
Formal Verification of Heap Space Bounds
under Garbage Collection

Alexandre Moine
advised by Arthur Charguéraud and François Pottier

20/09/2024

Programs are everywhere... and bugs too!

How to ensure that a program has no bugs?

1/34

Programs are everywhere... and bugs too!

How to ensure that a program has no bugs?

1/34

Programs are everywhere... and bugs too!

How to ensure that a program has no bugs?

1/34

Programs are everywhere... and bugs too!

How to ensure that a program has no bugs?

1/34

Focusing on a Bug Category

Correctness ⇝ The program does not compute the correct result.
Security ⇝ The program allows a thief to steal private data.
Resource usage ⇝ The program uses more resources than expected.

Time usage ⇝ The program takes too much time to produce an answer.
⇝ The program requires more memory than available and crashes.

Informal Central Question

How to bound the amount of memory required by a program?

2/34

Focusing on a Bug Category

Correctness ⇝ The program does not compute the correct result.
Security ⇝ The program allows a thief to steal private data.
Resource usage ⇝ The program uses more resources than expected.

Time usage ⇝ The program takes too much time to produce an answer.
Space usage ⇝ The program requires more memory than available and crashes.

Informal Central Question

How to bound the amount of memory required by a program?

2/34

Focusing on a Bug Category

Correctness ⇝ The program does not compute the correct result.
Security ⇝ The program allows a thief to steal private data.
Resource usage ⇝ The program uses more resources than expected.

Time usage ⇝ The program takes too much time to produce an answer.
Space usage ⇝ The program requires more memory than available and crashes.

Informal Central Question

How to bound the amount of memory required by a program?

2/34

A Reminder on Memory

• External memory for files • RAM for runtime computations

The RAM is usually split in two parts:

• the stack for data whose lifetime does not exceed the one of the allocating function
• the heap for everything else

• The stack stores data following a strict discipline.
⇝ Establishing stack space bounds is well-studied [Carbonneaux et al., 2014].

• The heap is under the control of the programmer.
⇝ Establishing heap space bounds a subtle task!

3/34

A Reminder on Memory

• External memory for files • RAM for runtime computations

The RAM is usually split in two parts:

• the stack for data whose lifetime does not exceed the one of the allocating function
• the heap for everything else

• The stack stores data following a strict discipline.
⇝ Establishing stack space bounds is well-studied [Carbonneaux et al., 2014].

• The heap is under the control of the programmer.
⇝ Establishing heap space bounds a subtle task!

3/34

A Reminder on Memory

• External memory for files • RAM for runtime computations

The RAM is usually split in two parts:

• the stack for data whose lifetime does not exceed the one of the allocating function
• the heap for everything else

• The stack stores data following a strict discipline.
⇝ Establishing stack space bounds is well-studied [Carbonneaux et al., 2014].

• The heap is under the control of the programmer.
⇝ Establishing heap space bounds a subtle task!

3/34

The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection

4/34

The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection

4/34

The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection

4/34

The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection

4/34

The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection

4/34

The Heap

The heap is made of allocated blocks, each one having a particular location.

represents the linked list [a;b;c]

The program

• requests the allocation of a block (consuming free space),
• obtains the location of a fresh block,
• and can then write and read from it.

Deallocation:
with free

manual memory management
vs.

without free
garbage collection

4/34

Manual Memory Management

Languages such as C have explicit free operations.

char* arr = malloc(n);

// -n bytes of available space

free(arr)

// +n bytes of available space

✔ Known techniques allow for proving heap space bounds:
a resource meter can track the available heap space.

✖ Manual memory deallocation is error-prone:
memory leak, use-after-free, double-free, etc.

5/34

Manual Memory Management

Languages such as C have explicit free operations.

char* arr = malloc(n);

// -n bytes of available space

free(arr)

// +n bytes of available space

✔ Known techniques allow for proving heap space bounds:
a resource meter can track the available heap space.

✖ Manual memory deallocation is error-prone:
memory leak, use-after-free, double-free, etc.

5/34

Manual Memory Management

Languages such as C have explicit free operations.

char* arr = malloc(n);
// -n bytes of available space
free(arr)
// +n bytes of available space

✔ Known techniques allow for proving heap space bounds:
a resource meter can track the available heap space.

✖ Manual memory deallocation is error-prone:
memory leak, use-after-free, double-free, etc.

5/34

Garbage Collection

Languages such as Java and OCaml have implicit deallocation.

• A garbage collector (GC) runs together with the program.
• From time to time, the GC may deallocate unreachable blocks.

✔ Garbage collection simplifies the life of the programmer:
no need to write free, no free-related bugs.

? It is not clear how to establish a heap space bound.

Central Question of my Thesis

How to establish heap space bounds in the presence of garbage collection?

6/34

Garbage Collection

Languages such as Java and OCaml have implicit deallocation.

• A garbage collector (GC) runs together with the program.
• From time to time, the GC may deallocate unreachable blocks.

✔ Garbage collection simplifies the life of the programmer:
no need to write free, no free-related bugs.

? It is not clear how to establish a heap space bound.

Central Question of my Thesis

How to establish heap space bounds in the presence of garbage collection?

6/34

Garbage Collection

Languages such as Java and OCaml have implicit deallocation.

• A garbage collector (GC) runs together with the program.
• From time to time, the GC may deallocate unreachable blocks.

✔ Garbage collection simplifies the life of the programmer:
no need to write free, no free-related bugs.

? It is not clear how to establish a heap space bound.

Central Question of my Thesis

How to establish heap space bounds in the presence of garbage collection?

6/34

Reachable Memory

let x = ref 42 in
let y = ref x in
x := 21;
let z = ref 84 in
y := z;
y

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

let x = ℓx in
let y = ref x in
x := 21;
let z = ref 84 in
y := z;
y

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

let y = ref ℓx in
ℓx := 21;
let z = ref 84 in
y := z;
y

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

ℓx := 21;
let z = ref 84 in
ℓy := z;
ℓy

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

let z = ref 84 in
ℓy := z;
ℓy

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

ℓy := ℓz;
ℓy

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

ℓy

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

Reachable Memory

ℓy

The heap

42
ℓx

2121
ℓxℓy

84
ℓz

Definitions

• The roots are the locations occurring in the program that remains to execute.
• The set of reachable blocks is computed from the roots following heap paths.

