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All for One and One for All
Program Logics for Exploiting Internal Determinism in Parallel Programs

ALEXANDRE MOINE, New York University, USA
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Nondeterminism makes parallel programs challenging to write and reason about. To avoid these challenges,

researchers have developed techniques for internally deterministic parallel programming, in which the steps

of a parallel computation proceed in a deterministic way. Internal determinism is useful because it lets a

programmer reason about a program as if it executed in a sequential order. However, no verification framework

exists to exploit this property and simplify formal reasoning about internally deterministic programs.

To capture the essence of why internally deterministic programs should be easier to reason about, this

paper defines a property called schedule-independent safety. A program satisfies schedule-independent safety,

if, to show that the program is safe across all orderings, it suffices to show that one terminating execution of

the program is safe. We then present a separation logic called Musketeer for proving that a program satisfies

schedule-independent safety. Once a parallel program has been shown to satisfy schedule-independent safety,

we can verify it with a new logic called Angelic, which allows one to dynamically select and verify just one

sequential ordering of the program.

Using Musketeer, we prove the soundness of MiniDet, an affine type system for enforcing internal deter-

minism. MiniDet supports several core algorithmic primitives for internally deterministic programming that

have been identified in the research literature, including a deterministic version of a concurrent hash set.

Because any syntactically well-typed MiniDet program satisfies schedule-independent safety, we can apply

Angelic to verify such programs.

All results in this paper have been verified in Rocq using the Iris separation logic framework.

1 Introduction
One of the most challenging aspects of concurrent and parallel programming is dealing with

nondeterminism. Nondeterminism complicates almost every aspect of trying to make programs

correct. Bugs often arise because programmers struggle to reason about the set of all possible non-

deterministic outcomes and interleavings. Finding those bugs becomes more difficult, as testing can

only cover a subset of possible outcomes. Even when bugs are found, nondeterminism makes them

harder to reproduce and debug. These challenges also extend to formal methods for such programs,

where nondeterminism makes various analyses and verification techniques more complex.

For these reasons, there has long been interest in methods for deterministic parallel programming.

A range of algorithmic techniques [Blelloch et al. 2012], language designs [Blelloch et al. 1994;

Kuper et al. 2014a], type systems [Bocchino Jr. et al. 2009], specialized operating systems and

runtimes [Aviram et al. 2010], and various other approaches have been developed for making

parallel programs deterministic. Researchers in this area have long noted that determinism is not

simply a binary property, and in fact there is a spectrum of degrees of determinism. On one end

of the spectrum is external determinism, which simply says that the input/output behavior of a

program is deterministic. However, in an externally deterministic program, even if the final output

is deterministic, the manner in which the computation takes place may be highly nondeterministic

and vary across runs. As a result, external determinism does not eliminate all of the programming

challenges associated with nondeterminism. For example, a programmer who attaches a debugger
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2 Alexandre Moine, Sam Westrick, and Joseph Tassarotti

to an externally deterministic program may still see different internal behaviors across different

runs, complicating efforts to understand the program’s behavior.

A stronger property, called internal determinism, requires in addition that the structure and

internal steps of a computation are deterministic. More formally, in an internally deterministic

program, for a given input to the program, every execution will generate the same computation
graph, a kind of trace that captures the dependencies of operations and their results. With this

strong form of determinism, we can reason about the program’s behavior by considering any one
sequential traversal of operations in the computation graph. This is useful, because as Blelloch et al.

[2012] put it:

In addition to returning deterministic results, internal determinism has many advan-

tages including ease of reasoning about the code, ease of verifying correctness, ease

of debugging, ease of defining invariants, ease of defining good coverage for testing,

and ease of formally, informally and experimentally reasoning about performance.

Although ensuring internal determinism might seem expensive, Blelloch et al. [2012] have shown

that by using a core set of algorithmic techniques and building blocks, it is possible to develop fast

and scalable internally deterministic algorithms for a range of benchmark problems.

In this paper, we explore the meaning and benefits of internal determinism from the perspective

of program verification. If one of the advantages of internal determinism is that it simplifies

reasoning about programs, then it should be possible to exploit this property in the form of new

reasoning rules in a program logic. To do so, we first define a property we call schedule-independent
safety, which holds for a parallel program 𝑒 if, to verify that every execution of 𝑒 is safe (i.e. never
triggers undefined behavior or a failing assert), it suffices to prove that at least one interleaving
of operations in 𝑒 is terminating and safe. Internal determinism implies schedule-independent

safety, and it is this property that makes reasoning about internally deterministic programs simpler.

Schedule-independent safety recalls the motto of Dumas’ Three Musketeers, “all for one and one

for all”: the safety of all interleavings amounts to the safety of one of them.

Building on this observation, we develop Musketeer, a separation logic for proving that a

program satisfies schedule-independent safety. Although Musketeer is formulated as a unary

program logic, schedule-independent safety is a ∀∀ hyperproperty [Clarkson and Schneider 2010],

since it relates safety of any chosen execution of a program 𝑒 to all other executions of 𝑒 . Thus,

to prove the soundness of Musketeer, we encode Musketeer triples into a new relational logic

called ChainedLog. In contrast to most prior relational concurrent separation logics, which are

restricted to ∀∃ hyperproperties, ChainedLog supports ∀∀ hyperproperties using a judgement we

call a chained triple.
We next explore how to exploit schedule-independent safety to simplify verification of programs.

To that end, we present a logic called Angelic that allows one to angelically select and verify one

sequential ordering of operations in a parallel program. Angelic is sound to apply to programs

that are schedule-independent safe because the safety and termination of the one ordering verified

during the proof will imply safety for all other executions. This is in contrast to standard concurrent

separation logics, in which one must consider all possible orderings during a proof.

Using these logics, we verify a number of examples from the literature on internal determinism

and related properties. First, we show how to use Musketeer to prove properties about language-

based approaches for enforcing internal determinism. In particular, because Musketeer is a higher-

order impredicative logic, Musketeer can encode logical relations models for type systems that are

designed to enforce internal determinism. We start by applying this to a simple ownership-based

affine type system we call MiniDet. The resulting logical relations model for MiniDet shows that

every well-typed program satisfies schedule-independent safety. Next we use Musketeer to prove
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All for One and One for All 3

specifications for priority writes and deterministic concurrent hash sets, two of the core primitives

that Blelloch et al. [2012] use in several of their examples of internally deterministic algorithms.

Using these specifications, we extend MiniDet and its logical relations model with typing rules for

priority writes and hash sets, showing that schedule-independent safety is preserved.

Finally, putting these pieces together, we turn to parallel array deduplication, one of the example

benchmark problems considered by Blelloch et al. [2012]. We first show that an implementation

of the algorithm they propose for this problem can be syntactically-typed in MiniDet, thereby

showing that it is schedule-independent safe. Next, we use Angelic to verify a correctness property

for this algorithm. Although the algorithm is written using a parallel for-loop that does concurrent

insertions into a hash set, by using Angelic, we can reason as if the parallel loop was a standard,

sequential loop, thereby simplifying verification.

Contributions. The contributions of this paper are the following:
• We identify schedule-independent safety as a key property of deterministic parallel pro-

grams.

• We present Musketeer, a Separation Logic for proving that a program satisfies schedule-

independent safety, meant to be used as a tool for proving automatic approaches correct.

• We present Angelic, a Separation Logic for proving that one interleaving safely terminates.

• We use Musketeer to verify properties of MiniDet, an affine type system guaranteeing

schedule-independent safety.

• We verify that priority writes and a deterministic concurrent hash set satisfy schedule-

independent safety using Musketeer, and then use this property to verify a deduplication

algorithm using Angelic.

• We formally verify all the results of this paper, including the soundness of the logics and

the examples, in the Rocq prover using the Iris framework [Jung et al. 2018].

2 Key Ideas
In this section, we first give a simple motivating example (§2.1), describe some of the core concepts

behind how Musketeer guarantees schedule-independent safety (§2.2), and conclude by showing

some of the rules of Angelic that allow for reasoning sequentially about a parallel program (§2.3).

2.1 A Motivating Example
Our example program is named dumas and appears below:

dumas ≜ 𝜆𝑛. let 𝑟 = ref 0 in

par (𝜆_. atomic_add 𝑟 1802) (𝜆_. atomic_add 𝑟 42);
assert (get 𝑟 == 𝑛)

The dumas program takes an argument 𝑛. It first allocates a reference 𝑟 initialized to 0, and then

calls in parallel two closures, one that atomically adds 1802 to 𝑟 , and the other that atomically adds

42. After the parallel phase, the function asserts that the content of 𝑟 is equal to 𝑛.

Imagine we wish to prove that (dumas 1844) is safe—that is, for every interleaving, the program

will never get stuck, and in particular the assertion will succeed. Of course, many existing concurrent

separation logics can easily prove this. In such logics, one can use an invariant assertion to reason

about the shared access to 𝑟 by the two parallel threads. This invariant would ensure that, no matter

which order the threads perform their additions, after both have finished 𝑟 will contain 1844.

We propose an alternate approach that simplifies reasoning by exploiting the internal determinism

in programs like dumas. In our approach, we first prove in a light-weight way that, for any given

value of 𝑛, the order of the parallel additions in (dumas𝑛) does not affect the outcome of the assert.
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M-Assert

{⊤} assert 𝑣 {𝜆𝑤 _. ⌜𝑤 = () ∧ 𝑣 = true⌝}
M-KSplit

counter 𝑣 (𝑞1 + 𝑞2) (𝑖1 + 𝑖2) ⊣⊢ counter 𝑣 𝑞1 𝑖1 ∗ counter 𝑣 𝑞2 𝑖2
M-KRef

{⊤} ref 𝑖 {𝜆𝑣 _. counter 𝑣 1 𝑖}
M-KAdd

{counter 𝑣 𝑞 𝑖} atomic_add 𝑣 𝑗 {𝜆_ _. counter 𝑣 𝑞 (𝑖 + 𝑗)}

M-KGet {counter 𝑣 1 𝑖} get 𝑣 {𝜆𝑤 _. ⌜𝑤 = 𝑖⌝ ∗ counter 𝑣 1 𝑖}

M-Par

{𝑃1} 𝑒1 {𝑄1} {𝑃2} 𝑒2 {𝑄2}
{𝑃1 ∗ 𝑃2} par 𝑒1 𝑒2 {𝜆𝑣 𝑥 . ∃𝑣1 𝑣2 𝑥1 𝑥2 . ⌜𝑣 = (𝑣1, 𝑣2) ∧ 𝑥 = (𝑥1, 𝑥2)⌝ ∗𝑄1 𝑣1 𝑥1 ∗𝑄2 𝑣2 𝑥2}

Fig. 1. Reasoning Rules for a Concurrent Counter and Key Reasoning Rules of Musketeer

Then, to prove safety of (dumas𝑛) for the specific value of 𝑛 = 1844, we can just pick one possible
ordering and verify safety of that ordering.

2.2 Verifying Schedule-Independent Safety with Musketeer
Our first contribution isMusketeer, a logic for proving that a program satisfies schedule-independent

safety, i.e. that safety of any one complete execution implies safety of all possible executions.

Although Musketeer is itself a program logic, we stress that Musketeer is not meant to be used

directly. Rather, Musketeer is a kind of intermediate logic designed for proving the soundness of

other light-weight, automatic approaches of ensuring schedule-independent safety such as type

systems. For instance, our main case study focuses on using Musketeer to show the soundness of

an affine type system guaranteeing schedule-independent safety (§7). Nevertheless, for the sake of

explaining the ideas behind Musketeer, here we explain the reasoning rules that would allow one

to verify manually the schedule-independent safety of (dumas𝑛) for all 𝑛.

Key reasoning rules. Musketeer takes the form of a unary Separation Logic with triples written

{𝑃} 𝑒 {𝑄}, where 𝑃 is a preconditon, 𝑒 the program being verified and 𝑄 the postcondition. The

postcondition 𝑄 is of the form 𝜆𝑣 𝑥 . 𝑅, where 𝑣 is the value being returned by the execution of 𝑒

and 𝑥 is a ghost return value. We explain ghost return values in detail later, but for now, they can be

thought of as a special way to existentially quantify variables in the postcondition. This Musketeer

triple guarantees the following hyper-property: “if one execution of 𝑒 is safe starting from a heap

satisfying 𝑃 and terminates in a heap satisfying 𝑄 , then every execution of 𝑒 is safe starting from a

heap satisfying 𝑃 , and all terminating executions will end in a heap satisfying 𝑄”.

The upper part of Figure 1 shows the main reasoning rules we use for our example. While the

assertions and rules of Musketeer are similar to standard Separation Logic rules, there are two key

differences. First, Musketeer does not provide the usual disjunction or existential elimination rules

from Separation Logic. That is, to prove a triple of the form {𝑃1 ∨ 𝑃2} 𝑒 {𝑄}, we cannot in general

do case analysis on the precondition and reduce this to proving {𝑃1} 𝑒 {𝑄} and {𝑃2} 𝑒 {𝑄}. As we
will see later, this restriction is necessary because the imprecision in disjunctions and existentials

can encode nondeterministic behavior, where different executions pick different witnesses.

Second, unlike traditional Separation Logic rules, rules in Musketeer do not guarantee safety.
Rather, they guarantee that safety is independent of scheduling. Thus, these rules often have weaker

preconditions than standard Separation Logic rules. The rule M-Assert illustrates this unusual

aspect of Musketeer. This rule applies to an expression assert 𝑣 , for an arbitrary value 𝑣 , and has a

trivial precondition. The postcondition has the pure facts that the return value𝑤 is () and that 𝑣

equals true, i.e. that the assert did not fail. In contrast, the standard Separation Logic rule for

assert 𝑣 requires the user to prove that 𝑣 = true! This is because the expression assert 𝑣 is safe only
if the value 𝑣 = true (§ 3.2). So in conventional Separation Logic, where a triple implies safety,
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⊤ −∗ run (assert true) {𝜆𝑣 . ⌜𝑣 = ()⌝} A-Assert

run 𝑒1 {𝜆𝑣1. run 𝑒2 {𝜆𝑣2.𝜓 (𝑣1, 𝑣2)}} −∗ run (par 𝑒1 𝑒2) {𝜓 } A-ParSeqL

run 𝑒2 {𝜆𝑣2. run 𝑒1 {𝜆𝑣1.𝜓 (𝑣1, 𝑣2)}} −∗ run (par 𝑒1 𝑒2) {𝜓 } A-ParSeqR

⊤ −∗ run (ref 𝑖) {𝜆𝑣. ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→ 𝑖} A-Ref

ℓ ↦→ 𝑖 −∗ run (atomic_add 𝑣 𝑗) {𝜆_. ℓ ↦→ (𝑖 + 𝑗)} A-Add

ℓ ↦→ 𝑖 −∗ run (get ℓ) {𝜆𝑣. ⌜𝑣 = 𝑖⌝ ∗ ℓ ↦→ 𝑖} A-Get

Fig. 2. Reasoning Rules for a Concurrent Counter and Key Reasoning Rules of Angelic

the obligation is to show that the assert will be safe. However, in Musketeer, the ruleM-Assert

corresponds exactly to the “motto” of Musketeer triples: if one execution of assert 𝑣 is safe and
terminates with value𝑤 such that𝑤 = () and 𝑣 = true, then every execution of assert 𝑣 is safe and
terminates with value𝑤 = (), and 𝑣 = true in those executions too. This property is true in a trivial

way: since the argument 𝑣 in assert 𝑣 is already a value, there is only one possible safe execution

for assert 𝑣 , and such an execution is possible only if 𝑣 = true.
On the contrary,M-Par has a standard shape. This rule allows for verifying the parallel primitive

par 𝑒1 𝑒2. It requires the user to split the precondition into two parts 𝑃1 and 𝑃2, and to establish the

two triples {𝑃1} 𝑒1 {𝑄1} and {𝑃2} 𝑒2 {𝑄2}. The postcondition of the rule asserts that the value 𝑣

being returned is an immutable pair (𝑣1, 𝑣2) and the ghost return value 𝑥 is itself a pair of two ghost

return values 𝑥1 and 𝑥2, such that 𝑄 𝑣1 𝑥1 and 𝑄 𝑣2 𝑥2 hold.

