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Abstract

In the online Steiner tree problem, a sequence of points is revealed one-by-one: when a point
arrives, we only have time to add a single edge connecting this point to the previous ones, and we
want to minimize the total length of edges added. Here, a tight bound has been known for two
decades: the greedy algorithm maintains a tree whose cost is O(log n) times the Steiner tree cost,
and this is best possible. But suppose, in addition to the new edge we add, we have time to change
a single edge from the previous set of edges: can we do much better? Can we, e.g., maintain a tree
that is constant-competitive?

We answer this question in the affirmative. We give a primal-dual algorithm that makes only a
single swap per step (in addition to adding the edge connecting the new point to the previous ones),
and such that the tree’s cost is only a constant times the optimal cost. Our dual-based analysis is
quite different from previous primal-only analyses. In particular, we give a correspondence between
radii of dual balls and lengths of tree edges; since dual balls are associated with points and hence
do not move around (in contrast to edges), we can closely monitor the edge lengths based on the
dual radii. Showing that these dual radii cannot change too rapidly is the technical heart of the
paper, and allows us to give a hard bound on the number of swaps per arrival, while maintaining
a constant-competitive tree at all times. Previous results for this problem gave an algorithm that
performed an amortized constant number of swaps: for each n, the number of swaps in the first n
steps was O(n). We also give a simpler tight analysis for this amortized case.

1 Introduction

In the online Steiner tree problem, a sequence of points 0, 1, 2, . . . , n, . . . is revealed online. When the
point i arrives we are told the distances d(i, j) for all j < i; the distances between previous points do
not change, and we are guaranteed that the distances always satisfy the triangle inequality. The goal is
to maintain a tree spanning all the arrivals and having a small cost (which is the sum of the lengths of
the tree edges). As is usual in online algorithms, all decisions are irrevocable: once an edge is bought
it cannot be removed. This naturally captures a situation where we are building a network, but only
have time to add a single edge at a time. The greedy algorithm, upon arrival of the ith vertex, greedily
attaches it to its closest preceding point; [IW91, AA93] showed that this algorithm produces a tree that
is O(log n)-competitive against the best spanning tree on {1, 2, . . . , n}, for every n. They also showed a
matching lower bound of Ω(log n) on the competitive ratio.

But what if the decisions were not irrevocable? What if, when a new vertex arrived, we were allowed
to add a new edge, but also to swap a small number of previously-added edges for new ones? Given
the power of hindsight, we could do better—but by how much? Imase and Waxman [IW91] showed a
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natural greedy algorithm that maintains a 2-competitive tree and makes at most O(n3/2) swaps over the
course of the first n arrivals, for every n. Hence the amortized budget, the average number of swaps per
arrival, is O(n1/2). This was substantially improved upon recently, when Megow, Skutella, Verschae,
and Wiese [MSVW12, Ver12] gave an algorithm with a constant amortized budget bound. Specifically,
given ε > 0, their algorithm maintains a tree that is (1 + ε)-competitive against the minimum spanning
tree, and performs O(n/ε log 1/ε) swaps in n steps.

Note that both these prior results work in the amortized setting: what if we could only do a constant
number of changes per arrival? In fact, what if we only had time to perform a single swap per timestep:
could we maintain a spanning tree that is constant competitive against the best Steiner tree? The
algorithms used in previous papers do not have this property, as there exist instances where a single
arrival can cause their algorithms to do a linear number of swaps. The main result of this paper is an
affirmative answer to the above question.

Theorem 1.1 (Constant Budget Algorithm) There is an online algorithm for metric Steiner tree
that performs a single edge swap upon each arrival, and maintains a spanning tree with cost at most a
constant times that of the optimal Steiner tree on the current set of points.

In fact, we can maintain a 2O(1/δ)-approximate tree and perform only one swap per 1/δ rounds (see
Theorem 4.3).

