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Abstract

We consider embedding metrics induced by trees into Euclidean spaces with a
restricted number of dimensions. We show that any weighted tree 7' with n
vertices and L leaves can be embedded into d-dimensional Euclidean space with
O(L(@=1)) distortion. Furthermore, we exhibit an embedding with almost the
same distortion which can be computed efficiently. This distortion substantially
improves the previous best upper bound of O~(n2/d) and almost matches the best
known lower bound of Q(L'/?).

*A preliminary version of this article previously appeared in the Proceedings of the 31st Annual
Symposium on the Theory of Computing [5]
fSupported by NSF grant CCR-9505448 and CCR-9820951.



1 Introduction

The study of finite metric spaces has been the focus of much attention in recent
years due both to its mathematical and to its computational significance. Perhaps
the most widely studied class of questions has been that of embeddability of a finite
metric space into some target space with the aim of preserving the distances between
points in the metric. Often the distances cannot be preserved exactly, and then we
aim to keep the distance between any pair of vertices close to its original value: the
distortion of an embedding is the maximum factor by which any distance is changed
by the embedding. (For precise definitions of this and other notions, see section 2.)
Not only do these questions help better understand the structure of both the host
and the target metrics, but they also have numerous computational applications
(e.g., see [8] and the references therein).

Among the most important target metric spaces are the so-called Minkowski £,
spaces, i.e., d-dimensional real space R? equipped with one of the £, norms, ||z||, =
> = )P, We shall refer to such spaces as Kg. (Thus, for example, £2 is just
standard d-dimensional Euclidean space.) The topic of embedding tree metrics
into Minkowski spaces has been studied by many authors. Bourgain [2] showed
that every embedding of the complete binary tree with n vertices into £, must
incur a distortion of Q((loglogn)™{1/21/P}) for any 1 < p < oco. (Note that
any tree has an isometric embedding into #;, and it is also well known that any
metric space is isometrically embeddable into /). Subsequently, Matousek exhib-
ited an O((log log L)™i*{1/2.1/p})_distortion embedding for arbitrary trees T' with L
leaves [11], showing that the bound is actually tight. A slightly weaker distortion of
O(loglog L) for embedding into ¢2 was obtained independently by Linial et al. [9].

Unfortunately, these techniques typically do not allow the dimension d of the target
space to be restricted, and in general, they require L dimensions. Embedding into a
lower dimensional space could cause the distortion of the embedding to increase, and
we would like a good tradeoff between dimension and distortion. The question of
trading dimensions for distortion has also been previously studied. Johnson and
Lindenstrauss [7] showed that one can project any m-point Euclidean metric in
an arbitrary number of dimensions down to a O(logn) dimensional space while
incurring only a constant distortion, which immediately implies that any tree can
be embedded in O(logn) dimensions with O(y/loglogn) distortion. Their technique
is to project the high-dimensional embedding onto a random O(logn)-dimensional
subspace and show that, with high probability, the distortion is not more than a
constant. This procedure was analyzed for general d by Matousek [10], who showed
that the distortion incurred by this projection is at most O(n??(logn)'/?/+v/d). He
also proved that this result is almost optimal by exhibiting metrics which require a
distortion O(n?/%) to embed into d-dimensions.

However, no upper bound better than ON(nQ/ ) is known for the distortion incurred
by the projection technique in the special case of trees, and the best lower bound
known for tree metrics is only O(n!/?). Hence a natural question is whether better



embeddings can be obtained for trees into £ [11]. In this paper, we present a new
upper bound for the distortion that is very close to the Q(nl/ 4) lower bound. Our
main result is the following:

Theorem 1.1 Given any tree T with L leaves, there exists a mapping f : V(T') — Eg
with distortion

D(f) < O(LY D (minflog L, d})"/?). 1)

In fact, the log L term in equation (1) can be replaced by x(T'), the caterpillar
dimension of 7" (defined in section 2). Since x(T") < log L, this replacement gives (as
in [11, 9]) not only a more adaptive bound, but also an embedding for infinite trees
with finite caterpillar dimension. However, we note that our embedding technique
is not tight for O(logn) dimensions, where it incurs a distortion of O(y/log L), while
the optimal embedding of [11] incurs only O(y/loglog L) distortion.

