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Programs are everywhere... and bugs too!

How to ensure that a program has no bugs?
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Focusing on a Bug Category

Correctness ⇝ The program does not compute the correct result.
Security ⇝ The program allows a thief to steal private data.
Resource usage ⇝ The program uses more resources than expected.

Time usage ⇝ The program takes too much time to produce an answer.
⇝ The program requires more memory than available and crashes.

Informal Central Question

How to bound the amount of memory required by a program?
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A Reminder on Memory

• External memory for files • RAM for runtime computations

The RAM is usually split in two parts:

• the stack for data whose lifetime does not exceed the one of the allocating function
• the heap for everything else

• The stack stores data following a strict discipline.
⇝ Establishing stack space bounds is well-studied [Carbonneaux et al., 2014].

• The heap is under the control of the programmer.
⇝ Establishing heap space bounds a subtle task!

3/34



A Reminder on Memory

• External memory for files • RAM for runtime computations

The RAM is usually split in two parts:

• the stack for data whose lifetime does not exceed the one of the allocating function
• the heap for everything else

• The stack stores data following a strict discipline.
⇝ Establishing stack space bounds is well-studied [Carbonneaux et al., 2014].

• The heap is under the control of the programmer.
⇝ Establishing heap space bounds a subtle task!

3/34



A Reminder on Memory

• External memory for files • RAM for runtime computations

The RAM is usually split in two parts:

• the stack for data whose lifetime does not exceed the one of the allocating function
• the heap for everything else

• The stack stores data following a strict discipline.
⇝ Establishing stack space bounds is well-studied [Carbonneaux et al., 2014].

• The heap is under the control of the programmer.
⇝ Establishing heap space bounds a subtle task!

3/34



The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection
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Manual Memory Management

Languages such as C have explicit free operations.

char* arr = malloc(n);

// -n bytes of available space

free(arr)

// +n bytes of available space

✔ Known techniques allow for proving heap space bounds:
a resource meter can track the available heap space.

✖ Manual memory deallocation is error-prone:
memory leak, use-after-free, double-free, etc.
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Garbage Collection

Languages such as Java and OCaml have implicit deallocation.

• A garbage collector (GC) runs together with the program.
• From time to time, the GC may deallocate unreachable blocks.

✔ Garbage collection simplifies the life of the programmer:
no need to write free, no free-related bugs.

? It is not clear how to establish a heap space bound.

Central Question of my Thesis

How to establish heap space bounds in the presence of garbage collection?
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Reachable Memory

let x = ref 42 in
let y = ref x in
x := 21;
let z = ref 84 in
y := z;
y

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.
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A More Elaborated Example

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

What is the amount of free heap space needed by a call to mapsucc xs?

The answer depends on the calling context!

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

Cells from the input list can be freed as cells from the output list are allocated.
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Goal: A Program Logic

We devise a variant of Separation Logic [O’Hearn et al., 2001, Reynolds, 2002].{
Φ

}
t

{
λv . Ψ

}
Φ describes the heap before executing t. Ψ describes the heap after executing t.

Standard reasoning rules: {
True

}
alloc 1

{
λℓ. ℓ 7→ ()

}{
ℓ 7→ v

}
load ℓ

{
λw . ⌜w = v⌝ ∗ ℓ 7→ v

} {
ℓ 7→ v

}
store ℓ w

{
λ(). ℓ 7→ w

}

Can these rules be adapted to account for the available space under garbage collection?
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Contribution

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC.

Including:

• a formal account of unreachability and roots
• new realistic language constructs: protected sections and polling points,

improving heap space bounds of lock-free data structures
• case studies and the soundness proof

Reasoning rules, case studies and soundness are mechanized.
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Part I: Heap Space Bounds for Sequential Programs

Based on
A High-Level Separation Logic for Heap Space under Garbage Collection

[Moine, Charguéraud, and Pottier; POPL’23]



Space Credits

Let ♢1 represent one space credit [Hofmann, 1999].

