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Abstract

In this paper, we study online algorithms when the in-
put is not chosen adversarially, but consists of draws
from some given probability distribution. While this
model has been studied for online problems like pag-
ing and k-server, it is not known how to beat the
Θ(log n) bound for online Steiner tree if at each time
instant, the demand vertex is a uniformly random ver-
tex from the graph. For the online Steiner tree prob-
lem, we show that if each demand vertex is an indepen-
dent draw from some probability distribution π : V →
[0, 1], a variant of the natural greedy algorithm achieves
Eω[A(ω)]/Eω[OPT(ω)] = O(1); moreover, this result
can be extended to some other subadditive problems.
Both assumptions that the input sequence consists of
independent draws from π, and that π is known to the
algorithm are both essential; we show (almost) loga-
rithmic lower bounds if either assumption is violated.
Moreover, we give preliminary results on extending the
Steiner tree results above to the related “expected ra-
tio” measure Eω[A(ω)/OPT(ω)]. Finally, we use these
ideas to give an average-case analysis of the Universal
TSP problem.

1 Introduction

The notion of competitive analysis is perhaps the central
notion of online algorithms [41, 26, 30]: given an
online algorithm A (perhaps a randomized one), the
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competitive ratio is defined as

maxω
Er[A(ω,r)]

OPT(ω) ,(1.1)

where r is the set of random coins flipped by the
algorithm, the maximum is taken over all inputs ω, and
OPT(ω) is the optimal solution value on the input ω.
This idea of comparing the performance of an online
algorithm (which knows nothing about the future) to
the optimal solution built in hindsight has led to crisp
and clean problems, and strong upper and lower bounds
on the competitive ratio are known for most problems
of interest. However, while the strict definition of
competitive ratio has led to much progress, it has had
its drawbacks. The results in the online model are
often unduly pessimistic, and the strict definition of
competitive ratio does not allow us to make fine-grained
distinctions between competing algorithms.

One of the reasons for the introduction of compet-
itive analysis was that classical online problems like
list-update, paging and k-server were easy when the
inputs were drawn from a known probability distri-
bution, and the hope was to extend our understand-
ing when we did not know the input distribution pre-
cisely. (See [6, 13, 22] or Section 1.2 for many refer-
ences to weaken the competitive analysis framework and
strike a happy median between full-information and no-
information.) However, for some combinatorial opti-
mization problems, we do not understand even the case
when the inputs are independently drawn from a proba-
bility distribution π given as input. An excellent exam-
ple is the online Steiner tree problem, which has been
studied both in the offline (see [37] and the references
therein) and the online [38, 20, 3] case. In this work,
we seek answers to the following question: If the online
Steiner tree requests are vertices of a graph drawn uni-
formly at random, can we do better than the Θ(log n)
online greedy algorithm? (E.g., one may be stream-
ing a video over a network to customers arriving from a
known distribution; when a customer arrives she has to
be served immediately.) In general, the goal is to for-
mally study the interplay between stochastic informa-
tion and online algorithms for combinatorial optimiza-
tion problems in general. (Individual problems along



these lines have indeed been studied before [25, 31, 32]:
see Section 1.2 for similarities and differences.)

Our Model. In order to state the questions and an-
swers, let us formalize the model in which we work. We
assume that requests are drawn from the universe U ,
and there is a probability distribution π : U → [0, 1]
over the space of requests.1 The “adversary” generates
the input sequence ω = ω1, ω2, . . . , by deciding on the
length k of the input sequence, and then drawing k re-
quests independently and identically from the probabil-
ity distribution π. The adversary is allowed to choose
any distribution π over the space of requests, but the
online algorithm are allowed to sample from this distri-
bution. Given ` ∈ Z, we use π` to denote the set U `

of length-` sequences from U endowed with the natural
product measure, and hence ω ∈ π` will imply that ω is
chosen by taking ` i.i.d. samples from π.

Given an online algorithm ALG for problem Π, the
ratio-of-expectations (RoE) is

RoE(ALG) = max
π

max
k

Eω∈πk,r[ALG(ω, r)]
Eω∈πk [OPT(ω)]

.(1.2)

Here r are the random coins of the algorithm. Hence,
given any sequence length k (unknown to the algo-
rithm), this quantity measures the expected cost of the
algorithm over length k sequences, compared to the ex-
pected optimal cost for these sequences. This is a spe-
cial case of the diffuse adversary of [29], and has been
recently studied in the context of several scheduling
problems (see, e.g., [39, 33]). Also, note the syntac-
tic/philosophical similarity to the Max/Max objective
of [5].)