We discuss the ideas behind the algorithm in Section 1.1; at a high level, the algorithm is based on the
primal-dual method; our analysis is based on relating the edges in the tree to dual balls, and tracking
the changes via changes in these dual values. This dual-based analysis is substantially different from
the primal-only analyses used in previous works, and we feel it gives a better insight into the problem.

Our techniques also allow us to give a trade-off between the number of swaps and the competitiveness: in
fact, we first show a weaker result that performs a constant number of swaps per arrival and maintains a
constant competitive tree (in Section 2 and 3). In Section 4 , we show how refinements of our arguments
can reduce the number of swaps and prove Theorem 1.1 and its extension mentioned above.

Our second result is a simpler and improved amortized-budget analysis of the greedy algorithm studied
by [IW91, MSVW12]. For any ε ∈ (0, 1], consider the online algorithm B1+ε that greedily connects each
new vertex to the closest previous vertex, and that also swaps a tree edge e for a non-edge f whenever
len(e) ≥ (1 + ε) len(f) and T + f − e is also a spanning tree. By construction, B1+ε maintains a tree
that is (1 + ε)-competitive against the best spanning tree.

Theorem 1.2 (Tight Amortized Budget Algorithm) For any ε ∈ (0, 1], the algorithm B1+ε makes
at most n · log1+ε 4 ≤ 2n/ε swaps over the course of n arrivals.

This result is asymptotically tight, as a lower bound of Ω(n/ε) is known [Ver12]. The previous best
amortized bound was O(n/ε log 1/ε) given by [MSVW12], for a variant of B1+ε which did not perform
all possible (1 + ε)-swaps. The proof of Theorem 1.2 appears in Section 5. In Section 5.2 we give an
instance where algorithm B2 needs at least 1.25n swaps; no instances were known earlier where more
than n swaps were needed for ε = 1.

1.1 The Constant-Budget Algorithm: Ingredients, Intuition, and Ideas

One of the main difficulties in analyzing “primal” algorithms that directly deal with edge lengths of the
current tree is that swaps in the tree are not local: two close-by edges may be swapped for two edges
that are far from each other, and spatio-temporal relationships between them become difficult to reason
about. Instead we take a primal-dual approach that talks about duals around vertices—since vertices
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do not move, we can argue about them more easily. The rest of this section outlines the steps and the
intuition behind them; the algorithm itself is summarized in Section 1.1.1.

Say vertices {0, 1, 2, . . . , i−1} had arrived previously, and now vertex i arrives. We first run a clustering
process on the vertices in [i] = {0, 1, . . . , i} (described in Section 2.1): this is similar to the moat-growing
process in the Agrawal-Klein-Ravi/Goemans-Williamson primal-dual algorithm, but here we grow the
clusters in discrete exponentially-sized steps. This clustering process defines integer “ranks” ρi(v) for
vertices v ∈ [i]. Then we run a tree-forming process using these vertex ranks, which outputs a tree
T ?i on [i] that is a constant-approximation to the optimal Steiner tree on [i]. This is where ranks are
useful: we ensure a correspondence between lengths of tree edges and vertex ranks—a vertex of rank k
corresponds to some tree edge of length ≈ αk (for some small constant α), and so we can shift our focus
from tracking edge lengths to tracking vertex ranks. Our clustering ensures that the ranks of existing
vertices never increase as future arrivals occur, and also that the total number of rank decrements for
all vertices over the course of i arrivals is O(i). Furthermore, the tree-formation satisfies a Lipschitz
property: if s rank decrements occur due to the arrival of vertex i, then T ?i can be obtained from T ?i−1
by adding an edge connecting vertex i to its closest vertex in [i − 1], and then performing at most s
edge swaps. Putting these two facts together gives an O(1)-amortized -budget and O(1)-competitive
algorithm.