• A space credit represents one free memory word.
• Space credits are splittable: ♢(n1 + n2) ≡ ♢n1 ∗ ♢n2

• Space credits are not duplicable: ♢n ≠⇒ ♢n ∗ ♢n

With manual memory management:

alloc consumes space credits{
♢1

}
alloc 1

{
λℓ. ℓ 7→ ()

} free produces space credits{
ℓ 7→ v

}
free ℓ

{
λ(). ♢1

}
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With Garbage Collection: Where to Recover Space Credits?

Key Idea [Madiot and Pottier, 2022]

♢1 asserts that one memory word is free or can be freed by the GC.

Logical deallocation rule:
(

ℓ 7→ v ∗ “ℓ is unreachable”
)
⇛ ♢1

Madiot and Pottier [2022] use a low-level, assembly-like, language with an explicit stack.

Motivating Question

Can Madiot and Pottier’s approach be scaled up to a high-level language?
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How to Prove that “ℓ is unreachable”?

The set of reachable locations is computed:

1. from the roots
2. following heap paths.

A location ℓ is unreachable if and only if:

1. ℓ is not a root

⇝ the pointed-by-thread assertion

2. ℓ is not reachable by any reachable heap cell

⇝ the pointed-by-heap assertion
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The Pointed-by-Heap Assertion

The pointed-by-heap assertion [Kassios and Kritikos, 2013, Madiot and Pottier, 2022]

ℓ←[ A

• A is a multiset of locations.
• ℓ← [ A asserts that A is an over-approximation of the predecessors of ℓ.
• ℓ← [ ∅ asserts that ℓ has no predecessors.

We improve these assertions with fraction 0 and negative multisets. (Not shown here)
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The Pointed-by-Thread Assertion

IrisFit features the pointed-by-thread assertion:

ℓ⇐\ Π

• Π is a set of thread identifiers. In a sequential setting, either {π} or ∅.
• ℓ⇐ \ {π} asserts that ℓ may still be a root.
• ℓ⇐ \ ∅ asserts that ℓ is not a root!
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A Few Simplified Reasoning Rules

alloc produces points-to, pointed-by-heap , and pointed-by-thread assertions:{
♢1

}
alloc 1

{
λℓ. ℓ 7→ () ∗ ℓ←[ ∅ ∗ ℓ⇐\ {π}

}

store updates pointed-by-heap assertions:{
ℓ 7→ v ∗ v ←[ {+ℓ} ∗ w ←[ ∅

}
store ℓ w

{
λ(). ℓ 7→ w ∗ v ← [ ∅ ∗ w ←[ {+ℓ}

}

load updates a pointed-by-thread assertion:{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ ∅

}
load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π}

}
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Trimming and Logical Deallocation

When ℓ is not a root anymore, we can trim its pointed-by-thread assertion.{
ℓ⇐\ ∅ ∗ Φ

}
t

{
Ψ

}
∧ ℓ /∈ roots(t)

=⇒
{

ℓ⇐\ {π} ∗ Φ
}

t
{

Ψ
}

For experts: this trimming rule requires a non-standard Let rule. (Not shown here)

Unveiling our logical deallocation rule:(
ℓ 7→ v ∗ “ℓ is unreachable”

)
⇛ ♢1
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A Small Example

{♢2 }

let x = ref 66 in
let y = ref x in
y := (!x / 2);
let z = ref 9 in
!z + !y

{λv . ⌜v = 42⌝ ∗ ♢2 }

• Correctness: what is the result of this program?
• Heap space bound: how much memory does it need?
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Two Specifications for mapsucc xs

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

{
List ℓxs L

♢(2× length L)

}
mapsucc ℓxs

λℓys .

List ℓxs L
List ℓys (map (+1) L)
ℓys ←[ ∅ ∗ ℓys ⇐\ {π}


{

List ℓxs L
ℓxs ←[ ∅ ∗ ℓxs ⇐\ {π}

}
mapsucc ℓxs

{
λℓys .