1.1 Our Results We show this result for the stochas-
tic online Steiner tree problem:

Theorem 1.1. (Steiner Tree RoE) There is an on-
line algorithm A that takes as input a graph G = (V,E)
and probabilities {πv}v∈V so that if at each time step
the input vertex is v with probability πv (i.e., the input
consists of i.i.d. draws from π), then RoE(A) = O(1).

These algorithms are related to work done on the may-
becast problem, and work in offline stochastic problems.
As for those cases, we extend the Steiner tree result to
other problems as well.

Theorem 1.2. (Extending to Other Problems)
There are online algorithms for Steiner Forest, Facility
Location and Vertex Cover with RoE = O(1).

1In the following, we use “requests,” “demands,” and “clients”
interchangeably.

We show that some access to the distribution, and also
the independence is necessary: if the input consists of
i.i.d. draws from a fixed but unknown distribution, or
if the draws are not independent but drawn from some
given Markov chain, then there is an Ω( log n

log log n ) lower
bound for Steiner tree.

We also give initial results in the model where we
are given the input length k and distribution π (given
only as a black-box), and we want to minimize the
expected ratio EoR(A) = Eω∈πk [A(ω)/OPT(ω)].

Theorem 1.3. There is an EoR = O(log log n)-
algorithm for the Steiner tree problem in the above
model.

This result, which appears in Section 5, uses fairly
different techniques from the results above: it is an
interesting question to extend this result to match those
in the RoE setting. Finally, we show how to get results
for the so-called Universal TSP problem, where we have
to give a single permutation τ such that if vertices arrive
independently of each other (each with probability pv),
then the expected length of the tour induced by τ on
this random set is O(1) times the expected length of the
optimal tour.

1.2 Related Work For books and surveys on online
algorithms, see, e.g., [6, 13, 1, 2], and the many refer-
ences therein. There have been many prior attempts
to relax the notion of competitive analysis: e.g., us-
ing access graphs and working sets [7, 11, 12, 23, 4]
or Markov distributions [27] to capture locality of ref-
erence in paging-type problems, comparative analysis
to compare against the best algorithm in some given
class [29], resource augmentation to level the playing
field by giving the online algorithm more power than
the offline one [24, 34, 43], or the idea of statistical ad-
versaries [35, 9] (where the online sequences have cer-
tain statistical properties) or diffuse adversaries [29, 44]
(where the sequences are generated from a small set of
distributions known to the algorithm). In most of these
cases, it was easy to handle the case when each request
is an i.i.d. sample from a given distribution, and the
challenge was to obtain a happy median between this
simple case and the unbounded adversary. In this pa-
per, we consider problems which are interesting even
with i.i.d. draws from a fixed distribution. A different
approach was the Max/Max objective of Ben-David and
Borodin [5], which has similarities to our RoE objective.

While stochastic optimization problems have a long
history in the operations research community, they have
been studied in the algorithms community only for
a few years; see, e.g., [21, 36, 19, 40]. The setting
sounds similar to the online case: the input is gradually



revealed over k stages, and partial decisions are made
as time goes on—however, the goal is to have a feasible
solution at the end and only the rising costs force us
to make decisions early in the game, whereas in the
online case we need a feasible solution after every prefix
but do not have to worry about the costs increasing.
Also, while the offline work sought to enlarge the scope
of inputs—instead of one input, we wanted to handle
a class of inputs “on the average”—whereas this work
on stochastic online algorithms seeks to to restrict the
power of the adversary: instead of having the adversary
hand-pick the demands in the input stream, we now
posit that these are drawn at random.

Some of these lines of work are especially close to
ours: Karger and Minkoff [25] (see also [16]) give an
O(1) approximation for the maybecast problem: given
a graph and probabilities pv for each vertex, one needs
to fix a path Pv for each vertex v of the graph to the
root, such that if each vertex is added to a set S with
probability pv (independently of all other vertices), the
cost ES [c(∪v∈SPv)] is minimized. A minor difference
between our problem and theirs is that vertices arrive
independently in their case and it is a one-shot problem,
whereas we sample a single random vertex each time,
and the process goes on for some unknown number
of rounds. Another difference is that they seek an
approximation algorithm and hence compare to the
optimal expected value achievable by a union of paths
fixed before the random set S is chosen, whereas we
need to compare our solution to the best Steiner tree
on S ∪ {root} itself. (These two quantities turn out to
be the close, which is part of what we have to prove.)