Verifying dumas. The other rules in Figure 1 are the reasoning rules for the concurrent counter

we use in dumas. They make use of a predicate counter 𝑣 𝑞 𝑖 , asserting that 𝑣 is a concurrent

counter with fractional ownership 𝑞 ∈ (0; 1]. When 𝑞 = 1 the assertion represents exclusive

ownership of the counter, in which case 𝑖 is the value stored in the counter. Otherwise, it asserts

ownership of a partial share of the counter, and 𝑖 is the contribution added to the counter with

this share. M-KSplit shows that counter can be split into several shares. M-KRef verifies ref 𝑖 ,
has a trivial precondition and returns a counter initialized to 𝑖 with fraction 1.M-KAdd verifies

atomic_add 𝑣 𝑗 , where the share may have an arbitrary fraction.M-KGet verifies get 𝑣 , requiring
that counter 𝑣 1 𝑖 holds. The fraction is 1, preventing a concurrent add to 𝑣 . Such a concurrent

add would introduce nondeterminism based on the relative ordering of the add and get, thereby

breaking schedule-independent safety.

Using the above rules, we can show that for any 𝑛, {⊤} (dumas𝑛) {𝜆_ _. ⊤}, that is, without
precondition, the safety of (dumas𝑛) is scheduling independent. To do so, we use M-KRef to

initialize the counter, getting counter 𝑟 1 0, which we split into counter 𝑟 (1/2) 0 ∗ counter 𝑟 (1/2) 0,
and then useM-Par. The counter 𝑟 (1/2) 0 given to each thread is sufficient to reason about the add

they each perform, and when we combine the shares they give back, we get counter 𝑟 1 1844. Using
M-KRef, we know that the get 𝑟 returns 1844, leaving us to show {⊤} assert (1844 == 𝑛) {𝜆_ _. ⊤}.

At this point, we would get stuck in a standard separation logic proof, because the standard rule

for assert would require us to prove that (1844 == 𝑛) evaluates to true. However, that would only

be the case if 𝑛 was in fact 1844. Instead, in Musketeer, we can use a rule showing that (1844 == 𝑛)
will evaluate to some Boolean 𝑏, regardless of what value 𝑛 is. At that point, we can use M-Assert

to conclude, even though we don’t know which value 𝑏 will take.

2.3 Verifying That One Interleaving is Safe and Terminates with Angelic
Now that we know that for all 𝑛, (dumas𝑛) satisfies schedule-independent safety, we can prove

that (dumas 1844) is safe just by showing that one interleaving is safe and terminates. For such a

simple example, it would suffice at this point to simply execute (dumas 1844) once and observe

, Vol. 1, No. 1, Article . Publication date: July 2025.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294
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one safe, terminating execution. We would then be able to conclude that all possible executions

are safe. However, for more complex examples (for example, programs that are parameterized by

an argument from an infinite type), we propose Angelic, a program logic for verifying that one

interleaving is safe and terminates.

Angelic uses a form of weakest-precondition reasoning, with specifications taking the form

𝜑 −∗ run 𝑒 {𝜓 }, where 𝜑 is the precondition, 𝑒 the program being verified, and𝜓 the postcondition,

of the form 𝜆 𝑣. 𝜑 ′, where 𝑣 is the value being returned. To establish termination, Angelic uses time
credits [Atkey 2011; Charguéraud and Pottier 2017]. The ownership of 𝑛 time credits, written $𝑛, is

a permission to execute at most 𝑛 function calls. Bounding the number of function calls guarantees

termination in the language we consider, since recursive functions are the only form of looping.

Hence, $𝑛 −∗ run 𝑒 {𝜆_.⊤} guarantees that one execution of 𝑒 is safe and terminates.

Figure 2 presents a few reasoning rules for Angelic. It is helpful to read these rules backwards,

applying the rule to a goal that matches the right side of the −∗ and ending up with a goal of

proving the left side. A-Assert verifies an assertion, for which the argument must be the Boolean

true. Indeed, since Angelic guarantees safety, the proof burden is now to show that the assert will

succeed. A-ParSeqL says that to verify par 𝑒1 𝑒2, it suffices to verify sequentially 𝑒1 and then 𝑒2.

A-ParSeqR lets us verify the reverse order instead, reasoning first about 𝑒2 and then 𝑒1. As we

will explain later on (§6.2), Angelic more generally allows for selecting any interleaving of steps

within 𝑒1 and 𝑒2 by “jumping” between the two expressions during a proof. Finally, A-Ref, A-Add

and A-Get shows how to reason on a concurrent counter. First, these rules do not involve any

new predicate, and manipulate the plain points-to assertion linked with the counter. Second, no

fractions or invariants are involved. Indeed, in Angelic, there is no need to split and join assertions,

as the parallel primitive can be verified sequentially in any order.

Using these rules, we can verify that $𝐶 −∗ run (dumas 1844) {𝜆_.⊤} holds, for some constant𝐶 ,

which implies that there exists one interleaving that is safe and terminates. Combined with the fact

that this program has schedule-independent safety, we conclude that (dumas 1844) is always safe.

3 Syntax and Semantics
MusketLang is a call-by-value lambda calculus with mutable state and parallelism. We first present

its syntax (§3.1) and then its semantics (§3.2). MusketLang is similar to HeapLang, the language that

ships with Iris, except that it implements structured parallelism instead of fork-based concurrency.

3.1 Syntax
Figure 3 presents the syntax of MusketLang. A value 𝑣 ∈ V is either the unit value (), a Boolean 𝑏 ∈
{true, false}, an idealized integer 𝑖 ∈ Z, a location ℓ from an infinite set of locationsL, an immutable

product (𝑣1, 𝑣2) of two values, or a recursive function 𝜇𝑓 𝑥 . 𝑒 .

An expression 𝑒 describe a computation in MusketLang. Recursive functions are written 𝜇𝑓 𝑥 . 𝑒 .

For non-recursive functions, we write 𝜆𝑥. 𝑒 ≜ 𝜇_𝑥 . 𝑒 . We define functions with multiple arguments

as a chain of function constructors. Mutable state is available through arrays. Parallelism is available

through a primitive par 𝑒1 𝑒2, which evaluates to an active parallel tuple 𝑒1 | | 𝑒2. Such a tuple evaluates
the two expressions in parallel and returns their result as an immutable product. MusketLang also

has a primitive compare-and-swap instruction CAS 𝑒1 𝑒2 𝑒3 𝑒4, which targets an array entry and

has 4 parameters: the array location, the offset into the array, the old value and the new value.

References are defined as arrays of size 1 with the following operations:

ref ≜ 𝜆𝑥 . let 𝑟 = alloc 1 in 𝑟 [0]←𝑥 ; 𝑟 get ≜ 𝜆𝑟 . 𝑟 [0] set ≜ 𝜆𝑟 𝑣 . 𝑟 [0]←𝑣

An evaluation context 𝐾 describes an expression with a hole □ and dictates the right-to-left

evaluation order of MusketLang.
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Values V 𝑣 ::= () | 𝑏 ∈ {true, false} | 𝑖 ∈ Z | ℓ ∈ L | (𝑣, 𝑣) | 𝜇𝑓 𝑥 . 𝑒
Primitives ⊲⊳ ::= + | − | × | ÷ | mod | == | < | ≤ | > | ≥ | ∨ | ∧
Expressions 𝑒 ::= 𝑣,𝑤 value

𝑥 variable
let𝑥 = 𝑒 in 𝑒 sequencing
if 𝑒 then 𝑒 else 𝑒 conditional
𝜇𝑓 𝑥 . 𝑒 abstraction
𝑒 𝑒 call
𝑒 ⊲⊳ 𝑒 primitive operation
prod 𝑒 𝑒 product
proj𝑘∈{1,2} 𝑒 projections

assert 𝑒 assertion
alloc 𝑒 array allocation
𝑒 [𝑒] array load
𝑒 [𝑒]←𝑒 array store
length 𝑒 array length
par 𝑒 𝑒 parallelism
𝑒 | | 𝑒 active parallel tuple
CAS 𝑒 𝑒 𝑒 𝑒 compare-and-swap

Contexts 𝐾 ::= let𝑥 = □ in 𝑒 | if □ then 𝑒 else 𝑒 | alloc □ | length□ | assert□
| 𝑒 [□] | □[𝑣] | 𝑒 [𝑒]←□ | 𝑒 [□]←𝑣 | □[𝑣]←𝑣

| 𝑒 ⊲⊳ □ | □ ⊲⊳ 𝑣 | 𝑒 □ | □ 𝑣
| CAS 𝑒 𝑒 𝑒 □ | CAS 𝑒 𝑒 □ 𝑣 | CAS 𝑒 □ 𝑣 𝑣 | CAS□ 𝑣 𝑣 𝑣
| prod 𝑒 □ | prod□ 𝑣 | proj𝑘 □

Fig. 3. Syntax of MusketLang

HeadIfTrue

if true then 𝑒1 else 𝑒2 \𝜎
head−−−−→ 𝑒1 \𝜎

HeadIfFalse

if false then 𝑒1 else 𝑒2 \𝜎
head−−−−→ 𝑒2 \𝜎

HeadCallPrim

𝑣1 ⊲⊳ 𝑣2
pure−−−→ 𝑣

𝑣1 ⊲⊳ 𝑣2 \𝜎
head−−−−→ 𝑣 \𝜎

HeadAbs

𝜇𝑓 𝑥 . 𝑒 \𝜎 head−−−−→ 𝜇𝑓 𝑥 . 𝑒 \𝜎
HeadLetVal

let𝑥 = 𝑣 in 𝑒 \𝜎 head−−−−→ [𝑣/𝑥]𝑒 \𝜎

HeadAlloc

0 ≤ 𝑖 ℓ ∉ dom(𝜎)

alloc 𝑖 \𝜎 head−−−−→ ℓ \ [ℓ := ()𝑖 ]𝜎
HeadLoad

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |
®𝑤 (𝑖) = 𝑣

ℓ [𝑖] \𝜎 head−−−−→ 𝑣 \𝜎

HeadStore

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |

ℓ [𝑖]←𝑣 \𝜎 head−−−−→ () \ [ℓ := [𝑖 := 𝑣] ®𝑤]𝜎

HeadAssert

assert true \𝜎 head−−−−→ () \𝜎

HeadProduct

prod 𝑣1 𝑣2 \𝜎
head−−−−→ (𝑣1, 𝑣2) \𝜎

HeadProj

𝑘 ∈ {1; 2}

proj𝑘 (𝑣1, 𝑣2) \𝜎
head−−−−→ 𝑣𝑘 \𝜎

HeadLength

𝜎 (ℓ) = ®𝑤 𝑖 = | ®𝑤 |

length ℓ \𝜎 head−−−−→ 𝑖 \𝜎
HeadCASSucc

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣

CAS ℓ 𝑖 𝑣 𝑣 ′ \𝜎 head−−−−→ true \ [ℓ := [𝑖 := 𝑣 ′] ®𝑤]𝜎

HeadCASFail

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣0 𝑣0 ≠ 𝑣

CAS ℓ 𝑖 𝑣 𝑣 ′ \𝜎 head−−−−→ false \𝜎
HeadCall

(𝜇𝑓 𝑥 . 𝑒) 𝑣 \𝜎 head−−−−→ [(𝜇𝑓 𝑥 . 𝑒)/𝑓 ] [𝑥/𝑣]𝑒 \𝜎
HeadFork

par 𝑒1 𝑒2 \𝜎 −→ 𝑒1 | | 𝑒2 \𝜎
HeadJoin

𝑣1 | | 𝑣2 \𝜎 −→ (𝑣1, 𝑣2) \𝜎

Fig. 4. Head Reduction Relation

3.2 Semantics

Figure 4 presents the head reduction relation 𝑒 \𝜎 head−−−→ 𝑒′ \𝜎 ′, describing a single step of expres-

sion 𝑒 with store 𝜎 into expression 𝑒′ and store 𝜎 ′. A store is a map from location to arrays, modeled

as a list of values. We write ∅ for the empty store and 𝜎 (ℓ) for the list of values at location ℓ in
𝜎 . To insert or update a location ℓ with array ®𝑣 in store 𝜎 , we write [ℓ := ®𝑣]𝜎 , and similarly write
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8 Alexandre Moine, Sam Westrick, and Joseph Tassarotti

StepHead

𝑒 \𝜎 head−−−−→ 𝑒′ \𝜎′

𝑒 \𝜎 −→ 𝑒′ \𝜎′

StepCtx

𝑒 \𝜎 −→ 𝑒′ \𝜎′

𝐾 ⟨𝑒⟩ \𝜎 −→ 𝐾 ⟨𝑒′⟩ \𝜎′

StepParL

𝑒1 \𝜎 −→ 𝑒′
1
\𝜎′

𝑒1 | | 𝑒2 \𝜎 −→ 𝑒′
1
| | 𝑒2 \𝜎′

StepParR

𝑒2 \𝜎 −→ 𝑒′
2
\𝜎′

𝑒1 | | 𝑒2 \𝜎 −→ 𝑒1 | | 𝑒′2 \𝜎
′

Fig. 5. Main Reduction Relation

RedHead

𝑒 \𝜎 head−−−−→ 𝑒′ \𝜎′

Red 𝑒 𝜎

RedCtx

Red 𝑒 𝜎

Red𝐾 ⟨𝑒⟩ 𝜎

RedPar

𝑒1 ∉ V ∨ 𝑒2 ∉ V
𝑒1 ∉ V =⇒ Red 𝑒1 𝜎 𝑒2 ∉ V =⇒ Red 𝑒2 𝜎

Red 𝑒1 | | 𝑒2 𝜎

Notstuck 𝑒 𝜎 ≜ 𝑒 ∈ V ∨ Red 𝑒 𝜎
Safe 𝑒 ≜ ∀𝑒′ 𝜎′ . (𝑒 \ ∅ −→∗ 𝑒′ \𝜎′) =⇒ Notstuck 𝑒′ 𝜎′

SISafety 𝑒 ≜ ∀𝑣 𝜎. (𝑒 \ ∅ −→∗ 𝑣 \𝜎) =⇒ Safe 𝑒

Fig. 6. Definition of the Red, Notstuck, Safe, and SISafety Predicates

[𝑖 := 𝑤]®𝑣 to update offset 𝑖 with value𝑤 in array ®𝑣 . The length of an array ®𝑣 is written as |®𝑣 |, and 𝑣𝑖
represents an array of size 𝑖 initialized with value 𝑣 .

