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1 IntroductionThe study of �nite metric spaces has been the focus of much attention in recentyears due both to its mathematical and to its computational signi�cance. Perhapsthe most widely studied class of questions has been that of embeddability of a �nitemetric space into some target space with the aim of preserving the distances betweenpoints in the metric. Often the distances cannot be preserved exactly, and then weaim to keep the distance between any pair of vertices close to its original value: thedistortion of an embedding is the maximum factor by which any distance is changedby the embedding. (For precise de�nitions of this and other notions, see section 2.)Not only do these questions help better understand the structure of both the hostand the target metrics, but they also have numerous computational applications(e.g., see [8] and the references therein).Among the most important target metric spaces are the so-called Minkowski `pspaces, i.e., d-dimensional real space Rd equipped with one of the `p norms, kxkp =(Pi xpi )1=p. We shall refer to such spaces as `dp. (Thus, for example, `d2 is juststandard d-dimensional Euclidean space.) The topic of embedding tree metricsinto Minkowski spaces has been studied by many authors. Bourgain [2] showedthat every embedding of the complete binary tree with n vertices into `p mustincur a distortion of 
((log logn)minf1=2;1=pg) for any 1 < p < 1. (Note thatany tree has an isometric embedding into `1, and it is also well known that anymetric space is isometrically embeddable into `1). Subsequently, Matou�sek exhib-ited an O((log logL)minf1=2;1=pg)-distortion embedding for arbitrary trees T with Lleaves [11], showing that the bound is actually tight. A slightly weaker distortion ofO(log logL) for embedding into `2 was obtained independently by Linial et al. [9].Unfortunately, these techniques typically do not allow the dimension d of the targetspace to be restricted, and in general, they require L dimensions. Embedding into alower dimensional space could cause the distortion of the embedding to increase, andwe would like a good tradeo� between dimension and distortion. The question oftrading dimensions for distortion has also been previously studied. Johnson andLindenstrauss [7] showed that one can project any n-point Euclidean metric inan arbitrary number of dimensions down to a O(log n) dimensional space whileincurring only a constant distortion, which immediately implies that any tree canbe embedded in O(log n) dimensions with O(plog logn) distortion. Their techniqueis to project the high-dimensional embedding onto a random O(log n)-dimensionalsubspace and show that, with high probability, the distortion is not more than aconstant. This procedure was analyzed for general d by Matou�sek [10], who showedthat the distortion incurred by this projection is at most O(n2=d(log n)1=2=pd). Healso proved that this result is almost optimal by exhibiting metrics which require adistortion O(n2=d) to embed into d-dimensions.However, no upper bound better than ~O(n2=d) is known for the distortion incurredby the projection technique in the special case of trees, and the best lower boundknown for tree metrics is only O(n1=d). Hence a natural question is whether better1



embeddings can be obtained for trees into `d2 [11]. In this paper, we present a newupper bound for the distortion that is very close to the 
(n1=d) lower bound. Ourmain result is the following:Theorem 1.1 Given any tree T with L leaves, there exists a mapping f : V (T )! `d2with distortion D(f) � O(L1=(d�1)(minflogL; dg)1=2): (1)In fact, the logL term in equation (1) can be replaced by �(T ), the caterpillardimension of T (de�ned in section 2). Since �(T ) � logL, this replacement gives (asin [11, 9]) not only a more adaptive bound, but also an embedding for in�nite treeswith �nite caterpillar dimension. However, we note that our embedding techniqueis not tight for O(logn) dimensions, where it incurs a distortion of O(plogL), whilethe optimal embedding of [11] incurs only O(plog logL) distortion.The idea behind our embedding is simple. Our starting point is the na��ve embeddingscheme for trees, in which we use a new dimension orthogonal to all previous onesfor each new edge [11, 9]. However, this requires L orthogonal vectors, and cannotbe used when the dimension d� L, since we can have only d orthogonal vectors inRd . To circumvent this problem, we relax the orthogonality constraint and �nd Lvectors that have a small inner product with each other. We then use these vectorsin place of the orthogonal vectors used in the na��ve embedding of the tree, andshow that the price we pay for the non-orthogonality of the vectors is a factor of~O(L1=(d�1)) in the distortion.The rest of the paper is organized as follows. In section 2, we give