The papers of Meyerson [31] (for facility location)
and Meyerson, Munagala and Plotkin [32] (for the
access network design problem) consider the “random-
permutation model”. Here the adversary picks a set S
of demand points (kept secret from the algorithm); the
points in S are then presented to the online algorithm
in random order. In these papers, the competitive ratio
is O(log n) in the purely adversarial case, but with the
random permutation the expected cost of the algorithm
becomes O(1) × OPT(S). These results are quite
strong, since in a loose sense, the adversary is choosing
the distribution πS which is uniformly spread over its
support S, and their algorithms gets their performance
guarantee without access to this distribution. However,
this generality of the definition is also its shortcoming:
in the full version of the paper, we give an Ω( log n

log log n )
lower bound for Steiner tree in this model.

Finally, some recent work in online scheduling and
paging tries to extend work in the RoE model to
the “expected-ratio” model EoR (from Section 5)—see,
e.g., [39, 42, 33].

2 Online Steiner Tree

In this section we develop algorithms that are competi-
tive under the ratio-of-expectations (RoE) measure (1.2)
for the the online Steiner tree problem. We show that
while the standard greedy online algorithm performs
badly in the stochastic setting, we can devise algorithms
that obtain RoE = O(1) for the problem. In the next
section, we extend these ideas to general subadditive
problems that admit certain kinds of “good” algorithms.

As a warm-up to illustrate the concepts we will use,
we consider the Steiner tree problem; our results would
be applicable to a much wider variety of problems.
In the online Steiner tree problem, we are given a
graph G = (V,E) with and a root vertex r and edge
costs/lengths c : E → R≥0; w.l.o.g., we assume that
the edge costs satisfy the triangle inequality. The input
clients U are the vertices V of the graph, and hence the
adversary provides a sequence of vertices (possibly with
repetitions) v1, v2, . . . from V . At each point in time t,
the online algorithm must maintain a subgraph St which
connects the root r and all vertices {v1, . . . , vt} seen so
far in the input sequence; note that the decisions of the
online algorithm are irrevocable, and hence St ⊆ St+1.

2.1 Online Steiner: Known Sequence Length
We first suppose we know the length k of the input
sequence: .

A1. Choose a set of vertices D by drawing from the
distribution π independently k times.

A2. Construct a ρ-approximate Steiner tree TM over
the set D ∪ {r}, and set S0 = TM .

A3. When the actual input sequence of k vertices ar-
rives, run the greedy algorithm on this sequence—
namely, connect the tth input vertex vt to the clos-
est vertex in the subtree St−1.

The algorithm is very similar to those used for
offline two-stage stochastic problems. Although the
proofs from the offline stochastic case cannot be used
here directly, since here we have to build the tree in
an online fashion as the vertices arrive, we can give the
following guarantee:

Theorem 2.1. (Steiner Tree for Fixed k) The
ratio-of-expectations of the above algorithm is (2 + ρ).

Proof. Let D be the sequence of k “dummy” requests in
the anticipatory solution, and let R be the set of k “real”
requests arriving online: recall that both are identically
distributed. Note also that in the Steiner tree problem,
repetitions are irrelevant, and hence we can associate



both D and R with the set of vertices contained in these
sequences. It is clear that the cost of the optimal Steiner
tree on D has expected cost E[OPT(R)], and hence the
cost of the anticipatory solution is at most ρE[OPT (R)].

Now, to consider the cost of connections added in
Step A3: since we run the greedy algorithm, if the ith

vertex of R is some node v, then the cost incurred is
upper bounded by d(v,D ∪ {r}), the distance from v
to the nearest vertex in D ∪ {r}. Since each node is
an i.i.d. sample from π, by linearity of expectations,
the expected cost of the real solution is at most k ×
Ev∈π,D∈πk [d(v,D ∪ {r})].

In turn, this expected cost does not decrease if we
were to take a smaller set D′ ∈ πk−1 of k − 1 samples.
Finally, the expression Ev∈π,D′∈πk−1 [d(v,D′ ∪ {r})] is
upper bounded by the expression ED′′∈πk [ 1

k ·MST (D′′∪
{r})]. To see this, we can imagine picking D′ and v by
picking a set D′′ of k samples, and randomly choosing
one of them to be the vertex v; moreover, for each vertex
in the MST, we “assign” it its parent edge, and note
that the distance to its closest vertex is bounded by
the length of this edge. Hence the cost of the greedy
connections is at most

k ×Ev∈π,D∈πk [d(v,D)] ≤ k ×Ev∈π,D′∈πk−1 [d(v,D′)]

≤ k ×ED′′∈πk [ 1
k ·MST (D′′)] = ED∈πk [MST (D)].

And hence the cost of the greedy connections is at most
the cost of the MST on the anticipatory set. Since the
MST is a 2-approximation to the Steiner tree, this is at
most twice the optimum cost, and we get the (2 + ρ)-
approximation, as claimed.