The idea behind our embedding is simple. Our starting point is the naive embedding
scheme for trees, in which we use a new dimension orthogonal to all previous ones
for each new edge [11, 9]. However, this requires L orthogonal vectors, and cannot
be used when the dimension d < L, since we can have only d orthogonal vectors in
R?. To circumvent this problem, we relax the orthogonality constraint and find L
vectors that have a small inner product with each other. We then use these vectors
in place of the orthogonal vectors used in the naive embedding of the tree, and
show that the price we pay for the non-orthogonality of the vectors is a factor of
O(LY(@=1)) in the distortion.

The rest of the paper is organized as follows. In section 2, we give some definitions
and review some elementary geometry which we shall use later. In section 3 we give
the actual embedding, which we analyze in section 4. Finally, we show that the
lower bound is tight for the special case of star graphs by giving a matching upper
bound in section 5. Appendix A gives some more details about the construction of
the well-separated vectors, and a simple example is given in Appendix B.

2 Definitions and notation

Trees and Metric Spaces: Let 7' = (V, E) be an undirected weighted tree with
V| = nand |E| = (n —1). We use L to denote the number of leaves and A(T)
to denote the weak diameter of T'. Recall that the weak diameter just counts the
number of edges on a path, and does not take into account their lengths. The weight
(or length) function is w : E — Rt. We root T' at an arbitrary vertex r € V, which
defines the usual ancestor-descendant relationship between pairs of vertices. The
subtree rooted at v, Ty, is the subtree induced by the vertices which are descendents
of v (including v itself). A monotone path P is a path which is a subset of some
leaf-root path P'.




The caterpillar dimension [11, 9] of a rooted tree T', henceforth denoted by x(T'), is
defined thus: For a tree with a single vertex, x(7') = 0. Else, x(7') is the maximal

value < k + 1 if there exist paths P, P, ... , P, beginning at the root and pairwise
edge-disjoint such that each component Tj of T'— E(P;) — E(P2) — ... — E(P,;) has
k(Tj) < k, where T — E(P1) — E(P») —...— E(FP;) denotes the tree T' with the edges

of the P;’s removed, and the components T} are rooted at the unique vertex lying
on some F;. The collection of edge-disjoint monotone paths in the above recursive
definition form a partition of £, and are called the caterpillar decomposition of T
It is simple to see that the path between any two vertices of T intersects at most
2k(T) of these paths. It can also be shown that x(7T') is at most log L, and is often
much smaller. For example, the caterpillar graph has x(7") = 2, even though it has
Q(n) leaves. A decomposition with the minimum value of x(7T') can be computed in
polynomial time by dynamic programming (see, e.g., [11]).

Embeddings and Distortion: Let M = (X,p) and M’ = (Y, ) be two metric
spaces, and let f: X — Y be a map. Let us define
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Then we say that f has contraction D, expansion D, and distortion D(f) = D.(f) x
D.(f). We say that M D-embeds into X if there exists a map f with D(f) < D.

Given a tree T' = (V, F) with non-negative edge weights, the distance dr(u,v)
between vertices u,v € V is the length of the unique path in 7' between « and wv.
We shall often blur the distinction between the tree 7" and the metric (V,dr) in the
following discussion. It is easy to see that if f is an embedding of a graph G into a
metric (Y, p), the expansion is largest for edges of G.

Euclidean space and spheres: Let || - ||, denote the ¢, Minkowski norm. For the
case p = 2 we shall drop the subscript, and hence || - || denotes the Euclidean norm.
Recall that ||z||; < ||z||, for p < ¢q. Let the vector u; be the unit vector in the i-th
dimension. Let By(r) denote the d-dimensional sphere of radius . Its d-dimensional
volume is Vy(r) = % and surface area is Sg(r) = %. Unless mentioned
otherwise, we shall always assume that spheres are centered at the origin. The
angular distance between any two points v and v is the acute angle subtended by

them at the origin.

Given a sphere S (centered at some point o), let S denote the surface of S. For
any u,v € 05, the great circle through v and v is the intersection of the plane
defined by the three points u, v and o with 3S. The spherical distance is the length
of the shortest path between u and v that lies in 0S. If u and v are at angular
distance § < m/2; their spherical distance is rd, while their Euclidean distance is
r/2(1 — cos ). We will use the fact that these distances differ by only a constant,

ie., (2/m)d < /2(1 —cosd) < 4.

Spherical Codes and Well Separated Vectors: A spherical code is a set of N
unit vectors (or N points on the surface of a unit sphere), where the measure of




goodness of the code is the least angle between any two vectors in the code (see
[3] for more details). An equivalent formulation is to minimize the radius r of a
sphere such that IV points can be placed on its surface, where any two points are at
angular distance at least 2 from each other. For our application, it is crucial that the
vectors of the code lie in the positive orthant. Standard packing arguments show
that we can build such a code S(N) with N vectors, where the radius of the sphere
is ro(N) = 8NY/(4=1) " and minimum angle between the vectors is dp(N) = 2/ro(N).
For completeness, a proof of this fact is given in Appendix A.