Most of the reduction rules are standard. For example, HeadAlloc allocates an array initialized

with the unit value and returns its location, which is selected nondeterministically. HeadLoad and

HeadStore perform loads and stores, respectively. HeadCASSucc and HeadCASFail performs an

atomic compare-and-swap at an offset in an array. HeadAssert reduces an assert statement to a

unit if the asserted value is true; asserts of false are stuck expressions. HeadFork performs a fork,

converting a primitive par operation into an active parallel tuple. HeadJoin takes an active parallel

tuple where both sides have reached a value and converts it into an immutable product.

Figure 5 presents the main reduction relation 𝑒 \𝜎 −→ 𝑒′ \𝜎 ′, describing a parallel step of

computation, potentially under an evaluation context. StepHead performs a head step. StepCtx

performs a computation step under an evaluation context. StepParL and StepParR implement

parallelism: these two rules allow for the main reduction relation to perform nondeterministically

a step to the left or right side of an active parallel tuple, respectively.

We write the reflexive-transitive closure of the reduction relation as 𝑒 \𝜎 −→∗ 𝑒′ \𝜎 ′.

4 A Separation Logic for Proving Schedule-Independent Safety
In this section, we present Musketeer in more detail. First, we define schedule-independent

safety (§4.1). Next, we introduce our notations for triples and assertions (§4.2) and then present

the reasoning rules of Musketeer (§4.3). We conclude with one of the main technical challenges in

working with Musketeer, the absence of a rule for eliminating existentials, and explain how we

overcame this with the novel concept of ghost return values (§4.4).

4.1 Definition of Schedule-Independent Safety
Let us make formal the definition of schedule-independent safety, that is, the property guaranteeing

our motto “if one execution of 𝑒 is safe and terminates, then every execution of 𝑒 is safe”.

What does it mean for a parallel program to be safe? We say that the configuration 𝑒 \𝜎 is

not stuck if either 𝑒 is a value, or every parallel task in 𝑒 that has not reached a value can take a

step—in the latter case, we call the configuration reducible. A program is defined to be safe if every

configuration it can reach is not stuck. In particular, if a program 𝑒 is safe, then no assertion in 𝑒

can fail, since an assert of a false value is not reducible.
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Figure 6 gives the formal definitions. The upper part of Figure 6 defines the property Red 𝑒 𝜎 ,
asserting that the configuration 𝑒 \𝜎 is reducible. RedHead asserts that if 𝑒 can take a head

step, then it is reducible. RedCtx asserts that the reducibility of an expression 𝐾 ⟨𝑒⟩ follows from
reducibility of 𝑒 . RedPar asserts that an active parallel tuple 𝑒1 | | 𝑒2 is reducible if at least one

sub-expression is not a value (otherwise, a join is possible), and each sub-expression that is not a

value is reducible. The lower part of Figure 6 asserts that the property Notstuck 𝑒 𝜎 holds if and

only if either 𝑒 is a value or Red 𝑒 𝜎 holds. Then, Safe 𝑒 says that if 𝑒 \ ∅ can reach 𝑒′ \𝜎 ′ in zero or

more steps, then Notstuck 𝑒′ 𝜎 ′. Finally, the main property SISafety 𝑒 , asserting that the safety of 𝑒

is schedule-independent, is defined. The property says that if some execution of 𝑒 reaches a value 𝑣 ,

then 𝑒 is safe. The soundness Theorem 4.1 of Musketeer guarantees that, for a verified program 𝑒 ,

the property SISafety 𝑒 holds.

4.2 Triples and Assertions
As we saw, Musketeer is a Separation Logic whose main judgement takes the form of a triple

{𝑃} 𝑒 {𝑄}. In this triple, 𝑃 is the precondition, 𝑒 the program being verified, and𝑄 the postcondition.
The postcondition is of the form 𝜆𝑣 𝑥 . 𝑃 ′, where 𝑣 is the value being returned by the execution

of 𝑒 and 𝑥 is a ghost return value returned by the verification of 𝑒 . Both 𝑃 and 𝑃 ′ are Separation
Logic assertions, and can be understood as heap predicates: they describe the content of a heap. We

write 𝑃 ∗ 𝑃 ′ for the separating conjunction, 𝑃 −∗ 𝑃 ′ for the separating implication and ⌜𝑃⌝ when

the property 𝑃 holds in the meta-logic (i.e. Rocq). Musketeer offers fractional [Bornat et al. 2005;

Boyland 2003] points-to assertions ℓ ↦→𝑞 ®𝑣 . This assertion says that the location ℓ points to the

array ®𝑣 with fraction 𝑞 ∈ (0; 1]. When 𝑞 = 1 we simply write ℓ ↦→ ®𝑣 . We use the term vProp for the

type of assertions that can be used in Musketeer pre/post-conditions.

As described before, the Musketeer triple {𝑃} 𝑒 {𝑄} can be intuitively read as implying the

following hyper-property: “if one execution of 𝑒 is safe starting from a heap satisfying 𝑃 and

terminates in a heap satisfying𝑄 , then every execution of 𝑒 is safe starting from a heap satisfying 𝑃

and all terminating executions will end in a heap satisfying 𝑄”. If 𝑃 and 𝑄 are trivial, then this

implies the SISafety property. This is captured formally in the soundness theorem of the logic.

Theorem 4.1 (Soundness of Musketeer). If {⊤} 𝑒 {𝜆_ _. ⊤} holds, then SISafety 𝑒 holds.

Although Musketeer is a unary logic with judgements referring to a single program 𝑒 , the above

statement reveals that the judgements are relating together multiple executions of that program.

To make this work, under the hood, Musketeer’s vProp assertions describe not one but two heaps,
corresponding to two executions of the program. This has ramifications for some proof rules (§4.4).

Later, we will see how vProp assertions can be encoded into assertions in a relational logic that

makes these two different heaps more explicit.

4.3 Reasoning Rules for Musketeer
Figure 7 presents selected reasoning rules of Musketeer. Recall that because Musketeer triples do

not imply safety, these rules differ from familiar Separation Logic rules. We have previously seen

this in the rule M-Assert. A similar phenomenon happens inM-If, which targets the expression

if 𝑣 then 𝑒1 else 𝑒2. In standard Separation Logic, one must prove that 𝑣 is a Boolean, since otherwise

the if statement would get stuck. However, in M-If, the user does not have to prove that 𝑣 is a

Boolean. Instead, the rule requires the user to verify the two sides of the if-statement under the

hypothesis that 𝑣 was the Boolean associated with the branch.

M-Alloc, M-Load and M-Store are similar to their standard Separation Logic counterparts,

except that they do not require the user to show that the allocation size or the loaded or stored

offset are valid integers.M-Alloc targets the expression alloc 𝑤 and has a trivial pre-condition.
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M-If

( 𝑣 = true =⇒ {𝑃} 𝑒1 {𝑄} )
( 𝑣 = false =⇒ {𝑃} 𝑒2 {𝑄} )
{𝑃} if 𝑣 then 𝑒1 else 𝑒2 {𝑄}

M-Conseq

𝑃 −∗ 𝑃 ′ {𝑃 ′} 𝑒 {𝑄 ′} ∀𝑣 𝑥 . 𝑄 𝑣 𝑥 −∗ 𝑄 ′ 𝑣 𝑥
{𝑃} 𝑒 {𝑄}

M-Val

𝑃 −∗ 𝑄 𝑣 𝑥
{𝑃} 𝑣 {𝑄}

M-Alloc {⊤} alloc 𝑤 {𝜆𝑣 (ℓ, 𝑖) . ⌜𝑣 = ℓ ∧ 𝑤 = 𝑖 ∧ 0 ≤ 𝑖⌝ ∗ ℓ ↦→ ()𝑖 }

M-Load {ℓ ↦→𝑞 ®𝑣} ℓ [𝑤] {𝜆𝑣 ′ 𝑖 . ⌜𝑤 = 𝑖 ∧ 0 ≤ 𝑖 < |®𝑣 | ∧ ®𝑣 (𝑖) = 𝑣 ′⌝ ∗ ℓ ↦→𝑞 ®𝑣}

M-Store {ℓ ↦→ ®𝑣} ℓ [𝑤]←𝑣 ′ {𝜆𝑣 ′′ 𝑖 . ⌜𝑣 ′′ = () ∧ 𝑤 = 𝑖 ∧ 0 ≤ 𝑖 < |®𝑣 |⌝ ∗ ℓ ↦→ [𝑖 := 𝑣 ′]®𝑣}
M-Bind

{𝑃} 𝑒 {𝜆𝑣 𝑥 . 𝑄 ′ 𝑣 𝑥} ∀𝑣 𝑥 . {𝑄 ′ 𝑣 𝑥} 𝐾 ⟨𝑣⟩ {𝑄}
{𝑃} 𝐾 ⟨𝑒⟩ {𝑄}

M-Frame

{𝑃} 𝑒 {𝑄}
{𝑃 ∗ 𝑃 ′} 𝑒 {𝜆𝑣 𝑥 . 𝑄 𝑣 𝑥 ∗ 𝑃 ′}

Fig. 7. Selected Reasoning Rules of Musketeer

The postcondition asserts that the value being returned is a location ℓ and that𝑤 is a non-negative

integer–recall that we can think of the ghost return value (ℓ, 𝑖) as if it were just a special way of

existentially quantifying the variables ℓ and 𝑖 in the postcondition. The postcondition additionally

contains the points-to assertion ℓ ↦→ ()𝑖 asserting that ℓ points to the array of size 𝑖 initialized with

the unit value.M-Load andM-Store follow the same pattern.

M-Alloc might surprise the reader, since based on the interpretation of triples we described

above, the postcondition seems to imply that every execution of the allocation will return the same

location ℓ . Yet allocation in MusketLang is not deterministic. The resolution of this seeming contra-

diction, is that because MusketLang does not allow for “constructing” a location (e.g. transforming

an integer into a location), there is no way for the program to observe the nondeterminism of

allocations. Hence, from the reasoning point-of-view we can conduct the proof as if allocations

were made deterministically. This subtlety will appear in the model of Musketeer (§5.2).

M-Bind allows for reasoning under a context, and is very similar to the standard Separation Logic

Bind rule, except that in the second premise, we quantify over not just the possible return values 𝑣 ,

but also the ghost return value 𝑥 . M-Val allows for concluding a proof about a value, allowing the

user of the rule to pick an arbitrary ghost return value 𝑥 . M-Frame shows that Musketeer supports

framing.M-Conseq is the consequence rule of Musketeer: it allows for weakening the precondition

and strengthening the postcondition.

4.4 Existential Reasoning with Ghost Return Values
Let us now explain the need for ghost return values. Although Musketeer is formulated as a unary

logic, it relates two executions of the same program. As we previously alluded to (§4.2), Musketeer’s

vProp assertions are, under the hood, tracking not one, but two heaps: one for each execution of the

same program. The fact that preconditions describe two heaps implies that there is one standard

reasoning rule from Separation Logic that Musketeer does not support: existential elimination,

which the disjunction rule is a special case of. More precisely, Musketeer lacks the following rule:

∀𝑥 . {𝑃 𝑥} 𝑒 {𝑄}
{∃𝑥 . 𝑃 𝑥} 𝑒 {𝑄}

which allows for eliminating an existential in the precondition by introducing a universally quan-

tified variable in the meta-logic. The reason this rule does not hold in Musketeer is because in

Musketeer, the precondition ∃𝑥 . 𝑃 𝑥 has two interpretations—one for each heap of the two ex-

ecutions of 𝑒 being tracked by the triple. Although the precondition holds in both heaps, the
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witness 𝑥 might differ between the two. Whereas, in the premise of the rule, quantifying over 𝑥 at

the meta-level means that 𝑥 is treated as the same in both executions.

As a result, Musketeer only supports the weaker rule M-ElimExist, allowing an existential to be

eliminated when the precondition guarantees that the witness is unique.

M-ElimExist

(∀𝑥 . 𝑃 𝑥 −∗ ⌜𝑈 𝑥⌝) (∀𝑥 𝑦.𝑈 𝑥 ∧𝑈 𝑦 =⇒ 𝑥 = 𝑦) (∀𝑥 . {𝑃 𝑥} 𝑒 {𝑄})
{∃𝑥 . 𝑃 𝑥} 𝑒 {𝑄}

However,M-ElimExist is tedious to use in practice. Moreover, sometimes objects are not uniquely
characterized by the precondition, and yet are chosen deterministically, so that the witnesses ought

to be the same in both executions.

To solve this issue, we use ghost return values. In a Musketeer triple {𝑃} 𝑒 {𝜆𝑣 𝑥 . 𝑄 𝑣 𝑥}, the
ghost return value 𝑥 is an object (of an arbitrary type, which is formally a parameter of the triple)

that will eventually be chosen by the user when they applyM-Val. We think of the bound variable 𝑥

as if it were existentially quantified, but the key is that the eventual “witness” selected when using

M-Valwill be the same across the two executions under consideration. As a result, instead of having

to use the weak M-ElimExist to eliminate 𝑥 , the ghost return value is automatically eliminated in

a strong way by M-Bind.

To illustrate why ghost return values are useful, we will consider an example making use of the

following indirection function that creates a reference to a reference:

indirection ≜ 𝜆𝑣. ref (ref 𝑣)

Without using ghost return value, a possible specification for indirection 𝑣 would be:

{⊤} indirection 𝑣 {𝜆𝑤 _. ∃ℓ . ⌜𝑤 = ℓ⌝ ∗ ∃ℓ ′ . ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]}

However, this specification is too weak. Consider the following example:

{⊤} get (indirection 𝑣) {𝜆_ _. ⊤}

Making use of M-Bind and then applying the above specification for indirection, we obtain:

{∃ℓ . ⌜𝑤 = ℓ⌝ ∗ ∃ℓ ′ . ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]} get𝑤 {𝜆_ _. ⊤}

The first existential on ℓ is not problematic, as the property 𝑤 = ℓ guarantees the unicity of the

witness. Applying M-ElimExist, we hence transform the goal to:

{∃ℓ ′ . ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]} get ℓ {𝜆_ _. ⊤}

However, we are stuck here, since there is nothing guaranteeing the unicity of the witness ℓ ′, and
we hence cannot eliminate the existential. How do ghost return values fix this issue? We prove a

specification for indirection in which ℓ ′ is bound in a ghost return value, instead of as an existential:

{⊤} indirection 𝑣 {𝜆𝑣 ℓ ′ . ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]}

As we use this specification to reason about get (indirection 𝑣), M-Bind will eliminate both the

return value 𝑣 and the ghost return value 𝑙 ′, reducing the proof to:

{ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]} get ℓ {𝜆_ _. ⊤}

which allow us to proceed and conclude, since there is no longer an existential to eliminate.

