, 𝛼,𝐺) /𝑇 /𝑒 step−−−→ (𝜎′, 𝛼 ′,𝐺 ′) /𝑇 ′ /𝑒′

StepBind

𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′

𝑆 /𝑇 /𝐾 [𝑒] step−−−→ 𝑆 ′ /𝑇 ′ /𝐾 [𝑒′]
StepParL

𝑆 /𝑇1 /𝑒1
step−−−→ 𝑆 ′ /𝑇 ′

1
/𝑒′

1

𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2
step−−−→ 𝑆 ′ /𝑇 ′

1
⊗𝑡 𝑇2 /𝑒′1 ∥ 𝑒2

StepParR

𝑆 /𝑇2 /𝑒2
step−−−→ 𝑆 ′ /𝑇 ′

2
/𝑒′

2

𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2
step−−−→ 𝑆 ′ /𝑇1 ⊗𝑡 𝑇 ′2 /𝑒1 ∥ 𝑒

′
2

Fig. 8. Reduction under a context and parallelism

expression 𝑒 being evaluated, the store 𝜎 , and an allocation map 𝛼 . Figure 7 omits rules for the

length array primitive as well as the atomic compare-and-swap on arrays.

We write 𝜎 (ℓ) to denote the block stored at the location ℓ in the store 𝜎 . We write [ℓ := 𝑟 ]𝜎 for

the insertion of the block 𝑟 at location ℓ in 𝜎 . Note that only arrays can be updated; closures, pairs

and sums are immutable. We write ®𝑤 (𝑖) to refer to the index 𝑖 of an array ®𝑤 . We write [𝑖 := 𝑣] ®𝑤 for

an update to an array, and we similarly write [ℓ := 𝑡]𝛼 for an insertion in the allocation map. We

write 𝑣𝑛 for an array of length 𝑛, where each element of the array is initialized with the value 𝑣 .

HeadAlloc allocates an array, extending the store and the allocation map. HeadLoad acquires

the value 𝑣 from an index of an array. HeadStore, HeadLetVal, HeadIfTrue and HeadIfFalse

are standard. HeadClosure allocates a closure and HeadCall calls a closure. HeadCallPrim

calls a primitive, whose result is computed at the meta-level by the
pure−−−→ relation. HeadPair and

HeadProj allocate and project immutable pairs, respectively. HeadInj and HeadCase allocate and

case over immutable sums, respectively. HeadFold and HeadUnfold handle iso-recursive types

in a standard way.

Scheduler reduction relation. In order to keep track of the timestamp of each task and whether the

task is activated or suspended, we followWestrick et al. [2020] and enrich the semantics with an aux-

iliary structure called a task tree, written 𝑇 , of the following formal grammar: 𝑇 ≜ 𝑡 ∈ T | 𝑇 ⊗𝑡 𝑇 .
A leaf 𝑡 indicates an active task denoted by its timestamp. A node 𝑇1 ⊗𝑡 𝑇2 represents a suspended
task 𝑡 that has forked two parallel computations, recursively described by the task trees 𝑇1 and 𝑇2.

Figure 8 presents the scheduling reduction relation 𝜎 /𝛼 /𝐺 /𝑇 /𝑒 sched−−−−→ 𝜎 ′ /𝛼 ′ /𝐺 ′ /𝑇 ′ /𝑒′ as
either a head step, a fork, or a join. In this reduction relation, 𝜎 is a store, 𝛼 an allocation map, 𝐺 a

computation graph, 𝑇 a task tree, and 𝑒 an expression. The SchedHead reduction describes a head

reduction. The SchedFork reduction describes a fork: the task tree consists of a leaf 𝑡0 and the

expression of par(𝑣1, 𝑣2), where both 𝑣1 and 𝑣2 are closures to be executed in parallel. The reduction

generates two fresh timestamps 𝑡1 and 𝑡2, adds the corresponding edges to the computation graph,

and updates the task tree to comprise the node with two leaves 𝑡1 ⊗𝑡 𝑡2. The reduction then updates

the expression to the active parallel pair 𝑣1 [()] ∥ 𝑣2 [()], reflecting the parallel call of the two

closures 𝑣1 and 𝑣2, each one called with a single argument, the unit value (). The SchedJoin

, Vol. 1, No. 1, Article . Publication date: July 2025.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

DELeaf

∀ℓ . ℓ ∈ 𝑟𝑜𝑜𝑡𝑠 (𝑒) =⇒ 𝐺 ⊢ 𝛼 (ℓ) ≼ 𝑡

Disentangled (_, 𝛼,𝐺) /𝑡 /𝑒

DEPar

Disentangled 𝑆 /𝑇1 /𝑒1 Disentangled 𝑆 /𝑇2 /𝑒2
Disentangled 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2

DEBind

𝑆 = (_, 𝛼,𝐺) Disentangled 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒
∀ℓ . ℓ ∈ 𝑟𝑜𝑜𝑡𝑠 (𝐾) =⇒ ∀𝑡 ′ . 𝑡 ′ ∈ leaves(𝑇1) ∪ leaves(𝑇2) =⇒ 𝐺 ⊢ 𝛼 (ℓ) ≼ 𝑡 ′

Disentangled 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝐾 [𝑒]

Fig. 9. Definition of Disentanglement

reduction describes a join, and differs from prior semantics for disentanglement [Moine et al. 2024;

Westrick et al. 2022] because it reuses a timestamp (§2.1). The task tree is at a node 𝑡 with two

leaves 𝑡1 ⊗𝑡 𝑡2, and both leaves reached a value. The reduction adds edges (𝑡1, 𝑡) and (𝑡2, 𝑡) to the

computation graph, and allocates a memory cell to store the result of the (active) parallel pair. It

then updates the task tree to the leaf 𝑡 .

Parallelism and reduction under a context. The lower part of Figure 8 presents the main reduction

relation 𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′, which describe a scheduling reduction inside the whole parallel

program [Moine et al. 2024]. A configuration 𝑆 /𝑇 /𝑒 consists of the program state 𝑆 , the task

tree 𝑇 , and an expression 𝑒 . This expression 𝑒 can consist of multiple tasks, governed by the

nesting of active parallel pairs (𝑒1 ∥ 𝑒2). The corresponding timestamps of these tasks are given

by the accompanying task tree 𝑇 . A state 𝑆 consists of the tuple (𝜎, 𝛼,𝐺), denoting a store 𝜎 , an

allocation map 𝛼 , and a computation graph 𝐺 . The StepSched reduction describes a scheduling

step. The other reductions describe where the scheduling reduction takes place in the whole parallel

program. The StepBind reduction describes a reduction under an evaluation context. The StepParL

and StepParR reductions are non-deterministic: if a node of the task tree is encountered facing an

active parallel pair, the left side or the right side can reduce.

3.3 Definition of Disentanglement
The property Disentangled 𝑆 /𝑇 /𝑒 asserts that, given a program state 𝑆 and a task tree 𝑇 , the

expression 𝑒 is disentangled—that is, the roots of each task in 𝑒 were allocated by preceding tasks.

Figure 9 gives the inductive definition ofDisentangled 𝑆 /𝑇 /𝑒 . If the program state has an allocation

map 𝛼 and a computation graph 𝐺 , and if the task tree is a leaf 𝑡 , DELeaf requires that for every

location ℓ in 𝑟𝑜𝑜𝑡𝑠 (𝑒), that is, the set of locations syntactically occurring in 𝑒 , the location ℓ has been
allocated by a task 𝛼 (𝑡) preceding 𝑡 in𝐺 . If the task tree is a node𝑇1 ⊗𝑡 𝑇2, there are two cases. In the

first case, if the expression is an active parallel pair, DEPar requires that the two sub-expressions

are disentangled. Otherwise, the expression must be of the form 𝐾 [𝑒], and then DEBind requires

that 𝑒 itself is disentangled and that for every location ℓ occurring in the evaluation context 𝐾 , the

location ℓ has been allocated before every leaf 𝑡 ′ of 𝑇1 and 𝑇2. This definition is similar to the key

invariant rootsde by Westrick et al. [2022] and Moine et al. [2024].

4 Type System
In this section, we describe TypeDis in depth. First, we present the formal syntax of types (§4.1) as

well as the typing judgment (§4.2). We then comment on typing rules for mutable heap blocks (§4.3),

which enforce disentanglement. Next, we present the rules for creating and calling closures (§4.4),

which are crucial for understanding our approach for typing the par primitive (§4.5). We then

focus on advanced features of TypeDis: general recursive types and type polymorphism (§4.6). We

conclude by presenting subtiming (§4.7).
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TypeDis: A Type System for Disentanglement 13

Timestamp variables 𝛿

Type variables 𝛼

Logical graphs Δ ≜ Δ, 𝛿 ≼ 𝛿 | ∅
Kinds 𝜅 ≜ ★ | ⊲⊳ ⇒ 𝜅

Unboxed types 𝜏 ≜ () | bool | int
Boxed types 𝜎 ≜ array(𝜌) | (𝜌 × 𝜌) | (𝜌 + 𝜌) | ∀®𝛿 Δ. ®𝜌 →𝛿 𝜌

Types 𝜌 ≜ 𝜏 | 𝜆𝛿. 𝜌 | 𝜌 𝛿 | ∀𝛼 :: 𝜅. 𝜌 | 𝜇𝛼. 𝜎@𝛿 | 𝛼 | 𝜎@𝛿
Environments Γ ≜ 𝑥 : 𝜌, Γ | 𝛼 :: 𝜅, Γ | ∅

Fig. 10. Syntax of types

4.1 Syntax of Types
Figure 10 presents the syntax of types.

To reason statically about the runtime notions of timestamps 𝑡 and computation graphs𝐺 (§3.2),

we introduce their corresponding static notions: timestamp variables 𝛿 and logical graphs Δ, re-
spectively. A logical graph Δ is a set of pairs 𝛿1 ≼ 𝛿2, asserting that the timestamp 𝛿1 precedes the
timestamp 𝛿2, that is, everything allocated by the task at 𝛿1 is safe to acquire for the task at 𝛿2.

A logical graph can be understood as a static approximation of (a part of) the computation graph.

A powerful feature of our type system is its support for timestamp polymorphism, facilitated

through higher-order types. This higher-order feature is instrumental in typing the par primi-

tive (§4.5), and thus supporting the cyclic approach detailed in §2.1. Because our system is high-

order, we introduce kinds, written 𝜅, which capture the number of timestamps a type expects as

arguments. The ground kind, written★, indicates that the type does not take a timestamp argument.

The successor kind, written ⊲⊳⇒ 𝜅, indicates that the type expects 𝜅 + 1 timestamp arguments.

A base type 𝜏 describes an unboxed value, that is, a value that is not allocated on the heap. Base

types include the unit type, Booleans, and integers.