3 Embedding trees into d dimensions

In this section we describe the actual embedding for trees. We first describe, in
section 3.1, a trivial algorithm and then a twist to it (which are also discussed in
[9, 11]) both of which use a large number of dimensions. We then build on these
ideas using with spherical codes to get our final embedding in section 3.2.

We will always embed the root r at the origin, i.e., f(r) = 0, and for each edge
e, we will define a vector v(e) € R?. The image of vertex v is then given by
f(v) =3 .cpv(e), where P is the path from v to the root r.

3.1 Embeddings which require many dimensions

The first embedding is the naive embedding in which the i-th edge e; is mapped to a
vector of length w(e;) orthogonal to all the other vectors, i.e., v(e;) = w(e;)d;, where
#; is the unit vector in the i-th dimension. The distortion of this embedding is easily
seen to be the maximum of M

Leepw(e)?
by /A(T). The large contraction above is due to the large number of bends on
long paths, since the contraction is proportional to the square root of the number
of bends. Using the caterpillar decomposition of section 2, we can remove the
dependence of the distortion on the weak diameter. Let F = {P}, P,... ,P;} be a
caterpillar decomposition of width O(x(T')), and associate ;, the unit vector along
the i-th dimension, with the path ;. To embed an edge e, set v(e) = w(e)i;, where
P; > e. A simple analysis now shows that the distortion is bounded by O(\/k(T)).

over all paths P, which is bounded above

3.2 Embedding into d dimensions

The embeddings given above require €2(n) dimensions in the worst case, and so we
cannot hope for constant dimension embeddings using (almost-)orthogonal vectors.
Hence we will replace the L orthogonal vectors in the latter construction by vectors
in R? that merely have a large angle with each other. This embedding crucially
relies on the fact that the vectors all lie in the positive orthant. By the discussion



above, we know that such a set S = S(L) of vectors exists, with the angle between
any two of the vectors being at least dy(L).

A little thought will convince the reader that arbitrarily replacing the orthogonal
vectors by those in § will not work. To handle this problem, for each vertex, we
will associate each subtree T, with a set of vectors S, C S, such that the number
of vectors in S, is equal to the number of leaves in T,. Further, we will ensure
that the cones generated by the vectors associated with two disjoint subtrees are
disjoint. (The cone generated by a set of vectors is the set of all non-negative linear
combinations of those vectors.)

The embedding procedure starts at the root, and a vertex is embedded only after
its parent is embedded. As the base case, the root has the entire set S of vectors
alloted to it, and is mapped to the origin. Inductively, let us consider vertex v with
children vy, v9, ... ,v;. Further, let the subtree T}, have the set S, alloted to it and
let v be embedded at position f(v). We then partition the set of vectors S, into k
subsets Sy, such that |S,,| is equal to the number of leaves in Tj,, and further, that
the cones of these sets are disjoint. Now, the vertex v; is mapped to the position
f(v) + w;z;, where w; is the length of the edge {v,v;}, and z; is some vector from
the set S,,. The reader is urged to look at the example given in Appendix B.

To partition a set of vectors S,, we assume that the ends of the vectors are in general
position. We now sweep a hyperplane passing through the origin until we get a set
of vectors whose size is equal to the number of leaves in 7}, . We define this to be
the subset S, , and continue the sweep to get the remaining subsets S,,. Note that
this procedure ensures that the cones of the subsets generated will be disjoint from
each other, and will also be contained in the cone of the set S,.

To get a bound on the distortion which depends on x(T"), we have to choose the
subsets more carefully. Instead of choosing the vector x; arbitrarily in the previous
description, we choose it so that vertices lying in any given path in the caterpillar
decomposition of T are embedded along a straight line. W.l.o.g., we can assume
that the vertex vy is the child of v that belongs to the same path in the caterpillar
decomposition as v. Hence it suffices to ensure that the vector corresponding to the
edge {v,v1} is the same as the vector corresponding to the edge connecting v to its
parent, and hence it must lie in the set S,,. This can be easily ensured by choosing
the direction of the sweeping hyperplane appropriately; the details are routine and
left to the reader.