But we had promised a constant-worst-case-budget algorithm; we cannot directly use the algorithm
above, since some arrivals may cause the ranks of a linear number of vertices to drop. However, we can
fix things, and this is where the advantages of our dual-based approach become apparent. In addition
to the ranks, we also maintain virtual ranks νi(v) for vertices v ∈ [i], which also drop monotonically,
and which are upper bounds on the ranks. And we run the tree-forming process on these virtual ranks
to get the actual tree Ti. We want the virtual ranks to be close to the real ranks, but also not to change
too drastically upon arrivals—so when vertex i arrives, we define νi(·) in such a way that

• νi(v) ≤ νi−1(v) for all v ∈ [i− 1] (virtual ranks are also monotone decreasing),
• νi(v) ≥ ρi(v) for all v ∈ [i− 1] (virtual ranks are upper bounds for actual ranks),
• νi(i) = ρi(i) (the virtual rank equals the actual rank for new arrivals), and
• ‖νi − νi−1‖1 ≤ O(1) (the number of virtual rank changes is only a constant).

By this last property and the Lipschitz-ness of our tree-formation algorithm, the number of edge swaps
to get from Ti−1 to Ti is a constant.

But what about the competitiveness of the tree? The cost of our tree Ti is ≈
∑

v∈[i] α
νi(v), whereas the

ideal tree T ∗i has cost ≈
∑

v∈[i] α
ρi(v). Since we want the former sum to be close to the latter, we define

the virtual ranks by decrementing it for those nodes v for which νi−1(v) > ρi(v) and the numerical value
of νi−1(v) is the largest. The technical heart of the paper lies in showing that this way of maintaining
virtual ranks gives us a constant approximation tree at all times; the analysis is given in Section 3.

1.1.1 The Algorithm in a Nutshell

Most of the above description is intuition and analysis. Our algorithm is simply the following. When
vertex i arrives,

(i) run clustering to get ranks ρi(v) for all v ∈ [i],
(ii) define the virtual ranks νi(v) using the simple greedy rule described above, and
(iii) run tree-formation on the virtual rank function νi to get the tree Ti.

We emphasize that the clustering and tree-formation algorithms are just two halves of the Agrawal-
Klein-Ravi/Goemans-Williamson moat-growing primal-dual algorithm, by viewing the moat-growing
and edge-additions separately.
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1.2 Related Work

The online Steiner tree problem was studied by Imase and Waxman [IW91], who proved Θ(log n)-
competitiveness for the problem when no swaps are allowed. The proof was simplified by Alon and
Azar [AA93], who also gave an Ω( logn

log logn)-lower bound for planar point sets. Imase and Waxman also

gave an algorithm that maintained a 2-competitive tree and used an amortized budget of O(
√
n) over

n steps. They also considered the model where vertices could leave the system: for this problem they
also gave an algorithm with the same amortized budget, but a weaker 8-competitiveness.

The primal-dual method has been a powerful tool in offline algorithm design; see, e.g., the treatment
in the textbooks [Vaz01, WS11]. This technique was used in original Steiner forest papers of Agrawal,
Klein, and Ravi [AKR95] and Goemans and Williamson [GW95]. The popularity and power of primal-
dual in online algorithm design is more recent (see, e.g., the monograph of Buchbinder and Naor [BN07]
for many successes). Some early uses of primal-dual ideas in online algorithms can be seen in the
online Steiner forest analysis of Awerbuch, Azar, and Bartal [AAB04], and the algorithm and analysis
of Berman and Coulston [BC97].

Apart from the results of [IW91, MSVW12], the idea of making a small number of alterations to maintain
a good solution in online settings had been studied for other problems. See, e.g., the works of [Wes00,
AGZ99, AAPW01, SSS09, SV10, EL11] which study alterations in the context of online scheduling and
routing problems. Ashwinkumar [Var11] gives optimal results for the problem of maximizing the value
of an independent set in the intersection of p matroids, where the elements of the universe arrive online;
in his model, an element can get added to the set and subsequently canceled (for a price), but an element
that has been dropped can never be added subsequently. However, the ideas in these papers seem to
be orthogonal to ours.