7/34

A More Elaborated Example

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

What is the amount of free heap space needed by a call to mapsucc xs?

The answer depends on the calling context!

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

Cells from the input list can be freed as cells from the output list are allocated.

8/34

A More Elaborated Example

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

What is the amount of free heap space needed by a call to mapsucc xs?

The answer depends on the calling context!

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

Cells from the input list can be freed as cells from the output list are allocated.

8/34

A More Elaborated Example

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

What is the amount of free heap space needed by a call to mapsucc xs?

The answer depends on the calling context!

• If xs is reachable from the calling context: O(length xs)

• If xs is unreachable from the calling context: O(1)
Cells from the input list can be freed as cells from the output list are allocated.

8/34

A More Elaborated Example

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

What is the amount of free heap space needed by a call to mapsucc xs?

The answer depends on the calling context!

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

Cells from the input list can be freed as cells from the output list are allocated.

8/34

Goal: A Program Logic

We devise a variant of Separation Logic [O’Hearn et al., 2001, Reynolds, 2002].{
Φ

}
t

{
λv . Ψ

}
Φ describes the heap before executing t. Ψ describes the heap after executing t.

Standard reasoning rules: {
True

}
alloc 1

{
λℓ. ℓ 7→ ()

}{
ℓ 7→ v

}
load ℓ

{
λw . ⌜w = v⌝ ∗ ℓ 7→ v

} {
ℓ 7→ v

}
store ℓ w

{
λ(). ℓ 7→ w

}

Can these rules be adapted to account for the available space under garbage collection?

9/34

Goal: A Program Logic

We devise a variant of Separation Logic [O’Hearn et al., 2001, Reynolds, 2002].{
Φ

}
t

{
λv . Ψ

}
Φ describes the heap before executing t. Ψ describes the heap after executing t.

Standard reasoning rules: {
True

}
alloc 1

{
λℓ. ℓ 7→ ()

}{
ℓ 7→ v

}
load ℓ

{
λw . ⌜w = v⌝ ∗ ℓ 7→ v

} {
ℓ 7→ v

}
store ℓ w

{
λ(). ℓ 7→ w

}

Can these rules be adapted to account for the available space under garbage collection?

9/34

Goal: A Program Logic

We devise a variant of Separation Logic [O’Hearn et al., 2001, Reynolds, 2002].{
Φ

}
t

{
λv . Ψ

}
Φ describes the heap before executing t. Ψ describes the heap after executing t.

Standard reasoning rules: {
True

}
alloc 1

{
λℓ. ℓ 7→ ()

}{
ℓ 7→ v

}
load ℓ

{
λw . ⌜w = v⌝ ∗ ℓ 7→ v

} {
ℓ 7→ v

}
store ℓ w

{
λ(). ℓ 7→ w

}

Can these rules be adapted to account for the available space under garbage collection?

9/34

Contribution

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC.

Including:

• a formal account of unreachability and roots
• new realistic language constructs: protected sections and polling points,

improving heap space bounds of lock-free data structures
• case studies and the soundness proof

Reasoning rules, case studies and soundness are mechanized.

10/34

Contribution

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC.

Including:

• a formal account of unreachability and roots
• new realistic language constructs: protected sections and polling points,

improving heap space bounds of lock-free data structures
• case studies and the soundness proof

Reasoning rules, case studies and soundness are mechanized.

10/34

Contribution

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC.

Including:

• a formal account of unreachability and roots
• new realistic language constructs: protected sections and polling points,

improving heap space bounds of lock-free data structures
• case studies and the soundness proof

Reasoning rules, case studies and soundness are mechanized.

10/34

Contribution

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC.

Including:

Part I a formal account of unreachability and roots
Part II new realistic language constructs: protected sections and polling points,

improving heap space bounds of lock-free data structures
• case studies and the soundness proof

Reasoning rules, case studies and soundness are mechanized.

10/34

Part I: Heap Space Bounds for Sequential Programs

Based on
A High-Level Separation Logic for Heap Space under Garbage Collection

[Moine, Charguéraud, and Pottier; POPL’23]

Space Credits

Let ♢1 represent one space credit [Hofmann, 1999].

• A space credit represents one free memory word.
• Space credits are splittable: ♢(n1 + n2) ≡ ♢n1 ∗ ♢n2

• Space credits are not duplicable: ♢n ≠⇒ ♢n ∗ ♢n

With manual memory management:

alloc consumes space credits{
♢1

}
alloc 1

{
λℓ. ℓ 7→ ()

} free produces space credits{
ℓ 7→ v

}
free ℓ

{
λ(). ♢1

}

11/34

Space Credits

Let ♢1 represent one space credit [Hofmann, 1999].

• A space credit represents one free memory word.
• Space credits are splittable: ♢(n1 + n2) ≡ ♢n1 ∗ ♢n2

• Space credits are not duplicable: ♢n ≠⇒ ♢n ∗ ♢n

With manual memory management:

alloc consumes space credits{
♢1

}
alloc 1

{
λℓ. ℓ 7→ ()

} free produces space credits{
ℓ 7→ v

}
free ℓ

{
λ(). ♢1

}
11/34

With Garbage Collection: Where to Recover Space Credits?

Key Idea [Madiot and Pottier, 2022]

♢1 asserts that one memory word is free or can be freed by the GC.

Logical deallocation rule:
(

ℓ 7→ v ∗ “ℓ is unreachable”
)
⇛ ♢1

Madiot and Pottier [2022] use a low-level, assembly-like, language with an explicit stack.

Motivating Question

Can Madiot and Pottier’s approach be scaled up to a high-level language?

12/34

With Garbage Collection: Where to Recover Space Credits?