We extensively use ghost return values for the verification of MiniDet, our case study (§7). For

instance, we use a ghost return value to record the content of references in the typing environment.
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5 Unchaining the Reasoning with Chained Triples
For an expression 𝑒 , a Musketeer triple guarantees the property “if one execution of 𝑒 is safe and

terminates, then every execution of 𝑒 is safe”. In order to justify the validity of the reasoning rules

for Musketeer triples, we generalize the above property and define an intermediate logic called

ChainedLog which targets two expressions 𝑒𝑙 and 𝑒𝑟 and guarantees the property “if one execution

of 𝑒𝑙 is safe and terminates, then every execution of 𝑒𝑟 is safe”. We first present chained triples (§5.1)

and present some associated reasoning rules (§5.2). Finally, we explain how we encode Musketeer

triples using chained triples (§5.3).

5.1 Chained Triples as a Generalization of Musketeer Triples
In ChainedLog, a chained triple takes the form:

{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }
The assertions 𝜑𝑙 and 𝜑𝑟 are the preconditions of 𝑒𝑙 and 𝑒𝑟 , respectively. The assertions𝜓𝑙 and𝜓𝑟 are

both of the form 𝜆𝑣. 𝜑 , where 𝑣 is a return value, and are the postconditions of 𝑒𝑙 and 𝑒𝑟 , respectively.

Intuitively, the above chained triple says that, if there exists a reduction of 𝑒𝑙 starting from a heap

satisfying 𝜑𝑙 , that is safe and terminates on a final heap with a value 𝑣𝑙 satisfying𝜓𝑙 𝑣𝑙 , then every

reduction of 𝑒𝑟 starting from a heap satisfying𝜑𝑟 is safe and if it terminates, it does so on a final heap

with a value 𝑣𝑟 satisfying𝜓𝑟 𝑣𝑟 . Moreover, chained triples guarantee determinism (for simplicity,

see our commentary of C-Par), that is, 𝑣𝑙 = 𝑣𝑟 . Formally, we have the following soundness theorem:

Theorem 5.1 (Soundness of Chained Triples). If {⊤} 𝑒1 {_.⊤ | ⊤} 𝑒2 {𝜆_.⊤} holds, and if
there exists a value 𝑣 and a store 𝜎 such that 𝑒1 \ ∅ −→∗ 𝑣 \𝜎 , then for every 𝑒′ and 𝜎 ′ such that
𝑒2 \ ∅ −→∗ 𝑒′ \𝜎 ′, the property Safe 𝑒′𝜎 ′ holds.

In particular, chained triples do not guarantee safety for 𝑒𝑙 , but they do guarantee safety for 𝑒𝑟 .

We call the triples “chained” because enjoy the following rule that allows us to chain facts from

one execution to the other:

C-Chain

{𝜑𝑙 } 𝑒𝑙 {𝜆𝑣𝑙 .𝜓𝑙 𝑣𝑙 ∗ 𝜑 | 𝜑𝑟 } 𝑒𝑟 {𝜆𝑣𝑟 .𝜓𝑟 }
{𝜑𝑙 } 𝑒𝑙 {𝜆𝑣𝑙 .𝜓𝑙 𝑣𝑙 | 𝜑 −∗ 𝜑𝑟 } 𝑒𝑟 {𝜆𝑣𝑟 .𝜓𝑟 }

It is best to read this rule from the bottom up. Below the line, using the precondition for 𝑒𝑟 requires

showing 𝜑 . Above the line, the rule allows us to discharge this assumption by showing that 𝜑 holds

in the postcondition of 𝑒𝑙 . That is, if some knowledge 𝜑 is needed in order to verify the safety of 𝑒𝑟 ,

then this knowledge can be gained from an execution of 𝑒𝑙 .

Assertions 𝜑 of ChainedLog are ground Iris assertions of type iProp. As previously intuited (§4.2),
they include two forms of points-to assertions, one for each side of the triple. We write ℓ ↦→𝑙𝑙𝑙

𝑞 ®𝑣
the points-to assertion for the left expression, and ℓ ↦→𝑟𝑟𝑟

𝑞 ®𝑣 for the right expression. Moreover,

ChainedLog makes use of a left-allocation token, written leftalloc ℓ . This (non-persistent) assertion
witnesses that ℓ has been allocated by the left expression and plays a key role for allocations.

5.2 Reasoning Rules for Chained Triples
Figure 8 presents selected reasoning rules for chained triples. Before commenting on these rules,

let us underline a caveat of chained triples, explaining in part why we only use them as a model for

Musketeer: chained triples do not support a Bind rule.
1
Hence, non-structural rules for chained

triples explicitly mentions a stack of contexts, written ®𝐾 .
1
The absence of a Bind rule comes from the chaining intention of these triples: the user needs to terminate the reasoning

on the whole left-hand side expression before reasoning on the right-hand side.
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C-AssertL

𝑣 = true =⇒ {𝜑𝑙 } ®𝐾𝑙 ⟨()⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }
{𝜑𝑙 } ®𝐾𝑙 ⟨assert 𝑣⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

C-AssertR

{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨()⟩ {𝜓𝑟 }
{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨assert true⟩ {𝜓𝑟 }

C-AllocL

∀ℓ 𝑖 . 𝑣 = 𝑖 ∧ 0 ≤ 𝑖 =⇒ {𝜑𝑙 ∗ ℓ ↦→𝑙𝑙𝑙 ()𝑖 ∗ leftalloc ℓ} ®𝐾𝑙 ⟨ℓ⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }
{𝜑𝑙 } ®𝐾𝑙 ⟨alloc 𝑣⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

C-AllocR

0 ≤ 𝑖 {𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ ℓ ↦→𝑟𝑟𝑟 ()𝑖 } ®𝐾𝑟 ⟨ℓ⟩ {𝜓𝑟 }
{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ leftalloc ℓ} ®𝐾𝑟 ⟨alloc 𝑖⟩ {𝜓𝑟 }

C-LoadL

∀𝑖 𝑤 . 𝑣 = 𝑖 ∧ 0 < 𝑖 ≤ |®𝑣 | ∧𝑤 = ®𝑣 (𝑖) =⇒ {𝜑𝑙 ∗ ℓ ↦→𝑙𝑙𝑙
𝑞 ®𝑣} ®𝐾𝑙 ⟨ ®𝑤⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

{𝜑𝑙 ∗ ℓ ↦→𝑙𝑙𝑙
𝑞 ®𝑣} ®𝐾𝑙 ⟨ℓ [𝑣]⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

C-LoadR

0 < 𝑖 ≤ |®𝑣 | ∧𝑤 = ®𝑣 (𝑖) {𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ ℓ ↦→𝑟𝑟𝑟
𝑞 ®𝑣} ®𝐾𝑟 ⟨𝑤⟩ {𝜓𝑟 }

{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ ℓ ↦→𝑟𝑟𝑟
𝑞 ®𝑣} ®𝐾𝑟 ⟨ℓ [𝑖]⟩ {𝜓𝑟 }

C-Par

{𝜑𝑙1} 𝑒𝑙1 {𝜓𝑙1 | 𝜑𝑟1} 𝑒𝑟1 {𝜓𝑟1} {𝜑𝑙2} 𝑒𝑙2 {𝜓𝑙2 | 𝜑𝑟2} 𝑒𝑟2 {𝜓𝑟2}
∀𝑣1 𝑥1 𝑣2 𝑥2 . {𝜓𝑙1𝑣1 𝑥1 ∗ 𝜓𝑙2 𝑣2 𝑥2} ®𝐾𝑙 ⟨(𝑣1, 𝑣2)⟩ {𝜓𝑙 | 𝜓𝑟1𝑣1 𝑥1 ∗ 𝜓𝑟2 𝑣2 𝑥2} ®𝐾𝑟 ⟨(𝑣1, 𝑣2)⟩ {𝜓𝑟 }

{𝜑𝑙1 ∗ 𝜑𝑙2} ®𝐾𝑙 ⟨par 𝑒𝑙1 𝑒𝑙2⟩ {𝜓𝑙 | 𝜑𝑟1 ∗ 𝜑𝑟2} ®𝐾𝑟 ⟨par 𝑒𝑟1 𝑒𝑟2⟩ {𝜓𝑟 }
C-FrameL

{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }
{𝜑𝑙 ∗ 𝜑0} 𝑒𝑙 {𝜓𝑙 ∗ 𝜑0 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }

C-FrameR

{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }
{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 ∗ 𝜑0} 𝑒𝑟 {𝜆𝑣𝑟 .𝜓𝑟 𝑣𝑟 ∗ 𝜑0}

Fig. 8. Selected Reasoning Rules for Chained Triples

Let us again start with the rules for reasoning about an assertion. C-AssertL allows for reasoning

about assert 𝑣 on the left-hand side. Because this rule targets the left hand-side, there is no safety-

related proof obligation, hence the premise of the rule allows the user to suppose that 𝑣 = true.
C-AssertR is, on the contrary, similar to a standard Separation Logic rule for assertions: the

assertion must target a Boolean, and this Boolean must be true.

C-AllocL allows for reasoning about an allocation of an array on the left-hand side. Again,

there is no safety proof obligation, so the user gets to suppose that the argument of the allocation

is a non-negative integer. The precondition is then augmented with a points-to assertion to a

universally quantified location ℓ as well as the allocation token leftalloc ℓ . This latter assertion plays

a role in C-AllocR, which allows for reasoning about an allocation on the right-hand side. Indeed,

the assertion leftalloc ℓ appears in the precondition of the right-hand side. This assertion allows for

predicting the location allocated on the right-hand side. As a result, the premise of C-AllocR does

not universally quantify over the location allocated–the name ℓ is reused. The user can transmit a

leftalloc ℓ assertion from the left-hand side to the right-hand side using C-FrameL and C-Chain.

This rule may seem surprising, since allocation is nondeterministic in MusketLang, yet this rule

appears to ensure that the right-hand side allocation returns the same location as the left-hand

side. The key is that a right-hand points-to assertion of the form ℓ ↦→𝑟𝑟𝑟
𝑞 ®𝑣 does not mean that the

specific location ℓ has that value in the right-hand side execution. Rather, it means that there exists

some location which points to ®𝑣 on the right-hand side, and we can reason as if that location were

equivalent to ℓ , under some implicit permutation renaming of locations. In other words, as we

alluded to earlier in Section 4.3 when discussing the nondeterminism of allocation in Musketeer,

the logic ensures that the specific location of an allocation does not matter, since we do not support

casting integers to pointers.
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vProp ≜ B→ iProp ∀𝑥 . 𝑃 𝑥 ≜ 𝜆𝑏.∀𝑥 . 𝑃 𝑥 𝑏
𝑃1 ∗ 𝑃2 ≜ 𝜆𝑏. 𝑃1 𝑏 ∗ 𝑃2 𝑏 ∃𝑥 . 𝑃 𝑥 ≜ 𝜆𝑏. ∃𝑥 . 𝑃 𝑥 𝑏
𝑃1 −∗ 𝑃2 ≜ 𝜆𝑏. 𝑃1 𝑏 −∗ 𝑃2 𝑏 ℓ ↦→𝑞 ®𝑣 ≜ 𝜆𝑏. if 𝑏 then ℓ ↦→𝑙𝑙𝑙

𝑞 ®𝑣 else ℓ ↦→𝑟𝑟𝑟
𝑞 ®𝑣

Fig. 9. Definition of vProp assertions

{𝑃} 𝑒 {𝑄} ≜ ∀ ®𝐾 𝜑𝑙 𝜑𝑟 𝜓𝑙 𝜓𝑟 .(
∀𝑣 𝑥 . {𝑄 𝑣 𝑥 true ∗ 𝜑𝑙 } ®𝐾 ⟨𝑣⟩ {𝜓𝑙 | 𝑄 𝑣 𝑥 false ∗ 𝜑𝑟 } ®𝐾 ⟨𝑣⟩ {𝜓𝑟 }

)
−∗

{𝑃 true ∗ 𝜑𝑙 } ®𝐾 ⟨𝑒⟩ {𝜓𝑙 | 𝑃 false ∗ 𝜑𝑟 } ®𝐾 ⟨𝑒⟩ {𝜓𝑟 }

Fig. 10. Definition of Musketeer Triples

Our approach of using the leftalloc ℓ assertion has two consequences. First, as we will see (§5.3),

it will allow us to define Musketeer triples in terms of chained triples where both the left- and

right-hand side coincide; such a definition would be impossible if the allocation on the left and on

the right-hand side could return different names. Second, it bounds the number of allocations on the

right-hand side by the number of allocations on the left-hand side. We posit that this limitation can

be lifted by distinguishing between synchronized locations, whose name come from the left-hand

side, and unsynchronized one. We were able to conduct our case studies without such a feature.

C-LoadL and C-LoadR follow the same spirit as the previous rules: the rule for the left-hand

side has no safety proof obligation, but the right-hand size has a standard Separation Logic shape.

C-Par targets a parallel primitive and is a synchronization point: both the left- and right-hand

side must face a parallel primitive. The rule mimics a standard Par rule on both sides at once. In

particular, it requires the user to split the preconditions of the left- and right-hand sides, which

will be given to the corresponding side of the active parallel pair. The bottom premise of C-Par

requires the user to verify the continuation, after the execution of the parallel primitive ended.

This premise also show the (external) determinism guaranteed by chained triple: the execution is

resumed on both sides with the same result of the parallel execution: the immutable pair (𝑣1, 𝑣2).
Note also that both sides agree on the ghost return values.

5.3 Encoding Musketeer in ChainedLog
We now discuss how to encode Musketeer into ChainedLog. Recall that Musketeer’s assertions have

the type vProp. We encode these as functions from Booleans to iProp, the ground type of ChainedLog
assertions. The idea is that the vProp tracks two heaps, and we use the Boolean parameter of the

function to indicate which side of the ChainedLog the assertion is being interpreted to: true indicates
the left side, and false the right side. The formal definition of vProp assertions appears in Figure 9.