Our results are also related, at a conceptual level, to those of Kirsch and Mitzenmacher [KM07], Arbit-
man et al. [ANS09] and related works on de-amortizing data structures (such as cuckoo hash-tables) by
maintaining a suitable auxiliary data structure (e.g., a queue or a “stash”); this allows them to achieve
constant update times with overwhelming probability. Since our goal is slightly different—to achieve
low cost—our de-amortization works by delaying certain updates via a priority queue.

2 A Constant-Swaps Algorithm

It will be useful to first prove a slightly weaker version of Theorem 1.1, which will introduce the main
ideas.

Theorem 2.1 Let α ≥ 6. There is an online algorithm that makes at most K = 2α2 swaps upon each
vertex arrival, and for every n, maintains a tree Tn with cost at most C = 2α5

(α−1)2 times the cost of an
optimal Steiner tree on the first n points.

We describe the algorithm of Theorem 2.1 in this section, and give its analysis in Section 3. We
then show how to modify the algorithm slightly to trade off swaps for performance, and hence get a
single-swap algorithm in Section 4.

In order to describe the online algorithm, let us lay down some notation. Let [n] denote the integers
{0, 1, 2, . . . , n}, and [i . . . j] denote the integers {i, i+ 1, . . . , j}. We associate the arriving vertices in the
metric space with the integers: we start off with the root vertex 0, and the nth arriving vertex is called
n; and hence the root and the first n arriving vertices are identified with the set [n].

For i ≥ 1, when the ith vertex arrives, we begin round i. Round i involves three steps:
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(a) running a clustering algorithm on the vertex set [i] (itself involving several “phases”) which defines
the rank function ρi : [i]→ Z≥0 (described in Section 2.1),

(b) getting a virtual rank function νi from the actual rank function ρi (as in Section 2.3), and
(c) finally constructing the tree Ti given the virtual rank function (described in Section 2.2).

This concludes round i. We denoteRi to be the run of the clustering algorithm for round i; as mentioned
above it has several phases. Let opt([i]) denote the cost of the optimal Steiner tree on [i]. We want to
relate the cost of Ti to opt([i]).

For a vertex x ∈ [n] and subset S ⊆ [n], define d(x, S) := mins∈S d(x, s). Similarly, let d(S, T ) =
mins∈S d(s, T ). For radius r ≥ 0, define the ball B(x, r) = {y ∈ [n] | d(x, y) ≤ r}. For a set S ⊆ [n] and
radius r ≥ 0, let B(S, r) = ∪s∈SB(s, r) = {y | d(y, S) ≤ r}.

2.1 The Clustering Procedure

Let α be a universal constant ≥ 6. We assume that all inter-vertex distances are at least 2α, else we
can scale things up. The run Ri on vertex set [i] starts off with trivial clustering Ci(0) containing
i + 1 disjoint clusters {{0}, {1}, . . . , {i}}. At the beginning of phase t of Ri, we have a clustering
Ci(t− 1), which is a partition of [i], produced by phase t− 1. The invariant is that two distinct clusters
C,C ′ ∈ Ci(t− 1) have d(C,C ′) ≥ 2αt. (Since all distances are at least 2α, the clustering Ci(0) satisfies
this invariant for the first phase t = 1.) We start with the clusters in Ci(t−1), and while there exist two
clusters C and C ′ that satisfy d(C,C ′) < 2αt+1, we merge these two clusters into one (i.e., we remove
C and C ′ and add in C ∪ C ′). Note the resulting clustering, which we call Ci(t), satisfies minimum
inter-cluster distance 2αt+1 by construction. This defines clusterings Ci(t) for all t ∈ Z≥0.

For each cluster C ∈ Ci(t), define C’s leader as the vertex in C with the least index. Note that for
t = 0 each vertex is a leader, and as t gets very large, only the vertex 0 remains the leader. Let the
rank ρi(x) of vertex x ∈ [1 . . . i] be the largest t for which x is the leader of its cluster in Ci(t) (i.e., at
the end of phase t); define the rank of vertex 0 as ρi(0) :=∞. Finally, for a value j ≥ 0 and a function
f : [j]→ Z≥0, define its weight

Wtj(f) :=

j∑
l=1

αf(l). (2.1)

(Note the definition of Wtj(·) does not include the index 0 in the sum.)