Key Idea [Madiot and Pottier, 2022]

♢1 asserts that one memory word is free or can be freed by the GC.

Logical deallocation rule:
(

ℓ 7→ v ∗ “ℓ is unreachable”
)
⇛ ♢1

Madiot and Pottier [2022] use a low-level, assembly-like, language with an explicit stack.

Motivating Question

Can Madiot and Pottier’s approach be scaled up to a high-level language?

12/34

With Garbage Collection: Where to Recover Space Credits?

Key Idea [Madiot and Pottier, 2022]

♢1 asserts that one memory word is free or can be freed by the GC.

Logical deallocation rule:
(

ℓ 7→ v ∗ “ℓ is unreachable”
)
⇛ ♢1

Madiot and Pottier [2022] use a low-level, assembly-like, language with an explicit stack.

Motivating Question

Can Madiot and Pottier’s approach be scaled up to a high-level language?

12/34

With Garbage Collection: Where to Recover Space Credits?

Key Idea [Madiot and Pottier, 2022]

♢1 asserts that one memory word is free or can be freed by the GC.

Logical deallocation rule:
(

ℓ 7→ v ∗ “ℓ is unreachable”
)
⇛ ♢1

Madiot and Pottier [2022] use a low-level, assembly-like, language with an explicit stack.

Motivating Question

Can Madiot and Pottier’s approach be scaled up to a high-level language?

12/34

How to Prove that “ℓ is unreachable”?

The set of reachable locations is computed:

1. from the roots
2. following heap paths.

A location ℓ is unreachable if and only if:

1. ℓ is not a root

⇝ the pointed-by-thread assertion

2. ℓ is not reachable by any reachable heap cell

⇝ the pointed-by-heap assertion

13/34

How to Prove that “ℓ is unreachable”?

The set of reachable locations is computed:

1. from the roots
2. following heap paths.

A location ℓ is unreachable if and only if:

1. ℓ is not a root

⇝ the pointed-by-thread assertion

2. ℓ is not reachable by any reachable heap cell

⇝ the pointed-by-heap assertion

13/34

How to Prove that “ℓ is unreachable”?

The set of reachable locations is computed:

1. from the roots
2. following heap paths.

A location ℓ is unreachable if and only if:

1. ℓ is not a root

⇝ the pointed-by-thread assertion

2. ℓ is not reachable by any reachable heap cell

⇝ the pointed-by-heap assertion

13/34

How to Prove that “ℓ is unreachable”?

The set of reachable locations is computed:

1. from the roots
2. following heap paths.

A location ℓ is unreachable if and only if:

1. ℓ is not a root ⇝ the pointed-by-thread assertion
2. ℓ is not reachable by any reachable heap cell ⇝ the pointed-by-heap assertion

13/34

The Pointed-by-Heap Assertion

The pointed-by-heap assertion [Kassios and Kritikos, 2013, Madiot and Pottier, 2022]

ℓ←[A

• A is a multiset of locations.
• ℓ← [A asserts that A is an over-approximation of the predecessors of ℓ.
• ℓ← [∅ asserts that ℓ has no predecessors.

We improve these assertions with fraction 0 and negative multisets. (Not shown here)

14/34

The Pointed-by-Heap Assertion

The pointed-by-heap assertion [Kassios and Kritikos, 2013, Madiot and Pottier, 2022]

ℓ←[A

• A is a multiset of locations.
• ℓ← [A asserts that A is an over-approximation of the reachable predecessors of ℓ.
• ℓ←[∅ asserts that ℓ has no reachable predecessors.

We improve these assertions with fraction 0 and negative multisets. (Not shown here)

14/34

The Pointed-by-Heap Assertion

The pointed-by-heap assertion [Kassios and Kritikos, 2013, Madiot and Pottier, 2022]

ℓ←[A

• A is a multiset of locations.
• ℓ← [A asserts that A is an over-approximation of the reachable predecessors of ℓ.
• ℓ←[∅ asserts that ℓ has no reachable predecessors.

We improve these assertions with fraction 0 and negative multisets. (Not shown here)

14/34

The Pointed-by-Thread Assertion

IrisFit features the pointed-by-thread assertion:

ℓ⇐\ Π

• Π is a set of thread identifiers. In a sequential setting, either {π} or ∅.
• ℓ⇐ \ {π} asserts that ℓ may still be a root.
• ℓ⇐ \ ∅ asserts that ℓ is not a root!

15/34

A Few Simplified Reasoning Rules

alloc produces points-to, pointed-by-heap , and pointed-by-thread assertions:{
♢1

}
alloc 1

{
λℓ. ℓ 7→ () ∗ ℓ←[∅ ∗ ℓ⇐\ {π}

}

store updates pointed-by-heap assertions:{
ℓ 7→ v ∗ v ←[{+ℓ} ∗ w ←[∅

}
store ℓ w

{
λ(). ℓ 7→ w ∗ v ← [∅ ∗ w ←[{+ℓ}

}

load updates a pointed-by-thread assertion:{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ ∅

}
load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π}

}

16/34

A Few Simplified Reasoning Rules

alloc produces points-to, pointed-by-heap , and pointed-by-thread assertions:{
♢1

}
alloc 1

{
λℓ. ℓ 7→ () ∗ ℓ←[∅ ∗ ℓ⇐\ {π}

}

store updates pointed-by-heap assertions:{
ℓ 7→ v ∗ v ←[{+ℓ} ∗ w ←[∅

}
store ℓ w

{
λ(). ℓ 7→ w ∗ v ← [∅ ∗ w ←[{+ℓ}

}

load updates a pointed-by-thread assertion:{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ ∅

}
load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π}

}

16/34

A Few Simplified Reasoning Rules

alloc produces points-to, pointed-by-heap , and pointed-by-thread assertions:{
♢1