The Boolean parameter is threaded through the separating star and implication, and similarly for

the ∀ and ∃ quantifier. The points-to assertion simply cases over the Boolean and returns the left

or right version of the points-to. Entailment is defined as 𝑃1 ⊢ 𝑃2 ≜ ∀𝑏. 𝑃1 𝑏 ⊢ 𝑃2 𝑏
Next, we can encode Musketeer triples as shown in Figure 10. A Musketeer triple {𝑃} 𝑒 {𝑄}.

is mapped to a chained triple where both sides refer to the expression 𝑒 use the precondition 𝑃

instantiated with Booleans corresponding to the appropriate side. Because chained triples do not

support a bind rule, the encoding is written in a continuation passing style: rather than having 𝑄

in the post-condition of the chained triple, we instead quantify over an evaluation context ®𝐾 that

represents an arbitrary continuation to run after 𝑒 . This continuation is assumed to satisfy a chained

tripled in which 𝑄 occurs in the preconditions. We additionally quantify over several assertions 𝜑𝑙 ,

𝜑𝑟 ,𝜓𝑙 , and𝜓𝑟 that are used to represent additional resources used by the continuation.
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A-Alloc

⌜0 ≤ 𝑖⌝
run (alloc 𝑖) {𝜆𝑣. ∃ℓ . ℓ ↦→ ()𝑖 }
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ A-Load

⌜0 ≤ 𝑖 < |®𝑣 |⌝ ℓ ↦→𝑞 ®𝑣
run (ℓ [𝑖]) {𝑤. ⌜𝑤 = ®𝑣 (𝑖)⌝ ∗ ℓ ↦→𝑞 ®𝑣}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

A-Store

⌜0 ≤ 𝑖 < |®𝑣 |⌝ ℓ ↦→®𝑣
run (ℓ [𝑖]←𝑣 ′) {𝑤. ⌜𝑤 = ()⌝ ∗ ℓ ↦→ [𝑖 := 𝑣 ′]®𝑣}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

A-Call

$1

run ( [𝜇𝑓 𝑥 . 𝑒/𝑓 ] [𝑣/𝑥]𝑒) {𝜓 }
run (𝜇𝑓 𝑥 . 𝑒) 𝑣 {𝜓 }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

A-Conseq

run 𝑒 {𝜓 ′}
( ∀𝑣 . 𝜓 ′ 𝑣 −∗ 𝜓 𝑣 )

run 𝑒 {𝜓 }
−−−−−−−−−−−−−−−−−−−−−−∗

Yield

∀𝜋. yielded𝜋 𝑒 −∗ (∀𝑣 . yielded𝜋 𝑣 −∗ 𝜓 𝑣 −∗ 𝔤𝔬𝔞𝔩) −∗ 𝔤𝔬𝔞𝔩
run 𝑒 {𝜓 }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Resume

yielded𝜋 𝑒 run 𝑒 {𝜆𝑣 . yielded𝜋 𝑣 −∗ 𝔤𝔬𝔞𝔩}
𝔤𝔬𝔞𝔩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Fork

∀𝜋1 𝜋2 . yielded𝜋1 𝑒1 −∗ yielded𝜋2 𝑒2 −∗ (∀𝑣1 𝑣2 . yielded𝜋1 𝑣1 −∗ yielded𝜋2 𝑣2 −∗ 𝜓 (𝑣1, 𝑣2) −∗ 𝔤𝔬𝔞𝔩) −∗ 𝔤𝔬𝔞𝔩
run (par 𝑒1 𝑒2) {𝜓 }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Fig. 11. Selected Reasoning Rules of Angelic

6 A Separation Logic for Verifying One Interleaving
We now return to Angelic, our program logic verifying that one interleaving of a MusketLang

program is safe and terminates. We first present the assertions of Angelic (§6.1) and then present

selected reasoning rules (§6.2).

6.1 Assertions of Angelic
Assertions of Angelic are Iris assertions of type iProp, written 𝜑 . The fractional points-to assertion

of Angelic takes the form ℓ ↦→𝑞 ®𝑣 (while we reuse the syntax of the points-to assertion from

Musketeer, the two assertions are different—recall that Angelic and Musketeer are totally disjoint).

Angelic guarantees termination by using time credits. For a non-negative integer 𝑛, the assertion

$𝑛 represents the ownership of 𝑛 time credits and intuitively asserts the right to perform up to 𝑛

function calls. Time credits enjoy the following splitting rule: $(𝑛1 + 𝑛2) ⊣⊢ $𝑛1 ∗ $𝑛2.
A key aspect of Angelic is that this logic has two reasoning modes. First, the running mode

takes the form run 𝑒 {𝜓 }, where 𝑒 is the expression being logically “run” and𝜓 is a postcondition,

The assertion run 𝑒 {𝜓 } is close to a weakest-precondition (WP). In fact, it enjoys all the rules of a

standard Separation Logic WP. However, the running mode enjoys additional rules that allow one

to dynamically “select” and verify just one interleaving. This selection is made possible thanks to a

second mode, that we call the scheduler mode. The scheduler mode involves two key assertions.

First, 𝔤𝔬𝔞𝔩 is an opaque assertion, intuitively representing the proof obligation to verify the whole

program. Second, the assertion yielded𝜋 𝑒 asserts the ownership of the task 𝜋 , and that this task

yielded facing expression 𝑒 .

The logic satisfies the following soundness theorem:

Theorem 6.1 (Soundness of Angelic). Let 𝑁 be a user-chosen initial amount of time credits. If
$𝑁 ⊢ run 𝑒 {𝜆_.⊤} holds, then there exists a value 𝑣 and a store 𝜎 such that 𝑒 \ ∅ −→∗ 𝑣 \𝜎 .

6.2 Reasoning Rules of Angelic
Figure 11 presents the key reasoning rules allowing the user to select and verify an interleaving.

These inference rules are at the iProp level: their premises are implicitly separated by ∗, and the

implication between the premise and the conclusion is stated as a −∗.
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𝜏 ≜ ⊥ | empty | unit | bool | int | 𝜏 → 𝜏 | (𝜏 × 𝜏) | ref𝜏
Γ ∈ Var ⇀ 𝜏

empty · empty ≜ empty int · int ≜ int
unit · unit ≜ unit (𝜏1 × 𝜏2) · (𝜏 ′

1
× 𝜏 ′

2
) ≜ ((𝜏1 · 𝜏 ′

1
) × (𝜏2 · 𝜏 ′

2
))

bool · bool ≜ bool (𝜏1 → 𝜏2) · (𝜏 ′
1
→ 𝜏 ′

2
) ≜ if (𝜏1 = 𝜏 ′

1
∧ 𝜏2 = 𝜏 ′

2
) then𝜏1 → 𝜏2 else⊥

Fig. 12. Syntax of MiniDet Type System

The upper part of Figure 11 showcases that the run mode of Angelic is, for its sequential part,

similar to a standard Separation Logic. A-Alloc performs an allocation, A-Load a load and A-

Store a store—here, the allocation size and various offsets must be valid. A-Call verifies a function

call. This rule consumes a time credit in order to ensure that the verified interleaving terminates.

A-Conseq shows that the user can make the postcondition stronger.

The lower part of Figure 11 focuses on the scheduler mode of Angelic. Yield asserts (reading

the rule from bottom to top) that the proof of run 𝑒 {𝜓 } can pause, and switch to the scheduler

mode—that is, a proof where the target is 𝔤𝔬𝔞𝔩. To prove this target, the user gets to assume that

some (universally quantified) task 𝜋 yielded with expression 𝑒 , and that when this expression will

have reduced to a value 𝑣 satisfying𝜓 , then 𝔤𝔬𝔞𝔩 will hold.

Resume is the companion rule of Yield: it asserts that in order to prove 𝔤𝔬𝔞𝔩, the user has to

give up the ownership of a task 𝜋 facing an expression 𝑒 and switch back to the running mode to

verify that run 𝑒 {𝜆𝑣. yielded𝜋 𝑣 −∗ 𝔤𝔬𝔞𝔩}.
Fork shows the real benefit of the scheduler mode. This rule asserts that, for verifying the

parallel primitive par 𝑒1 𝑒2, the user can switch to the scheduler mode. In this mode, the user gets to

suppose that two tasks 𝜋1 and 𝜋2 yielded at 𝑒1 and 𝑒2, respectively. Moreover, the user can suppose

that, when these two tasks would have completed their execution and reached values 𝑣1 and 𝑣2
such that𝜓 (𝑣1, 𝑣2) hold, the 𝔤𝔬𝔞𝔩 will hold. At this point, the user can choose which of 𝑒1 and 𝑒2 to

begin verifying using Resume.

Recall in Section 2.3 we saw rules A-ParSeqL and A-ParSeqR allowing one to verify a parallel

composition by picking either a left-then-right or right-then-left sequential ordering. These two

rules can be derived from the more general constructs of Angelic that we have now seen. For

example, in order to show that A-ParSeqL holds, we first apply Fork, then use Resume for the

expression 𝑒1. We then use A-Conseq with Resume for expression 𝑒2 and conclude.

7 Case Studies
To showcase Musketeer, we start by using it to prove the soundness of a simple affine type system

that ensures schedule-independent safety (§7.1). We then extend this type system with two core

algorithmic primitives proposed by Blelloch et al. [2012] for ensuring internal determinacy: priority

writes (§7.2) and deterministic hash sets (§7.3). Because all well-typed programs in this system have

schedule-independent safety, we can use Angelic to reason about such programs, as we demonstrate

by verifying a parallel list deduplication example (§7.4).

7.1 MiniDet: An Affine Type System for Determinism
This section presents MiniDet, an affine type system for MusketLang that ensures determinism.

Like many other substructural type systems, the types in MiniDet can be thought of as tracking

ownership of resources such as array references, thereby preventing threads from accessing shared

resources in a way that would introduce nondeterministic behaviors.

Syntax. The syntax of types in MiniDet appears in Figure 12. A type 𝜏 is either the invalid type

⊥ (used only internally), the empty type, describing an unknown value without ownership, the
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T-Var

{𝑥 := 𝜏} ⊢ 𝑥 : 𝜏 ⊣ ∅
T-Unit

∅ ⊢ () : unit ⊣ ∅
T-Bool

∅ ⊢ 𝑏 : bool ⊣ ∅
T-Int

∅ ⊢ 𝑖 : int ⊣ ∅

T-Assert

Γ ⊢ 𝑒 : bool ⊣ Γ′

Γ ⊢ assert 𝑒 : unit ⊣ Γ′

T-Let

Γ1 ⊢ 𝑒1 : 𝜏1 ⊣ Γ′
1

[𝑥 := 𝜏1]Γ′1 ⊢ 𝑒2 : 𝜏2 ⊣ Γ2

Γ1 ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝜏2 ⊣ del𝑥 Γ2

T-Weak

Γ1 ⊆ Γ′
1

Γ2 ⊆ Γ′
2

Γ′
1
⊢ 𝑒 : 𝜏 ⊣ Γ′

2

Γ1 ⊢ 𝑒 : 𝜏 ⊣ Γ2

T-Abs

Γ = Γ · Γ
[𝑓 := 𝜏 → 𝜏 ′] [𝑥 := 𝜏]Γ ⊢ 𝑒 : 𝜏 ′ ⊣ ∅

Γ ⊢ 𝜇𝑓 𝑥 . 𝑒 : 𝜏 → 𝜏 ′ ⊣ ∅

T-App

Γ1 ⊢ 𝑒1 : 𝜏 ⊣ Γ2
Γ2 ⊢ 𝑒2 : 𝜏 → 𝜏 ′ ⊣ Γ3

Γ1 ⊢ 𝑒2 𝑒1 : 𝜏 ′ ⊣ Γ3

T-Ref

Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′

Γ ⊢ ref 𝑒 : ref𝜏 ⊣ Γ′

T-Get

{𝑥 := ref𝜏} ⊢ get𝑥 : 𝜏 ⊣ {𝑥 := ref empty}

T-Set

Γ ⊢ 𝑒 : 𝜏 ⊣ {𝑥 := ref empty} · Γ′

Γ ⊢ set𝑥 𝑒 : unit ⊣ {𝑥 := ref𝜏} · Γ′

T-Par

Γ1 ⊢ 𝑒1 : 𝜏1 ⊣ Γ′
1

Γ2 ⊢ 𝑒2 : 𝜏2 ⊣ Γ′
2

Γ1 · Γ2 ⊢ par 𝑒1 𝑒2 : (𝜏1 × 𝜏2) ⊣ Γ′
1
· Γ′

2

T-Frame

Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′

Γ0 · Γ ⊢ 𝑒 : 𝜏 ⊣ Γ0 · Γ′

Fig. 13. Selected Typing Rules of MiniDet

unit type unit, the Boolean type bool, the integer type int, the arrow type 𝜏1 → 𝜏2, the immutable

product (𝜏1 × 𝜏2) or the reference type ref𝜏 . A typing environment Γ is a finite map from variables

to types. We write dom(Γ) for its domain.

The type system is affine meaning that, when splitting a typing context in two, a variable can

only appear in one sub-context at a time. However, variables with types whose inhabitants have no

associated notion of ownership, or variables with types with fractional reasoning, can be split and

joined. In order to capture this notion, we equip types with a monoid operation _ · _ taking two
types as arguments and producing a new type. In particular, when 𝜏 · 𝜏 = 𝜏 , it means that a variable

of type 𝜏 can be duplicated. The definition of the monoid operation appears in the lower part of

Figure 12. The missing cases are all sent to ⊥. In particular these definitions prevent a reference

from being duplicated. We extend the monoid operation to typing environments by defining Γ1 · Γ2
as the function that maps the variable 𝑥 to 𝜏1 if Γ1 (𝑥) = 𝜏1 and 𝑥 is not in the domain of Γ2, 𝜏2 if
Γ2 (𝑥) = 𝜏2 and 𝑥 is not in the domain of Γ1, and 𝜏1 · 𝜏2 if Γ1 (𝑥) = 𝜏1 and Γ2 (𝑥) = 𝜏2.
The typing judgement of MiniDet takes the form Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′, and asserts that 𝑒 has type 𝜏

and transforms the typing environment Γ into Γ′.

Typing rules. Selected typing rules appear in Figure 13. T-Var types variable 𝑥 at type 𝜏 if 𝑥

has type 𝜏 in the typing environment. The returned environment is empty. T-Unit, T-Bool and

rule T-Int type unboxed values. T-Assert types an assert primitive. T-Let types a let-binding

let𝑥 = 𝑒1 in 𝑒2 at type 𝜏2 with initial context Γ1 if 𝑒1 has type 𝜏1 under the same context and produces

context Γ2, and if 𝑒2 has type 𝜏2 under the context Γ1 in which 𝑥 has type 𝜏1. The produced context of

the let-binding is Γ2 from which 𝑥 has been deleted. T-Abs types a function with recursive name 𝑓 ,

argument 𝑥 and body 𝑒 , of type 𝜏 → 𝜏 ′ and with typing environment Γ. This environment must be

duplicable, that is Γ = Γ · Γ. This duplicability implies that Γ contains no types with ownership,

that is, for now, no references. The precondition requires that 𝑒 has type 𝜏 ′ in Γ, augmented with 𝑓

of type 𝜏 → 𝜏 ′ and 𝑥 of type 𝜏 . T-App types a function call and is straightforward. T-Ref types a

reference allocation. T-Get types a get operation on a variable 𝑥 . This rule requires that 𝑥 is of
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𝑠 ≜ sinvalid | snone | sprod 𝑠 𝑠 | sref 𝑣 𝑠 | sarrow𝛾 𝑀 ∈ Var ⇀ 𝜏 𝑉 ∈ Var ⇀ V

J empty | snone | 𝑣 K ≜ ⊤ J bool | snone | 𝑣 K ≜ ⌜∃𝑏. 𝑣 = 𝑏⌝
J unit | snone | 𝑣 K ≜ ⌜𝑣 = ()⌝ J int | snone | 𝑣 K ≜ ⌜∃𝑖 . 𝑣 = 𝑖⌝

J (𝜏1 × 𝜏2) | sprod 𝑠1 𝑠2 | 𝑣 K ≜ ∃𝑣1 𝑣2 . ⌜𝑣 = (𝑣1, 𝑣2)⌝ ∗ J𝜏1 | 𝑠1 | 𝑣1 K ∗ J𝜏2 | 𝑠2 | 𝑣2 K
J ref𝜏 | sref𝑤 𝑠 | 𝑣 K ≜ ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→ [𝑤] ∗ J𝜏 | 𝑠 | 𝑤 K

J𝜏 → 𝜏 ′ | sarrow𝛾 | 𝑣 K ≜ ∃𝑃 .𝛾 Z⇒ 𝑃 ∗ � 𝑃 ∗
onlyleft (�∀𝑤 𝑠. {⊲ 𝑃 ∗ J𝜏 | 𝑠 | 𝑤 K} (𝑣 𝑤) {𝜆𝑣 ′ 𝑠′ . J𝜏 ′ | 𝑠′ | 𝑣 ′ K})

J Γ | 𝑀 | 𝑉 K ≜ ⌜dom(Γ) = dom(𝑀) = dom(𝑉 )⌝ ∗ ∗𝑥∈dom(Γ) J Γ(𝑥) | 𝑀 (𝑥) | 𝑉 (𝑥) K
where onlyleft (𝑃) ≜ 𝜆𝑏. if 𝑏 then (𝑃 true) else⊤

J Γ ⊢ 𝑒 : 𝜏 ⊣ 𝑒′ K ≜ ∀𝑀𝑉 .