some de�nitionsand review some elementary geometry which we shall use later. In section 3 we givethe actual embedding, which we analyze in section 4. Finally, we show that thelower bound is tight for the special case of star graphs by giving a matching upperbound in section 5. Appendix A gives some more details about the construction ofthe well-separated vectors, and a simple example is given in Appendix B.2 De�nitions and notationTrees and Metric Spaces: Let T = (V;E) be an undirected weighted tree withjV j = n and jEj = (n � 1). We use L to denote the number of leaves and �(T )to denote the weak diameter of T . Recall that the weak diameter just counts thenumber of edges on a path, and does not take into account their lengths. The weight(or length) function is w : E ! R+ . We root T at an arbitrary vertex r 2 V , whichde�nes the usual ancestor-descendant relationship between pairs of vertices. Thesubtree rooted at v, Tv , is the subtree induced by the vertices which are descendentsof v (including v itself). A monotone path P is a path which is a subset of someleaf-root path P 0. 2



The caterpillar dimension [11, 9] of a rooted tree T , henceforth denoted by �(T ), isde�ned thus: For a tree with a single vertex, �(T ) = 0. Else, �(T ) is the maximalvalue � k + 1 if there exist paths P1; P2; : : : ; Pt beginning at the root and pairwiseedge-disjoint such that each component Tj of T �E(P1)�E(P2)� : : :�E(Pt) has�(Tj) � k, where T �E(P1)�E(P2)� : : :�E(Pt) denotes the tree T with the edgesof the Pi's removed, and the components Tj are rooted at the unique vertex lyingon some Pi. The collection of edge-disjoint monotone paths in the above recursivede�nition form a partition of E, and are called the caterpillar decomposition of T .It is simple to see that the path between any two vertices of T intersects at most2�(T ) of these paths. It can also be shown that �(T ) is at most logL, and is oftenmuch smaller. For example, the caterpillar graph has �(T ) = 2, even though it has
(n) leaves. A decomposition with the minimum value of �(T ) can be computed inpolynomial time by dynamic programming (see, e.g., [11]).Embeddings and Distortion: Let M = (X; �) and M 0 = (Y; �) be two metricspaces, and let f : X ! Y be a map. Let us de�neDc(f) = supx;y2X �(x; y)�(f(x); f(y)) and De(f) = supx;y2X �(f(x); f(y))�(x; y) :Then we say that f has contraction Dc, expansion De and distortion D(f) = Dc(f)�De(f). We say that M D-embeds into X if there exists a map f with D(f) � D.Given a tree T = (V;E) with non-negative edge weights, the distance dT (u; v)between vertices u; v 2 V is the length of the unique path in T between u and v.We shall often blur the distinction between the tree T and the metric (V; dT ) in thefollowing discussion. It is easy to see that if f is an embedding of a graph G into ametric (Y; �), the expansion is largest for edges of G.Euclidean space and spheres: Let k � kp denote the `p Minkowski norm. For thecase p = 2 we shall drop the subscript, and hence k � k denotes the Euclidean norm.Recall that kxkq � kxkp for p � q. Let the vector ~ui be the unit vector in the i-thdimension. Let Bd(r) denote the d-dimensional sphere of radius r. Its d-dimensionalvolume is Vd(r) = �d=2rd�(1+d=2) and surface area is Sd(r) = 2�d=2rd�1�(d=2) . Unless mentionedotherwise, we shall always assume that spheres are centered at the origin. Theangular distance between any two points u and v is the acute angle subtended bythem at the origin.Given a sphere S (centered at some point o), let @S denote the surface of S. Forany u; v 2 @S, the great circle through u and v is the intersection of the planede�ned by the three points u; v and o with @S. The spherical distance is the lengthof the shortest path between u and v that lies in @S. If u and v are at angulardistance Æ � �=2; their spherical distance is rÆ, while their Euclidean distance isrp2(1 � cos Æ). We will use the fact that these distances di�er by only a constant,i.e., (2=�) Æ �p2(1� cos Æ) � Æ.Spherical Codes and Well Separated Vectors: A spherical code is a set of Nunit vectors (or N points on the surface of a unit sphere), where the measure of3