}
alloc 1

{
λℓ. ℓ 7→ () ∗ ℓ←[∅ ∗ ℓ⇐\ {π}

}

store updates pointed-by-heap assertions:{
ℓ 7→ v ∗ v ←[{+ℓ} ∗ w ←[∅

}
store ℓ w

{
λ(). ℓ 7→ w ∗ v ← [∅ ∗ w ←[{+ℓ}

}

load updates a pointed-by-thread assertion:{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ ∅

}
load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π}

}

16/34

Trimming and Logical Deallocation

When ℓ is not a root anymore, we can trim its pointed-by-thread assertion.{
ℓ⇐\ ∅ ∗ Φ

}
t

{
Ψ

}
∧ ℓ /∈ roots(t)

=⇒
{

ℓ⇐\ {π} ∗ Φ
}

t
{

Ψ
}

For experts: this trimming rule requires a non-standard Let rule. (Not shown here)

Unveiling our logical deallocation rule:(
ℓ 7→ v ∗ “ℓ is unreachable”

)
⇛ ♢1

17/34

Trimming and Logical Deallocation

When ℓ is not a root anymore, we can trim its pointed-by-thread assertion.{
ℓ⇐\ ∅ ∗ Φ

}
t

{
Ψ

}
∧ ℓ /∈ roots(t)

=⇒
{

ℓ⇐\ {π} ∗ Φ
}

t
{

Ψ
}

For experts: this trimming rule requires a non-standard Let rule. (Not shown here)

Unveiling our logical deallocation rule:(
ℓ 7→ v ∗ “ℓ is unreachable”

)
⇛ ♢1

17/34

Trimming and Logical Deallocation

When ℓ is not a root anymore, we can trim its pointed-by-thread assertion.{
ℓ⇐\ ∅ ∗ Φ

}
t

{
Ψ

}
∧ ℓ /∈ roots(t)

=⇒
{

ℓ⇐\ {π} ∗ Φ
}

t
{

Ψ
}

For experts: this trimming rule requires a non-standard Let rule. (Not shown here)

Unveiling our logical deallocation rule:(
ℓ 7→ v ∗ “ℓ is unreachable”

)
⇛ ♢1

17/34

Trimming and Logical Deallocation

When ℓ is not a root anymore, we can trim its pointed-by-thread assertion.{
ℓ⇐\ ∅ ∗ Φ

}
t

{
Ψ

}
∧ ℓ /∈ roots(t)

=⇒
{

ℓ⇐\ {π} ∗ Φ
}

t
{

Ψ
}

For experts: this trimming rule requires a non-standard Let rule. (Not shown here)

Unveiling our logical deallocation rule:(
ℓ 7→ v ∗ ℓ←[∅ ∗ ℓ⇐\ ∅

)
⇛ ♢1

17/34

A Small Example

{♢2 }

let x = ref 66 in
let y = ref x in
y := (!x / 2);
let z = ref 9 in
!z + !y

{λv . ⌜v = 42⌝ ∗ ♢2 }

• Correctness: what is the result of this program?
• Heap space bound: how much memory does it need?

18/34

A Small Example

{♢2 }
let x = ref 66 in
let y = ref x in
y := (!x / 2);
let z = ref 9 in
!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

• Correctness: what is the result of this program?
• Heap space bound: how much memory does it need?

18/34

A Small Example, Verified

{♢2 }
let x = ref 66 in

let y = ref x in

y := (!x / 2);

let z = ref 9 in

!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

A Small Example, Verified

{♢2 }
let x = ref 66 in
{♢1 ∗ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} }
let y = ref x in

y := (!x / 2);

let z = ref 9 in

!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

A Small Example, Verified

{♢2 }
let x = ref 66 in
{♢1 ∗ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} }
let y = ref x in
{ ℓx 7→ 66 ∗ ℓx ←[{+ℓy} ∗ ℓx ⇐\ {π} ∗ ℓy 7→ ℓx ∗ ℓy ←[∅ ∗ ℓy ⇐\ {π} }
y := (!x / 2);

let z = ref 9 in

!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

A Small Example, Verified

{♢2 }
let x = ref 66 in
{♢1 ∗ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} }
let y = ref x in
{ ℓx 7→ 66 ∗ ℓx ←[{+ℓy} ∗ ℓx ⇐\ {π} ∗ ℓy 7→ ℓx ∗ ℓy ←[∅ ∗ ℓy ⇐\ {π} }
y := (!x / 2);
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }

let z = ref 9 in

!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

A Small Example, Verified

{♢2 }
let x = ref 66 in
{♢1 ∗ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} }
let y = ref x in
{ ℓx 7→ 66 ∗ ℓx ←[{+ℓy} ∗ ℓx ⇐\ {π} ∗ ℓy 7→ ℓx ∗ ℓy ←[∅ ∗ ℓy ⇐\ {π} }
y := (!x / 2);
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ ∅ ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }

let z = ref 9 in

!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

A Small Example, Verified

{♢2 }
let x = ref 66 in
{♢1 ∗ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} }
let y = ref x in
{ ℓx 7→ 66 ∗ ℓx ←[{+ℓy} ∗ ℓx ⇐\ {π} ∗ ℓy 7→ ℓx ∗ ℓy ←[∅ ∗ ℓy ⇐\ {π} }
y := (!x / 2);
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ ∅ ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
{♢1 ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
let z = ref 9 in

!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

A Small Example, Verified

{♢2 }
let x = ref 66 in
{♢1 ∗ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} }
let y = ref x in
{ ℓx 7→ 66 ∗ ℓx ←[{+ℓy} ∗ ℓx ⇐\ {π} ∗ ℓy 7→ ℓx ∗ ℓy ←[∅ ∗ ℓy ⇐\ {π} }
y := (!x / 2);
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ {π} ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
{ ℓx 7→ 66 ∗ ℓx ←[∅ ∗ ℓx ⇐\ ∅ ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
{♢1 ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
let z = ref 9 in
{ ℓz 7→ 9 ∗ ℓz ←[∅ ∗ ℓz ⇐\ {π} ∗ ℓy 7→ 33 ∗ ℓy ← [∅ ∗ ℓy ⇐\ {π} }
!z + !y
{λv . ⌜v = 42⌝ ∗ ♢2 }

19/34

Two Specifications for mapsucc xs

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

{
List ℓxs L

♢(2× length L)

}
mapsucc ℓxs

λℓys .