As in earlier proofs of this form [18, 19], we can optimize
the number of samples taken in Step A1 depending
on the approximation guarantee ρ; however, we skip
these minor optimizations in the interests of clarity.
Moreover, since we are in the online setting, we could
conceivably compute the optimal Steiner tree to get
ρ = 1.

Lazy Version: We can change the algorithm so that
the edges of TM are bought only when they are needed
for the actual demands: in that case the algorithm
is very similar to that of [25]. ( Section 1.2 gives a
detailed comparison of that work and ours: the main
difference is that while we compare the cost of the
tree built to ER[OPT(R)], the proof in [25] compares
it to the best performance achievable by a set of fixed
paths.) Also, if we use a light approximate-shortest-
path tree (LAST) [28] in this lazy version, we can ensure
that no single demand vertex has to use a path that is
much longer than his shortest path to the currently-
built network. Details of these extensions will be in the
final version.

2.2 Online Steiner: Unknown Sequence Length
In this section, we show how to remove the assump-
tion that we know the number of points in the input
sequence. The first idea one might try is to “guess-and-
verify”: guess that the number of points in the input
sequence, and if that is incorrect, double the guess and
try again. This turns out to be a bad idea (with our
standard example of the line being a counterexample).
So instead of “scaling” on the input length, we scale on
the cost of the anticipatory solution we build—each time
we build an anticipatory solution costing about twice as
much as before, and wait until we see as many vertices
as in that solution. If we allow ourselves to perform
non-polynomial computations, doing this is quite easy:
but in the following we will show how to achieve this
with polynomial amounts of computaiton.

For the following, let us define Z` = Eω∈π` [OPT(ω)]
to be the cost of the optimal Steiner tree on a random
sequence ω of ` i.i.d. draws from the distribution π.
Sub-additivity immediately implies that for any c ≥ 1,
Zc` ≤ cZ`. For clarity of argument, we distinguish
between sequences ω, the multiset of vertices in it
(denoted by Mset[ω]), and the set of distinct vertices
contained in it (denoted by Set[ω]).

Using arguments used in Theorem 2.1, we know that
it is enough to buy a tree on some “dummy” set D at
the beginning (such that r ∈ D), and then connect each
of the real clients in Set[ω] to its closest point in this
tree. In fact, the theorem implies that

Z ′
` = min

D`∈(V
` )

r∈D`

(c(MST (D`)) + Eω∈π` [
∑

x∈Set[ω]

d(x,D`)])
(2.3)

is at least Z` (since it is the cost of a tree that connects
` random points), and at most 4Z` (by Theorem 2.1).
Moreover, if we have a sequence length ` in mind, while
one can imagine complicated online algorithms that buy
edges at various points of time—the analysis shows that
it is enough to choose from one of 2n−1 distinct policies,
each defined by the set D` ⊆ V such that r ∈ D`.

Lemma 2.1. Given a length `, the graph G = (V,E),
and black-box access to the distribution π, there is an
algorithm that runs in time `×poly(n, ε−1, log δ−1), and
with probability 1−δ outputs a set D̂` which contains the
root r, and which is an 2.92 + ε-approximate minimizer
of (2.3).

Proof. To find a minimizer of (2.3), instead of choosing
the input string from the distribution π`, sample N
sequences ω1, ω2, . . . , ωN from π` (for a value of N to
be fixed later), and consider the set D that c-minimizes



the “sample average”

min
D∈(V

` )

(
c(MST (D)) +

1
N

N∑
i=1

[ ∑
x∈Set[ωi]

d(x,D)
])

.

(2.4)

First, we claim we can find a solution D that approx-
imately minimizes (2.4): note that we merely have an
instance of the so-called single-source rent-or-buy prob-
lem. For this problem, we have a deterministic 2.92-
approximation [10].

Secondly, we want to claim that this minimizer
for (2.4) is also a minimizer of (2.3) with high prob-
ability. This is not true in general, but if we repeat the
above sampling process τ = ε−1 log δ−1 times and take
the minimizer that results in the lowest value of (2.4)
among these τ runs, we can use a “sample average” the-
orem of Charikar et al. [8, Theorem 2] to argue that for
a suitable value of N , this minimizer will also be an
2.92 + ε-minimizer of the expression (2.3) with proba-
bility 1−δ. Let us call this set D̂`. (Note that we do not
claim that the values of the expressions (2.3) and (2.4)
are close for this set, just that this approximate mini-
mizer for the latter is also one for the former.)