The syntax of a types 𝜌 is mutually inductive with the syntax of allocated types 𝜎 . A type 𝜌

is either a base type 𝜏 , a type taking a timestamp argument 𝜆𝛿. 𝜌 , an application of a type to a

timestamp 𝜌 𝛿 , a universal quantification of a type variable with some kind ∀𝛼 :: 𝜅. 𝜌 , a recursive

type 𝜇𝛼. 𝜎@𝛿 , a type variable 𝛼 , or an allocated type annotated by a timestamp 𝜎@𝛿 . When the

timestamp 𝛿 does not matter, we write 𝜎@_. An allocated type 𝜎 is either an array array(𝜌), an
immutable pair (𝜌 × 𝜌), an immutable sum (𝜌 + 𝜌), or a function ∀®𝛿 Δ. ®𝜌 →𝛿 𝜌 .

Types support 𝛼-equivalence for both type and timestamp variables, as well as 𝛽-reduction.

4.2 The Typing Judgment
A typing environment Γ is a map from free program variables to types, and from free type variables

to kinds. The general form of the typing judgment of TypeDis is:

Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿

where Δ is a logical graph, Γ a typing environment, 𝑒 the expression being type-checked at type 𝜌

and at current timestamp 𝛿 .

Selected rules of the type system appear in Figure 11. In this figure, we follow Barendregt’s

convention [Barendregt 1984], meaning that bound variables are always assumed fresh, that is,

distinct from any other variable in scope.

Various rules are standard: the rule T-Var type-checks variables and the rules T-Unit, T-Int and

T-Bool type-check base types. The structural rules T-Let and T-If are also standard, and type-check

let bindings and if statements, respectively. In the remainder, we discuss the rules that deserve

special attention with regard to disentanglement.
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14 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

T-Var

Γ(𝑥) = 𝜌
Δ | Γ ⊢ 𝑥 : 𝜌 ⊲ 𝛿

T-Unit

Δ | Γ ⊢ () : unit ⊲ 𝛿
T-Int

Δ | Γ ⊢ 𝑖 : int ⊲ 𝛿
T-Bool

Δ | Γ ⊢ 𝑏 : bool ⊲ 𝛿

T-Let

Δ | Γ ⊢ 𝑒1 : 𝜌′ ⊲ 𝛿 Δ | 𝑥 : 𝜌′, Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝜌 ⊲ 𝛿

T-If

Δ | Γ ⊢ 𝑒1 : bool ⊲ 𝛿
Δ | Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿 Δ | Γ ⊢ 𝑒3 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜌 ⊲ 𝛿

T-Pair

Δ | Γ ⊢ 𝑒1 : 𝜌1 ⊲ 𝛿 Δ | Γ ⊢ 𝑒2 : 𝜌2 ⊲ 𝛿

Δ | Γ ⊢ (𝑒1, 𝑒2) : (𝜌1 × 𝜌2)@𝛿 ⊲ 𝛿

T-Proj

Δ | Γ ⊢ 𝑒 : (𝜌1 × 𝜌2)@_ ⊲ 𝛿

Δ | Γ ⊢ proj𝜄 𝑒 : 𝜌𝑖 ⊲ 𝛿

T-Inj

Δ | Γ ⊢ 𝑒 : 𝜌𝑖 ⊲ 𝛿

Δ | Γ ⊢ inj𝜄 𝑒 : (𝜌1 + 𝜌2)@𝛿 ⊲ 𝛿

T-Case

Δ | Γ ⊢ 𝑒 : (𝜌1 + 𝜌2)@_ ⊲ 𝛿

Δ | 𝑥1 : 𝜌1, Γ ⊢ 𝑒1 : 𝜌 ⊲ 𝛿 Δ | 𝑥2 : 𝜌2, Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ match 𝑒 with inj
1
𝑥1 ⇒ 𝑒1 | inj2 𝑥2 ⇒ 𝑒2 end : 𝜌 ⊲ 𝛿

T-Array

Δ | Γ ⊢ 𝑒1 : int ⊲ 𝛿 Δ | Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ alloc 𝑒1 𝑒2 : array(𝜌)@𝛿 ⊲ 𝛿

T-Store

Δ | Γ ⊢ 𝑒1 : array(𝜌)@_ ⊲ 𝛿

Δ | Γ ⊢ 𝑒2 : int ⊲ 𝛿 Δ | Γ ⊢ 𝑒3 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ 𝑒1 [𝑒2]←𝑒3 : () ⊲ 𝛿
T-Load

Δ | Γ ⊢ 𝑒1 : array(𝜌)@_ ⊲ 𝛿

Δ | Γ ⊢ 𝑒2 : int ⊲ 𝛿
Δ | Γ ⊢ 𝑒1 [𝑒2] : 𝜌 ⊲ 𝛿

T-Abs

Δ,Δ1, 𝛿 ≼ 𝛿𝑓 | 𝑓 : (∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2)@𝛿, ( ®𝑥 : ®𝜌1), Γ ⊢ 𝑒 : 𝜌2 ⊲ 𝛿𝑓

Δ | Γ ⊢ 𝜇𝑓 .Λ ®𝛿1 Δ1 . 𝜆®𝑥 !𝛿𝑓 . 𝑒 : (∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2)@𝛿 ⊲ 𝛿

T-App

𝛿 = [ ®𝛿 ′
1
/ ®𝛿1]𝛿𝑓 ®𝜌′

1
= [ ®𝛿 ′

1
/ ®𝛿1] ®𝜌1 𝜌′

2
= [ ®𝛿 ′

1
/ ®𝛿1]𝜌2 Δ′

1
= [ ®𝛿 ′

1
/ ®𝛿1]Δ1

Δ | Γ ⊢ 𝑒 : (∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2)@_ ⊲ 𝛿 Δ ⊢ Δ′
1

Δ | Γ ⊢ ®𝑒′ : ®𝜌′
1
⊲ 𝛿

Δ | Γ ⊢ 𝑒 ⟨ ®𝛿 ′
1
⟩ ®𝑒′ : 𝜌′

2
⊲ 𝛿

T-Par

Γ ⊢ 𝜑1 :: ⊲⊳ ⇒ ★ Γ ⊢ 𝜑2 :: ⊲⊳ ⇒ ★

Δ | Γ ⊢ 𝑒1 : (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑1 𝛿
′)@_ ⊲ 𝛿 Δ | Γ ⊢ 𝑒2 : (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑2 𝛿

′)@_ ⊲ 𝛿

Δ | Γ ⊢ par(𝑒1, 𝑒2) : (𝜑1 𝛿 × 𝜑2 𝛿)@𝛿 ⊲ 𝛿

T-Fold

Γ ⊢ 𝜇𝛼. 𝜎@𝛿 :: ★

Δ | Γ ⊢ 𝑒 : ( [𝜇𝛼. 𝜎@𝛿/𝛼]𝜎)@𝛿 ⊲ 𝛿

Δ | Γ ⊢ fold 𝑒 : 𝜇𝛼. 𝜎@𝛿 ⊲ 𝛿

T-Unfold

Γ ⊢ 𝜇𝛼. 𝜎@𝛿 :: ★

Δ | Γ ⊢ 𝑒 : 𝜇𝛼. 𝜎@𝛿 ⊲ 𝛿

Δ | Γ ⊢ unfold 𝑒 : ( [𝜇𝛼. 𝜎@𝛿/𝛼]𝜎)@𝛿 ⊲ 𝛿

T-TAbs

Δ | 𝛼 :: 𝜅, Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 veryPure 𝑒

Δ | Γ ⊢ Λ𝛼 :: 𝜅. 𝑒 : ∀𝛼 :: 𝜅. 𝜌 ⊲ 𝛿

T-TApp

Γ ⊢ 𝜌′ :: 𝜅 Δ | Γ ⊢ 𝑒 : ∀𝛼 :: 𝜅. 𝜌 ⊲ 𝛿

Δ | Γ ⊢ 𝑒 ⟨𝜌′⟩ : [𝜌′/𝛼]𝜌 ⊲ 𝛿

T-GetRoot

Γ(𝑥) = array(𝜎′)@𝛿 ′ ∨ Γ(𝑥) = 𝜇𝛼. 𝜎′@𝛿 ′
{(𝛿 ′, 𝛿)} ∪ Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿

T-Subtiming

Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 Δ ⊢ 𝜌 ⊆𝛿 𝜌′

Δ | Γ ⊢ 𝑒 : 𝜌′ ⊲ 𝛿

Fig. 11. The type system (selected rules)
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TypeDis: A Type System for Disentanglement 15

4.3 Typing Rules for Heap Blocks
Heap blocks must be handled with care to guarantee disentanglement: every time the program

acquires a location—that is, the address of a heap block—we must ensure that this location has been

allocated by a preceding task. Otherwise, this newly created root would break the disentanglement

invariant (§3.3).

Load operations are so common in a programming language that we chose to enforce the

following invariant on the typing judgment Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 : every location that can be acquired

from Γ was allocated before the current timestamp 𝛿 (§2.4). Hence, load operations (from immutable

blocks and from mutable blocks) do not have any timestamp check.

Operations on immutable blocks are type-checked by T-Pair and T-Proj, for pairs, and by T-Inj

and T-Case, for sums. In particular, T-Pair and T-Inj reflect that pair allocation and injection

allocation allocate heap blocks, hence, the resulting type is annotated by@𝛿 , marking the allocating

timestamp inside the type.

Operations on mutable blocks are type-checked by T-Array, T-Store and T-Load.

4.4 Abstractions and Timestamp Polymorphism
A function can be seen as a delayed computation. In our case, this notion of “delay” plays an

interesting role: a function can run on a task distinct from the one that allocated it. Hence, functions

in TypeDis have three non-standard features related to timestamps, roughly describing the status

of the computation graph when the function will run. First, a function takes timestamp parameters,

which are universally quantified. Second, a function takes constraint over these timestamps, as a

logical graph. Third, a function is annotated by a timestamp representing the task it will run on.

Let us focus on the abstraction rule T-Abs. This rule type-checks a function definition of the

form 𝜇𝑓 .Λ ®𝛿1 Δ1. 𝜆®𝑥 !𝛿 𝑓 . 𝑒 , which binds, in the function body 𝑒 , the recursive name 𝑓 , the timestamp

parameters
®𝛿1, the logical graph Δ1, the function arguments ®𝑥 , and the running timestamp 𝛿 𝑓 . The

current timestamp is 𝛿 and the type associated to the function is (∀ ®𝛿1 Δ1. ®𝜌1 →𝛿𝑓 𝜌2)@𝛿 . This type
asserts that, if (i) there is some instantiation of

®𝛿1 satisfying Δ1, (ii) there are some arguments of

type ®𝜌1, and (iii) the timestamp of the calling task is 𝛿 𝑓 , then the function will produce a result of

type 𝜌2. This type also reminds us that a function is a heap-allocated object, and is hence annotated

by the task that allocated it, here 𝛿 . The premise of the T-Abs changes the current timestamp to

be 𝛿 𝑓 , the timestamp of the invoking task, and requires the body 𝑒 to be of type 𝜌2. T-Abs is in fact

the sole rule of the system “changing” the current timestamp while type checking. The logical graph

is augmented with Δ1 plus the knowledge that 𝛿 precedes 𝛿 𝑓 , conveying the fact that a function

can only be called at a subsequent timestamp. The environment Γ is extended with the parameters

( ®𝑥 : ®𝜌1) as well as the recursive name 𝑓 . Note that timestamp parameters
®𝛿1 and logical graph Δ1,

are before the arguments ®𝑥 . This means that the body 𝑒 will be able to recursively call 𝑓 with

different timestamp arguments (potentially including a different 𝛿 𝑓 ), for example after it forked.