List ℓxs L
List ℓys (map (+1) L)
ℓys ←[∅ ∗ ℓys ⇐\ {π}

{

List ℓxs L
ℓxs ←[∅ ∗ ℓxs ⇐\ {π}

}
mapsucc ℓxs

{
λℓys .

List ℓys (map (+1) L)
ℓys ←[∅ ∗ ℓys ⇐\ {π}

}

20/34

Two Specifications for mapsucc xs

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

{
List ℓxs L

♢(2× length L)

}
mapsucc ℓxs

λℓys .

List ℓxs L
List ℓys (map (+1) L)
ℓys ←[∅ ∗ ℓys ⇐\ {π}

{
List ℓxs L

ℓxs ←[∅ ∗ ℓxs ⇐\ {π}

}
mapsucc ℓxs

{
λℓys .

List ℓys (map (+1) L)
ℓys ←[∅ ∗ ℓys ⇐\ {π}

}

20/34

Two Specifications for mapsucc xs

• If xs is reachable from the calling context: O(length xs)
• If xs is unreachable from the calling context: O(1)

{
List ℓxs L

♢(2× length L)

}
mapsucc ℓxs

λℓys .

List ℓxs L
List ℓys (map (+1) L)
ℓys ←[∅ ∗ ℓys ⇐\ {π}

{

List ℓxs L
ℓxs ←[∅ ∗ ℓxs ⇐\ {π}

}
mapsucc ℓxs

{
λℓys .

List ℓys (map (+1) L)
ℓys ←[∅ ∗ ℓys ⇐\ {π}

}

20/34

Soundness of IrisFit

Soundness Theorem

If
{
♢S

}
t

{
λ_.True

}
holds, then

the execution of the program t with a heap of size at least S
• cannot reach a stuck configuration, and
• cannot run out of memory.

21/34

Soundness of IrisFit

Soundness Theorem

If
{
♢S

}
t

{
λ_.True

}
holds, then

the execution of the program t with a heap of size at least S
• cannot reach a stuck configuration, and
• cannot run out of memory.

21/34

Part II: Scaling up to Concurrency

Based on
Will it Fit? Verifying Heap Space Bounds of Concurrent Programs

under Garbage Collection with Separation Logic
[Moine, Charguéraud, and Pottier; submitted to TOPLAS]

Concurrency

• Modern computers are multi-core with shared memory.
• Threads execute concurrently and can be created dynamically.

fork (fun () -> g x); f x

Separation Logic scales seamlessly up to concurrency [O’Hearn, 2007, Jung et al., 2018].

Motivating Question

Can IrisFit be scaled up to concurrency?

22/34

Concurrency

• Modern computers are multi-core with shared memory.
• Threads execute concurrently and can be created dynamically.

fork (fun () -> g x); f x

Separation Logic scales seamlessly up to concurrency [O’Hearn, 2007, Jung et al., 2018].

Motivating Question

Can IrisFit be scaled up to concurrency?

22/34

Concurrency

• Modern computers are multi-core with shared memory.
• Threads execute concurrently and can be created dynamically.

f x || g x

Separation Logic scales seamlessly up to concurrency [O’Hearn, 2007, Jung et al., 2018].

Motivating Question

Can IrisFit be scaled up to concurrency?

22/34

Concurrency

• Modern computers are multi-core with shared memory.
• Threads execute concurrently and can be created dynamically.

f x || g x

Separation Logic scales seamlessly up to concurrency [O’Hearn, 2007, Jung et al., 2018].

Motivating Question

Can IrisFit be scaled up to concurrency?

22/34

How to Scale IrisFit up to Concurrency

Step 1: Annotate the triple with a ghost thread identifier π.{
Φ

}
π : t

{
λv . Ψ

}

Step 2: Unveil the power of the pointed-by-thread assertion: ℓ′ ⇐\ Π

Set of thread ids

{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1}

}
π2 : load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1, π2}

}

Step 3: Et voilà ?

• I verified some several concurrent programs: a lock, a concurrent counter, . . .
• But certain lock-free data structures have an unexpected bound!

23/34

How to Scale IrisFit up to Concurrency

Step 1: Annotate the triple with a ghost thread identifier π.{
Φ

}
π : t

{
λv . Ψ

}
Step 2: Unveil the power of the pointed-by-thread assertion: ℓ′ ⇐\ Π

Set of thread ids

{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1}

}
π2 : load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1, π2}

}

Step 3: Et voilà ?

• I verified some several concurrent programs: a lock, a concurrent counter, . . .
• But certain lock-free data structures have an unexpected bound!

23/34

How to Scale IrisFit up to Concurrency

Step 1: Annotate the triple with a ghost thread identifier π.{
Φ

}
π : t

{
λv . Ψ

}
Step 2: Unveil the power of the pointed-by-thread assertion: ℓ′ ⇐\ Π

Set of thread ids

{
ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1}

}
π2 : load ℓ

{
λv . ⌜v = ℓ′⌝ ∗ ℓ 7→ ℓ′ ∗ ℓ′ ⇐\ {π1, π2}

}

Step 3: Et voilà ?

• I verified some several concurrent programs: a lock, a concurrent counter, . . .
• But certain lock-free data structures have an unexpected bound!