It remains to figure out a suitable value of N : in
our case, there are 2n−1 possible choices for D. Also,
for each choice D, we want the difference in the objec-
tive function value (2.3) between picking D and pick-
ing the empty set ∅ to be at most λ × c(MST (D));
in this case it is clear that this value λ ≤ min{`, n}.
Plugging these values into [8, Theorem 2], it suffices
to choose N to be Θ(ε−4λ2τ log(2n−1) log δ−1, which is
poly(n, ε−1, log δ−1). Hence, if we can sample each se-
quence in time T (`), we can find a 2.92 + ε-minimizer
for (2.3) in time T (`)× poly(n, ε−1, log δ−1) with prob-
ability at least 1− δ. Since T (`) ≤ `, the claim follows:
in the full version of the paper, we show how to reduce
the time to get one sample from `-length strings of a
product distribution.

Lemma 2.2. Given a length `, the graph G = (V,E)
and probabilities πv of each vertex arriving, there is a
poly(n, `, log δ−1)-time algorithm that outputs an esti-
mate Ẑ` ∈ [1, 11.68 + 4ε]× Z` with probability 1− δ.

Proof. To obtain a 11.68 + 4ε-approximation to Z`, it
enough to find a 2.92 + ε-approximate minimizer D̂`

for the expression Z ′
` in (2.3), and this is done in

Lemma 2.1. Now, it remains to calculate the value
of (2.3) for this set D̂`: this can be easily done given
that we know the probabilities πv and can calculate
the probability pv = 1 − (1 − πv)` that v appears
in a sequence of length `, and then use linearity of

B1. Set i = 0 and S0 = ∅. We process the input clients
{v1, v2, . . .} one by one.

B2. Let vk be the k-th client and let Sk := Sk−1.

B3. If k > ti then goto Step B5

B4. Connect the k-th input vertex vk greedily to the
closest vertex in the tree Sk.

B5. Set i← i + 1.

B6. Construct a ρ-approximate Steiner tree Tti over the
set D̂ti . Set Sk := Sk ∪ Tti . Goto Step B4.

Figure 1: Algorithm for Unknown Sequence Lengths

expectation. (Note that this is the first time we used
the actual values πv.) This is our estimate Ẑ`.

In order to compute the estimate Ẑ`, when it is
needed, we use the above lemma with δ = 1

(`+1)` log n .
Note, that

∑∞
`=1

1
`(`+1) log n = 1

log n . Hence, we get:

Fact 2.1. For the setting δ−1 = (` + 1)` log n, all
estimates Ẑ` are correct with probability 1− 1/ log n.

Now we define t0 = 0, t1 = 1, and ti to be the
smallest value ` such that Ẑ` ≥ 2i · Ẑ1. The following
fact also uses subadditivity:

Fact 2.2. c(MST (D̂ti)) ≤ Ẑti ≤ Ẑ1 + 2iẐ1 ≤ Ẑ1 +
2Ẑti−1 ≤ 3Ẑti−1 .

We run the algorithm from Figure 1 in parallel with the
standard greedy algorithm 2: The following theorem is
almost immediate from the discussion above.

Theorem 2.2. (Steiner Tree for Unknown k)
Suppose the final length of the input sequence is k: the
expected total cost incurred by the above algorithm is
O(1)× Z`.

Proof. When all estimates Ẑ` fall into the ε bound we
can bound the cost of the algorithm in the following way.
Let the final length k ∈ (ti∗−1, ti∗ ]. For any j ≤ i∗,
the expected cost for the input elements at positions
(tj−1, tj ] is at most Ẑtj —note that here we account
for both the anticipatory network built in Step B6,

2By “run both algorithms in parallel”, we mean that we run
the two algorithms as independent instances feeding the input
stream to both instances, but pausing the more expensive run
when the cheaper one has finished serving all the requests seen
thus far. This standard trick ensures that we never pay more than
2× the cost of the greedy algorithm in the worst case: as we see,
we do much better on average.



as well as the connection costs incurred in Step B4.
Summing this over all the relevant values of j, the
total cost is at most 2 Ẑti∗ ≤ 2 · 3 · Ẑti∗−1 ≤ 6Ẑ` ≤
(70.08 + ε) × Z`. However, with probability at most
1/ log n (see Fact 2.1) we fail to compute the estimates
Ẑ`, we pay O(log n) times the optimum cost (since
we are running in parallel with the greedy algorithm).
Since for each input sequence we pay O(log n) times
more with probability at most 1

log n , this contributes
only O(OPT) more to the cost, and completes the proof
of the theorem.

3 Extending to Sub-additive Problems

In this section, we show how to extend the results in
the Steiner tree case to a general subadditive problem
Π. Let U denote a universe of clients (these make
up the input sequence) and E a set of elements used
to define a solution. For a subset of clients U ′ ⊆ U ,
define Sols(U ′) ⊆ 2E as the set of all possible solutions
of U ′. The cost of a solution F ⊆ E is given by
c(F ) =

∑
e∈E c(e) where c(e) is the cost of element

e ∈ E. Let OPT(U ′) ∈ Sols(U ′) be the solution of
minimum cost.