We already saw such an example for the build and selectmap functions in Sections 2.3 and 2.4.

Let us now focus on T-App, type-checking a function application. The conclusion type-checks

the expression 𝑒 ⟨ ®𝛿 ′
1
⟩ ®𝑒′ to be of type 𝜌 ′

2
at the current timestamp 𝛿 . The premise of T-App requires 𝑒

to be a function of type ∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2, allocated by some irrelevant task. The premise then

substitutes in all the relevant parts the user-supplied timestamps
®𝛿 ′
1
in place of

®𝛿1. Hence, the result
type 𝜌 ′

2
is in fact equal to [ ®𝛿 ′

1
/ ®𝛿1]𝜌2. In particular, the premise 𝛿 = [ ®𝛿 ′

1
/ ®𝛿1]𝛿 𝑓 requires that the

running timestamp 𝛿 𝑓 to be equal to 𝛿 , the current timestamp. The premise also requires the logical

graph Δ′
1
to be a subgraph of the logical graph Δ, written Δ ⊢ Δ′

1
meaning that every pair of vertices

reachable in Δ′
1
must be also reachable in Δ. This property is formally defined in Appendix A.3.

Finally, the premise requires the arguments ®𝑒 to be of the correct type
®𝜌 ′
1
.
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4.5 The Par Rule
The typing rule for the par primitive is at the core of TypeDis.

T-Par type-checks par(𝑒1, 𝑒2) at current timestamp 𝛿 . Recall (§3.2) that the results of 𝑒1 and 𝑒2
must be closures; these closures are then called in parallel and their results are returned as an

immutable pair. To preserve disentanglement, the two closures must not communicate allocations

they make with each other. Hence, the premise of T-Par requires the two expressions 𝑒1 and 𝑒2 to

be of type ∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ . . . , signaling that they must be closures that are expected to run on

a task 𝛿 ′, universally quantified, and subsequent to 𝛿 . Because of this universal quantification over

the running timestamp 𝛿 ′ and because the rules allocating blocks (T-Array, T-Pair, T-Proj and

T-Abs) always tag the value they allocate with the running timestamp, the tasks will not be able to

communicate allocations they make.

After these two closure calls terminate, and their underlying tasks join, the parent task gain access

to everything the two children allocated. In fact, from the point of view of disentanglement, we can

even pretend that the parent task itself allocated these locations! T-Par does more than pretending

and backtimes the return types of the two closures, by substituting the running timestamp of the

children 𝛿 ′ by the running timestamp of the parent 𝛿 . Indeed, the return types of the closures, 𝜑1 𝛿
′

for 𝑒1 and 𝜑2 𝛿
′
, for 𝑒2, signal that these two closures will return some type, parametrized by the

running timestamp 𝛿 ′. This formulation allows the rule to type-check the original par(𝑒1, 𝑒2) as
(𝜑1 𝛿 × 𝜑2 𝛿)@𝛿 , that is, a pair of the two types returned by the closures, but where the running
timestamp of the child 𝛿 ′ was replaced by the running timestamp of the parent 𝛿 .

4.6 Recursive Types and Type Polymorphism
Recursive types. TypeDis supports iso-recursive types [Pierce 2002, §20.2]. In TypeDis, a recursive

type takes the form 𝜇𝛼. 𝜎@𝛿 , binding the recursive name 𝛼 in the allocated type 𝜎 which must

have been allocated at 𝛿 . This syntax ensures that types are somehow well-formed, and forbids

meaningless types 𝜇𝛼. 𝛼 as well as useless types 𝜇𝛼. 𝜇𝛽. 𝜌 . T-Fold and T-Unfold allow for going

from 𝜇𝛼. 𝜎@𝛿 to ( [𝜇𝛼. 𝜎@𝛿/𝛼]𝜎)@𝛿 and vice-versa. Note that this approach requires that the

recursive occurrence of 𝛼 are all allocated at the same timestamp; all the nodes of the recursive

data structures must have been allocated at the same timestamp. This may seem restrictive, but

subtiming will relax this requirement (§4.7).

Let us give an example. The type of lists allocated at timestamp 𝛿 containing integers is:

𝜇𝛼. (() + (int × 𝛼)@𝛿)@𝛿

This type describes that a list of integers is either the unit value (describing the nil case), or the

pair of an integer and a list of integers (describing the cons case).

Type polymorphism. TypeDis supports type polymorphism, through type abstraction T-TAbs

and type application T-TApp. The latter has a standard form but the former has an unusual premise

veryPure 𝑒 .
Indeed, it is well-known that mutable state and polymorphism is unsound if unrestricted. The

modern solution is called the value restriction [Wright 1995]. This simple technique consists of

allowing type abstraction only in front of values, that is in a standard lambda-calculus, functions.

However, DisLang2 has an unusual aspect: functions are not values, they are allocated on the

heap (§3.1). Hence, the value restriction is not applicable as-is, as it is crucial to allow universal

type quantification in front of functions. We present here a variant of the value restriction, that

allows type quantification in front of any pure expression that does not call a function, projects a pair,
cases over a sum, or fork new tasks. This includes function allocation, pair allocation, sums injection,

as well as other control-flow constructs. This syntactic check is ensured by the predicate veryPure 𝑒
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S-Refl

Δ ⊢ 𝜌 ⊆𝛿 𝜌
S-ReflAt

Δ ⊢ 𝜎 ⊆𝛿 𝜎

S-TAbs

Δ ⊢ 𝜌1 ⊆𝛿 𝜌2
Δ ⊢ ∀𝛼 :: 𝜅. 𝜌1 ⊆𝛿 ∀𝛼 :: 𝜅. 𝜌2

S-Pair

Δ ⊢ 𝜌𝑙1 ⊆𝛿 𝜌𝑙2 Δ ⊢ 𝜌𝑟1 ⊆𝛿 𝜌𝑟2
Δ ⊢ (𝜌𝑙1 × 𝜌𝑟1) ⊆𝛿 (𝜌𝑙2 × 𝜌𝑟2)

S-Sum

Δ ⊢ 𝜌𝑙1 ⊆𝛿 𝜌𝑙2 Δ ⊢ 𝜌𝑟1 ⊆𝛿 𝜌𝑟2
Δ ⊢ (𝜌𝑙1 + 𝜌𝑟1) ⊆𝛿 (𝜌𝑙2 + 𝜌𝑟2)

S-At

Δ ⊢ 𝛿1 ≼ 𝛿2 (𝛿1 ≠ 𝛿2 =⇒ Δ ⊢ 𝛿2 ≼ 𝛿)
Δ ⊢ 𝜎1 ⊆𝛿2 𝜎2

Δ ⊢ 𝜎1@𝛿1 ⊆𝛿 𝜎2@𝛿2
S-Rec

Δ ⊢ 𝛿1 ≼ 𝛿2 (𝛿1 ≠ 𝛿2 =⇒ Δ ⊢ 𝛿2 ≼ 𝛿)
Δ ⊢ 𝜎1 ⊆𝛿2 𝜎2 Δ | 𝛼 ↦→ 𝛿2 ⊢𝛿2 𝜎2

Δ ⊢ 𝜇𝛼. 𝜎1@𝛿1 ⊆𝛿 𝜇𝛼. 𝜎2@𝛿2

S-Abs

Δ′ = Δ ∪ Δ2 Δ′ ⊢ Δ1

Δ′ ⊢ ®𝜌𝑠2 ⊆𝛿𝑓 ®𝜌𝑠1 Δ′ ⊢ 𝜌1 ⊆𝛿𝑓 𝜌2
Δ ⊢ ∀ ®𝛿𝑠 Δ1 . ®𝜌𝑠1 →𝛿𝑓 𝜌1 ⊆𝛿 ∀ ®𝛿𝑠 Δ2 . ®𝜌𝑠2 →𝛿𝑓 𝜌2

Fig. 12. The subtiming judgement

that appears as a premise of the type abstraction rule T-TAbs. The predicate veryPure 𝑒 is defined
in Appendix A.2.

TypeDis supports higher-kind type polymorphism. For example, reminding of the typing rule

T-Par, one could present par as a higher-order function of the following type

par : ∀(𝜑1 :: ⊲⊳⇒ ★) (𝜑2 :: ⊲⊳⇒ ★).
∀𝛿 𝛿1 𝛿2. (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑1 𝛿

′)@𝛿1 → (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑2 𝛿
′)@𝛿2 →𝛿 (𝜑1 𝛿 × 𝜑2 𝛿)@𝛿

Note that taking 𝜑1 = 𝜑2 = 𝜆𝛿. tree@𝛿 and doing beta reduction matches the type presented in

Section 2.3.

4.7 Subtiming
As presented so far, backtiming—that is, substituting the timestamp of a child task by the one of its

parent task at the join point—is the only way of changing a timestamp inside a type (§4.5). We

propose here another mechanism that we dub subtiming. As the name suggests, subtiming is a

form of subtyping [Pierce 2002, §15] for timestamps.