Note that using vectors which lie in the positive orthant is a natural analogue of
using positive unit vectors in the naive embedding, and is crucial to the correctness
of the embedding. Also note that the procedure ensures that the angular distance
between the images of any two unrelated vertices in the tree is at least dg.



4 Analysis of the embedding

We now bound the distortion of the map f described in the previous section. Let

A = \/min{d, x(T)}, and as before, let ry = 2/8y = 8L/ (4=,

Theorem 4.1 The distortion of the embedding is at most 4w LY/ 4=V /min{d, (T)}.

Proof: Since the expansion of a map is worst for edges of the tree 1" and all tree
edges have the correct length, the expansion D, = 1. Using claims 4.2 and 4.3 below,
we get that the contraction D, for any pair of vertices is at most (7/2)roA. This, in
turn, implies that the distortion is D, x D, < (7/2)roA = 4x LY@~V /min{d, x(T)},
and completes the proof of the theorem. |

Claim 4.2 Let u be an ancestor of v in T". Then

dp(u,v)
1f (w) = f(o)ll = TA :

Proof of Claim 4.2: Let P = (u = x1,%2,... ,%4+1 = v) be the path with ¢ edges
connecting them. Furthermore, let the length of the edge e¢; = (x;, z;4+1) be w;, which
implies that )}, w; = dr(u,v). Let us now consider the vectors v; = f(zi11) — f(2;).
By our construction, ||v|| is exactly w;, and the projections of 0; on the d coordinate
axes are all positive. Let w;; denote the length of the projection of v; on the j-th
axis (for 1 <i <tand 1 < j <d). Note that w;; > 0 and Zj w?j = w?.

We will first prove that ||f(u) — f(v)| is lower bounded by dr(u,v)/\/k(T"). To
see this, note that having a caterpillar decomposition of width x(7") ensures that
P cannot have more than O(x(T")) bends, since P is a monotone path. Our con-
struction also ensures that the angles of the bends cannot be more than 90°. It
is intuitively clear that the worst contraction is achieved when all the bends are
actually right angles, in which case, the Euclidean distance between f(u) and f(v)
is at least dp(u,v)/+/k(T). Formally, note that the squared distance is

¢ 2 d t ¢
If (v) = F(u)]]* = Z(ZWJ) > ) wi = |Gl

j=1 \i=1 j=1i=1 i=1

2
> % <Z ||«7Z-||> (Cauchy-Schwarz)
1 1 (u,v)?
= E <Z wZ) = 77

and thus || f(u) — f(v)|| > dr(u,v)/Vt > dr(u,v)/\/k(T). A similar analysis (which
we omit) shows a lower bound of dr(u,v)/v/d, which completes the proof. O



Claim 4.3 Let u and v be unrelated vertices in T'. Then

dp(u,v)
- > 2/
I = F0)1 2
Proof of Claim 4.3: Let w be the least common ancestor of u and v. Let path
P, connect v to w, and the path P, connect v to w. Note that both these paths
monotone and edge disjoint, and that |P,| + | P,| = dr(u,v).

Ed

’ 3 -

a u

=

Figure 1: Proof of Claim 4.3

First, consider the simple case when both the paths P, and P, are embedded without
any bends, as in figure 1. Then ||f(u) — f(v)||? is |Pu|?* + | Py|? — 2| Py|| P, | cos 6, and
the contraction is

(1+z)
(1 + 22 — 2z cos §)1/2’

where x = |P,|/|P,|. A simple calculation shows that this is maximized when z = 1,
and the maximum value is 2/1/2(1 — cos#). However, the angle 6 > §y, and hence

this value is at most 2/1/2(1 — cosdp) < 7/dg < (7/2)ry.

To handle the general case when the paths are embedded with bends and the Eu-
clidean distance between their endpoints is smaller than their lengths in the tree 7',
we use the fact from Claim 4.2 that the lengths of a monotone path in the tree is
no more than a factor A times longer than the Euclidean distance between its end-
points. Thus the distortion for the case without bends is off by a factor of at most A
in case there are bends. Formally, if || f(u) — f(w)|| = Dy and || f (v) — f (w)|| = Dy,
then Dy, > |P,|/A and D,,, > |P,|/A. Hence the contraction in this case is at most

|Pu| + | Py A(Dyw + Dyw)
(D2, + D2, — 2Dy Byy cos 0)1/2 = (D2, + D2, — 2Dy Byy cos 0)1/2

Now mimicking the previous calculation shows that this contraction is at most
(m/2)Ary. O

5 Embedding the star

In this section, we briefly sketch lower and upper bounds of ©(L'/%) for the weighted
star graph using simple sphere-packing arguments. We then explore the projec-



tion technique of [7, 10], and show that there is a projection of the natural high-
dimensional embedding of the star onto a d-dimensional space that incurs a dis-
tortion of O(L'/?). This begs the question: for every tree T, does there exist a
projection of its natural high-dimensional embedding into d dimensions which pre-
serves distances well?