2.1.1 Properties of the Ranks and Clusterings

We now prove some useful properties about ranks and clusterings: these are not needed for the algorithm,
only for the analysis.

Lemma 2.2 For any i ≥ 1, we have Wti(ρi) ≤ opt([i])
α−1 .

Proof. Recall the dual LP for the natural relaxation of the Steiner tree problem. We consider the
graph G = ([i],

(
[i]
2

)
), with the length of the edge (i, j) being d(i, j). The dual says:

max
∑
S

yS (DLPST )∑
S:|S∩{j,l}|=1

yS ≤ d(j, l) ∀j, l ∈ [i] (2.2)

yS ≥ 0.
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We shall define a feasible solution y such that
∑

S yS ≥Wti(ρi) · (α−1); by weak duality this will imply
that opt([i]) ≥ Wti(ρi) · (α − 1). Consider the clustering defined by the run Ri. For every t ≥ 0, and
every cluster C ∈ Ci(t) such that vertex 0 /∈ C, we define yC = αt(α − 1). For all other sets S, set
yS = 0.

To check feasibility, consider any edge (j, l), and let t be the last phase such that j and l lie in different
clusters in Ci(t). For all phases t′ ≤ t, we contribute 2αt

′
(α − 1) towards the left hand side of (2.2).

Moreover, d(j, l) ≥ 2αt+1, because they are in different clusters in Ci(t)). Hence, the LHS of (2.2) is∑t
t′=0 2αt

′
(α− 1) = 2(αt+1 − 1) ≤ d(j, l).

Now consider the objective function value
∑

C yC , which we claim is at least Wt(ρi) · (α − 1). Indeed,
consider the following map g from [1 . . . i] to ∪tCi(t): for vertex j ∈ [1 . . . i], let g(j) be the cluster in
Ci(ρi(j)) for which j is the leader. Since this is a 1-1 mapping,

∑
C

yC ≥
i∑

j=1

yg(j) =
i∑

j=1

αρi(j)(α− 1) = Wti(ρi) · (α− 1).

This proves the lemma.

The following lemma shows that if a set of vertices S is far from the rest of the vertices, then until a
high enough phase t, any cluster in Ci(t) will be a subset of S or of [i] \ S.

Lemma 2.3 Suppose S ⊆ [i] such that B(S, 2αt) ∩ [i] = S for some value t. Then for any phase
k ≤ t− 1 and any cluster C in Ci(k), either C ⊆ S or C ∩ S = ∅.

Proof. Proof by induction on the phases of runRi. For the base case, each cluster in Ci(0) is a singleton
and the claim holds. Now suppose for some phase k < t − 1, each C ∈ Ci(k) either lies within S or is
disjoint from it. Note that the assumption B(S, 2αt) ∩ [i] = S is same as saying d(S, [i] \ S) > 2αt. So,
if C,C ′ ∈ Ci(k) satisfy C ⊆ S and C ′ ∩ S = ∅, then d(C,C ′) > 2αt ≥ 2αk+1, and we will not merge
these two clusters in Ci(k + 1). Hence, the claim holds for phase k + 1 as well.

The clusterings produced by the runs Ri−1 on the set [i − 1], and Ri on [i] are closely related: the
clustering Ci−1(t) is a refinement of the clustering Ci(t), as the next lemma shows.

Lemma 2.4 For a cluster C ∈ Ci(t), exactly one of the following holds:

(a) vertex i 6∈ C: in this case C is also a cluster in Ci−1(t), or
(b) vertex i ∈ C: in this case C = {i} ∪ C1 ∪ C2 ∪ . . . ∪ Cp for some p ≥ 0 clusters C1, . . . , Cp ∈
Ci−1(t).

(In the latter case, note that p may equal 0, in which case C = {i}.)