List ℓys (map (+1) L)
ℓys ←[ ∅ ∗ ℓys ⇐\ {π}

}
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Soundness of IrisFit

Soundness Theorem

If
{
♢S

}
t

{
λ_.True

}
holds, then

the execution of the program t with a heap of size at least S
• cannot reach a stuck configuration, and
• cannot run out of memory.
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Part II: Scaling up to Concurrency

Based on
Will it Fit? Verifying Heap Space Bounds of Concurrent Programs

under Garbage Collection with Separation Logic
[Moine, Charguéraud, and Pottier; submitted to TOPLAS]



Concurrency

• Modern computers are multi-core with shared memory.
• Threads execute concurrently and can be created dynamically.

fork (fun () -> g x); f x

Separation Logic scales seamlessly up to concurrency [O’Hearn, 2007, Jung et al., 2018].

Motivating Question

Can IrisFit be scaled up to concurrency?
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How to Scale IrisFit up to Concurrency

Step 1: Annotate the triple with a ghost thread identifier π.{
Φ

}
π : t

{
λv . Ψ

}

Step 2: Unveil the power of the pointed-by-thread assertion: ℓ′ ⇐\ Π

Set of thread ids

{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1}

}
π2 : load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1, π2}

}

Step 3: Et voilà ?

• I verified some several concurrent programs: a lock, a concurrent counter, . . .
• But certain lock-free data structures have an unexpected bound!
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The Case of Lock-Free Data Structures: Treiber’s Stack

A linearizable lock-free stack, implemented as a reference on an immutable list.

let rec pop s =
let xs = !s in
match xs with
| nil -> assert false
| y::ys ->

if CAS s xs ys then y else pop s
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Desired Specification of Treiber’s Stack (for Unboxed Values)

〈
♢2

∀L. stack ℓs L

〉
π : push ℓs v

〈
λ(). True
stack ℓs (v ::L)

〉

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

" pop’s specification is false: some interleavings invalidate it. "
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A Problematic Interleaving for pop

pop ℓs pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?
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Protected Sections

let xs = ℓxs in
match xs with
| nil -> assert false
| y::ys -> if CAS s xs ys then y else pop s

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The location ℓxs is a root for small number of instructions.
• The allocation should wait for these instructions to complete, until ℓxs is released.

let rec pop s =
enter () ; let xs = !s in
match xs with
| nil -> assert false
| y::ys -> if CAS s xs ys then ( exit () ; y) else ( exit () ; pop s)

⇝ The location ℓxs is a temporary root: it is a root only inside a protected section.
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Protected Sections, in Details

• Each thread is either outside or inside a protected section.
• The GC runs only when every thread is outside protected sections.

Protected sections forbid the problematic interleaving:

• An allocation that would exceed the bound S waits for the GC to run.
• The GC waits for protected sections to end, releasing their temporary roots.

Constraints inside protected sections:

• No allocation. • No divergence. • No nesting.

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉
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Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();

{ ℓs 7→ ℓxs ∗ inside π0 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }

...

{ inside π0 {ℓxs} }
{ inside π0 ∅ }

exit ();
...

Thread π1

enter ();

{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

...

{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

CAS s xs ys

{ ℓs 7→ ... ∗ ℓxs ← [ ∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }

...
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{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

CAS s xs ys

{ ℓs 7→ ... ∗ ℓxs ← [ ∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }

...
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Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();
{ ℓs 7→ ℓxs ∗ inside π0 ∅ }
let xs = !ℓs in
{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }
...
{ inside π0 {ℓxs} }
{ inside π0 ∅ }
exit ();
...

Thread π1

enter ();
{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }
let xs = !ℓs in
{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }
...
{ ℓs 7→ ℓxs ∗ ℓxs ←[ {+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }
CAS s xs ys
{ ℓs 7→ ... ∗ ℓxs ← [ ∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }
...
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Polling for Liveness

Due to protected sections, a thread may wait forever for the GC.

while true do
enter (); ...; exit ()

done
a_big_alloc ()

• New construct: polling points.
• A thread facing a polling point stops its execution until no thread requires the GC.

while true do
enter (); ...; exit ();
poll ()

done

a_big_alloc ()

An automatic approach guaranteeing liveness: a polling point in every loop.
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Back to Reality

• Protected sections and polling points are inspired by safe points.
• Safe points are used internally by OCaml to implement a stop-the-world GC.
• Issue of safe points: they delimit protected sections and act as polling points.