In the sequel, let G = (V, E) be the star on L leaves, and let 0 denote the center of
the star. Thus the edges in E are e; = {0,i} for all 1 < i < L. Let us denote the
weight of edge e; by w;.

5.1 Bounds using Sphere packings

It is well known that any embedding of general trees into ¢ must incur a distortion
of Q(L'/?) (see, e.g., [11]) using a very simple volume argument. We sketch a proof
of this fact (and a matching upper bound) here for completeness.

Proposition 5.1 For each L > 2%, any embedding of the (unweighted) star with L
leaves into R? incurs a distortion Q(LY9). Further, any weighted star G = (V, E)
with L leaves can be embedded into R® with distortion O(L'?).

Proof Sketch: The graph Gy = (Vi, Ex) will be the star with k leaves, in which
each edge has unit length. Consider any mapping f : Vi, — R¢, and w.lo.g., let
f be an expansion and let f(0) be the origin. Now balls of radius %drawn around
each leaf must be disjoint. However, there are k such balls with total volume O(k),
and hence one of these balls must have its center at distance Q(k/%) away from the
origin, and hence some edge must suffer a distortion of Q(k'/%).

This lower bound is, in fact, tight for arbitrarily weighted stars. Let us assume
the the edge weights are non-decreasing, i.e., w; < wo < ... < wp. Further, let
B; denote a ball of radius w;. We will map the vertex 0 to the origin, and then
pack the balls B; (in increasing order of 7) so that they are disjoint, and no B; is at
distance more than Dw; from the origin, where D = ¢L'/%. Now the map f sending
vertex ¢ to the center of B; will have contraction 1, and thus a distortion of at most
D. To embed B;, we claim that there is a point at distance 2w;i*/? from the origin,
which is at distance w; from the set Uj <; Bj- Indeed, if there was no such point,
then increasing the radius of balls B; (for 7 < ¢) by w; would cover the sphere of
radius 2w; i'/% around the origin. However, these (i — 1) balls do not have sufficient
volume to cover the sphere, which completes the proof. |

5.2 Random Projection arguments

We can also show that if we embed the star into high dimensions, there exists a
d-dimensional subspace W such that projecting the map onto W incurs a distortion
of only O(n!/?).



Let us first embed the star G into L dimensions: map 0 to the origin, and map
the vertex ¢ to the point v; = w(e;)u;, where @; is the unit vector in the i-th
dimension. This embedding has a distortion of at most v/2. Now pick d independent
vectors {Uq}gzl from the L-dimensional Gaussian distribution with the identity
covariance matrix (i.e. each coordinate Uy is an independent Gaussian), and set
the g-th coordinate of ¢(¢) to (U,,v;) (where (-) is the usual inner product). This
is essentially the same as the Johnson-Lindenstrauss projection technique [7, 10], in
which a random d-dimensional subspace is chosen and the high-dimensional map is
projected onto this subspace, since d randomly chosen vectors (for small values of
d) are nearly orthogonal to each other and define a random d-dimensional subspace
with high probability.

Note that the vertex 0 is again mapped to the origin. For any leaf vertex i, the
values in the d coordinates of ¢(i) are independent and distributed according to the
normal distribution with mean 0 and variance w?. Also, the vectors ¢(i) and ¢(5)
are independent of each other. Define £y; to be the event that the edge e; = {0,i}
suffers distortion of more than D (where the value of D will be decided later), and
&;j to be the event that the vertex pair {i,j} suffers a distortion of greater than
D. (Note that this implies that &; = £j;, though we will often count these as two
events to make the presentation simpler.) The observation above shows that the
event &; is dependent only on the 2(n — 1) events &; and &j;, where j # 4, and
that &;; is dependent only on &y, &vj, Eix and &, where k ¢ {i,7} (also at most
2(n — 1) events). This means we are now in a situation where the events have only
limited dependence and we can apply the Lovasz Local Lemma (see, e.g., [1]):

Theorem 5.2 (Lovdsz Local Lemma) Let {B;} be a set of “bad” events such
that each B; depends on at most t other events Bj. If Pr[B;] <p and ep(t+1) <1,
then Pr[/\Bi] > 0.

