Speech Recognition
Lecture 7: Expectation-Maximization Algorithm, Hidden Markov Models

Cyril Allauzen
Google, NYU Courant Institute
allauzen@cs.nyu.edu
Slide Credit: Mehryar Mohri
This Lecture

- Expectation-Maximization (EM) algorithm
- Hidden-Markov Models
Latent Variables

Definition: unobserved or hidden variables, as opposed to those directly available at training and test time.

- example: mixture models, HMMs.

Why latent variables?

- naturally unavailable variables: e.g., did the patient take their medicine?
- modeling: latent variables introduced to model dependencies.
ML with Latent Variables

Problem:

• with fully observed variables, ML is often straightforward.

• with latent variables, log-likelihood contains a sum (harder to find the best parameter values):

\[L(\theta, x) = \log p_\theta[x] = \log \sum_z p_\theta(x, z) = \log \sum_z p_\theta[z|x]p_\theta[x]. \]

Idea: use current parameter values to estimate latent variables and use those to re-estimate parameter values → EM algorithm.
EM Idea

- **Maximize expectation:**

\[
\sum_z p_\theta[z|x] \log p_{\theta'}[x, z] = \mathbb{E}_{z \sim p_\theta[\cdot|x]} \left[\log p_{\theta'}[x, z] \right].
\]

- **Iterations:**
 - **compute** \(p_\theta[z|x] \) **for current value of** \(\theta \).
 - **compute expectation and find maximizing** \(\theta' \).
EM Algorithm

(Dempster, Laird, and Rubin, 1977; Wu, 1983)

- **Algorithm**: maximum-likelihood meta algorithm for models with latent variables.
 - **E-step**: $q^{t+1} \leftarrow p_{\theta^t}[z|x]$.
 - **M-step**: $\theta^{t+1} \leftarrow \arg \max_{\theta} \sum_z q^{t+1}(z|x) \log p_{\theta}[x, z]$.

- **Interpretation**:
 - **E-step**: posterior probability of latent variables given observed variables and current parameter.
 - **M-step**: maximum-likelihood parameter given all data.
EM Theorem

Theorem: for any x, and parameter values θ and θ',

$$L(\theta', x) - L(\theta, x) \geq \sum_z p_\theta[z|x] \log p_{\theta'}[x, z] - \sum_z p_\theta[z|x] \log p_\theta[x, z].$$

Proof:

$$L(\theta', x) - L(\theta, x) = \log p_{\theta'}[x] - \log p_\theta[x]$$

$$= \sum_z p_\theta[z|x] \log p_{\theta'}[x] - \sum_z p_\theta[z|x] \log p_\theta[x]$$

$$= \sum_z p_\theta[z|x] \log \frac{p_{\theta'}[x, z]}{p_{\theta'}[z|x]} - \sum_z p_\theta[z|x] \log \frac{p_\theta[x, z]}{p_\theta[z|x]}$$

$$= \sum_z p_\theta[z|x] \log \frac{p_{\theta}[z|x]}{p_{\theta'}[z|x]} + \sum_z p_\theta[z|x] \log p_{\theta'}[x, z] - \sum_z p_\theta[z|x] \log p_\theta[x, z]$$

$$= D(p_\theta[z|x] || p_{\theta'}[z|x]) + \sum_z p_\theta[z|x] \log p_{\theta'}[x, z] - \sum_z p_\theta[z|x] \log p_\theta[x, z]$$

$$\geq \sum_z p_\theta[z|x] \log p_{\theta'}[x, z] - \sum_z p_\theta[z|x] \log p_\theta[x, z].$$
EM Algorithm - Notes

Applications:
- mixture models, e.g., Gaussian mixtures. Latent variables: which model generated points.
- HMMs (Baum-Welch algorithm).

Notes:
- positive: each iteration increases likelihood. No parameter tuning.
- negative: can converge to local optima. Note that likelihood could converge but not parameter. Dependence on initial parameter.
EM - Extensions and Variants

(Dempster et al., 1977; Jamshidian and Jennrich, 1993; Wu, 1983)

- **Generalized EM (GEM):** maximization is not necessary at all steps since any (strict) increase of the auxiliary function guarantees an increase of the log-likelihood.

- **Sparse EM:** posterior probabilities computed at only some points in E-step.

(Dempster et al., 1977; Jamshidian and Jennrich, 1993; Wu, 1983)
This Lecture

- Expectation-Maximization (EM) algorithm
- Hidden-Markov Models
Motivation

- **Data**: sample of m sequences over alphabet Σ drawn i.i.d. according to some distribution D:

$$x^{i_1}, x^{i_2}, \ldots, x^{i_k}, \quad i = 1, \ldots, m.$$

- **Problem**: find sequence model that best estimates distribution D.