{J Γ | 𝑀 | 𝑉 K} ([𝑉 /]𝑒) {𝜆𝑣 (𝑠, 𝑀′). ⌜Γ ≈ Γ′ ∧ 𝑀 ≈ 𝑀′⌝ ∗ J𝜏 | 𝑠 | 𝑣 K ∗ J Γ′ | 𝑀′ | 𝑉 |dom(Γ′ ) K}

Fig. 14. Semantic Interpretation of MiniDet

some type ref𝜏 , returns a type 𝜏 and updates the binding of 𝑥 to ref empty. This is because get
returns the ownership of the content of the cell—meaning that the cell does not hold recursive

ownership of its contents anymore.
2
T-Set is the dual, and types the expression set𝑥 𝑒 . This rule

requires that 𝑒 is of some type 𝜏 and that, in the resulting environment, 𝑥 is of type ref empty. The
set operation returns unit and updates the type of 𝑥 to ref𝜏 , “filling” the cell. T-Par types a parallel

primitive, and is similar to the related Separation Logic rules. Indeed, T-Par requires splitting the

context in two parts, that will be used to type separately the two sub-tasks, whose result typing

context will be merged in the result typing context of the rule. Finally, T-Frame allows for framing

a part of the context for local reasoning, and T-Weak allows for removing bindings from the input

and output typing environments.

Soundness of MiniDet. The above system prevents data-races, and hence guarantees that well-

typed programs have schedule-indepedent safety, as formalized by the following lemma.

Lemma 7.1 (Soundness of MiniDet). If ∅ ⊢ 𝑒 : 𝜏 ⊣ ∅ holds, then SISafety 𝑒 holds.

To prove this theorem, we use program logic-based semantic typing [Timany et al. 2024b]. With

this technique, we associate a triple (in our case, a Musketeer triple) to a typing judgement, and

show that whenever the typing judgement holds, the corresponding triple is valid. The soundness

theorem of the type system is then derived from the soundness of the underlying logic.

The Musketeer triple associated to a typing judgement makes use of a logical relation. Typically,
when using program logic-based semantic typing, a logical relation is a relation expressed in the

assertions of the underlying logic that relates a type to a value it inhabits. In our case, however,

the logical relation involves three parameters: a type, a value, and a shape. The shape captures the
“determinism” of each type and will be used in connection with ghost return values. For example,

the shape of a reference is the actual value stored in this reference, and the shape of a function

records that the function’s environment is deterministic.

Figure 14 defines the format of shapes. A shape 𝑠 as either an invalid shape (whose purpose is

similar to the invalid type, as we equip shapes with a monoid operation), the none shape, storing

no information, the product shape sprod 𝑠1 𝑠2, the reference shape sref 𝑣 𝑠 , where 𝑣 represents the
content of the reference and 𝑠 the shape associated with 𝑣 and finally the arrow shape sarrow𝛾 ,
where 𝛾 is the name of an Iris ghost cell [Jung et al. 2018].

2
We could have derived another rule for get on a reference whose content is not tied to any ownership. We follow this

approach when extending the type system with priority writes (§7.2).
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The logical relation J𝜏 | 𝑠 | 𝑣 K shown in Figure 14 then relates a type 𝜏 , a shape 𝑠 , and a value 𝑣 .

Unboxed types are interpreted as expected, associated the with snone shape. Products must be

associated to the product shape and a product value, and the interpretation must recursively hold.

For the reference type ref𝜏 , the shape must be a reference shape sref𝑤 𝑠 , 𝑣 must be a location ℓ

such that ℓ points to 𝑤 and that recursively J𝜏 | 𝑠 | 𝑤 K holds. Note here that the interpretation
of a reference expresses the ownership of the associated points-to. Moreover, the content of the

reference𝑤 is not existentially quantified, but rather given by the shape.

The case of an arrow 𝜏 → 𝜏 ′ is subtle and differs from the approach used in other program

logic based logical relations. In the usual approach, the interpretation of 𝜏 → 𝜏 ′ says that 𝑣 is in
the relation if for any 𝑤 in the interpretation of 𝜏 , a Hoare triple of a certain form holds for the

application 𝑣 𝑤 . Unfortunately, this approach cannot be used directly with Musketeer. The reason is

that the usual approach exploits the fact that the underlying logic is higher-order and impredicative,

so that a Hoare triple is itself an assertion that can appear in the pre/post-condition of another

triple. In contrast, in Musketeer, the assertions appearing in pre/post-conditions are vProp, but the
triple itself is not a vProp, it is an iProp in the underlying chained logic, as we saw in §5.

To work around this, we define an operation onlyleft that takes an iProp and coerces it into a

vProp by requiring the proposition to only hold for the left-hand side. Using this, the logical relation

asserts that, only in the left case, for any value𝑤 and shape 𝑠 , a Hoare triple holds for 𝑣 𝑤 . In this

triple, the precondition requires J𝜏 | 𝑠 | 𝑤 K, and the postcondition says that the result will satisfy

the interpretation of 𝜏 ′. The precondition additionally requires 𝑃 to hold for some existentially

quantified predicate 𝑃 . ( Technically, 𝑃 is assumed to hold under a later modality ⊲, but this detail

can be ignored.) This 𝑃 will correspond to the resources associated with whatever variables from a

typing environment the function closes over. Thus, 𝑃 is required to hold under the Iris persistent
modality �, ensuring that the proposition is duplicable—recall that the typing rule T-Abs requires

functions to close over only duplicable environments. Finally, there is one last trick: to ensure that

this existential quantification over 𝑃 can later be eliminated using M-ElimExist, the witness is

made unique by using an Iris saved predicate assertion, 𝛾 Z⇒ 𝑃 , which states that 𝛾 is the name of a

ghost variable that stores the assertion 𝑃 . The 𝛾 here is bound as part of the shape sarrow𝛾 . Since a
ghost variable can only store one proposition, only one 𝑃 can satisfy this assertion.

Figure 14 then defines the interpretation of a typing environment Γ, a shape environment 𝑀

and a value environment 𝑉 , written J Γ | 𝑀 | 𝑉 K as the lifting per-variable 𝑥 of the logical relation.

Using this, we obtain the interpretation of the typing judgement Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′. This interpretation
universally quantifies over a shape environment 𝑀 and a variable environment 𝑉 , and asserts

a Musketeer triple. The precondition is the interpretation of the environments, and targets an

expression [𝑉 /]𝑒 , that is, the expression 𝑒 with variables replaced by values as specified by 𝑉 .

The postcondition binds a return value 𝑣 as well as a ghost return value consisting of a shape 𝑠

and a shape environment𝑀 ′. The postcondition asserts that the two typing environment Γ and

Γ′ are similar, written Γ ≈ Γ′ and that the shape environments 𝑀 and 𝑀 ′ are also similar, with

(overloaded) notation𝑀 ≈ 𝑀 ′. Intuitively these relations guarantee that variables did not change in
nature in environments (e.g. a reference stayed a reference, and a reference shape stayed a reference
shape, even if the content may have changed). We formally define these statements in Appendix A.

The postcondition finally asserts that the return value is related to 𝜏 and 𝑠 and that the returned

environment 𝛾 is correct with𝑀 ′ and the same variables 𝑉 , dropping unneeded bindings.

With these definitions, we state the fundamental lemma of the logical relation.

Lemma 7.2 (Fundamental). If Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′ holds then J Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′ K holds too.

From this lemma, it is easy to prove the soundness of MiniDet (Lemma 7.1). Let us suppose that

∅ ⊢ 𝑒 : 𝜏 ⊣ ∅ holds. We apply Lemma 7.2 and learn that J ∅ ⊢ 𝑒 : 𝜏 ⊣ ∅ K holds too. Unfolding
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palloc ≜ 𝜆𝑛. ref 𝑛 pread ≜ 𝜆𝑟 . get 𝑟
pwrite ≜ 𝜇𝑓 𝑟 𝑥 . let𝑦 = get 𝑟 in if 𝑥 < 𝑦 then () else if CAS 𝑟 0𝑥 𝑦 then () else 𝑓 𝑟 𝑥

Fig. 15. Implementation of Priority Writes

𝜏 ≜ · · · | pwrite𝑞 | pread𝑞
pwrite𝑞1 · pwrite𝑞2 ≜ pwrite (𝑞1 + 𝑞2) pread𝑞1 · pread𝑞2 ≜ pread (𝑞1 + 𝑞2)

T-PAlloc

Γ ⊢ 𝑒 : int ⊣ Γ′

Γ ⊢ palloc 𝑒 : pwrite 1 ⊣ Γ′
T-PWrite

Γ ⊢ 𝑒 : int ⊣ Γ′ Γ′ (𝑥) = pwrite𝑞

Γ ⊢ 𝑒 : pwrite 𝑥 𝑒 ⊣ Γ′

T-PRead

{𝑥 := pread𝑞} ⊢ pread𝑥 : int ⊣ {𝑥 := pread𝑞}

T-Update

Γ { Γ′ Γ′ ⊢ 𝑒 : 𝜏 ⊣ Γ′′

Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′′

U-Refl

𝜏 { 𝜏

U-Pair

𝜏1 { 𝜏 ′
1

𝜏2 { 𝜏 ′
2

(𝜏1 × 𝜏2) { (𝜏 ′1 × 𝜏
′
2
)

U-R2W

pread 1 { pwrite 1
U-W2R

pwrite 1 { pread 1

Fig. 16. Extension of MiniDet with Priority Writes

definitions and applyingM-Conseq, this fact implies that {⊤} 𝑒 {𝜆_ _. ⊤} holds. We conclude by

applying the soundness of Musketeer (Theorem 4.1).

7.2 Priority Writes
In this section, we extend MiniDet with rules for priority writes [Blelloch et al. 2012]. A priority

write targets a reference 𝑟 on an integer 𝑥 and atomically updates the content 𝑦 of 𝑟 to 𝑥 max𝑦.

As long as there are no concurrent reads, priority writes can happen in parallel: because max is

associative and commutative, the order in which the parallel write operations happen does not

matter. Conversely, so long as there are no on-going concurrent writes, reads from the reference

will be safe and deterministic—and such reads can also happen in parallel. Thus, priority writes

are deterministic so long as they are used in a phased manner, alternating between concurrent

writes in one phase, and concurrent reads in the next. For simplicity, we consider priority writes

on integers equipped with the max function.

Implementation of priority writes. Figure 15 shows the implementation of priority references.

Allocating a priority reference with palloc just allocates a reference. The priority read pread is

just a plain get operation. A priority write pwrite is a function with recursive name 𝑓 taking two

arguments: 𝑟 , the reference to update, and 𝑥 , the integer to update the reference with. The function

tests if the content 𝑦 of the reference is greater than 𝑥 . If 𝑥 < 𝑦, the function returns, because

𝑥 max𝑦 = 𝑦. Else, the function attempts to overwrite 𝑦 with 𝑥 in 𝑟 with a CAS, and loops if it fails.

As noted by Blelloch et al. [2012], if we break the abstractions of the priority reference, the

implementation of pwrite is not internally deterministic: because pwrite reads 𝑟 , a location that

can be written by a parallel task, different interleavings might see different values. However,

because pwrite is carefully designed, these nondeterministic observations are not externally visible

and do not impact the safety of the program. As we will see, this latter fact allow us to derive a

Musketeer triple API to priority writes. However, because nondeterminism is involved internally

in the implementation, we conduct the proof at the level of ChainedLog.

Extension of MiniDet. Figure 16 shows how we extend our type system. We add two new type

constructors, pwrite𝑞 and pread𝑞, asserting that the reference is in a write phase with fraction 𝑞

or a read phase with fraction 𝑞, respectively. The monoid on types is extended to sum fractions.
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{⊤} palloc 𝑖 {𝜆𝑟 _. ispw ℓ 1 𝑖}
{ispw ℓ 𝑞 𝑖} pwrite ℓ 𝑗 {𝜆𝑟 ℓ . ⌜𝑣 = ℓ⌝ ∗ ispw ℓ 𝑞 (𝑖max 𝑗)}
{ispr ℓ 𝑞 𝑖} pread ℓ {𝜆𝑟 _. ⌜𝑣 = 𝑖⌝ ∗ ispr ℓ 1 𝑖}

ispw ℓ (𝑞1 + 𝑞2) (𝑖max 𝑗) ⊣⊢ ispw ℓ 𝑞1 𝑖 ∗ ispw ℓ 𝑞2 𝑗
ispr ℓ (𝑞1 + 𝑞2) 𝑖 ⊣⊢ ispr ℓ 𝑞1 𝑖 ∗ ispr ℓ 𝑞2 𝑖

ispw ℓ 1 𝑖 ⊣⊢ ispr ℓ 1 𝑖

𝑠 ≜ · · · | spwrite 𝑖 | spread 𝑖
J pwrite𝑞 | spwrite 𝑖 | 𝑣 K ≜ ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ispw ℓ 𝑞 𝑖
J pread𝑞 | spwrite 𝑖 | 𝑣 K ≜ ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ispr ℓ 𝑞 𝑖

Fig. 17. Specifications of Priority Writes and Logical Interpretation

This definition implies, as we will see, that writes can happen in parallel with writes, and reads can

happen in parallel with reads.