At a high-level, subtiming allows for “advancing” a timestamp within a type, as long as this

update makes sense. This notion of “advancing” relates to the notion of precedence, describing
the reachability between two timestamps. We write Δ ⊢ 𝛿1 ≼ 𝛿2 to describe that 𝛿1 can reach 𝛿2
in Δ (Appendix A.3). Equipped with this reachability predicate, we make a first attempt at capturing

the idea of subtiming as follows:

Special-Case-of-Subtiming

Δ | Γ ⊢ 𝑒 : 𝜎@𝛿1 ⊲ 𝛿 Δ ⊢ 𝛿1 ≼ 𝛿2 Δ ⊢ 𝛿2 ≼ 𝛿

Δ | Γ ⊢ 𝑒 : 𝜎@𝛿2 ⊲ 𝛿

Special-Case-of-Subtiming asserts that an expression of type 𝜎@𝛿1 can be viewed as an

expression of type 𝜎@𝛿2 as long as 𝛿1 precedes 𝛿2, and that 𝛿2 is not ahead of time, that is 𝛿2
precedes the current timestamp 𝛿 . Indeed, TypeDis enforces that, if Δ | Γ ⊢ 𝑒 : 𝜎@𝛿 ′ ⊲ 𝛿 holds,

then 𝛿 ′ precedes 𝛿 .
While Special-Case-of-Subtiming is admissible in TypeDis, it is not general enough, as it only

considers the timestamp at the root of a type. This motivates rule T-Subtiming in Figure 11, which

relies on the subtiming judgment Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′, given in Figure 12, and acts as a subsumption

rule. Intuitively, the judgment Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′ captures the fact the timestamps in 𝜌 precede the

timestamps in 𝜌 ′ under logical graph Δ, knowing that the every timestamp occurring in 𝜌 ′ must
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precede 𝛿 . The definition of the judgment now allows changing the timestamps inside immutable

types. Because of variance issues (see [Pierce 2002, §15.5]), however, subtiming for mutable types is

only shallow: a timestamp can be changed only at the root of an array type. Subtiming in TypeDis

is thus semi-shallow.
The subtiming judgment Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′ assumes that types are in 𝛽-normal form. S-Refl and

S-ReflAt assert that the subtiming judgment is reflexive for both types and allocated types. S-TAbs

asserts that subtiming goes below type quantifiers. S-Pair and S-Sum reflect that subtiming for

immutable types is deep.

S-At illustrates the case presented in Special-Case-of-Subtiming. This rule asserts that, with

logical graph Δ and maximum allowed timestamp 𝛿 , the allocated type 𝜎1@𝛿1 is a subtype of 𝜎2@𝛿2
if three conditions are met. First, 𝛿1 must precede 𝛿2. Second, if subtiming is applied here, that is, if

𝛿1 ≠ 𝛿2, then 𝛿2 must precede 𝛿 , the maximum timestamp allowed. Third, 𝜎1 must recursively be a

subtype of 𝜎2, with maximum timestamp allowed 𝛿2. Indeed, recall the TypeDis allows only for

up-pointers: every timestamp in 𝜎2 must precede 𝛿2.

S-Rec allows subtiming for recursive types 𝜇𝛼. 𝜎1@𝛿1 and 𝜇𝛼. 𝜎2@𝛿2. The three first premises (in

the left-to-right, top-to-bottom order) are the same as for S-At. A fourth premise Δ | 𝛼 ↦→ 𝛿2 ⊢𝛿2 𝜎2
requires explanations. This predicate, dubbed the “valid variable” judgment and whose formal

definition appears in Appendix A.4, ensures two properties. First, that 𝛼 does not appear in an

array type (because subtiming is not allowed at this position) or in an arrow or another recursive

type (for simplicity). Second, that if 𝛼 appears under a timestamp 𝛿 , then 𝛿2 must precede 𝛿 .

S-Abs allows subtiming for function types ∀ ®𝛿𝑠 Δ1. ®𝜌𝑠1 →𝛿𝑓 𝜌1 and ∀ ®𝛿𝑠 Δ2. ®𝜌𝑠2 →𝛿𝑓 𝜌2. The

quantified timestamps
®𝛿𝑠 and the calling timestamp 𝛿 𝑓 must be the same. The extended logical

graph Δ′, equal to Δ ∪ Δ2, must subsume Δ1. Moreover, the arguments ®𝜌𝑠2 must subtime ®𝜌𝑠1 (note
the polarity inversion). The return type 𝜌1 must subtime 𝜌2.

Before using subtiming, information about precedence may be needed. TypeDis guarantees a

strong invariant: every timestamp occurring in the typing environment comes before the current

timestamp. Such an invariant is illustrated by T-GetRoot, which allows adding to the logical

graph Δ an edge (𝛿 ′, 𝛿), where 𝛿 ′ is a timestamp in the environment and 𝛿 the current timestamp.

5 Soundness
In this section, we state the soundness of TypeDis and give an intuition for its proof, which takes

the form of a logical relation in Iris and is mechanized in Rocq [Anon. 2025]. We first enunciate

the soundness theorem (§ 5.1). We then recall the concepts of Iris we need (§ 5.2) and present

DisLog2 (§ 5.3), the particular instantiation of Iris we use. We then devote our attention to the

formal proof, by presenting the high-level ideas of the logical relation (§5.4) we developed, its

fundamental theorem (§5.5). We conclude by assembling all the building blocks we presented and

sketch the soundness proof of TypeDis (§5.6).

5.1 Soundness Statement of TypeDis
Our soundness statement adapts Milner [1978]’ slogan “well-typed programs cannot go wrong” by

proving that the reduction of a well-typed program reaches only configurations that are safe and
disentangled.

We already formally defined the concept of disentanglement (§3.3). What about safety? Intuitively,

a configuration is safe if all tasks can take a step or, conversely, no task is ever stuck. However, this
property is too strong for our type system due to reasons unrelated to disentanglement. Being

purposefully designed for disentanglement, our type system is not capable of verifying arbitrary

functional correctness conditions. In particular, while the semantics of DisLang2 ensures that
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OOB-Alloc

𝑖 < 0

OOB𝜎 (alloc 𝑖 𝑣)

OOB-Load

𝜎 (ℓ) = ®𝑣
𝑖 < 0 ∨ 𝑖 ≥ |®𝑣 |
OOB𝜎 (ℓ [𝑖])

OOB-Store

𝜎 (ℓ) = ®𝑣
𝑖 < 0 ∨ 𝑖 ≥ |®𝑣 |

OOB𝜎 (ℓ [𝑖]←𝑤)

OOB-CAS

𝜎 (ℓ) = ®𝑣
𝑖 < 0 ∨ 𝑖 ≥ |®𝑣 |

OOB𝜎 (CAS ℓ 𝑖 𝑤1𝑤2)
Red-Sched

𝑆 /𝑇 /𝑒 sched−−−−→ 𝑆 ′ /𝑇 ′ /𝑒′

AllRedOrOOB 𝑆 /𝑇 /𝑒

Red-OOB

OOB𝜎 𝑒

AllRedOrOOB (𝜎, 𝛼,𝐺) /𝑡 /𝑒

Red-Ctx

AllRedOrOOB 𝑆 /𝑇 /𝑒
AllRedOrOOB 𝑆 /𝑇 /𝐾 [𝑒]

Red-Par

(𝑒1 ∉ V ∨ 𝑒2 ∉ V)
(𝑒1 ∉ V =⇒ AllRedOrOOB 𝑆 /𝑇1 /𝑒1)
(𝑒2 ∉ V =⇒ AllRedOrOOB 𝑆 /𝑇2 /𝑒2)

AllRedOrOOB 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2

Safe-Final

Safe 𝑆 /𝑡 /𝑣

Safe-NonFinal

AllRedOrOOB 𝑆 /𝑇 /𝑒
Safe 𝑆 /𝑇 /𝑒

Fig. 13. The OOB, AllRedOrOOB and Safe predicates

accesses to arrays by load and store operations are within bounds and thus cannot cause a task

to get stuck, our type system does not enforce that. This restriction comes at the advantage of

freeing programmers from carrying out the correctness themselves, and having it instead been

carried out by the type checker. Intuitively, we say that a configuration is safe if either it is final

or each task can either take a step, or is facing a load or a store operation outside of bounds. We

formalize these properties in Figure 13. The property OOB𝜎 𝑒 asserts that the expression 𝑒 faces
an out-of-bounds operation: that is, an allocation, a load, a store, or a CAS outside the bounds.

The property AllRedOrOOB 𝑆 /𝑇 /𝑒 asserts that, within the configuration of the program state 𝑆 ,

the task tree 𝑇 and the expression 𝑒 , every task of the task tree can either take a step or face an

out-of-bounds operation. Red-Sched asserts that the configuration can take a scheduling step

(that is, either a head step, a fork or a join). Red-OOB asserts that the configuration is at a leaf

and faces an out-of-bounds operation. Red-Ctx asserts that an expression under an evaluation

is reducible if this very expression is reducible. Red-Par asserts that an active parallel pair 𝑒1 ∥ 𝑒2
is reducible if at least one of {𝑒1, 𝑒2} is not a value, and that whichever of {𝑒1, 𝑒2} is not a value
is reducible. (If both expressions are values, a join is possible). The property Safe 𝑆 /𝑇 /𝑒 asserts
that the configuration 𝑆 /𝑇 /𝑒 is either final (Safe-Final), that is, the task tree is at a leaf and the

expression is a value, or that every task every task of the task tree can either take a step or face an

out-of-bounds operation (Safe-NonFinal).

An expression 𝑒 is always safe and disentangled if (∅, ∅, {(𝑡0, 𝑡0)}) /𝑡 /𝑒
step−−−→ ∗ 𝑆 ′ /𝑇 ′ /𝑒′ im-

plies that Safe 𝑆 ′ /𝑇 ′ /𝑒′ and Disentangled 𝑆 ′ /𝑇 ′ /𝑒′ hold, for some 𝑡0 an initial timestamp.

Theorem 5.1 (Soundness of TypeDis). If ∅ | ∅ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 then 𝑒 is always safe and disentangled.

Proof. We prove this theorem using a logical relation [Timany et al. 2024], which makes use of

DisLog2, a variation of DisLog [Moine et al. 2024]. We present the proof sketch in Section 5.6. □

5.2 Iris Primer
We set up our proofs in Iris [Jung et al. 2018b], and recall here the base notations. Iris’ assertions

are of type iProp. We write Φ for an assertion, ⌜𝑃⌝ for a pure assertion, Φ1 ∗ Φ2 for a separating

conjunction, andΦ1 −∗ Φ2 for a separating implication. We write a postcondition—that is, a predicate

over values—using Ψ.
One of the most important feature of Iris consists of invariants. An invariant over an assertion Φ,

written Φ intuitively denotes that Φ holds true in-between every computation step. (Formally,
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D-Load

⌜0 ≤ 𝑖 < | ®𝑤 | ∧ ®𝑤 (𝑖) = 𝑣⌝ ℓ ↦→𝑝 ®𝑤 𝑣 � 𝑡

wp ⟨𝑡, ℓ [𝑖]⟩ {𝜆 𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝ ∗ ℓ ↦→𝑝 ®𝑤}

D-LoadOOB

⌜𝑖 < 0 ∨ 𝑖 ≥ | ®𝑤 |⌝ ℓ ↦→𝑝 ®𝑤
wp ⟨𝑡, ℓ [𝑖]⟩ {𝜆 _. ⊥}

D-Par

∀𝑡1 𝑡2 . 𝑡 ≼ 𝑡1 ∗ 𝑡 ≼ 𝑡2 ⇛ ∃Ψ1 Ψ2 . wp ⟨𝑡1, ℓ1 [()]⟩ {Ψ1} ∗ wp ⟨𝑡2, ℓ2 [()]⟩ {Ψ2} ∗(
∀𝑣1 𝑣2 ℓ . Ψ1 𝑣1 ∗ Ψ2 𝑣2 ∗ 𝑡1 ≼ 𝑡 ∗ 𝑡2 ≼ 𝑡 ∗ ℓ ↦→ (𝑣1, 𝑣2) −∗ Ψ ℓ

)
wp ⟨𝑡, par(ℓ1, ℓ2)⟩ {Ψ}

D-ClockMono

𝑣 � 𝑡1 𝑡1 ≼ 𝑡2

𝑣 � 𝑡2

Fig. 14. Selected rules of DisLog2

invariants are annotated with so-called masks [Jung et al. 2018b, §2.2], we omit them for brevity.)