23/34

The Case of Lock-Free Data Structures: Treiber’s Stack

A linearizable lock-free stack, implemented as a reference on an immutable list.

let rec pop s =
let xs = !s in
match xs with
| nil -> assert false
| y::ys ->

if CAS s xs ys then y else pop s

24/34

The Case of Lock-Free Data Structures: Treiber’s Stack

A linearizable lock-free stack, implemented as a reference on an immutable list.

let rec pop s =
let xs = !s in
match xs with
| nil -> assert false
| y::ys ->

if CAS s xs ys then y else pop s

24/34

Desired Specification of Treiber’s Stack (for Unboxed Values)

〈
♢2

∀L. stack ℓs L

〉
π : push ℓs v

〈
λ(). True
stack ℓs (v ::L)

〉

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

" pop’s specification is false: some interleavings invalidate it. "

25/34

Desired Specification of Treiber’s Stack (for Unboxed Values)

〈
♢2

∀L. stack ℓs L

〉
π : push ℓs v

〈
λ(). True
stack ℓs (v ::L)

〉

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

" pop’s specification is false: some interleavings invalidate it. "

25/34

Desired Specification of Treiber’s Stack (for Unboxed Values)

〈
♢2

∀L. stack ℓs L

〉
π : push ℓs v

〈
λ(). True
stack ℓs (v ::L)

〉

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

" pop’s specification is false: some interleavings invalidate it. "

25/34

A Problematic Interleaving for pop

pop ℓs pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = !ℓs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = ℓxs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = ℓxs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = ℓxs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = ℓxs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = ℓxs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

A Problematic Interleaving for pop

let xs = ℓxs in
match xs with
...

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The sleeping thread maintains reachable the popped-off cells.
• If the GC runs at this point, it cannot free these cells, and the allocation will fail.

Motivating Question

Can new language constructs be devised to prevent these interleavings?

26/34

Protected Sections

let xs = ℓxs in
match xs with
| nil -> assert false
| y::ys -> if CAS s xs ys then y else pop s

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The location ℓxs is a root for small number of instructions.
• The allocation should wait for these instructions to complete, until ℓxs is released.

let rec pop s =
enter () ; let xs = !s in
match xs with
| nil -> assert false
| y::ys -> if CAS s xs ys then (exit () ; y) else (exit () ; pop s)

⇝ The location ℓxs is a temporary root: it is a root only inside a protected section.

27/34

Protected Sections

let xs = ℓxs in
match xs with
| nil -> assert false
| y::ys -> if CAS s xs ys then y else pop s

pop ℓs;
pop ℓs;
pop ℓs;
a_big_alloc ()

• The location ℓxs is a root for small number of instructions.
• The allocation should wait for these instructions to complete, until ℓxs is released.

let rec pop s =
enter () ; let xs = !s in
match xs with
| nil -> assert false
| y::ys -> if CAS s xs ys then (exit () ; y) else (exit () ; pop s)

⇝ The location ℓxs is a temporary root: it is a root only inside a protected section.
27/34

Protected Sections, in Details

• Each thread is either outside or inside a protected section.
• The GC runs only when every thread is outside protected sections.

Protected sections forbid the problematic interleaving:

• An allocation that would exceed the bound S waits for the GC to run.
• The GC waits for protected sections to end, releasing their temporary roots.

Constraints inside protected sections:

• No allocation. • No divergence. • No nesting.

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

28/34

Protected Sections, in Details

• Each thread is either outside or inside a protected section.
• The GC runs only when every thread is outside protected sections.

Protected sections forbid the problematic interleaving:

• An allocation that would exceed the bound S waits for the GC to run.
• The GC waits for protected sections to end, releasing their temporary roots.

Constraints inside protected sections:

• No allocation. • No divergence. • No nesting.

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

28/34

Protected Sections, in Details

• Each thread is either outside or inside a protected section.
• The GC runs only when every thread is outside protected sections.

Protected sections forbid the problematic interleaving:

• An allocation that would exceed the bound S waits for the GC to run.
• The GC waits for protected sections to end, releasing their temporary roots.

Constraints inside protected sections:

• No allocation. • No divergence. • No nesting.

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉

28/34

Protected Sections, in Details

• Each thread is either outside or inside a protected section.
• The GC runs only when every thread is outside protected sections.

Protected sections forbid the problematic interleaving:

• An allocation that would exceed the bound S waits for the GC to run.
• The GC waits for protected sections to end, releasing their temporary roots.

Constraints inside protected sections:

• No allocation. • No divergence. • No nesting.

〈
True

∀v L. stack ℓs (v ::L)

〉
π : pop ℓs

〈
λw . ⌜w = v⌝
stack ℓs L ∗ ♢2

〉
28/34

Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();

{ ℓs 7→ ℓxs ∗ inside π0 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }

...

{ inside π0 {ℓxs} }
{ inside π0 ∅ }

exit ();
...

Thread π1

enter ();

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

...

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

CAS s xs ys

{ ℓs 7→ ... ∗ ℓxs ← [∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }

...

29/34

Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();

{ ℓs 7→ ℓxs ∗ inside π0 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }

...

{ inside π0 {ℓxs} }
{ inside π0 ∅ }

exit ();
...

Thread π1

enter ();

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

...

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

CAS s xs ys

{ ℓs 7→ ... ∗ ℓxs ← [∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }

...

29/34

Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();

{ ℓs 7→ ℓxs ∗ inside π0 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }

...

{ inside π0 {ℓxs} }
{ inside π0 ∅ }

exit ();
...

Thread π1

enter ();

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

...

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

CAS s xs ys

{ ℓs 7→ ... ∗ ℓxs ← [∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }

...
29/34

Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();
{ ℓs 7→ ℓxs ∗ inside π0 ∅ }
let xs = !ℓs in
{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }
...
{ inside π0 {ℓxs} }
{ inside π0 ∅ }
exit ();
...

Thread π1

enter ();

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }

let xs = !ℓs in

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

...

{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }

CAS s xs ys

{ ℓs 7→ ... ∗ ℓxs ← [∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }

...
29/34

Key Idea: Logical Deallocation of Temporary Roots

New assertion inside π T forming an escape-hatch to the pointed-by-thread discipline.
The set T is for temporary roots: T must be empty when the protected section ends.

Thread π0

enter ();
{ ℓs 7→ ℓxs ∗ inside π0 ∅ }
let xs = !ℓs in
{ ℓs 7→ ℓxs ∗ inside π0 {ℓxs} }
...
{ inside π0 {ℓxs} }
{ inside π0 ∅ }
exit ();
...