goodness of the code is the least angle between any two vectors in the code (see[3] for more details). An equivalent formulation is to minimize the radius r of asphere such that N points can be placed on its surface, where any two points are atangular distance at least 2 from each other. For our application, it is crucial that thevectors of the code lie in the positive orthant. Standard packing arguments showthat we can build such a code S(N) with N vectors, where the radius of the sphereis r0(N) = 8N1=(d�1), and minimum angle between the vectors is Æ0(N) = 2=r0(N).For completeness, a proof of this fact is given in Appendix A.3 Embedding trees into d dimensionsIn this section we describe the actual embedding for trees. We �rst describe, insection 3.1, a trivial algorithm and then a twist to it (which are also discussed in[9, 11]) both of which use a large number of dimensions. We then build on theseideas using with spherical codes to get our �nal embedding in section 3.2.We will always embed the root r at the origin, i.e., f(r) = ~0, and for each edgee, we will de�ne a vector v(e) 2 Rd . The image of vertex v is then given byf(v) =Pe2P v(e), where P is the path from v to the root r.3.1 Embeddings which require many dimensionsThe �rst embedding is the na��ve embedding in which the i-th edge ei is mapped to avector of length w(ei) orthogonal to all the other vectors, i.e., v(ei) = w(ei)~ui, where~ui is the unit vector in the i-th dimension. The distortion of this embedding is easilyseen to be the maximum of Pe2P w(e)pPe2P w(e)2 over all paths P , which is bounded aboveby p�(T ). The large contraction above is due to the large number of bends onlong paths, since the contraction is proportional to the square root of the numberof bends. Using the caterpillar decomposition of section 2, we can remove thedependence of the distortion on the weak diameter. Let F = fP1; P2; : : : ; Ptg be acaterpillar decomposition of width O(�(T )), and associate ~ui, the unit vector alongthe i-th dimension, with the path Pi. To embed an edge e, set v(e) = w(e)~uj , wherePj 3 e. A simple analysis now shows that the distortion is bounded by O(p�(T )).3.2 Embedding into d dimensionsThe embeddings given above require 
(n) dimensions in the worst case, and so wecannot hope for constant dimension embeddings using (almost-)orthogonal vectors.Hence we will replace the L orthogonal vectors in the latter construction by vectorsin Rd that merely have a large angle with each other. This embedding cruciallyrelies on the fact that the vectors all lie in the positive orthant. By the discussion4



above, we know that such a set S = S(L) of vectors exists, with the angle betweenany two of the vectors being at least Æ0(L).A little thought will convince the reader that arbitrarily replacing the orthogonalvectors by those in S will not work. To handle this problem, for each vertex, wewill associate each subtree Tv with a set of vectors Sv � S, such that the numberof vectors in Sv is equal to the number of leaves in Tv. Further, we will ensurethat the cones generated by the vectors associated with two disjoint subtrees aredisjoint. (The cone generated by a set of vectors is the set of all non-negative linearcombinations of those vectors.)The embedding procedure starts at the root, and a vertex is embedded only afterits parent is embedded. As the base case, the root has the entire set S of vectorsalloted to it, and is mapped to the origin. Inductively, let us consider vertex v withchildren v1; v2; : : : ; vk. Further, let the subtree Tv have the set Sv alloted to it andlet v be embedded at position f(v). We then partition the set of vectors Sv into ksubsets Svi , such that jSvi j is equal to the number of leaves in Tvi , and further, thatthe cones of these sets are disjoint. Now, the vertex vi is mapped to the positionf(v) + wixi, where wi is the length of the edge fv; vig, and xi is some vector fromthe set Svi . The reader is urged to look at the example given in Appendix B.To partition a set of vectors Sv, we assume that the ends of the vectors are in generalposition. We now sweep a hyperplane passing through the origin until we get a setof vectors whose size is equal to the number of leaves in Tv1 . We de�ne this to bethe subset Sv1 , and continue the sweep to get the remaining subsets Svi . Note thatthis procedure ensures that the cones of the subsets generated will be disjoint fromeach other, and will also be contained in the cone of the set Sv.To get a bound on the distortion which depends on �(T ), we have to choose thesubsets more carefully. Instead of choosing the vector xi arbitrarily in the previousdescription, we choose it so that vertices lying in any given path in the caterpillardecomposition of T are embedded along a straight line. W.l.o.g., we can assumethat the vertex v1 is the child of v that belongs to the same path in the caterpillardecomposition as v. Hence it suÆces to ensure that the vector corresponding to theedge fv; v1g is the same as the vector corresponding to the edge connecting v to itsparent, and hence it must lie in the set Sv1 . This can be easily ensured by choosingthe direction of the sweeping hyperplane appropriately; the details are routine andleft to the reader.Note that using vectors which lie in the positive orthant is a natural analogue ofusing positive unit vectors in the na��ve embedding, and is crucial to the correctnessof the embedding. Also note that the procedure ensures that the angular distancebetween the images of any two unrelated vertices in the tree is at least Æ0.