Proof. The proof is again by induction on t. At t = 0, this is true because all clusters are singleton
elements. Suppose the claim of the lemma holds for some phase t ≥ 0. Let C1, . . . , Cl be the clusters in
Ci−1(t). By the induction hypothesis we can renumber these clusters in Ci−1(t) such that the clusters in
Ci(t) are {i}∪C1 ∪ . . .∪Cp, Cp+1, . . . , Cl for some p ≥ 0. We construct an auxiliary graph Gi−1(t) with
vertices corresponding to the clusters in Ci−1(t), and join two clusters Ci, Cj by an edge in Gi−1(t) if
d(Ci, Cj) ≤ 2αt+2. By the definition of the clustering process, the clustering Ci−1(t+ 1) is obtained by
taking the unions of the clusters in each connected component of Gi−1(t). We can define Gi(t) similarly,
and again, the clusters in Ci(t) correspond to connected components of Gi(t).

Now observe that if i, j > p, we have an edge between (Ci, Cj) in Gi(t) exactly when we have this edge
in Gi−1(t). And if i ≤ p, j > p, and we have the edge (Ci, Cj) ∈ Gi−1(t), then we have an edge between
Cj and {i} ∪ C1 ∪ C2 ∪ . . . ∪ Cp in Gi(t). The hypothesis for t+ 1 follows from these facts.
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Lemma 2.5 If j, l ∈ [i − 1] lie in a common cluster in Ci(t), then in run Ri−1 they lie in a common
cluster either in Ci−1(t) or in Ci−1(t+ 1).

Proof. Suppose j, l ∈ [i−1] lie in a common cluster in Ci(t), but belong to different clusters of Ci−1(t).
By Lemma 2.4, there are a set of clusters C1, . . . , Cp ∈ Ci−1(t) such that C = {i} ∪ C1 ∪ . . . ∪ Cp
is a cluster in Ci(t), and these two vertices j, l ∈ C. Consider a cluster Cq for 1 ≤ q ≤ p. We
claim that d(i, Cq) ≤ 2αt+1. Suppose not. The fact that Cq is a cluster in Ci−1(t) implies that
d(Cq, [i− 1] \Cq) ≥ 2αt+1. Then, d(Cq, [i] \Cq) ≥ 2αt+1 as well. But then, by Lemma 2.3, there cannot
be a cluster in Ci(t) containing a vertex from both Cq and [i] \ Cq, which contradicts the assumption
about the cluster C ∈ Ci(t). Now applying the triangle inequality, for any q, q′ ∈ [1 . . . p], the distance
d(Cq, Cq′) ≤ d(i, Cq) + d(i, Cq′) ≤ 4αt+1 ≤ 2αt+2. (Recall that α ≥ 2.) Consequently, we will merge Cq
and Cq′ in phase t + 1 of the run Ri−1. Indeed, all the vertices in C1 ∪ . . . ∪ Cq will lie in a common
cluster in Ci−1(t+ 1), which proves the lemma.

Corollary 2.6 (Ranks are Monotone) For j ∈ [i− 1], ρi(j) ≤ ρi−1(j) ≤ ρi(j) + 1. Hence the rank
of a vertex is non-increasing as a function of i.

Proof. If j is no longer the leader of its cluster in Ci−1(t) (because some l < j lies in its cluster), then
since Ci−1(t) is a refinement of Ci(t), l lies in j’s cluster in Ci(t) too. Hence ρi(j) ≤ ρi−1(j).

Now suppose j loses leadership of its cluster during phase t of Ri, i.e., ρi(j) = t− 1. So there exists a
vertex l < j which lies in the cluster of Ci(t) containing j. Lemma 2.5 says j, l must share a cluster in
Ci−1(t+ 1), making ρi−1(j) ≤ t+ 1.

Claim 2.7 (Initial Ranks) If the initial rank of vertex i (i.e., i’s rank in run Ri) is r, then the
distance d(i, [i− 1]) ∈ [2αr+1, 2αr+2).