Thread π1

enter ();
{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 ∅ }
let xs = !ℓs in
{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }
...
{ ℓs 7→ ℓxs ∗ ℓxs ←[{+ℓs} ∗ ℓxs ⇐ \ ∅ ∗ inside π1 {ℓxs} }
CAS s xs ys
{ ℓs 7→ ... ∗ ℓxs ← [∅ ∗ ℓxs ⇐\ ∅ ∗ inside π1 {ℓxs} }
{♢1 ∗ inside π1 {ℓxs} }
...

29/34

Polling for Liveness

Due to protected sections, a thread may wait forever for the GC.

while true do
enter (); ...; exit ()

done
a_big_alloc ()

• New construct: polling points.
• A thread facing a polling point stops its execution until no thread requires the GC.

while true do
enter (); ...; exit ();
poll ()

done

a_big_alloc ()

An automatic approach guaranteeing liveness: a polling point in every loop.

30/34

Polling for Liveness

Due to protected sections, a thread may wait forever for the GC.

while true do
enter (); ...; exit ()

done
a_big_alloc ()

• New construct: polling points.
• A thread facing a polling point stops its execution until no thread requires the GC.

while true do
enter (); ...; exit ();
poll ()

done

a_big_alloc ()

An automatic approach guaranteeing liveness: a polling point in every loop.

30/34

Polling for Liveness

Due to protected sections, a thread may wait forever for the GC.

while true do
enter (); ...; exit ()

done
a_big_alloc ()

• New construct: polling points.
• A thread facing a polling point stops its execution until no thread requires the GC.

while true do
enter (); ...; exit ();
poll ()

done

a_big_alloc ()

An automatic approach guaranteeing liveness: a polling point in every loop.
30/34

Back to Reality

• Protected sections and polling points are inspired by safe points.
• Safe points are used internally by OCaml to implement a stop-the-world GC.
• Issue of safe points: they delimit protected sections and act as polling points.

Proposal

Ask the programmer to be explicit about protected sections;
let the compiler insert polling points.

31/34

Back to Reality

• Protected sections and polling points are inspired by safe points.
• Safe points are used internally by OCaml to implement a stop-the-world GC.
• Issue of safe points: they delimit protected sections and act as polling points.

Proposal

Ask the programmer to be explicit about protected sections;
let the compiler insert polling points.

31/34

There is More

In the manuscript:

• reasoning about closures • simplified reasoning when no deallocation is needed
• case studies • logical deallocation of cyclic data structures
• soundness proof

Making use of the presented ideas, I participated in other projects:

POPL’24 DisLog: A Separation Logic for Disentanglement [Moine, Westrick, and Balzer]
a logic for “disentanglement”, a reachability property of parallel programs.

ICFP’24 Snapshottable Stores [Allain, Clément, Moine, and Scherer]
verifying a data structure with non-trivial reachability arguments.

32/34

There is More

In the manuscript:

• reasoning about closures • simplified reasoning when no deallocation is needed
• case studies • logical deallocation of cyclic data structures
• soundness proof

Making use of the presented ideas, I participated in other projects:

POPL’24 DisLog: A Separation Logic for Disentanglement [Moine, Westrick, and Balzer]
a logic for “disentanglement”, a reachability property of parallel programs.

ICFP’24 Snapshottable Stores [Allain, Clément, Moine, and Scherer]
verifying a data structure with non-trivial reachability arguments.

32/34

Future Work

Connections with related works

• Integration with verified compilers
CakeML [Gómez-Londoño et al., 2020]

• Safe Memory Reclamation (SMR)
Space consumption [Jung et al., 2023]

• Foundation for type systems
AARA [Hoffmann and Jost, 2022]

Practical applications

• Protected sections for OCaml
• Control over polling points position

Theoretical extensions

• More advanced case studies
Harris’s list [Harris, 2001]

• Weak pointers and ephemerons

33/34

How to Establish Heap Space Bounds in the Presence of Garbage Collection?

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC

Key ingredients:
• space credits to keep track of available heap space
• pointed-by-heap and pointed-by-thread assertions to prove unreachability
• protected sections to improve heap space bounds of lock-free data structures
• polling points to recover liveness

Reasoning rules, case studies and soundness are mechanized.

Thank you for your attention!

34/34

How to Establish Heap Space Bounds in the Presence of Garbage Collection?

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC

Key ingredients:
• space credits to keep track of available heap space
• pointed-by-heap and pointed-by-thread assertions to prove unreachability
• protected sections to improve heap space bounds of lock-free data structures
• polling points to recover liveness

Reasoning rules, case studies and soundness are mechanized.

Thank you for your attention!

34/34

How to Establish Heap Space Bounds in the Presence of Garbage Collection?

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC

Key ingredients:
• space credits to keep track of available heap space
• pointed-by-heap and pointed-by-thread assertions to prove unreachability
• protected sections to improve heap space bounds of lock-free data structures
• polling points to recover liveness

Reasoning rules, case studies and soundness are mechanized.

Thank you for your attention!

34/34

How to Establish Heap Space Bounds in the Presence of Garbage Collection?

IrisFit, the first Separation Logic for verifying
heap space bounds in a high-level concurrent language equipped with a GC

Key ingredients:
• space credits to keep track of available heap space
• pointed-by-heap and pointed-by-thread assertions to prove unreachability
• protected sections to improve heap space bounds of lock-free data structures
• polling points to recover liveness

Reasoning rules, case studies and soundness are mechanized.

Thank you for your attention!
34/34

Backup Slides

The Bind Problem and its Solution

Trimming is unsound with the standard Let:
what if a location ℓ ∈ (roots(t2) \ roots(t1))?

{
Φ

}
t1

{
Ψ′ }

∀v .
{

Ψ′ v
}

[v/x]t2
{

Ψ
}{

Φ
}

let x = t1 in t2
{

Ψ
} ✖ One could leak ℓ⇐\ {π} in Φ.