5



4 Analysis of the embeddingWe now bound the distortion of the map f described in the previous section. Let� =pminfd; �(T )g, and as before, let r0 = 2=Æ0 = 8L1=(d�1).Theorem 4.1 The distortion of the embedding is at most 4�L1=(d�1)pminfd; �(T )g.Proof: Since the expansion of a map is worst for edges of the tree T and all treeedges have the correct length, the expansionDe = 1. Using claims 4.2 and 4.3 below,we get that the contraction Dc for any pair of vertices is at most (�=2)r0�. This, inturn, implies that the distortion isDe�Dc � (�=2)r0� = 4�L1=(d�1)pminfd; �(T )g,and completes the proof of the theorem.Claim 4.2 Let u be an ancestor of v in T . Thenkf(u)� f(v)k � dT (u; v)� :Proof of Claim 4.2: Let P = hu = x1; x2; : : : ; xt+1 = vi be the path with t edgesconnecting them. Furthermore, let the length of the edge ei = (xi; xi+1) be wi, whichimplies thatPi wi = dT (u; v). Let us now consider the vectors ~vi = f(xi+1)�f(xi).By our construction, k~vik is exactly wi, and the projections of ~vi on the d coordinateaxes are all positive. Let wij denote the length of the projection of ~vi on the j-thaxis (for 1 � i � t and 1 � j � d). Note that wij � 0 and Pj w2ij = w2i .We will �rst prove that kf(u) � f(v)k is lower bounded by dT (u; v)=p�(T ). Tosee this, note that having a caterpillar decomposition of width �(T ) ensures thatP cannot have more than O(�(T )) bends, since P is a monotone path. Our con-struction also ensures that the angles of the bends cannot be more than 90Æ. Itis intuitively clear that the worst contraction is achieved when all the bends areactually right angles, in which case, the Euclidean distance between f(u) and f(v)is at least dT (u; v)=p�(T ). Formally, note that the squared distance isjjf(v)� f(u)jj2 = dXj=1 tXi=1 wij!2 � dXj=1 tXi=1 w2ij = tXi=1 k~vik2� 1t  Xi k~vik!2 (Cauchy-Schwarz)= 1t  Xi wi!2 = dT (u; v)2t ;and thus kf(u)�f(v)k � dT (u; v)=pt � dT (u; v)=p�(T ). A similar analysis (whichwe omit) shows a lower bound of dT (u; v)=pd, which completes the proof. �6



Claim 4.3 Let u and v be unrelated vertices in T . Thenkf(u)� f(v)k � dT (u; v)(�=2)r0� :Proof of Claim 4.3: Let w be the least common ancestor of u and v. Let pathPu connect u to w, and the path Pv connect v to w. Note that both these pathsmonotone and edge disjoint, and that jPuj+ jPvj = dT (u; v).
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bFigure 1: Proof of Claim 4.3First, consider the simple case when both the paths Pu and Pv are embedded withoutany bends, as in �gure 1. Then kf(u)� f(v)k2 is jPuj2+ jPv j2� 2jPujjPv j cos �, andthe contraction is (1 + x)(1 + x2 � 2x cos �)1=2 ;where x = jPvj=jPuj. A simple calculation shows that this is maximized when x = 1,and the maximum value is 2=p2(1� cos �). However, the angle � � Æ0, and hencethis value is at most 2=p2(1 � cos Æ0) � �=Æ0 � (�=2)r0.To handle the general case when the paths are embedded with bends and the Eu-clidean distance between their endpoints is smaller than their lengths in the tree T ,we use the fact from Claim 4.2 that the lengths of a monotone path in the tree isno more than a factor � times longer than the Euclidean distance between its end-points. Thus the distortion for the case without bends is o� by a factor of at most �in case there are bends. Formally, if kf(u)�f(w)k = Duw and kf(v)�f(w)k = Dvw,then Duw � jPuj=� and Dvw � jPvj=�. Hence the contraction in this case is at mostjPuj+ jPv j(D2uw +D2vw � 2DuwBvw cos �)1=2 � �(Duw +Duw)(D2uw +D2vw � 2DuwBvw cos �)1=2 :Now mimicking the previous calculation shows that this contraction is at most(�=2)�r0. �5 Embedding the starIn this section, we brie
y sketch lower and upper bounds of �(L1=d) for the weightedstar graph using simple sphere-packing arguments. We then explore the projec-7



tion technique of [7, 10], and show that there is a projection of the natural high-dimensional embedding of the star onto a d-dimensional space that incurs a dis-tortion of ~O(L1=d). This begs the question: for every tree T , does there exist aprojection of its natural high-dimensional embedding into d dimensions which pre-serves distances well?In the sequel, let G = (V;E) be the star on L leaves, and let 0 denote the center ofthe star. Thus the edges in E are ei = f0; ig for all 1 � i � L. Let us denote theweight of edge ei by wi.5.1 Bounds using Sphere packingsIt is well known that any embedding of general trees into `2 must incur a distortionof 