Invariants, as well as other logical resources in Iris, are implemented using ghost state. We write

Φ1 ⇛ Φ2 a ghost update—that is, an update of the ghost state between Φ1 and Φ2.

Iris features a variety of modalities. In this work we use two of them extensively. First, the

persistence modality, written �Φ asserts that the assertion Φ is persistent, meaning in particular

that �Φ is duplicable. Second, the later modality, written ⊲Φ asserts that Φ holds “one step of

computation later”.

We write ℓ ↦→ ®𝑣 to denote that ℓ points-to an array with content ®𝑣 . We write ℓ ↦→� 𝑟 , with a

discarded fraction [Vindum and Birkedal 2021], to denote that ℓ points-to an immutable block 𝑟 (that

is, either a closure, an immutable pair, or an immutable sum). This latter assertion is persistent.

5.3 Taking Advantage of the Cyclic Approach with DisLog2
Moine et al. [2024] contributed DisLog, the first program logic for verifying disentanglement. DisLog

depends on the very definition of disentanglement, and uses the standard approach presented in

Section 2.1: when two tasks join, they form a new task with a fresh timestamp. This choice impacts

the logic: the weakest precondition (WP) modality of DisLog takes the form wp ⟨𝑡, 𝑒⟩ {𝜆 𝑡 ′ 𝑣 . Φ} and
asserts that the expression 𝑒 running on current timestamp 𝑡 is disentangled, and if the evaluation

of 𝑒 terminates, it does so on the end timestamp 𝑡 ′, with final value 𝑣 and satisfying the assertion Φ.
In particular, 𝑡 and 𝑡 ′ may not be the same, for example if 𝑒 contains a call to par.

To accommodate the cyclic approach for disentanglement (§2.1), we had to develop a new version

of DisLog, yielding the logic DisLog2. DisLog2 allows reusing the timestamp of the forking task for

the child tasks upon join. As a result, the current timestamp and end timestamp of an expression

always coincide, allowing us to simplify the WP of DisLog by simply removing the end timestamp

parameter of the postcondition. Formally, the WP of DisLog2 then takes the form

wp ⟨𝑡, 𝑒⟩ {𝜆 𝑣. Φ}
and asserts that the expression 𝑒 running on timestamp 𝑡 is disentangled, and if the evaluation

of 𝑒 terminates, it does so with final value 𝑣 and satisfying the assertion Φ. Compared to DisLog,

DisLog2 tolerates out-of-bounds accesses.

Otherwise, DisLog2 adapts all the ideas of DisLog. In particular, the logic features two persistent

assertions related to timestamps. First, the clock assertion ℓ � 𝑡 asserts that the location ℓ was

allocated by a task that precedes 𝑡 . The overloaded assertion 𝑣 � 𝑡 , for an arbitrary value 𝑣 , is

defined to ℓ � 𝑡 if 𝑣 is a location ℓ , and is sent to the trivial assertion ⌜𝑇𝑟𝑢𝑒⌝ otherwise. Second,

the precedence assertion 𝑡1 ≼ 𝑡2 asserts that task 𝑡1 precedes task 𝑡2 in the underlying computation

graph. The precedence assertion forms a pre-order: it is reflexive and transitive. Crucially, the clock

assertion is monotonic with respect to the precedence pre-order [Moine et al. 2024].

In the remaining of the paper, we write 𝑡1 ≈ 𝑡2 to denote that 𝑡1 and 𝑡2 are equivalent, that is,
both 𝑡1 ≼ 𝑡2 and 𝑡2 ≼ 𝑡1 hold.
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Selected rules of DisLog2. Figure 14 presents four key rules of DisLog2. The premise of these rules

are implicitly separated by a separating conjunction ∗.
The D-Load rule, targeting a load operation on the array ℓ at offset 𝑖 on task 𝑡 ensures disentan-

glement. Indeed, the rule requires that ℓ points-to the array ®𝑤 and that the offset 𝑖 in ®𝑤 corresponds

to the value 𝑣 . It also requires the assertion 𝑣 � 𝑡 , witnessing that if 𝑣 is a location, then this location

must have allocated by a preceding task. The D-LoadOOB rule is unusual in a program logic, and

reflects that we purposefully allow for OOB accesses in verified programs, because our type system

does. Because an OOB access results in a crash, the postcondition of the WP is ⌜𝐹𝑎𝑙𝑠𝑒⌝, that is,
allows the user to conclude anything. The D-Par rule is at the heart of DisLog2 and allows verifying

a parallel call to two closures ℓ1 and ℓ2 at timestamp 𝑡 . The premise universally quantifies over 𝑡1
and 𝑡2, the two timestamps of the forked tasks, that are both preceded by 𝑡 . Then, the user must

provide two postconditions, Ψ1 and Ψ2 for the two tasks, and verify that the closure call ℓ1 [()]
(resp. ℓ2 [()]) is safe at timestamp 𝑡1 (resp. 𝑡2) with postcondition Ψ1 (resp. Ψ2). The second line of

the premise requires the user to prove that, after the two tasks terminated and joined, the initial

postcondition Ψ ℓ must hold, for some location ℓ pointing to the pair (𝑣1, 𝑣2) where 𝑣1 is the final
result of 𝑡1 and 𝑣2 of 𝑡2. The D-ClockMono rule formalizes the monotonicity of the clock assertion.

The soundness theorem of DisLog2. The soundness theorem of DisLog2 asserts that if 𝑒 can be

verified using the program logic, then 𝑒 is always safe and disentangled.

Theorem 5.2 (Adeqacy of DisLog2). If wp ⟨𝑡, 𝑒⟩ {Ψ} holds, then 𝑒 is always safe and dis-
entangled.

Proof. Similar to the adequacy proof of DisLog; see our mechanization [Anon. 2025]. □

5.4 A Logical Relation
The very heart of the soundness proof of TypeDis is a logical relation, set up in Iris using DisLog2.

Logical relations [Girard 1972; Pitts and Stark 1998; Plotkin 1973; Statman 1985; Tait 1967] are a

technique that allows one to prescribe properties of valid programs in terms of their behavior, as
opposed to solely their static properties. We adopt the semantic approach [Constable et al. 1986;

Martin-Löf 1982; Timany et al. 2024], which allows terms that are not necessarily (syntactically)

well-typed to be an inhabitant of the logical relation and has been successfully deployed in the

RustBelt project [Jung et al. 2018a], for example.

Our logical relation is presented in Appendix A.6. We comment here on the high-level ideas.

The goal is to define the interpretation of a type 𝜌 , intuitively returning a predicate over values,

describing the values on relation with 𝜌 , that is, the values inhabiting this type. Because our types

have higher-kinds (that is, are functions over timestamps) some predicates involved in our logical

relation are also predicates over timestamps. In particular, the interpretation of a type 𝜌 with

kind 𝜅 waits for 𝜅 timestamps, and then produces a predicate over values. This means that the

interpretation of 𝜌 at kind ★ is a regular predicate over values.

The presented relations involve two sorts of mappings, relating variables occuring in types

to concrete values. First, a timestamp mapping, written ℎ, which is a finite map from timestamp

variables 𝛿 to concrete timestamps 𝑡 . Second, a type mapping, written𝑚, which is a finite map

from type variables to tuples of a kind 𝜅 and a tuple of two functions depending on 𝜅. The first

function waits for 𝜅 timestamps and produces a predicate over values; it represents the semantic

interpretation of the type by which the variable will be instantiated. The second function waits

for 𝜅 timestamps and produces a timestamp; its result corresponds to the root timestamp of the

type by which the variable will be instantiated.
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JΔ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 K ≜ �∀ℎ𝑚𝑢. ⌜dom Γ = dom𝑢⌝ −∗
⌜∀𝛼 𝜅 Ψ 𝑟 . 𝑚(𝛼) = (𝜅, (Ψ, 𝑟 )) =⇒ proper𝜅 Ψ ∧ regular𝜅 𝑟⌝ −∗∗(𝑡1,𝑡2 ) ∈Δ ℎ(𝑡1) ≼ ℎ(𝑡2) −∗∗(𝑥,𝜌 ) ∈Γ, (𝑥,𝑣) ∈𝑢 (root 𝜌 ≼ℎ

𝑚 𝛿 ∗ J𝜌Kℎ𝑚 ★ 𝑣) −∗
∀𝑡 . 𝑡 ≈ ℎ(𝛿) −∗ wp ⟨𝑡, [𝑢/]𝑒⟩ {𝜆 𝑣. root 𝜌 ≼ℎ

𝑚 𝛿 ∗ J𝜌Kℎ𝑚 ★ 𝑣}

Fig. 15. The interpretation of typing judgments

The interpretation of a type guarantees that this type contains only up-pointers (§2.2), that is, the
interpretation of 𝜎@𝛿 ensures that if 𝛿 ′ appears in 𝜎 , then 𝛿 ′ precedes 𝛿 . Such an invariant would

be tedious to enforce as-is. Hence, our approach makes use of transitivity: the interpretation of 𝜎@𝛿

ensures that, for each outermost 𝜌 encountered in 𝜎 , the root timestamp of 𝜌—conceptually, the
outermost timestamp in 𝜌—precedes 𝛿 . Because this invariant is enforced at each stage of the type

interpretation, and because precedence is transitive, we guarantee that there are only up-pointers.

Appendix A.5 presents a function computing the root timestamp of a type, and defines the assertion

root 𝜌 ≼ℎ
𝑚 𝛿 , asserting that the root timestamp of 𝜌 comes before 𝛿 with the mappings ℎ and𝑚.

The main relation is the type relation J𝜌Kℎ𝑚 𝜅 . It produces a predicate waiting for 𝜅 timestamps, a

value 𝑣 , and captures that 𝑣 is of type 𝜌 , within the timestamp mapping ℎ and type mapping𝑚.

Apart from timestamps, the seasoned reader of logical relations in Iris will not be surprised by

our approach, as it follows the standard recipe [Timany et al. 2024]: a recursive type is interpreted

using a guarded fixpoint, universal type quantification is interpreted as a universal quantification

in the logic, an array is interpreted using an invariant, and an arrow using the WP. Moreover, every

predicate is designed such that it is persistent.

5.5 Interpretation of Typing Judgments
We now focus on the interpretation of typing judgments of TypeDis. The overall form is standard:

the interpretation of a judgment reflects that the interpretation of the typing environment implies

the interpretation of the expression, itself being a WP whose postcondition asserts that the returned

value is in relation with the interpretation of the type.