We assume the presence of two algorithms associ-
ated with the problem Π:

• The first algorithm, A, takes a set of clients U ′ ⊆ U
and outputs a solution A(U ′) ∈ Sols(U ′), which is
an α-approximation to OPT(U ′).

• The second is the augmentation algorithm B, which
takes a solution E′ ∈ Sols(E′), and an input client
x ∈ U , and outputs B(E′, x) ⊆ E such that
E′ ∪ B(E′, x) ∈ Sols(U ′ ∪ {x}).
The augmentation procedure is monotone if for
any “extra” elements E′′ ⊆ E, c(B(E′ ∪ E′′, x)) ≤
c(B(E′, x)). I.e., adding extra elements in the ini-
tial solution does not increase the cost of augmen-
tation.

We will also assume the presence of a cost-sharing
scheme ξ(U ′, x) which assigns a cost share to each x ∈ U
such that ξ(U ′, x) = 0 for x 6∈ U ′, and the fairness
property: ∑

x∈U ′ ξ(U ′, x) ≤ c(OPT(U ′)).(3.5)

The main property of interest for the cost-sharing
scheme will be the strictness with respect to (A,B):

• Given a set U ′ ⊆ U and client x ∈ U ,

c(B(A(U ′), x)) ≤ β · ξ(U ′ ∪ {x}, x),(3.6)

i.e., the cost c(B(A(U ′), x)) of taking the solution
on U ′ and augmenting it to serve yet another client

x is not much more than the cost share of e in the
client set U ′ ∪ {e}.

3.1 Subadditive Problems: Known Sequence
Lengths The general algorithm (given in Figure 2)
stays essentially the same: let the clients arriving online
be x1, x2, . . ., let Rt denote the prefix {x1, x2, . . . , xt},
and R = Rk be the final sequence.

C1. Choose a set of vertices D by drawing from the
distribution π independently k times.

C2. Compute and buy S0 = A(D).

C3. When the clients in the input sequence arrive online
(with xt being the tth request)—set St = St−1 ∪
B(St−1, xt) ∈ Sols(D ∪Rt).

Figure 2: Algorithm for Subadditive Problems

Theorem 3.1. Given an α-approximation algorithm
A, a monotone augmentation procedure B, if there exist
β-strict cost-shares ξ (w.r.t. (A,B)), then the above
online algorithm is an (α + β)-approximation algorithm
for the subadditive problem Π.

The proof of the above theorem is deferred to the
full version of the paper, as is the proof of the following
theorem which essentially follows from previous results
on strict cost-shares in [17, 19, 14].

Lemma 3.1. (Applying General Framework)
For the following problems, there exists an α-offline
approximation algorithm A, a monotone augmentation
procedure B, anda cost-sharing mechanism ξ that is
β-strict with respect to (A,B):
• For Uncap. Facility Location (UFL) problem, α =
3 and β = 3;
• For Steiner Forest, α = 2, and β = 3.
• For Vertex Cover, α = β = 3. (For t-hypergraph
vertex cover, α = β = t + 1.)

3.2 Subadditive Problems: Unknown Sequence
Lengths Just as in Section 2.2, we can extend algo-
rithms tailored for a fixed value of the sequence length
to general cases where we do not know the sequence
length in advance. The ideas are similar to those for
Steiner tree: the only problem-dependent facts that we
need to show are the following.

• The number of samples N we need depends on
log M , where M is the number of different antic-
ipatory solutions possible. Note that for Facility
Location and Vertex Cover, say, M ≤ 2n, since



each anticipatory solution is merely a set of nodes;
hence this gives us a polynomial dependence.

• The problem should not be too sensitive. In
particular, for every choice of the anticipatory
solution D, the change in cost between running
the augmenting algorithm B after building D and
running B starting with the empty anticipatory
solution, should be at most λ× cost of building D.
The number of samples N required depends on
poly(λ). For Facility Location and Vertex Cover,
we can bound λ by n.

• We should be able to define and solve a “rent-or-
buy” versions of the problem Π. Again, for Facility
Location and Vertex Cover, this can be done by
modifying the current LP rounding solutions. The
details appear in the full version.

Of course, we need all these facts only if we want the
running time of the online algorithm to be polynomial:
if we are allowed to perform unbounded computation (as
is sometimes allowed in the design of online algorithms,
when we are only interested in the price of the lack of
foresight), moving to unknown sequence lengths is easy.