(L1=d) (see, e.g., [11]) using a very simple volume argument. We sketch a proofof this fact (and a matching upper bound) here for completeness.Proposition 5.1 For each L > 2d, any embedding of the (unweighted) star with Lleaves into Rd incurs a distortion 
(L1=d). Further, any weighted star G = (V;E)with L leaves can be embedded into Rd with distortion O(L1=d).Proof Sketch: The graph Gk = (Vk; Ek) will be the star with k leaves, in whicheach edge has unit length. Consider any mapping f : Vk ! Rd , and w.l.o.g., letf be an expansion and let f(0) be the origin. Now balls of radius 12drawn aroundeach leaf must be disjoint. However, there are k such balls with total volume O(k),and hence one of these balls must have its center at distance 
(k1=d) away from theorigin, and hence some edge must su�er a distortion of 
(k1=d).This lower bound is, in fact, tight for arbitrarily weighted stars. Let us assumethe the edge weights are non-decreasing, i.e., w1 � w2 � : : : � wL. Further, letBi denote a ball of radius wi. We will map the vertex 0 to the origin, and thenpack the balls Bi (in increasing order of i) so that they are disjoint, and no Bi is atdistance more than Dwi from the origin, where D = cL1=d. Now the map f sendingvertex i to the center of Bi will have contraction 1, and thus a distortion of at mostD. To embed Bi, we claim that there is a point at distance 2wii1=d from the origin,which is at distance wi from the set Sj<iBj. Indeed, if there was no such point,then increasing the radius of balls Bj (for j < i) by wi would cover the sphere ofradius 2wi i1=d around the origin. However, these (i� 1) balls do not have suÆcientvolume to cover the sphere, which completes the proof.5.2 Random Projection argumentsWe can also show that if we embed the star into high dimensions, there exists ad-dimensional subspace W such that projecting the map onto W incurs a distortionof only ~O(n1=d). 8



Let us �rst embed the star G into L dimensions: map 0 to the origin, and mapthe vertex i to the point vi = w(ei)~ui, where ~ui is the unit vector in the i-thdimension. This embedding has a distortion of at most p2. Now pick d independentvectors fUqgdq=1 from the L-dimensional Gaussian distribution with the identitycovariance matrix (i.e. each coordinate Uqi is an independent Gaussian), and setthe q-th coordinate of �(i) to hUq; vii (where h�i is the usual inner product). Thisis essentially the same as the Johnson-Lindenstrauss projection technique [7, 10], inwhich a random d-dimensional subspace is chosen and the high-dimensional map isprojected onto this subspace, since d randomly chosen vectors (for small values ofd) are nearly orthogonal to each other and de�ne a random d-dimensional subspacewith high probability.Note that the vertex 0 is again mapped to the origin. For any leaf vertex i, thevalues in the d coordinates of �(i) are independent and distributed according to thenormal distribution with mean 0 and variance w2i . Also, the vectors �(i) and �(j)are independent of each other. De�ne E0i to be the event that the edge ei = f0; igsu�ers distortion of more than D (where the value of D will be decided later), andEij to be the event that the vertex pair fi; jg su�ers a distortion of greater thanD. (Note that this implies that Eij = Eji, though we will often count these as twoevents to make the presentation simpler.) The observation above shows that theevent E0i is dependent only on the 2(n � 1) events Eij and Eji, where j 6= i, andthat Eij is dependent only on E0i, E0j , Eik and Ekj, where k 62 fi; jg (also at most2(n� 1) events). This means we are now in a situation where the events have onlylimited dependence and we can apply the Lov�asz Local Lemma (see, e.g., [1]):Theorem 5.2 (Lov�asz Local Lemma) Let fBig be a set of \bad" events suchthat each Bi depends on at most t other events Bj. If Pr[Bi] � p and ep(t+ 1) < 1,then Pr�^Bi� > 0.In our case, t = 2(n � 1), so it suÆces that p < 1=2en to satisfy the hypothesis ofthe Local Lemma. Now using Lemma 7 of [6] or Lemma 2.2 of [4], we can showthat setting D = O(n1=dp(log n)=d) ensures that Pr[E ] � 1=2en for any of the badevents described above, and thus there is a random k-dimensional subspace ontowhich we can project with ~O(n1=d)-distortion.Unfortunately, this proof breaks down for more complicated graphs, since the limitedindependence property does not hold in the same fashion. It would be interestingto see if an improved analysis of the random projection technique could be obtainedfor broader classes of trees.AcknowledgementsMany thanks to Marshall Bern, Sanjoy Dasgupta, Ashwin Nayak and Alistair Sin-clair for useful discussions and comments. Thanks also to the referees for manyuseful comments and suggestions. 9