Figure 15 presents the definition of the interpretation of our typing judgment. The judgment under

consideration has logical graph Δ, type environment Γ, expression 𝑒 with type 𝜌 at timestamp 𝛿 .

The interpretation starts by quantifying over three mappings: the timestamp mapping ℎ, the type

mapping𝑚 as well as the variable mapping 𝑢, a map from code variable to values.

The variable mapping must have the same domain as the environment Γ. The type mapping𝑚

is restricted such that type variables are given only a proper interpretation (via the proper𝜅 Ψ
property) and a regular root function (via the regular𝜅 𝑟 property). The property proper𝜅 Ψ captures

that any timestamp parameter of Ψ can be replaced by an equivalent one. The property regular𝜅 𝑟
captures that the function 𝑟 either ignores all its arguments or returns one of them. These two

properties are needed in order to prove the correctness of T-Par.

Then, the interpretation requires that Δ is a valid logical graph, that is, each edge between two

timestamp variables in Δ corresponds to an edge between their mapping. The interpretation also

requires that, for every variable 𝑥 that has type 𝜌 in Γ and is associated to value 𝑣 in 𝑢, then the

root timestamp of 𝑣 precedes the interpretation of 𝛿 and 𝑣 is in relation with the interpretation

of 𝜌 . Next, the definition quantifies over a timestamp 𝑡 , equivalent to the interpretation of 𝛿 , and

asserts the WP at timestamp 𝑡 , of the expression 𝑒 in which variables are substituted by values

following the variable mapping 𝑢. The postcondition asserts that the root timestamp of 𝑣 precedes

the interpretation of 𝛿 and that returned value 𝑣 is in relation with the interpretation of the type 𝜌 .
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Once the interpretation of typing judgment is defined, we can state the fundamental theorem,

relating the syntactical typing system (§4) and its semantic interpretation.

Theorem 5.3 (Fundamental). If Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 holds, then JΔ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 K holds too.

Proof. By induction over the typing derivation; see our mechanization [Anon. 2025]. □

5.6 Putting Pieces Together: The Soundness Proof of TypeDis
We can finally unveil the proof of the soundness Theorem 5.1 of TypeDis, which we formally

establish in Rocq. Let us suppose that ∅ | ∅ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 holds. Making use of the funda-

mental Theorem 5.3, we deduce that J ∅ | ∅ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 K holds too. Unfolding the defini-

tion (Figure 15), instantiating the timestamp mapping ℎ with the singleton map [𝛿 := 𝑡0]—for
𝑡0 some initial timestamp—and the type mapping 𝑚, and the variable mapping 𝑢 with empty

maps, and simplifying trivial premises concerning these mappings, we are left with the statement

∀𝑡 . 𝑡 ≈ 𝑡0 −∗ wp ⟨𝑡, 𝑒⟩ {𝜆 𝑣. root 𝜌 ≼ℎ
𝑚 𝛿 ∗ J𝜌K[𝛿 :=𝑡0 ]∅ ★ 𝑣}. Instantiating 𝑡 with 𝑡0, we deduce that

wp ⟨𝑡0, 𝑒⟩ {𝜆 𝑣. root 𝜌 ≼ℎ
𝑚 𝛿 ∗ J𝜌K[𝛿 :=𝑡0 ]∅ ★ 𝑣} holds. We finally use the adequacy Theorem 5.2 of

DisLog2 and deduce that 𝑒 is always safe and disentangled.

6 Case Studies
We evaluate the usefulness of TypeDis by type checking several case studies in Rocq using the

rules presented in Section 4.

We verify the examples presented in the “Key Ideas” Section 2. These examples illustrate: simple

mechanics of the type system (§2.2), backtiming (§2.3) and subtiming (§2.4). In particular, the two

last examples, build and selectmap, illustrate the use of TypeDis with high-order functions and a

recursive immutable type (a binary tree with integer leaves).

Our largest case study consists of the typing of a parallel deduplication algorithm via concurrent

hashing. This example is a case study of DisLog [Moine et al. 2024, §6.3]. Deduplication consists

in removing duplicates in an array—something that can be done efficiently in a parallel and

disentangled setting [Westrick 2022]. The algorithm rests on a folklore [VerifyThis 2022] concurrent,

lock-free, fixed-capacity hash set using open addressing and linear probing to handle collision [Knuth
1998]. The main deduplication function allocates a new hash set, insert in parallel every element in

the hash set using a parallel for loop, and finally returns the elements of the set. We implement the

parallel for loop as a direct translation of code from standard library of MPL [Acar et al. 2020].

Parallel deduplication is an interesting case study: it involves the use of high order functions

(because of the parallel for loop, for which we give a general type close to the one of the par
primitive) as well as concurrent reads and writes inside an array using atomic operations. These

reads and writes are disentangled because they concern data that was allocated before the parallel

phase, and more precisely because they preserve the up-pointer invariant.

Intuitively, the deduplication function takes three arguments: a hashing function, a dummy

element in order to populate the result array, and the array to deduplicate. We type-check the

deduplication function with the type

∀𝛼 :: ★.∀𝛿 𝛿1 𝛿2 . (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . 𝛼 →𝛿 ′ int)@𝛿1 → 𝛼 → array(𝛼)@𝛿2 →𝛿 array(𝛼)@𝛿

This type quantify over the type 𝛼 of the elements of the array to deduplicate, and then quantify

over 𝛿 , the calling timestamp, and 𝛿1 and 𝛿2, the (irrelevant) allocation timestamps of the first and

third argument, respectively. The first argument is a closure of a hashing function on 𝛼 , that will

be called at subsequent tasks 𝛿 ′. The second argument is a dummy element of type 𝛼 . The third

argument is the array to deduplicate.
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7 Related Work
Disentanglement. The specific property we consider in this paper is based on the definition by

Westrick et al. [2020] which was then formalized by Moine et al. [2024] in their development

of DisLog, a program logic for disentanglement. Most of the existing work on disentanglement

considers structured fork-join parallel code, as we do in this paper. More recently, Arora et al.

[2024] showed that disentanglement is also applicable in a more general setting involving state and

parallel futures. The authors specifically prove that disentanglement ensures deadlock-freedom in

this setting. A question that we plan to investigate in future work is whether or not TypeDis could

be extended to support futures.

Region-based Systems. TypeDis associates timestamp variables with values in their types. Im-

mediately, we note similarities with region-based type and effect systems [Grossman et al. 2002;

Tofte et al. 2004; Tofte and Talpin 1997] which have also recently received attention in supporting

parallelism [Elsman and Henriksen 2023]. The timestamps in our setting are somewhat analogous

to regions, with parent-child relationships between timestamps and the up-pointer invariant of

TypeDis bearing resemblance to the stack discipline of region-based memory management systems.

However, there are a number of key differences. In region-based systems, allocations may occur

within any region, and all values within a region are all deallocated at the same moment; one chal-

lenge in such systems is statically predicting or conservatively bounding the lifetime of every value.

In contrast, in TypeDis, allocations only ever occur at the “current” timestamp, and timestamps

tell you nothing about deallocation—every value in our approach is dynamically garbage collected.

Each timestamp in TypeDis is associated with a task within a nested fork-join task structure, and

values with the same timestamp are all allocated by the same task (or one of its subtasks).

Possible Worlds Type Systems. Our type system falls into what can broadly be categorized as

a possible worlds type system. These type systems augment the typing judgement with world

modalities (in our case timestamp variables 𝛿) that occur as syntactic objects in propositions

(a.k.a. types), and typing is then carried out relative to an accessibility relation (in our case the

logical graph Δ). While our work is the first to contribute a possible worlds type system for

disentanglement, world modalities have been successfully used for other purposes. In the context of

fork-join parallelism, Muller et al. [2017] employed world modalities to track priorities of tasks and

guarantee absence of priority inversions, ensuring responsiveness and interactivity. While Muller

et al. [2017] also require their priorities to be partially ordered, as we require timestamps to be

partially ordered, their priorities are fixed, whereas ours are not. In the context of message-passing

concurrency, world modalities have been employed to verify deadlock-freedom [Balzer et al. 2019],

domain accessibility [Caires et al. 2019], and information flow control [Derakhshan et al. 2021, 2024].

This line of work not only differs in underlying computation model, considering a process calculus,

but also adopts linear typing to control data races and non-determinism. While disentanglement

does not forbid races, adopting some form of linear typing may be an interesting avenue for future

work, to admit even more disentangled programs as well-typed, e.g. those with down-pointers.

Information Flow Control Type Systems. Information flow type systems [Sabelfeld and Myers

2003; Smith and Volpano 1998; Volpano et al. 1996] can also be viewed as representatives of possible

worlds type systems, where modalities capture confidentiality (or integrity) and pc labels, and the

accessibility relation is a lattice. Typically, modalities can change by typing. For example, when type

checking the branches of an if statement the pc label is increased to the join of its current value and

the confidentiality label of the branching condition. A similar phenomenon happens in TypeDis

upon type checking a fork, where the sibling threads are type checked at a later timestamp. Besides

these similarities in techniques employed, the fundamental invariants preserved by type checking
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are different. In our setting it is the “no cross-pointers invariant”, whereas it is noninterference

for IFC type systems. As a result, the metatheory employed also differs: whereas we use a unary

logical relation, noninterference demands a binary logical relation. Such a binary logical relation

for termination-insensitive noninterference in the context of a sequential, higher-order language

with higher-order store, for example, has been recently contributed by Gregersen et al. [2021]. The

authors develop an IFC type system, in the spirit of Flow Caml [Pottier and Simonet 2003; Simonet

2003], with label polymorphism, akin to our timestamp polymorphism. Like our work, the authors

use the semantic typing approach supported by the Iris separation logic framework. Similarly, the

authors support subtyping on labels, allowing a label to be raised in accordance with the lattice,

akin to our subtiming, in accordance with the precedence relation.

Type Systems for Parallelism and Concurrency. There has been significant work on developing

static techniques, especially type systems, to guarantee correctness and safety properties (such

as race-freedom, deadlock-freedom, determinism, etc.) for parallel and concurrent programs. For

example, the idea of ownership [Clarke et al. 1998; Dietl and Müller 2005; Müller 2002; Noble et al.

1998] has been exploited to rule out races and deadlocks among threads [Boyapati et al. 2002, 2003;

Boyapati and Rinard 2001]. Ownership is also enforced by linear type systems [Wadler 1990], which

rule out races by construction and have been successfully employed inmessage-passing concurrency

[Caires et al. 2019; Wadler 2012]. The approach has then been popularized by Rust [Klabnik and

Nichols 2023], in particular, focusing on statically restricting aliasing and mutability [Jung et al.