The lower part of Figure 16 shows the new typing rules. T-PAlloc allocates a priority reference

and returns a type pwrite 1. T-PWrite types a priority write on some reference 𝑥 bound to the

type pwrite𝑞. In particular, this rule does not require the full fraction 1, meaning that the write

operation can happen in parallel of other write operations. T-PRead types a read similarly. Again

this rule does not require the full fraction. T-Update allows for updating a typing context Γ into Γ′

as long as Γ { Γ′. This relation is defined as pointwise over the elements of the environments

as the update relation 𝜏 { 𝜏 ′ which is defined last in Figure 16. U-Refl asserts that a type can

stay the same, U-Pair distributes over pairs, U-R2W transforms a read type into a write one, if the

fraction is the full permission 1. This precondition on the fraction is important: it asserts that no

parallel task use the priority reference. U-W2R is symmetrical.

Extending the soundness proof. To extend the soundness proof to support these new rules, we first

prove specifications for the priority reference operations in Musketeer, shown in the upper part

of Figure 17. These specifications involve two predicates: ispw ℓ 𝑞 𝑖 , asserting that ℓ is a priority

reference, and that ℓ is in its concurrent phase with fraction 𝑞 and stores (at least) 𝑖 . Symmetrically,

ispr ℓ 𝑞 𝑖 asserts that ℓ is in its read phase. The specification of palloc 𝑖 asserts that this function
call returns a location ℓ such that ispw ℓ 𝑞 1 holds. The specification of pwrite ℓ 𝑗 updates a share
ispw ℓ 𝑞 𝑖 into ispw ℓ 𝑞 (𝑖max 𝑗). The specification of pread ℓ asserts that this function call returns

the content of a priority reference, if this reference is in its read phase.

The central part of Figure 17 shows the splitting and joining rules of the ispw and ispr assertions.
It also shows that one can update a ispw assertion into a ispr assertion, and vice-versa, as long as

the fraction in 1 (formally, these conversions involve the so-called ghost updates [Jung et al. 2018]).

The lower part of Figure 17 intuits how we extend the logical relation backing the soundness of

our type system. We add two shapes, one for each phase. We then extend the logical relation as

expected, making use of the previous assertions.

7.3 Deterministic Concurrent Hash Sets
Next, we extend MiniDet with a deterministic concurrent hash set, inspired by Shun and Blelloch

[2014]. This hash set allows for concurrent, lock-free insertion, and offers a function elems that
returns an array with the inserted elements in some arbitrary but deterministic order. This hash set

is implemented as an array, and makes use of open addressing and linear probing to handle collision.

The key idea to ensure determinism is that neighboring elements in the array are ordered according

to a certain total order relation. As we will see, insertion preserves the ordering, which in turn

ensures determinism of the contents of the array. Shun and Blelloch [2014] also propose a deletion

function, which we do not verify. The hash set usage must be phased: insertion is allowed to take

place in parallel as long as no task calls the function elems.

, Vol. 1, No. 1, Article . Publication date: July 2025.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Alexandre Moine, Sam Westrick, and Joseph Tassarotti

alloc_fill ≜ 𝜆𝑛 𝑣. fill (alloc 𝑛) 𝑣

init ≜ 𝜆ℎ 𝑛.

assert (𝑛 ≥ 0);
let𝑑 = ref () in
let𝑎 = alloc_fill𝑛 𝑑 in

(𝑎, 𝑑, ℎ)

elems ≜ 𝜆(𝑎, 𝑑, ℎ) .
filter_compact𝑎 𝑑

add ≜ 𝜆(𝑎, 𝑑, ℎ) 𝑥 .
let𝑝𝑢𝑡 = 𝜇𝑓 𝑥 𝑖.

let𝑦 = 𝑎[𝑖] in
if𝑥 == 𝑦 then () else
if𝑥 == 𝑑 then (if CAS𝑎 𝑖 𝑑 𝑥 then () else 𝑓 𝑥 𝑖) else
let 𝑗 = (𝑖 + 1)mod (length𝑎) in
if𝑥 < 𝑦 then 𝑓 𝑥 𝑗 else (if CAS𝑎 𝑖 𝑦 𝑥 then 𝑓 𝑦 𝑗 else 𝑓 𝑥 𝑖) in

𝑝𝑢𝑡 𝑥 ((ℎ 𝑖)mod (length𝑎))

Fig. 18. Implimentation of a Deterministic Concurrent Hash Set

Implementation of our hash set. Figure 18 presents the implementation of the deterministic hash

set. While in our mechanization we support a hash set over arbitrary values, for space constraints we

present here an implementation specialized to integers, equipped with the comparison function <.

A new hash set is initialized with the function initℎ 𝑛, which returns a tuple (𝑎, 𝑑, ℎ), where 𝑎 is
the underlying array, 𝑑 is a dummy element (in our case, a fresh reference containing the unit value)

representing an empty slot in the array. The function ℎ is the hash function. The implementation

uses a helper routine, alloc_fill𝑛 𝑑 , which allocates an array and fills it with the value 𝑣 using a

function fill, which we omit for brevity. The function elems (𝑎, 𝑑, ℎ) returns a fresh array containing

the elements of 𝑎 obtained by filtering those equal to the dummy element 𝑑 . The key challenge in

the design is to ensure that this operation will be deterministic: in conventional linear probing hash

tables, the order of elements in the array would depend on the order of insertions, so concurrent

insertions would lead to nondeterministic orders.

To avoid this nondeterminism, the function add (𝑎, 𝑑, ℎ) 𝑥 , which inserts 𝑥 in the hash set (𝑎, 𝑑, ℎ),
enforces an ordering on elements in the array according to the comparison function <. The code

makes use of a recursive auxiliary function 𝑝𝑢𝑡 , parameterized by an element 𝑥 and an index 𝑖 ,

which tries to insert 𝑥 at 𝑖 . The function 𝑝𝑢𝑡 loads the content of the array 𝑎 at offset 𝑖 and names it

𝑦. If 𝑦 is equal to 𝑥 , then 𝑥 is already in the set and the function returns. If 𝑦 is equal to the dummy

element, the function tries a CAS to replace 𝑦 with 𝑥 , and loops in case the CAS fails. Otherwise, 𝑦

is an element distinct from 𝑥 . The function names the next index 𝑗 = (𝑖 + 1)mod (length𝑎) and
tests if 𝑥 < 𝑦. If 𝑦 is greater than 𝑥 , the function tries to insert 𝑥 at the next index 𝑗 by doing a

recursive call of 𝑓 𝑥 𝑗 . If 𝑥 is greater than 𝑦, the function tries to replace 𝑦 with 𝑥 with a CAS, and

loops if the CAS fails. If the CAS succeeds, the function removed 𝑦 from the hash set, and must

hence insert it again by doing a recursive call 𝑓 𝑦 𝑗 .

The function add then simply calls 𝑝𝑢𝑡 to insert 𝑥 at the initial index (ℎ 𝑥)mod (length𝑎).

Extension of MiniDet. Figure 19 presents the extension of MiniDet with this hash set. To avoid

issues related to ownership of the elements in the set, we consider a hash set containing integers.

We add two new types: intarray𝑞 describing an array of integers with a fraction 𝑞 and intset𝑞 a

hash set of integers with a fraction 𝑞. The monoid on types is extended to sum the fractions.

T-AAlloc types the allocation of an array filled with a default element. T-ALoad types a load

operation on an array bound to the variable 𝑥 . This operation requires any fraction of intarray.
T-AStore types a store operation but requires full ownership of the array—that is, the fraction 1.

T-SAlloc allocates a hash set. This rule has one non-syntactical precondition, which cannot be

handled by a type system. It requires that the hash functionℎ, the first parameter of add, implements

some arbitrary pure function ℎ𝑎𝑠ℎ : V → 𝑍 . This proof can be derived in Musketeer, and ensures

that calls to the hash function are deterministic. T-SAlloc returns a intset type with fraction 1.
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𝜏 ≜ · · · | intarray𝑞 | intset𝑞
intarray𝑞1 · intarray𝑞2 ≜ intarray (𝑞1 + 𝑞2) intset𝑞1 · intset𝑞2 ≜ intset (𝑞1 + 𝑞2)
T-AAlloc

Γ1 ⊢ 𝑒1 : int ⊣ Γ2 Γ2 ⊢ 𝑒2 : int ⊣ Γ3

Γ ⊢ alloc_fill 𝑒2 𝑒1 : intarray 1 ⊣ Γ3

T-ALoad

Γ1 ⊢ 𝑒 : int ⊣ Γ2 Γ2 (𝑥) = intarray𝑞

Γ1 ⊢ 𝑥 [𝑒] : int ⊣ Γ2

T-AStore

Γ1 ⊢ 𝑒1 : int ⊣ Γ2
Γ2 ⊢ 𝑒2 : int ⊣ Γ3 Γ3 (𝑥) = intarray 1

Γ ⊢ 𝑥 [𝑒2]←𝑒1 : unit ⊣ Γ3

T-SAlloc

Γ ⊢ 𝑒 : int ⊣ Γ′

(∀𝑥 . {⊤} ℎ 𝑥 {𝜆𝑣 _. ⌜𝑣 = ℎ𝑎𝑠ℎ(𝑥)⌝})
Γ ⊢ initℎ 𝑒 : intset 1 ⊣ Γ′

T-SAdd

Γ ⊢ 𝑒 : int ⊣ Γ′ Γ′ (𝑥) = intset𝑞

Γ ⊢ add𝑥 𝑒 : unit ⊣ Γ′
T-SElems

Γ ⊢ 𝑒 : intset 1 ⊣ Γ′

Γ ⊢ elems 𝑒 : intarray 1 ⊣ Γ′

Fig. 19. Extension of MiniDet with Integer Arrays and Hash Set

(∀𝑥 . {⊤} ℎ 𝑥 {𝜆𝑣 _. ⌜𝑣 = ℎ𝑎𝑠ℎ(𝑥)⌝})
{⊤} initℎ 𝑖 {𝜆𝑣 _. hashset 𝑣 1 ∅}

{hashset 𝑣 𝑞 𝑋 } add 𝑣 𝑖 {𝜆𝑟 _. hashset 𝑣 𝑞 ({𝑖} ∪ 𝑋 )}
{hashset 𝑣 1𝑋 } elems 𝑣 {𝜆𝑣 ′ (ℓ, ®𝑤). ⌜𝑣 ′ = ℓ⌝ ∗ ℓ ↦→ ®𝑤}

hashset 𝑣 (𝑞1 + 𝑞2) (𝑋1 ∪ 𝑋2) ⊣⊢ hashset 𝑣 𝑞1 𝑋1 ∗ hashset 𝑣 𝑞2 𝑋2
𝑠 ≜ · · · | sintset𝑋 J intset𝑞 | sintset𝑋 | 𝑣 K ≜ hashset 𝑣 𝑞 𝑋

Fig. 20. Specifications of a Deterministic Hash Set and Logical Interpretation

T-SAdd types an add operation on a hash set 𝑥 with an arbitrary fraction 𝑞, meaning that this

operation can happen in parallel. T-SElems types the elems operation, requiring the full ownership
of a hash set, and producing a fresh array. This operation consumes the hash set argument; this is

for simplicity: the hash set is only read and is in fact preserved by the operation.

Extending the soundness proof. The upper part of Figure 20 presents the Musketeer specifications

of the hash set operations. These specifications make use of an assertion hashset 𝑣 𝑞 𝑋 asserting

that 𝑣 is a hash set with fraction 𝑞 and content at least 𝑋 , a set of values. When 𝑞 = 1, then 𝑋 is

exactly the set of values in the set. The specification of initℎ 𝑖 returns a fresh set with fraction 1 and

no elements, provided that the parameter ℎ behaves correctly. The specification of add 𝑣 𝑖 verifies
the insertion of an integer 𝑖 in a hash set 𝑣 with an arbitrary fraction 𝑞 and current content𝑋 , which

the function call updates to ({𝑖} ∪ 𝑋 ). Since we specialize to hash sets of integers, we know that

the inserted value will not be the dummy element. In our mechanization, we offer a more general

specification, allowing the user to insert other pointers as long as they ensure that the inserted

pointer is not the dummy element. Perhaps most importantly, the specification of elems 𝑣 consumes

an assertion hashset 𝑣 1𝑋 with fraction 1 and produces an array ℓ with a deterministic content ®𝑤 .
Figure 20 then gives the reasoning rule for splitting a hashset assertion, enabling parallel use.

The lower part of Figure 20 shows how we extend the logical relation. We add a shape sintset𝑋 ,
where 𝑋 a set of integers. The interpretation of intset𝑞 with shape sintset𝑋 and value 𝑣 is then

simply hashset 𝑣 𝑞 𝑋 .

7.4 Deduplication via Concurrent Hashing
For our last example, we consider array deduplication, one of the parallel benchmark problems

proposed by Blelloch et al. [2012]. The task is to take an array of elements and return an array

containing the same elements but with duplicates removed. The solution proposed by Blelloch
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parfor ≜ 𝜇𝑓 . 𝜆𝑖 𝑗 𝑘.

if ( 𝑗 − 𝑖) == 0 then ()
else if ( 𝑗 − 𝑖) == 1 then 𝑘 𝑖

else let𝑚𝑖𝑑 = 𝑖 + (( 𝑗 − 𝑖)/2) in
par (𝑓 𝑖 𝑚𝑖𝑑 𝑘) (𝑓 𝑚𝑖𝑑 𝑗 𝑘)

dedup ≜ 𝜆ℎ 𝑎.

let 𝑠𝑡𝑎𝑟𝑡 = 0 in

let 𝑙𝑒𝑛 = length𝑎 in

let 𝑠 = initℎ (𝑙𝑒𝑛 + 1) in
parfor 𝑠𝑡𝑎𝑟𝑡 𝑙𝑒𝑛 (𝜆𝑖. add 𝑠 (𝑎[𝑖]));
prod𝑎 (elems 𝑠)

Fig. 21. Implementation of parfor and dedup Functions

et al. [2012] is to simply insert all the elements in parallel into a deterministic hash set and

then return the elements of the hash set. Figure 21 presents dedup, an implementation of this

algorithm in MusketLang. To do the parallel inserts, it uses a helper routine called parfor 𝑖 𝑗 𝑘 ,
which runs (𝑘 𝑛) in parallel for all 𝑛 between 𝑖 and 𝑗 . Our goal is to prove that dedup satisfies

schedule-independent safety, and then prove a specification in Angelic. Throughout this proof,

we assume that we have some hash function ℎ such that ∀𝑥 . {⊤} (ℎ 𝑥) {𝜆𝑣 _. ⌜𝑣 = ℎ𝑎𝑠ℎ 𝑥⌝} and
∀𝑥 . run (ℎ 𝑥) {𝜆𝑣 . ⌜𝑣 = ℎ𝑎𝑠ℎ 𝑥⌝}, where ℎ𝑎𝑠ℎ is some function in the meta-logic.