- **Latent variables**: observed sequences may have been generated by model with states and transitions that are hidden or unobserved.
Example

- **Observations:** sequences of Heads and Tails.

 observed sequence: $H, T, T, H, T, H, T, H, H, T, T, \ldots, H.$

 unobserved paths: $(0, H, 0), (0, T, 1), (1, T, 1), \ldots, (2, H, 2).$

- **Model:**

[Diagram showing states and transitions with probabilities]

$H/.3$ $T/.4$ $H/.6$ $H/.1$

$T/.7$ 1 $T/.5$

$T/.4$ 0 2
Hidden Markov Models

- **Definition**: probabilistic automata, generative view.
 - **discrete case**: finite alphabet Σ.
 - **transition probability**: $\Pr[\text{transition } e]$.
 - **emission probability**: $\Pr[\text{emission } a|e]$.
 - **simplification**: for us, $w[e] = \Pr[a|e] \Pr[e]$.

- **Illustration**:

```
0  \rightarrow  a/.3  \rightarrow  a/.2  \rightarrow  \cdots
  \downarrow a/.2  \rightarrow  \cdots
  \downarrow b/.1  \rightarrow  \cdots
  \downarrow c/.2  \rightarrow  \cdots
  \downarrow .5
```
Other Models

- **Outputs at states** (instead of transitions): equivalent model, dual representation.

- **Non-discrete case**: outputs in \mathbb{R}^N.
 - fixed probabilities replaced by distributions, e.g., Gaussian mixtures.
 - application to acoustic modeling.
Three Problems

Problem 1: given sequence x_1, \ldots, x_k and hidden Markov model p_θ compute $p_\theta[x_1, \ldots, x_k]$.

Problem 2: given sequence x_1, \ldots, x_k and hidden Markov model p_θ find most likely path $\pi = e_1, \ldots, e_r$ that generated that sequence.

Problem 3: estimate parameters θ of a hidden Markov model via ML: $\theta_* = \arg\max_\theta p_\theta[x]$.

(Rabiner, 1989)
Algorithm: let X represent a finite automaton representing the sequence $x = x_1 \cdots x_k$ and let H denote the current hidden Markov model.

Then, $p_{\theta}[x] = \sum_{\pi \in X \circ H} w[\pi]$.

Thus, it can be computed using composition and a shortest-distance algorithm in time $O(|X||H|)$.
P2: Most Likely Path

- **Algorithm**: shortest-path problem in \((\max, \times)\) semiring.

 - any shortest-path algorithm applied to the result of the composition \(X \circ H\). In particular, since the automaton is acyclic, with a linear-time shortest-path algorithm, the total complexity is in \(O(|X \circ H|) = O(|X||H|)\).

 - a traditional solution is to use the Viterbi algorithm.
P3: Parameter Estimation

- **Baum-Welch algorithm**: special case of EM applied to HMMs.
 - Here, θ represents the transition weights $w[e]$.
 - The latent or hidden variables are paths π.
 - M-step:
 \[
 \arg\max_\theta \sum_{\pi} p_{\theta'}[\pi|x] \log p_{\theta}[x, \pi]
 \]
 subject to $\forall q \in Q, \sum_{e \in E[q]} w_{\theta}[e] = 1$.

(Baum, 1972)
P3: Parameter Estimation

Using Lagrange multipliers $\lambda_q, q \in Q$, the problem consists of setting the following partial derivatives to zero:

$$\frac{\partial}{\partial w_\theta[e]} \left[\sum_\pi p_\theta' [\pi | x] \log p_\theta [x, \pi] - \sum_q \lambda_q \sum_{e \in E[q]} w_\theta[e] \right] = 0$$

$$\Leftrightarrow \sum_\pi p_\theta' [\pi | x] \frac{\partial \log p_\theta [x, \pi]}{\partial w_\theta[e]} - \lambda_{\text{orig}}[e] = 0.$$

$p_\theta[x, \pi] \neq 0$ only for paths π labeled with $x : \pi \in \Pi(x)$.

In that case, $p_\theta[x, \pi] = \prod w_\theta[e]^{\mid \pi \mid_e}$, where $\mid \pi \mid_e$ is the number of occurrences of e in π.
Thus, the equation with partial derivatives can be rewritten as

$$
\sum_{\pi \in \Pi(x)} p_{\theta'} [\pi | x] \frac{|\pi|_e}{w_{\theta}[e]} = \lambda_{orig}(e)
$$

$$
\iff w_{\theta}[e] = \frac{1}{\lambda_{orig}(e)} \sum_{\pi \in \Pi(x)} p_{\theta'} [\pi | x]|\pi|_e
$$

$$
\iff w_{\theta}[e] = \frac{1}{\lambda_{orig}(e)p_{\theta'}[x]} \sum_{\pi \in \Pi(x)} p_{\theta'} [x, \pi]|\pi|_e
$$

$$
\iff w_{\theta}[e] \propto \sum_{\pi \in \Pi(x)} p_{\theta'} [x, \pi]|\pi|_e.
$$
P3: Parameter Estimation

- But, \[\sum_{\pi \in \Pi(x)} p_{\theta'}[x, \pi]|\pi|_e = \sum_{i=1}^{k} \alpha_{i-1}(\theta') w_{\theta'}[e] \beta_i(\theta') . \]

- Thus, with \[w_{\theta}[e] \propto \sum_{i=1}^{k} \alpha_{i-1}(\theta') w_{\theta'}[e] \beta_i(\theta') \]

Can be computed using forward-backward algorithms, or, for us, shortest-distance algorithms.
References

References