2018a], which in Rust takes the form of ownership and borrowing as well as reference-counted

mutexes for maximal flexibility. Recently flexible mode-based systems have been explored, as

present in the work on DRFCaml [Georges et al. 2025], which exploits modes (extending Lorenzen

et al. [2024]) to distinguish values that can and cannot be safely shared between threads. Other

systems leverage region-based techniques to restrict concurrent threads, ensuring safe disjoint

access to the heap with minimal annotations [Milano et al. 2022], or leveraging explicit annotations

to limit the set of permissible effects on shared parts of the heap [Bocchino Jr. et al. 2009].

Much of these related works focus on the hazards of concurrency, especially data races, race

conditions, non-determinism, and similar issues. Disentanglement (and by extension, TypeDis)

focuses on an equally important but different issue, namely, the performance of parallel programs.

TypeDis in particular is designed to allow for unrestricted sharing of immutable data (for example,

as demonstrated in the data structure sharing example of Section 2.4) mixed with disentangled

sharing of mutable data (for example, in Section 6). This support for data sharing is motivated by the

implementation of efficient parallel algorithms, many of which rely upon access to shared memory

with irregular and/or data-dependent access patterns, which are difficult to statically analyze

for safety. For example, Abdi et al. [2024] find that many standard implementations of parallel

algorithms are rejected by the Rust type system, yet these same implementations have previously

been shown to be disentangled [Westrick et al. 2022]. We consider one such implementation as a

case study in Section 6 and confirm that it is typeable under TypeDis.

8 Conclusion and Future Work
Disentanglement is an important property of parallel programs, which can in particular serve

for improving performance. This paper introduces TypeDis, a static type system that proves

disentanglement. TypeDis annotates types with timestamps, recording for each object the task

that allocated it. Moreover, TypeDis supports iso-recursive types, as well as type and timestamp

polymorphism. TypeDis allows restamping the timestamps in types using a particular form of

subtyping we dub subtiming.
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This paper focuses on type checking, that is, given a program annotated with types, checking if

these types are valid. We are currently working on a prototype type checker, written in OCaml.

An immediate direction for future work is type inference, that is, generating a valid type for a

program. For future work, we plan to use the framework of Odersky et al. [1999], which adapts

Hindley-Milner to a system with constrained universal quantification. We believe subtiming and

backtiming will be inferrable. One challenging case will be mixing polymorphic recursion with

par, which might require annotations in order to remain decidable (this is a known problem in

region-based type systems [Tofte and Birkedal 1998]).
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A Appendix
A.1 The Kinding Judgment

K-Var

𝑥 :: 𝜅 ∈ Γ
Γ ⊢ 𝑥 :: 𝜅

K-Unboxed

Γ ⊢ 𝜏 :: ★

K-At

Γ ⊢ 𝜎 :: ★

Γ ⊢ 𝜎@𝛿 :: ★

K-Lam

Γ ⊢ 𝜌 :: 𝜅

Γ ⊢ 𝜆𝛿. 𝜌 :: ⊲⊳ ⇒ 𝜅

K-App

Γ ⊢ 𝜌 :: ⊲⊳ ⇒ 𝜅

Γ ⊢ 𝜌 𝛿 :: 𝜅

K-TAbs

𝛼 :: 𝜅, Γ ⊢ 𝜌 :: ★

Γ ⊢ ∀𝛼 :: 𝜅. 𝜌 :: ★

K-Rec

𝛼 :: ★, Γ ⊢ 𝜎 :: ★

Γ ⊢ 𝜇𝛼. 𝜎@𝛿 :: ★

K-Array

Γ ⊢ 𝜌 :: ★

Γ ⊢ array(𝜌) :: ★

K-Pair

Γ ⊢ 𝜌1 :: ★ Γ ⊢ 𝜌2 :: ★
Γ ⊢ (𝜌1 × 𝜌2) :: ★

K-Sum

Γ ⊢ 𝜌1 :: ★ Γ ⊢ 𝜌2 :: ★
Γ ⊢ (𝜌1 + 𝜌2) :: ★

K-Arrow

(∀𝜌. 𝜌 ∈ ®𝜌1 =⇒ Γ ⊢ 𝜌 :: ★) Γ ⊢ 𝜌2 :: ★

Γ ⊢ ∀ ®𝛿1 Δ. ®𝜌1 →𝛿2 𝜌2 :: ★

Fig. 16. Kinding judgment

Figure 16 presents the kinding judgment Γ ⊢ 𝜌 :: 𝜅 , asserting that type 𝜌 has kind 𝜅 considering

the environment Γ.

A.2 The veryPure Predicate

VP-Val

veryPure 𝑣
VP-Abs

veryPure (𝜇𝑓 .Λ ®𝛿1 Δ1 . 𝜆®𝑥 !𝛿𝑓 . 𝑒)
VP-Var

veryPure𝑥

VP-Prim

veryPure 𝑒1 veryPure 𝑒2

𝑒1 ⊲⊳ 𝑒2

VP-Let

veryPure 𝑒1 veryPure 𝑒2

let𝑥 = 𝑒1 in 𝑒2

VP-Pair

veryPure 𝑒1 veryPure 𝑒2

(𝑒1, 𝑒2)

VP-Fold

veryPure 𝑒

veryPure fold 𝑒

VP-Fold

veryPure 𝑒

veryPure unfold 𝑒

VP-If

veryPure 𝑒1 veryPure 𝑒2 veryPure 𝑒3

if 𝑒1 then 𝑒2 else 𝑒3

Fig. 17. The veryPure predicate

Figure 17 presents the veryPure predicate over an expression. This predicate ensures that the

expression does not contain any array allocation, load, store, par, projection, case, or function call.

A.3 Reachability Predicates

R-Refl

Δ ⊢ 𝛿 ≼ 𝛿

R-Cons

(𝛿1, 𝛿2) ∈ Δ Δ ⊢ 𝛿2 ≼ 𝛿3

Δ ⊢ 𝛿1 ≼ 𝛿3

R-Logical

∀𝛿1 𝛿2 . (𝛿1, 𝛿2) ∈ Δ′ =⇒ Δ ⊢ 𝛿1 ≼ 𝛿2

Δ ⊢ Δ′

Fig. 18. The reachability predicates

Figure 18 presents the reachability predicates that appear in T-App and in Figure 12.

R-Refl asserts that a timestamp can always reach itself. R-Cons asserts that if there is an edge

between 𝛿1 and 𝛿2 and if 𝛿2 can reach 𝛿3, then 𝛿1 can reach 𝛿3.

R-Logical asserts that a logical graph Δ subsumes a logical graph Δ′ if every edge between 𝛿1
and 𝛿2 in Δ′ can be simulated in Δ.
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A.4 The “Valid Variable” Judgment

VA-Var

𝛼 = 𝛼 ′ =⇒ Δ ⊢ 𝛿1 ≼ 𝛿2

Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝛼
′

VA-Base

Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜏

VA-At

Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿 𝜎
Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜎@𝛿

VA-TAbs

𝛼 ≠ 𝛼 ′ =⇒ Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜌
Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 ∀𝛼

′
:: 𝜅. 𝜌

VA-Pair

Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜌1 Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜌2
Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 (𝜌1 × 𝜌2)

VA-Sum

Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜌1 Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜌2
Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 (𝜌1 + 𝜌2)

VA-TRec

𝛼 ∉ fv(𝜌) \ {𝛼 ′}
Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 𝜇𝛼

′ . 𝜎@𝛿

VA-Array

𝛼 ∉ fv(𝜌)
Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 array(𝜌)

VA-Abs

𝛼 ∉ fv( ®𝜌′) ∪ fv(𝜌′′)

Δ | 𝛼 ↦→ 𝛿1 ⊢𝛿2 ∀ ®𝛿 ′ Δ
′ . ®𝜌′ →𝛿𝑓 𝜌′′

Fig. 19. The “valid variable” judgment

Figure 19 presents the “valid variable” judgment that is used for subtiming recursive types (S-Rec).

A.5 The Root Functions and Assertions

answer ≜ Timestamp𝛿 | Unboxed | Nonsense

rootfℎ𝑚𝜅 𝜌 : fkind𝜅 answer
rootfℎ𝑚𝜅 𝛼 ≜ if𝑚(𝛼) = (𝜅, (_, 𝑟 )) then 𝑟 elseNonsense𝜅
rootfℎ𝑚 ★ 𝜏 ≜ Unboxed

rootfℎ𝑚 ★ (𝜎@𝛿) ≜ Timestamp𝛿
rootfℎ𝑚 ( ⊲⊳ ⇒ 𝜅) (𝜆𝛿. 𝜌) ≜ 𝜆𝑡 . rootf ( [𝛿 := 𝑡]ℎ)𝑚𝜅 𝜌

rootfℎ𝑚𝜅 (𝜌 𝛿) ≜ (rootfℎ𝑚 ( ⊲⊳ ⇒ 𝜅) 𝜌) (ℎ(𝛿))
rootfℎ𝑚 ★ (∀𝛼 :: 𝜅. 𝜌) ≜ rootfℎ ( [𝛼 := Nonsense𝜅 ]𝑚) ★ 𝜌

rootfℎ𝑚 ★ (𝜇𝛼. 𝜎@𝛿) ≜ Timestamp𝛿

root 𝜌 ≼ℎ
𝑚 𝛿 ≜ match (rootfℎ𝑚 ★ 𝜌) with

|Unboxed ⇒ ⌜𝑇𝑟𝑢𝑒⌝
|Nonsense ⇒ ⌜𝐹𝑎𝑙𝑠𝑒⌝
| Timestamp𝛿 ′ ⇒ ℎ(𝛿 ′) ≼ ℎ(𝛿)

Fig. 20. Root-related functions and assertions

Figure 20 presents the rootf function, expecting a timestamp mapping ℎ, a type mapping𝑚, a

kind 𝜅 and a type 𝜌 , and produces a function expecting 𝜅 timestamps and returning an “answer”,

representing the root timestamp of 𝜌 . An answer is either a timestamp, Unboxed to indicate an

unboxed type, of Nonsense if the type has no sensible root timestamp (for example, ∀𝛼 :: 𝜅. 𝛼). In

this definition, we write Nonsense𝜅 the function expecting 𝜅 arguments and returning Nonsense.
The assertion root 𝜌 ≼ℎ

𝑚 𝛿 , also presented in Figure 20 matches root timestamp of 𝜌 . If it is

unboxed, the assertion is true, if it is nonsensical, the assertion is false, and if it is a regular

timestamp 𝛿 ′, then ℎ(𝛿 ′) must precede ℎ(𝛿).