Our first step is show that dedup can be typed in MiniDet. This follows by using a typing rule

for parfor (given in Appendix B.1), and the earlier typing rules we derived for the hash set. Using

these, we derive ∅ ⊢ dedupℎ : intarray𝑞 → (intarray𝑞 × intarray 1) ⊣ ∅. Thus, for a well-typed
input array 𝑎, dedupℎ 𝑎 satisfies schedule-independent safety.
We then verify dedup using Angelic. The proof uses Angelic reasoning rules for the hash set,

shown in Appendix B.2, which are similar to the earlier Musketeer specifications presented in

Section 7.3, except for three key points. First, the Angelic specification shows that, for a set 𝑣 with

content 𝑋 , elems 𝑣 returns an array ®𝑤 which contains just the elements of the set 𝑋 . Second, the

representation predicate for the hash set has no fraction: there is never a need for splitting it in

Angelic. Third, as we require the user to prove termination, the representation predicate tracks

how many elements have been inserted, and does not allow inserting into a full table.

Finally, we use a derived specification for parfor 𝑖 𝑗 𝑘 that allows us to reason about it as if it

were a sequential for loop:

$(𝐶𝑝𝑓 ( 𝑗 − 𝑖)) ∗ forspec 𝑖 𝑗 𝑘 𝜑 −∗ run (parfor 𝑖 𝑗 𝑘) {𝜆𝑣. ⌜𝑣 = ()⌝ ∗ 𝜑}
Here, 𝐶𝑝𝑓 is a linear function that maps the iteration length to the number of credits needed, and

forspec 𝑖 𝑗 𝑘 is defined recursively as

forspec 𝑖 𝑗 𝑘 𝜑 ≜
(
⌜𝑖 ≥ 𝑗⌝ ∗ 𝜑

)
∨

(
⌜𝑖 < 𝑗⌝ ∗ run (𝑘 𝑖) {𝜆𝑣 . ⌜𝑣 = ()⌝ ∗ forspec (𝑖 + 1) 𝑗 𝑘 𝜑}

)
In this definition, either 𝑖 ≥ 𝑗 and the postcondition holds (since there are no recursive calls

to be done), or 𝑖 < 𝑗 , and the user has to verify 𝑘 𝑖 , and show that forspec (𝑖 + 1) 𝑗 𝑘 𝜑 holds

afterward. Essentially, this generalizes the idea we saw earlier in A-ParSeqL, by having us verify an

interleaving that executes each task sequentially from 𝑖 to 𝑗 . With these specifications, we deduce

the following Angelic specification for dedup, for some pure function 𝐶 ,(
$(𝐶 |®𝑣 |) ∗ ℓ ↦→𝑞 ®𝑣

)
−∗ run (dedupℎ ℓ) {𝜆𝑣 . ∃ℓ ′ ®𝑤. ℓ ↦→𝑞 ®𝑣 ∗ ℓ ′ ↦→ ®𝑤 ∗ ⌜deduped ®𝑤 ®𝑣⌝}

8 Related Work
Deterministic parallel languages. As shown in Section 7.1, Musketeer can be used to prove the

soundness of language-based techniques for enforcing determinism. A large body of such techniques

exist, and it would be interesting to apply Musketeer to some of these. In general, these languages

typically ensure determinism by restricting side effects (e.g., in purely functional languages) or by

providing the programmer with fine-grained control over scheduling of effects (e.g., in the form of

, Vol. 1, No. 1, Article . Publication date: July 2025.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

All for One and One for All 25

a powerful type-and-effect system). Examples include seminal works such as Id [Arvind et al. 1989]

and NESL [Blelloch et al. 1994] as well as related work on Deterministic Parallel Java [Bocchino Jr.

et al. 2009, 2011], parallelism in Haskell [Jones et al. 2008; Keller et al. 2010; Chakravarty et al. 2011,

2001; Marlow et al. 2011], the LVars/LVish framework [Kuper et al. 2014a,b; Kuper and Newton

2013], Liquid Effects [Kawaguchi et al. 2012]. Manticore [Fluet et al. 2007], SAC [Scholz 2003],

Halide [Ragan-Kelley et al. 2013], Futhark [Henriksen et al. 2017], and many others.

It is typically challenging to formally prove sequentialization or determinization results for these

kinds of languages, particularly in an expressive language with features like higher-order state

and recursive types. For example, Krogh-Jespersen et al. [2017] point out that it took 25 years

for the first results proving that in a type-and-effect system, appropriate types can ensure that

a parallel pair is contextually equivalent to a sequential pair. They show how a program-logic

based logical relation, like the one we used in Section 7, can vastly simplify such proofs. Musketeer

provides a program logic that is well-suited for constructing models to prove whole-language

determinism properties. Although not discussed in this paper, we have already completed a proof

of schedule-independent safety for a simplified model of the LVars framework. We believe similar

results may be possible for other deterministic-by-construction languages.

Logic for hyperproperties. So-called relational program logics have been developed to prove

hyperproperties. Naumann [2020] provides an extensive survey of these logics. A number of such

logics support very general classes of hyperproperties [D’Osualdo et al. 2022; Sousa and Dillig

2016]. However, most of the relational logics building on concurrent separation logic have been

restricted ∀∃ hyperproperties [Liang and Feng 2016; Frumin et al. 2018, 2021; Gäher et al. 2022;

Timany et al. 2024a]. Because schedule-independent safety is a ∀∀ property, it falls outside the
scope of these logics, which motivated our development of ChainedLog.

Most logics for hyperproperties are structured as relational logics. However, some, like Musketeer,

prove a hyperproperty through unary reasoning. For example, Dardinier and Müller [2024], target

arbitrary hyperproperties for a pure language, with a triple referring to a single expression, but with

pre/post-conditions describing multiple executions. This idea also appears in work for verifying

non-interference, a ∀∀ security hyperproperty. For example, Gregersen et al. [2021] verify, using a

logical relation mechanized in a variant of Iris, a type-system guaranteeing termination-insensitive
non-interference in a sequential setting. This property requires that both executions terminate. Eilers

et al. [2023] present CommCSL, a concurrent Separation Logic for proving abstract commutativity,
that is, where two operations commute up-to some abstract interface. This idea appears for example

in the API for priority writes, which implies that writes commutes (§7.2). In contrast with our

approach, CommCSL is globally parameterized by a set of specifications the logic ensures commute.

In Musketeer, no such parameterization is needed: proof obligations are entirely internalized.

Commutativity-Based Reasoning. Schedule-independent safety reduces the problem of verifying

safety for all executions of a program to just verifying safety of any one terminating execution.

This can be seen as an extreme form of a common technique in concurrent program verification, in

which the set of possible executions of a program is partitioned into equivalence classes, and then

a representative element of each equivalence class is verified [Farzan 2023]. This approach has its

origins in the work of Lipton [1975], and typically uses some form of analysis to determine when

statements in a program commute in order to restructure programs into an equivalent form that

reduces the set of possible nondeterministic outcomes [Elmas et al. 2009; Kragl and Qadeer 2021;

von Gleissenthall et al. 2019; Farzan et al. 2022]. For programs satisfying schedule-independent

safety, there is effectively only one equivalence class, allowing a user of Angelic to dynamically

select one ordering to verify.
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9 Conclusion and Future Work
Schedule-independent safety captures the essence of why internal determinism simplifies reasoning

about parallel programs. In this paper, we have shown how Musketeer provides an expressive

platform for proving that language-based techniques ensure schedule-independent safety, and how

Angelic can take advantage of schedule-independent safety. One limitation of schedule-independent

safety is that it is restricted to safety properties. In future work, it would be interesting to extend

Musketeer for proving that liveness properties, such as termination, are also schedule-independent.
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S-Empty

empty ≈ empty
S-Unit

unit ≈ unit
S-Bool

bool ≈ bool
S-Int

int ≈ int
S-HashSet

intset𝑞1 ≈ intset𝑞2

S-Array

intarray𝑞1 ≈ intarray𝑞2
S-Ref

ref𝜏1 ≈ ref𝜏2
S-Arrow

𝜏1 → 𝜏2 ≈ 𝜏1 → 𝜏2

S-Prod

𝜏1 ≈ 𝜏 ′1 𝜏2 ≈ 𝜏 ′2
(𝜏1 × 𝜏2) ≈ (𝜏 ′1 × 𝜏

′
2
)

S-PRead

𝜏 = pread𝑞2 ∨ 𝜏 = pwrite𝑞2

pread𝑞1 ≈ 𝜏

S-PWrite

𝜏 = pread𝑞2 ∨ 𝜏 = pwrite𝑞2

pwrite𝑞1 ≈ 𝜏

Fig. 22. Similar Predicate on Types

S-SNone

snone ≈ snone
S-SHashSet

sintset𝑋1 ≈ sintset𝑋2

S-SArray

sintarray ®𝑣1 ≈ sintarray ®𝑣2
S-SRef

sref 𝑣1 ≈ ref 𝑣2

S-SArrow

sarrow𝛾 ≈ sarrow𝛾

S-SProd

𝑠1 ≈ 𝑠′1 𝑠2 ≈ 𝑠′2
sprod 𝑠1 𝑠2 ≈ sprod 𝑠′

1
𝑠′
2

S-SPRead

𝑠 = spread 𝑖2 ∨ 𝑠 = spwrite 𝑖2
spread 𝑖1 ≈ 𝑠

S-SWrite

𝑠 = spread 𝑖2 ∨ 𝑠 = spwrite 𝑖2
spwrite 𝑖1 ≈ 𝑠

Fig. 23. Similar Predicate on Shapes

T-ParFor

Γ(𝑥) = Γ(𝑦) = int Fractional Γ Γ𝑓 ∀𝑞. [𝑖 := int] (Γ𝑓 𝑞) ⊢ 𝑒 : unit ⊣ Γ𝑓 𝑞

Γ ⊢ parfor𝑥 𝑦 (𝜆𝑖. 𝑒) : unit ⊣ Γ

Fig. 24. A MiniDet Type for parfor

A Definition of the Similarity between Typing and Shape Environments
Figure 22 shows the definition of 𝜏1 ≈ 𝜏2, asserting that the two MiniDet types 𝜏1 and 𝜏2 are

similar (§7.1). This property asserts that both types have the same structure except that functions

must be equal and that priority reads and priority writes are identified. Figure 23 shows the

definition of 𝑠1 ≈ 𝑠2, asserting that the two shapes 𝑠1 and 𝑠2 are similar. This property asserts that

both shapes have the same structure, except that function shapes must be equal and that priority

reads and priority writes are identified.

We extend these two predicates to maps𝑚1 ≈𝑚2 as the trivial predicate for the keys not in the

intersection of dom(𝑚1) and dom(𝑚2) and the similar predicate when a key appears in both maps.

B Additional Explanations on the Concurrent Hash Set Example
B.1 A Typing Rule for parfor
In order to give a type in MiniDet to dedup (§7.4), we first give parfor a type, which we prove

sound by dropping to the semantic model. T-ParFor, which appear in Figure 24, requires the two

indices to be variables bound to integers, for simplicity. It then requires the environment Γ to

be fractional, that is, to contain only fractional assertion. This is witnessed by the precondition

Fractional Γ Γ𝑓 which is defined as (∀𝑛. 𝑛 ≠ 0 =⇒ Γ = ·𝑛 (Γ𝑓 𝑛)), that is, for every positive integer

𝑛, Γ𝑓 𝑛 represents a n-th share of Γ. Finally, T-ParFor requires to type the last argument of parfor,
which must be a function of the form 𝜆𝑖. 𝑒 . The precondition requires that 𝑒 is typeable while

borrowing a share Γ𝑓 𝑛 of the environment.
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A-HAlloc

$(𝐶1 𝑖) �(∀𝑥 . run (ℎ 𝑥) {𝜆𝑣 .⌜𝑣 = ℎ𝑎𝑠ℎ 𝑥⌝})
run (initℎ 𝑖) {𝜆𝑣 . ahashset 𝑖 𝑣 ∅}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

A-HAdd

⌜𝑠𝑖𝑧𝑒 𝑋 < 𝑖⌝ $(𝐶2 𝑖) ahashset 𝑖 𝑣 𝑋

run (add 𝑣 𝑥) {𝜆𝑤. ⌜𝑤 = ()⌝ ∗ ahashset 𝑖 𝑣 ({𝑥} ∪ 𝑋 )}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

A-HElems

$(𝐶3 𝑖) ahashset 𝑖 𝑣 𝑋

run (elems 𝑣) {𝜆𝑣 ′ . ∃ℓ ®𝑤. ⌜𝑣 ′ = ℓ⌝ ∗ ℓ ↦→ ®𝑤 ∗ ⌜deduped𝑋 ®𝑤⌝}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Fig. 25. Angelic Specifications for a Concurrent Hash Set

B.2 Angelic Reasoning Rules for our Concurrent Hash Set
Figure 25 presents the Angelic reasoning rules for our councurrent hash set (§7.3). These spec-

ifications involve a representation predicate ahashset 𝑖 𝑣 𝑋 , where 𝑖 is the capacity (that is, the

maximum number that can be contained in the set), 𝑣 is the hash set and 𝑋 the logical set with the

inserted element. Note that this predicate is not fractional, as there is no need to ever split it.

A-HAlloc verifies initℎ 𝑖 . The precondition requires 𝐶1 𝑖 time credits, for some function 𝐶1. It

also requires that the hash function ℎ implements a hash function in the meta-logic.

A-HAdd verifies add 𝑣 𝑥 . The precondition requires 𝐶2 𝑖 time credits, for some function 𝐶2. It

also requires that 𝑣 is a set with content 𝑋 and capacity 𝑖 . The user must ensure that the size of the

set 𝑋 is less than the capacity, in order to guarantee termination. The postcondition returns the set

with an updated model.

A-HElems verifies elems 𝑣 . The precondition requires 𝐶3 𝑖 time credits, for some function 𝐶3. It

also requires that 𝑣 is a set with content 𝑋 . The postcondition returns a fresh array ℓ pointing to ®𝑤
such that deduped𝑋 ®𝑤 holds.

, Vol. 1, No. 1, Article . Publication date: July 2025.


	Abstract
	1 Introduction
	2 Key Ideas
	2.1 A Motivating Example
	2.2 Verifying Schedule-Independent Safety with Musketeer
	2.3 Verifying That One Interleaving is Safe and Terminates with Angelic

	3 Syntax and Semantics
	3.1 Syntax
	3.2 Semantics

	4 A Separation Logic for Proving Schedule-Independent Safety
	4.1 Definition of Schedule-Independent Safety
	4.2 Triples and Assertions
	4.3 Reasoning Rules for Musketeer
	4.4 Existential Reasoning with Ghost Return Values

	5 Unchaining the Reasoning with Chained Triples
	5.1 Chained Triples as a Generalization of Musketeer Triples
	5.2 Reasoning Rules for Chained Triples
	5.3 Encoding Musketeer in ChainedLog

	6 A Separation Logic for Verifying One Interleaving
	6.1 Assertions of Angelic
	6.2 Reasoning Rules of Angelic

	7 Case Studies
	7.1 MiniDet: An Affine Type System for Determinism
	7.2 Priority Writes
	7.3 Deterministic Concurrent Hash Sets
	7.4 Deduplication via Concurrent Hashing

	8 Related Work
	9 Conclusion and Future Work
	References
	A Definition of the Similarity between Typing and Shape Environments
	B Additional Explanations on the Concurrent Hash Set Example
	B.1 A Typing Rule for parfor
	B.2 Angelic Reasoning Rules for our Concurrent Hash Set