• Unveiling fractions: ℓ⇐\(p1+p2) (Π1 ∪ Π2) ≡ ℓ⇐ \p1 Π1 ∗ ℓ⇐\p2 Π2

• Only logical deallocation requires full fraction 1.
• The Let rule withhold a fraction of the pointed-by-thread assertion.

roots(t2) = {ℓ}{
Φ

}
t1

{
Ψ′ }

∀v .
{

ℓ⇐\p {π} ∗ Ψ′ v
}

[v/x]t2
{

Ψ
}{

ℓ⇐ \p {π} ∗ Φ
}

let x = t1 in t2
{

Ψ
}

Cycles

We handle cycles following the approach of Madiot and Pottier [2022].

True −∗ ∅Å0 P

D Å
n P

ℓ 7→ v⃗ ∗ ℓ←[A ∗ ℓ⇐\ ∅
−∗ ({ℓ} ∪ D) Ån+size(v⃗) P if A ⊆ P

D Å
n D ⇛ ♢n ∗ (∗

ℓ∈D
†ℓ) if D ∩ roots(t) = ∅

Closures

Functions with an environment are usually compiled down to closures.

A closure is a heap allocated block pointing to the environment’s values.
Closure allocation consumes space credits and updates pointed-by assertions.

We encode closures as derived constructions using closure conversion:

• closure creation and call are not in the syntax,
• but we provide macros implementing them,
• and provide reasoning rules about these macros!

The True Pointed-by-Heap Assertion

ℓ←[q A

∈ [0, 1]

(signed) multiset

• ℓ← [1 A asserts that A is an over-approximation of the reachable predecessors of ℓ.
• ℓ←[1 ∅ asserts that ℓ is unreachable from the heap.

ℓ←[1 {+ℓ1; +ℓ2} −∗ ℓ←[1
2
{+ℓ1} ∗ ℓ←[1

2
{+ℓ2}

ℓ←[1
2
{+ℓ1} ∗ ℓ←[0 {−ℓ1} −∗ ℓ←[1

2
({+ℓ1} ⊎ {−ℓ1})

Main invariant: if ℓ←[0 A then A must contain only negative elements.

References i

Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer. Snapshottable
stores. Proc. ACM Program. Lang., 8(ICFP), aug 2024. doi: 10.1145/3674637. URL
https://doi.org/10.1145/3674637.

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.
End-to-end verification of stack-space bounds for C programs. In Programming
Language Design and Implementation (PLDI), pages 270–281, June 2014. URL
http://flint.cs.yale.edu/flint/publications/veristack.pdf.

https://doi.org/10.1145/3674637
http://flint.cs.yale.edu/flint/publications/veristack.pdf

References ii

Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Magnus O.
Myreen, and Yong Kiam Tan. Do you have space for dessert? A verified space cost
semantics for CakeML programs. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):204:1–204:29, 2020. URL
https://doi.org/10.1145/3428272.

Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Jennifer
Welch, editor, Distributed Computing, pages 300–314, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-45414-4.

Jan Hoffmann and Steffen Jost. Two decades of automatic amortized resource analysis.
Mathematical Structures in Computer Science, 32(6):729–759, 2022. doi:
10.1017/S0960129521000487.

https://doi.org/10.1145/3428272

References iii

Martin Hofmann. Linear types and non-size-increasing polynomial time computation. In
Logic in Computer Science (LICS), pages 464–473, July 1999. URL
https://doi.org/10.1109/LICS.1999.782641.

Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon
Kang. Modular verification of safe memory reclamation in concurrent separation logic.
Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023. doi: 10.1145/3622827. URL
https://doi.org/10.1145/3622827.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and
Derek Dreyer. Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Programming, 28:e20, 2018. URL
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf.

https://doi.org/10.1109/LICS.1999.782641
https://doi.org/10.1145/3622827
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

References iv

Ioannis T. Kassios and Eleftherios Kritikos. A discipline for program verification based
on backpointers and its use in observational disjointness. In European Symposium on
Programming (ESOP), volume 7792 of Lecture Notes in Computer Science, pages
149–168. Springer, March 2013. URL
https://doi.org/10.1007/978-3-642-37036-6_10.

Jean-Marie Madiot and François Pottier. A separation logic for heap space under
garbage collection. Proceedings of the ACM on Programming Languages, 6(POPL),
January 2022. URL http://cambium.inria.fr/~fpottier/publis/
madiot-pottier-diamonds-2022.pdf.

Alexandre Moine, Arthur Charguéraud, and François Pottier. A high-level separation
logic for heap space under garbage collection. Proc. ACM Program. Lang., 7(POPL),
jan 2023. doi: 10.1145/3571218. URL https://doi.org/10.1145/3571218.

https://doi.org/10.1007/978-3-642-37036-6_10
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
https://doi.org/10.1145/3571218

References v

Alexandre Moine, Arthur Charguéraud, and François Pottier. Will it fit? Verifying heap
space bounds of concurrent programs under garbage collection with separation logic.
Submitted, September 2024a. URL http://cambium.inria.fr/~amoine/
publications/moine-chargueraud-pottier-24.pdf.

Alexandre Moine, Sam Westrick, and Stephanie Balzer. Dislog: A separation logic for
disentanglement. Proc. ACM Program. Lang., 8(POPL), jan 2024b. doi:
10.1145/3632853. URL https://doi.org/10.1145/3632853.

Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, May 2007. URL
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf.

http://cambium.inria.fr/~amoine/publications/moine-chargueraud-pottier-24.pdf
http://cambium.inria.fr/~amoine/publications/moine-chargueraud-pottier-24.pdf
https://doi.org/10.1145/3632853
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf

References vi

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Computer Science Logic, volume 2142 of
Lecture Notes in Computer Science, pages 1–19. Springer, September 2001. URL
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/localreasoning.pdf.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
in Computer Science (LICS), pages 55–74, 2002. URL
http://www.cs.cmu.edu/~jcr/seplogic.pdf.

http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/localreasoning.pdf
http://www.cs.cmu.edu/~jcr/seplogic.pdf

	Appendix
	References