Proposal

Ask the programmer to be explicit about protected sections;
let the compiler insert polling points.
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There is More

In the manuscript:

• reasoning about closures • simplified reasoning when no deallocation is needed
• case studies • logical deallocation of cyclic data structures
• soundness proof

Making use of the presented ideas, I participated in other projects:

POPL’24 DisLog: A Separation Logic for Disentanglement [Moine, Westrick, and Balzer]
a logic for “disentanglement”, a reachability property of parallel programs.

ICFP’24 Snapshottable Stores [Allain, Clément, Moine, and Scherer]
verifying a data structure with non-trivial reachability arguments.
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Future Work

Connections with related works

• Integration with verified compilers
CakeML [Gómez-Londoño et al., 2020]

• Safe Memory Reclamation (SMR)
Space consumption [Jung et al., 2023]

• Foundation for type systems
AARA [Hoffmann and Jost, 2022]

Practical applications

• Protected sections for OCaml
• Control over polling points position

Theoretical extensions

• More advanced case studies
Harris’s list [Harris, 2001]

• Weak pointers and ephemerons
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How to Establish Heap Space Bounds in the Presence of Garbage Collection?

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC

Key ingredients:
• space credits to keep track of available heap space
• pointed-by-heap and pointed-by-thread assertions to prove unreachability
• protected sections to improve heap space bounds of lock-free data structures
• polling points to recover liveness

Reasoning rules, case studies and soundness are mechanized.

Thank you for your attention!
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Backup Slides



The Bind Problem and its Solution

Trimming is unsound with the standard Let:
what if a location ℓ ∈ (roots(t2) \ roots(t1))?

{
Φ

}
t1

{
Ψ′ }

∀v .
{

Ψ′ v
}

[v/x ]t2
{

Ψ
}{

Φ
}

let x = t1 in t2
{

Ψ
} ✖ One could leak ℓ⇐\ {π} in Φ.

• Unveiling fractions: ℓ⇐\(p1+p2) (Π1 ∪ Π2) ≡ ℓ⇐ \p1 Π1 ∗ ℓ⇐\p2 Π2

• Only logical deallocation requires full fraction 1.
• The Let rule withhold a fraction of the pointed-by-thread assertion.

roots(t2) = {ℓ}{
Φ

}
t1

{
Ψ′ }

∀v .
{

ℓ⇐\p {π} ∗ Ψ′ v
}

[v/x ]t2
{

Ψ
}{

ℓ⇐ \p {π} ∗ Φ
}

let x = t1 in t2
{

Ψ
}



Cycles

We handle cycles following the approach of Madiot and Pottier [2022].

True −∗ ∅Å0 P

D Å
n P

ℓ 7→ v⃗ ∗ ℓ←[ A ∗ ℓ⇐\ ∅
−∗ ({ℓ} ∪ D) Ån+size(v⃗) P if A ⊆ P

D Å
n D ⇛ ♢n ∗ (∗

ℓ∈D
†ℓ) if D ∩ roots(t) = ∅



Closures

Functions with an environment are usually compiled down to closures.

A closure is a heap allocated block pointing to the environment’s values.
Closure allocation consumes space credits and updates pointed-by assertions.

We encode closures as derived constructions using closure conversion:

• closure creation and call are not in the syntax,
• but we provide macros implementing them,
• and provide reasoning rules about these macros!



The True Pointed-by-Heap Assertion

ℓ←[q A

∈ [0, 1]

(signed) multiset

• ℓ← [1 A asserts that A is an over-approximation of the reachable predecessors of ℓ.
• ℓ←[1 ∅ asserts that ℓ is unreachable from the heap.

ℓ←[1 {+ℓ1; +ℓ2} −∗ ℓ←[ 1
2
{+ℓ1} ∗ ℓ←[ 1

2
{+ℓ2}

ℓ←[ 1
2
{+ℓ1} ∗ ℓ←[0 {−ℓ1} −∗ ℓ←[ 1

2
({+ℓ1} ⊎ {−ℓ1})

Main invariant: if ℓ←[0 A then A must contain only negative elements.
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