In our case, t = 2(n — 1), so it suffices that p < 1/2en to satisfy the hypothesis of
the Local Lemma. Now using Lemma 7 of [6] or Lemma 2.2 of [4], we can show
that setting D = O(n'/4\/(logn)/d) ensures that Pr[€] < 1/2en for any of the bad
events described above, and thus there is a random k-dimensional subspace onto
which we can project with O(n!/¢)-distortion.

Unfortunately, this proof breaks down for more complicated graphs, since the limited
independence property does not hold in the same fashion. It would be interesting
to see if an improved analysis of the random projection technique could be obtained
for broader classes of trees.
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Caps on spheres: Building good spherical codes

In this section, we show how to get good spherical codes with the specifications
described in section 2. To build a spherical code with N vectors, all lying in the
positive orthant, we will define N non-intersecting caps of unit radius on the surface
of the sphere of radius r such that all the caps lie in the positive orthant, and

10



then choose the vectors of the code to be the positions of the centers of these caps.

A standard argument, which we sketch below, shows that the radius r has to be
O(N!/d-).

Let S be a sphere of radius r centered at o. A cap C (of angular radius ¢ or
spherical radius p = rd) on S is the portion of 0S cut out by fixing an axis /¢
passing through o, and rotating about it a “cutting” line passing through o mak-
ing an angle 0 with £. The area of the d-dimensional cap of angular radius ¢ is

%r‘i_l f[f sin®™2 ¢ dp. We can use the simple fact that sing < ¢ to upper
bound the integral by f06 ¢42 dp = M_—T, and thus upper bound the area of the cap

by Vg_1(rd).

To see that r = O(N'/(@1), let N’ be the maximum number of non-overlapping
caps possible whose centers lie in the positive orthant. If we increase the spherical
radius of the N’ caps to 2, they have to cover the surface of the sphere in the positive
orthant. Indeed, if there is a point z not covered, then it is at distance at least 2
from all the other centers, and so another cap of radius 1 could be placed at z
without intersecting the N’ original caps. Since the volume of a cap of spherical
radius 2 is bounded above by Vy 1(1), we get that N'Vy 1(2) > Su(r)/2%, and
hence N’ > (r/2)%1/2¢. Taking r = ro(N) = 8N/(¢~1 will ensure that N’ > N.
Note that the minimum angle between any two of the chosen vectors is at least
So(N) = 2/ro(N).

To see that r = Q(N/(4=1)  observe that sin¢ > ¢/2 for ¢ < /2 and the area of
the cap of spherical radius p is at least Vy_1(p/2). Since the caps must be disjoint,

simple algebra shows that we can pack at most v/7d(2r)¢~" caps in 05, and thus
r = O(NI/@-D).

Remark: The above construction is an existential one, and thus does not give us
a polynomial time algorithm for the embedding. However, we can build a spherical
code with slightly worse parameters in polynomial time in the following manner: let
¥4 be the surface of a sphere S; C R¢ of radius r, and suppose we want to find points
which are at least spherical distance 2 from each other. Let us consider the family of
hyperplanes H; = {x4 = 2i} for all i € N, and let ¥4(z) = H;NE4. Each of the ¥4(7)
are surfaces of spheres in dimension one lower, and we can recursively construct well-
separated sets of points (which are distance at least 2 from each other) on each of the
Y4(7). (The base case is when we have a circle in 2 dimensions, when the problem is
trivial.) Now it can easily be shown that, for any point on the sphere X4, there will
be a point we construct which is at distance at most 2d from it. A volume argument
identical to the ones above shows that taking r to be O(dN'/(4=1) suffices to give
us N well-separated points. Using this spherical code gives us an polynomial-time
embedding of trees into R? with distortion at most O(dD(f)), where D(f) is the
bound on the distortion of the embedding of section 3.
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B An Example

In this section, we give a simple example to illustrate the embedding procedure
described in section 3. The tree in figure 2 has all its edges of length 1, except that
(1,5) has length 1.5, and (6,9) has length 0.5. A caterpillar decomposition of width
2 is indicated by the texture of the lines in the figure. Figure 3 indicates the steps
in the embedding, while figure 4 shows the final embedding. Note that all the paths
in the caterpillar decomposition have been mapped along straight lines.

w.\\

Figure 2: A tree

o 1 2

Figure 3: The embedding procedure

10,

Figure 4: Embedding of the tree
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