4 Lower Bounds

One may ask whether our assumptions are too restric-
tive: suppose we did not insist that the requests were
independent of the past history, or if the draws were
from some fixed but unknown distribution—could our
results be proved in such models? We answer this in
the negative: not only do our results make use of these
features, they are necessary to get O(log1−ε n)-type re-
sults. Here is a summary of results, the details for which
will be included in the full version of the paper. All the
following results also hold in the RoE model from the
following section.

• Consider a model where the (random) demand
point vt at time t is dependent only on vt−1, the
demand point at time t−1. In other words, given a
probability distribution π(v) for each vertex v ∈ V ,
the tth demand point is drawn from the distribution
π(vt−1).

For such models, we show a Ω( log n
log log n ) lower bound

on the performance of any online algorithm for
the Steiner Tree problem, and the Uncapacitated
Facility Location problem. These results almost
follow easily from known lower bounds for the two
problems [15, 3].

• Another natural question to ask is whether the al-
gorithm really needs (black-box) access to the dis-
tribution π: suppose there exists some distribution

from which the clients are being drawn indepen-
dently at each step, but we do not allow the al-
gorithm to sample from this distribution. For the
Steiner tree, there is an Ω(log n) lower bound in
this model.

• Finally, a stochastic model that has seen success
is the “random permutation” model: here the
adversary chooses a set S of clients which is initially
not known to the algorithm. The clients in S are
then presented to the algorithm in a random order.
In this model, O(1)-competitive ratios were shown
for facility location and the access-network design
problem [31, 32]. Here we show an Ω(log n) lower
bound for Steiner tree.

5 Expectation of Ratios: Online Steiner Tree

An objective function that is often more challenging to
work with is the expected ratio (EoR)

EoR(ALG) = maxπ maxk Eω∈πk

[
Er[A(ω,r)]

OPT(ω)

]
.(5.7)

Note that the outer expectation is over the random
choice of inputs, and the inner one is over the random
coins r of the online algorithm.

Loosely, it turns out ot be somewhat more difficult,
since we have to compare the expected ratio of the cost
of the built solution to the cost of the optimal one on
the same set of clients. The analysis techniques from
the RoE case do not seem to extend to this case; for
RoE, we were counting on the fact that if we suffer a
large cost on an instance, the optimum also suffers a
large cost on some instance. Clearly such analyses are
not enough to prove results for EoR. In this paper, we
show that when the sequence length k is known to the
algorithm, we can get substantial improvements over
previous results; it remains an open question to extend
this to cases where the sequence length is not known
in advance. You should note that the bounds on EoR
might be not comparable to the bounds on RoE .

The main difference in our algorithm is that instead
of generating one “dummy” set D, we generate L such
sets and choose the best of them (for L to be specified
later). The algorithm given in Figure 3 is again run
in parallel with the greedy solution, to ensure that the
worst-case competitive ratio is still O(log n).

Let us denote by ω the sequence given to the
algorithm as input, and R = Mset[ω] the corresponding
multiset. The following lemma is immediate from
symmetry.

Lemma 5.1. With probability at least 1− 1
L+1 , the cost

of least expensive tree Ti∗ is no more than ρOPT(R).



D1. Sample L different k element multisets D1, . . . , DL

from the distribution π.

D2. For each i, find ρ-approximate Steiner tree Ti on
the set Di ∪ {r}, but do not buy these edges.

D3. Choose i∗ such that the cost of Ti∗ is the least, and
buy these edges: i.e., set S0 = Ti∗ .

D4. Connect the k input vertices greedily: connect the
tth input vertex vt to the closest node in the tree
St−1 to get the tree St.

Figure 3: Algorithm for EoR Steiner Tree

Now we prove that the cost of connecting the real
vertices R to the tree Ti is small as well. First, we
need the following technical lemma that each vertex of
the graph sees at most O(log nL) real vertices from R
closer to it than the closest dummy vertex from any one
of the L sets Di. Formally, given a parameter ` ∈ Z,
for a vertex v ∈ V and each index i ∈ {1, . . . , L}, let
N `

i,v be the (random) multiset of ` nearest vertices to v
(excluding v) in Zi = R ∪ Di. (Proof will be included
in the full version of the paper).

Lemma 5.2. Let ` = d3 log nLe. Then for all i ∈
{1, . . . , L} and for all v ∈ V ,

P[N `
i,v ⊆ R] ≤ Ln

2`
≤ 1

n2
,

where the probability is taken over the choices of R and
Di. In other words, with probability at least 1− 1

n2 , all
the sets N `

i,v contain at least one vertex from Di.

Hence, with probability at least 1 − n−2, every
vertex v has a vertex from the anticipatory set Di∗ that
is no further than its `th-closest vertex in the actual
demand set R. Having this fact at hand, we are ready
to prove the following.