A.6 Definition of our Logical Relations
Figure 21 presents the logical relations we define. Formally, we define the (meta-type-level) function

fkind𝜅 𝐴 producing a function waiting for 𝜅 timestamps and returning something of type 𝐴. This

function is defined by induction over the kind 𝜅.
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fkind ★ 𝑎 ≜ 𝐴

fkind ( ⊲⊳ ⇒ 𝜅)𝐴 ≜ T → fkind𝜅 𝐴

J𝜌Kℎ𝑚 𝜅 : fkind𝜅 (V → iProp)
J𝛼Kℎ𝑚 𝜅 ≜ ∀(Ψ : fkind𝜅 (V → iProp)) (𝑟 : fkind𝜅 T) .

if𝑚(𝛼) = (𝜅, (Ψ, 𝑟 )) thenΨ ∗𝜅 �𝜅 𝑟 else⊥𝜅
J𝜏Kℎ𝑚 ★ ≜ 𝜆𝑣. ⌜𝜏 = () ∧ 𝑣 = ()⌝ ∨ ⌜𝜏 = bool ∧ 𝑣 ∈ {true, false}⌝ ∨ ⌜𝜏 = int ∧ 𝑣 ∈ Z⌝

J𝜎@𝛿Kℎ𝑚 ★ ≜ 𝜆𝑣. 𝑣 �ℎ(𝛿) ∗ JJ𝜎KKℎ𝑚 𝛿 𝑣

J𝜇𝛼. 𝜎@𝛿Kℎ𝑚 ★ ≜ 𝜇 (Ψ : V → iProp).
𝜆𝑣 . ∃𝑤. ⌜𝑣 = vfold𝑤⌝ ∗ 𝑤 �ℎ(𝛿) ∗ ⊲ JJ𝜎KKℎ[𝛼 :=(★,(Ψ,ℎ (𝛿 ) ) ) ]𝑚 𝛿 𝑣

J∀𝛼 :: 𝜅. 𝜌Kℎ𝑚 ★ ≜ 𝜆𝑣. �∀(Ψ : fkind𝜅 (V → iProp)) (𝑟 : fkind𝜅 T) .
⌜proper𝜅 Ψ ∧ regular𝜅 𝑟⌝ −∗ J𝜌Kℎ[𝛼 :=(𝜅,(Ψ,𝑟 ) ) ]𝑚 ★ 𝑣

J𝜆𝛿. 𝜌Kℎ𝑚 ( ⊲⊳ ⇒ 𝜅) ≜ 𝜆𝑡 . J𝜌K[𝛿 :=𝑡 ]ℎ𝑚 𝜅

J𝜌 𝛿Kℎ𝑚 𝜅 ≜ J𝜌Kℎ𝑚 ( ⊲⊳ ⇒ 𝜅) ℎ(𝛿)

L𝜌Mℎ𝑚 ≜ 𝜆𝛿 𝑣 . root 𝜌 ≼ℎ
𝑚 𝛿 ∗ J𝜌Kℎ𝑚 ★ 𝑣

JJ𝜎KKℎ𝑚 : T → V → iProp
JJarray(𝜌)KKℎ𝑚 ≜ 𝜆𝛿 𝑣 . ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ∃ ®𝑤. ℓ ↦→ ®𝑤 ∗ ∗𝑣′∈ ®𝑤 (L𝜌Mℎ𝑚 𝛿 𝑣 ′)
JJ(𝜌1 × 𝜌2)KKℎ𝑚 ≜ 𝜆𝛿 𝑣 . ∃ℓ 𝑣1 𝑣2 . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→� (𝑣1, 𝑣2) ∗ L𝜌1Mℎ𝑚 𝛿 𝑣1 ∗ L𝜌2Mℎ𝑚 𝛿 𝑣2

JJ(𝜌1 + 𝜌2)KKℎ𝑚 ≜ 𝜆𝛿 𝑣 . ∃ℓ 𝑣 ′ . ⌜𝑣 = ℓ⌝ ∗
(ℓ ↦→� inj

1
𝑣 ′ ∗ L𝜌1Mℎ𝑚 𝛿 𝑣 ′) ∨ (ℓ ↦→� inj

2
𝑣 ′ ∗ L𝜌2Mℎ𝑚 𝛿 𝑣 ′)

JJ∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2KKℎ𝑚 ≜ 𝜆𝛿 𝑣 . �∀®𝑡 ®𝑤. ⌜ | ®𝛿1 | = |®𝑡 | ∧ | ®𝜌1 | = | ®𝑤 |⌝ −∗
letℎ′ = [ ®𝛿1 := ®𝑡]ℎ in
ℎ(𝛿) ≼ ℎ′ (𝛿𝑓 ) −∗ JΔ1Kℎ

′ −∗ ∗𝜌∈ ®𝜌1, 𝑣′∈ ®𝑤 (L𝜌Mℎ′𝑚 𝑣 ′) −∗
∀𝑡 ′ . 𝑡 ′ ≈ ℎ′ (𝛿𝑓 ) −∗ wp ⟨𝑡 ′, 𝑣 ®𝑤⟩ {𝜆 𝑣 ′ . L𝜌2Mℎ

′
𝑚 𝑣 ′}

Fig. 21. The interpretation of types

More precisely, Figure 21 presents the type relation and the allocated type relation. The type
relation J𝜌Kℎ𝑚 𝜅 produces a function waiting for 𝜅 timestamps, a value 𝑣 , and captures that 𝑣 is of

type 𝜌 , within the timestamp mapping ℎ and type mapping𝑚. The allocated type relation JJ𝜎KKℎ𝑚
produces a predicate over a timestamp 𝛿 and a value 𝑣 , capturing that 𝑣 is of type 𝜎 allocated at 𝛿 ,

within the timestamp mapping ℎ and type mapping𝑚. The type relation and the allocated type

relation are defined by mutual induction over their type argument. The omitted cases are all sent

to ⊥𝜅 , the always false predicate ignoring its 𝜅 arguments.

Interpretation of types. Let us first present the relation J𝜌Kℎ𝑚 𝜅.
If 𝜌 is a variable 𝛼 , then 𝛼 must have kind 𝜅 in the type mapping𝑚, linked with predicate Ψ

and timestamp function 𝑟 . The relation returns the predicate Ψ ∗𝜅 �𝜅 𝑟 . The operator ∗𝜅 lifts

the separating conjunction to predicated in fkind𝜅 (V → iProp) by distributing 𝜅 timestamp

arguments and a value to Ψ and�𝜅 𝑟 . The predicate�𝜅 𝑟 is of type fkind𝜅 (V → iProp); it feeds 𝜅
timestamps to 𝑟 , and asserts that the value argument was allocated before the result of 𝑟 . For

example, in the particular case of 𝜅 = ⊲⊳⇒ ★, we have that Ψ ∗𝜅 �𝜅 𝑟 = 𝜆𝛿 𝑣 .Ψ 𝛿 𝑣 ∗ 𝑣 � (𝑟 𝛿).
If 𝜌 is a base type 𝜏 , the kind must be the base kind ★, and the relation binds a value which must

correspond to the particular base type under consideration.

, Vol. 1, No. 1, Article . Publication date: July 2025.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

TypeDis: A Type System for Disentanglement 33

If 𝜌 is an allocated type 𝜎@𝜌 , the kind must be ★, and the relation binds a value 𝑣 which must

have been allocated before ℎ(𝛿), the timestamp associated to 𝛿 in ℎ. The relation also ensures that 𝑣

recursively satisfies the interpretation of 𝜎 .

If 𝜌 is a recursive type 𝜇𝛼. 𝜎@𝛿 , the kind must be ★, and the relation is expressed as a guarded
fixed-point. Intuitively, the predicate Ψ, from a value to iProp, captures the interpretation of the

recursive type itself. The interpretation binds a value 𝑣 and asserts that it is of the form vfold𝑤 .
The interpretation is then similar to an allocated type:𝑤 must have been allocated before ℎ(𝛿) and
be in relation with the interpretation of 𝜎 , with a type environment updated to bind 𝛼 to Ψ as well

as the root timestamp ℎ(𝛿).
If 𝜌 is a type abstraction ∀𝛼 :: 𝜅. 𝜌 , the kind must be ★, and the relation binds a value 𝑣 . The

relation universally quantifies over the predicate Ψ and the timestamp function 𝑟 , which will be

instantiated during the T-TApp rule. Both Ψ and 𝑟 are constrained. The property proper𝜅 Ψ captures

that any timestamp parameter of Ψ can be replaced by an equivalent one. The property regular𝜅 𝑟
captures that the function 𝑟 either ignores all its arguments or returns one of them. These two

properties are needed in order to prove that T-Par is sound. The relation then calls itself recursively

on 𝜌 , augmenting the type mapping by associating 𝛼 to its kind 𝜅 and the pair of Ψ and 𝑟 .

If 𝜌 is a timestamp abstraction 𝜆𝛿. 𝜌 , the kind must be of the form ⊲⊳⇒ 𝜅, and the relation

expands to a function waiting for a timestamp 𝛿 and adding it to the timestamp mapping ℎ.

If 𝜌 is a timestamp application 𝜌 𝛿 at some kind 𝜅, then the relation applies the timestamp ℎ(𝛿)
to the interpretation of 𝜌 at kind ⊲⊳⇒ 𝜅.

Interpretation of allocated types. The enriched type interpretation L𝜌Mℎ𝑚 , defined next in Figure 21,

is a predicate over a timestamp 𝛿 and a value 𝑣 . It asserts that the root timestamp of 𝜌 comes before 𝛿

and that 𝑣 is in relation with the interpretation of 𝜌 . This wrapper in used for the interpretation of

allocated types, which we present next. The interpretation of allocated types is written JJ𝜎KKℎ𝑚 and

is a predicate over a timestamp variable 𝛿 and a value 𝑣 .

If 𝜎 is an array array(𝜌), then 𝑣 must be a location ℓ , such that ℓ points-to an array ®𝑤 and that

for each value 𝑣 ′ in ®𝑤 is in relation with the enriched interpretation of 𝜌 . The points-to assertion

and the relation on the values of the array appears inside an invariant, ensuring their persistence.

If 𝜎 is a pair (𝜌1 × 𝜌2), then 𝑣 must be a location ℓ pointing to a pair of values (𝑣1, 𝑣2) such that 𝑣1
(resp. 𝑣2) is in relation with the enriched interpretation of 𝜌1 (resp. 𝜌2). The sum case is similar.

If 𝜎 is an arrow ∀ ®𝛿1 Δ1. ®𝜌1 →𝛿𝑓 𝜌2, then the interpretation quantifies over the list of timestamp

arguments ®𝑡 and the list of arguments of the function ®𝑤 , which must both have the correct length.

The relation then defines ℎ′, the new timestamp environment, being ℎ where
®𝛿1 are instantiated

with ®𝑡 . The relation next requires that the allocation timestamp ℎ(𝛿) precedes the timestamp of the

caller ℎ′ (𝛿 𝑓 ), and that every value in ®𝑤 is of the correct type. Last, the relation requires that for

any timestamp equivalent to ℎ′ (𝛿 𝑓 ), the WP of the function call holds, and that the returned value

is in relation with the enriched interpretation of the return type 𝜌2.
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