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then choose the vectors of the code to be the positions of the centers of these caps.A standard argument, which we sketch below, shows that the radius r has to be�(N1=(d�1)).Let S be a sphere of radius r centered at o. A cap C (of angular radius Æ orspherical radius � = rÆ) on S is the portion of @S cut out by �xing an axis `passing through o, and rotating about it a \cutting" line passing through o mak-ing an angle Æ with `. The area of the d-dimensional cap of angular radius Æ is2�(d�1)=2�((d�1)=2) rd�1 R Æ0 sind�2 � d�. We can use the simple fact that sin� � � to upperbound the integral by R Æ0 �d�2 d� = Æd�1d�1 , and thus upper bound the area of the capby Vd�1(rÆ).To see that r = O(N1=(d�1)), let N 0 be the maximum number of non-overlappingcaps possible whose centers lie in the positive orthant. If we increase the sphericalradius of the N 0 caps to 2, they have to cover the surface of the sphere in the positiveorthant. Indeed, if there is a point x not covered, then it is at distance at least 2from all the other centers, and so another cap of radius 1 could be placed at xwithout intersecting the N 0 original caps. Since the volume of a cap of sphericalradius 2 is bounded above by Vd�1(1), we get that N 0Vd�1(2) � Sd(r)=2d, andhence N 0 � (r=2)d�1=2d. Taking r = r0(N) = 8N1=(d�1) will ensure that N 0 � N .Note that the minimum angle between any two of the chosen vectors is at leastÆ0(N) = 2=r0(N).To see that r = 
(N1=(d�1)), observe that sin� � �=2 for � � �=2 and the area ofthe cap of spherical radius � is at least Vd�1(�=2). Since the caps must be disjoint,simple algebra shows that we can pack at most p�d(2r)d�1 caps in @S, and thusr = �(N1=(d�1)).Remark: The above construction is an existential one, and thus does not give usa polynomial time algorithm for the embedding. However, we can build a sphericalcode with slightly worse parameters in polynomial time in the following manner: let�d be the surface of a sphere Sd � Rd of radius r, and suppose we want to �nd pointswhich are at least spherical distance 2 from each other. Let us consider the family ofhyperplanesHi = fxd = 2ig for all i 2 N, and let �d(i) = Hi\�d. Each of the �d(i)are surfaces of spheres in dimension one lower, and we can recursively construct well-separated sets of points (which are distance at least 2 from each other) on each of the�d(i). (The base case is when we have a circle in 2 dimensions, when the problem istrivial.) Now it can easily be shown that, for any point on the sphere �d, there willbe a point we construct which is at distance at most 2d from it. A volume argumentidentical to the ones above shows that taking r to be O(dN1=(d�1)) suÆces to giveus N well-separated points. Using this spherical code gives us an polynomial-timeembedding of trees into Rd with distortion at most O(dD(f)), where D(f) is thebound on the distortion of the embedding of section 3.
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B An ExampleIn this section, we give a simple example to illustrate the embedding proceduredescribed in section 3. The tree in �gure 2 has all its edges of length 1, except that(1,5) has length 1.5, and (6,9) has length 0.5. A caterpillar decomposition of width2 is indicated by the texture of the lines in the �gure. Figure 3 indicates the stepsin the embedding, while �gure 4 shows the �nal embedding. Note that all the pathsin the caterpillar decomposition have been mapped along straight lines.
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Figure 4: Embedding of the tree
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