Lemma 5.3. The total cost of connecting the demand
vertices in R incurred in Step D4 is O(OPT(R) ·
log log(nL)) with probability at least 1− 1

n2 .

Proof. Let us take the multiset R, and let us denote by
TR the optimal Steiner tree on it. Take the tree TR,
build an Eulerian tour, and short-cut to get the tour
TR = 〈v1, . . . , vk, v1〉. Note that the cost of the tour
is at most 2OPT(R). Divide TR into contiguous ` =
d3 log ke-element “segments” Tj = 〈vj`, . . . , v(j+1)`〉, for
each index j ∈ {1, . . . , k

` }: note that the length of these
pieces adds up to the length of TR, which is at most
2OPT(R).

Now consider the run of the above algorithm on the
demand set R. For every fixed j ∈ {1, . . . , k

` } consider
the first vertex wj in the segment Tj that is given to the
algorithm (and suppose this arrives at time t). Applying
the trivial union bound to Lemma 5.2 gives us that with
probability at least 1 − 1

n2 , the set N `
i∗,wj

around wj

contains a vertex from Di∗ . This in turn implies that the
distance from this first node wj ∈ Tj to the anticipatory
set Di∗ is no more than the length of Tj , since by the
construction of the segments the node wj sees at least
` nodes within distance equal to the length of Pj . (In
fact, in the worst case this set N `

i,wj
of ` nearest nodes

to wj contains just the vertices of Pj .)
Since we initialized S0 = Ti∗ to be the tree on

this set Di∗ , the distance from wj to the current set
St−1 is d(wj , St−1) ≤ d(wj , S0) ≤ d(wj , Di∗), which
by the preceding argument is no larger than the cost
of Tj . Now the cost of connecting the other vertices
in R lying in the segment Tj is no higher than the
cost of the greedy algorithm run solely on the nodes
from the segment Tj . Since the competitive ratio of
the online Steiner tree is logarithmic in the number of
input nodes, and we are looking at ` = O(log nL) input
nodes from the segment Tj , the cost we incur is at most
O(Cost(Tj) · log `) = O(Cost(Tj) · log log nL). Summing
up over all the segments j ∈ {1, . . . , k

` } we get the total
cost of connecting R to the anticipatory solution S0 is
at most O(OPT(R) · log log nL) with probability at least
1− 1

n2 .

Now we are ready to prove that the above algorithm
has a good expected competitive ratio for the case when
the sequence length k is known.

Theorem 5.1. Setting L = O(log n), the expected com-
petitive ratio of the above algorithm is O(log log n).

Proof. Suppose either of Lemma 5.1 or Lemma 5.3 fails:
this happens with probability at most 1

L+1 + L
n2 ≤ 2

log n .
In this failure case, we use the fact that we ran our
algorithm in parallel with the greedy online Steiner tree
algorithm, which is O(log k) = O(log n) competitive.
Hence, the contribution of these two bad cases to the
EoR is only a constant.

If neither of the two lemmas fail, we see that
the cost of the antipatory solution on Di is at most
ρST OPT(R) by Lemma 5.1; the cost of connecting
the actual demand set R having built the anticipatory
solution is O(OPT(R) · log log n) by Lemma 5.3. Hence
the expected ratio is O(log log n).

6 Stochastic Universal TSP

Using the techniques from the previous sections, we can
obtain results for the average case of the Universal TSP



problem. To define this problem, for a set R and a
permutation τ , define τ |R to be the length of the tour
induced by τ on R: i.e., start from any vertex in R,
and keep visiting vertices in R in the order prescribed
by τ until you hit the start vertex; we let c(τ |R) be
the length of the tour. In the classical Universal TSP
problem, given a metric space (V, d), we are asked for a
permutation τ such that maxR⊆V

c(τ |R)
c(TSP (D)) is as small

as possible.
In the stochastic variant we study here, we are given

a probability pv of node v ∈ V arriving (independent of
the other nodes) and needing service from the salesper-
son.3 The measure of goodness is:

RoETSP (τ) =
ER[Cost(τ |R)]

ER[Cost(TSP (R))]
,

We can obtain the following result using techniques from
the previous sections:

Theorem 6.1. (Universal TSP Result) Given a
metric space with n points, and probabilities pv for
each vertex v independently demanding service. If the
expected number of demands

∑
v pv = Ω(1), there exists

a permutation τ1 such that RoETSP (τ1) = O(1).

For lack of space, the proof of the theorem is deferred
to the full version of the paper. The above theorem
has been independently proved by Shmoys and Talwar
(unpublished manuscript).
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