Proof. Let j be the closest vertex in [i− 1] to i. Then if d(i, j) < 2αr+1, then i, j would be part of the
same cluster in Ci(r) and hence ρi(i) < r. Similarly, if d(i, j) ≥ 2αr+2, then Lemma 2.3 shows that i
would form a singleton cluster in Ci(r + 1) and hence ρi(i) ≥ r + 1.

2.2 The Tree-Building Process

In this section, we explain the second ingredient of our algorithm: given the rank function ρi, how to
build a tree Ti = ([n], Ei). In fact, we give a more general process that takes a function from a wider
class of “admissible” functions and produces a tree for such a function. We want the trees Ti and Ti−1
to look similar, so our tree-building procedure assumes access to Ti−1 when building tree Ti.

Recall that for a vertex j ≤ i, ρi(j) denotes its rank in the primal-dual process Ri. Moreover, define
Init(j) := ρj(j) to be the initial rank of j (when it arrived in round j); define Init(0) = ∞. We say
that a function β : [i] → Z≥0 is admissible if β(j) ∈ [ρi(j) . . . Init(j)] for all j ∈ [i]. (Thus the rank
function ρi is always admissible.) For a set S ⊆ [i], the head of S with respect to the function β is
defined to be the vertex j ∈ S with highest β(j) value (in case of ties, say, choose the lowest numbered
vertex among these to be the head). 1

A tree T = ([i], ET ) is defined to be valid with respect to β if we can partition the edge set ET into sets
E1
T , E

2
T , . . . , E

r
T such that the following two conditions are satisfied for each l ∈ [1 . . . r]:

(i) Let E≤lT denote E1
T ∪ · · · ∪ ElT . For any connected component of E≤lT , let j be the head of this

component. Then we require β(j) ≥ l.
(ii) Each edge in ElT has length at most 2αl+1.

1Since β(0) = ∞, the root vertex will always be the head of the component containing it.
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Lemma 2.8 Let T be any tree valid with respect to β. Then the total cost of T is at most 2 α3

α−1 ·Wti(β).

Proof. For any l ∈ [1 . . . r], there must be at least |ElT | + 1 connected components in E
≤(l−1)
T . The

cost of each edge in ElT can be charged to the heads of the components of E
≤(l−1)
T , except for the root

vertex 0. Each of these head vertices have β(j) values at least l − 1 by condition (i) of validity. Now
any vertex j 6= 0 is charged by some ElT only if l ≤ β(j) + 1, and since each edge in ElT has length at
most 2αl+1 (by condition (ii) of validity), the total charge to j is at most

β(j)+1∑
l=1

2αl+1 ≤ 2
α3

α− 1
· αβ(j).

Summing over j 6= 0 and using the definition of Wti(·) from (2.1) completes the proof.

We now prove a Lipschitz property of the β function: namely, if we decrement some coordinates of an
admissible function β to get another admissible function β′ at Hamming distance ‖β − β′‖H , then we
can change a tree T valid for β into a tree T ′ valid for β′ by making at most ‖β − β′‖H ≤ ‖β − β′‖1
swaps. (The Hamming distance ‖β − β′‖H is the number of locations j ∈ [i] such that β(j) 6= β′(j).)

Lemma 2.9 Let β be an admissible function and T = ([i], ET ) be a valid tree with partition (E1
T , . . . , E

r
T ).

Let j? ∈ [i], and suppose β′ satisfies β′(j) = β(j) if j 6= j?, and β′(j?) ≤ β(j?)− 1. Assume that β′ is
also admissible (i.e., ρi(j

?) ≤ β′(j?)). Then there is a valid tree T ′ = ([i], ET ′) with respect to β′ such
that |ET ′4ET | ≤ 2.

Proof. For brevity, let l? := β′(j?) + 1, and hence β(j?) ≥ l?. Let us define the tree T ′ as follows. For
values l ≤ l? − 1, define ElT ′ := ElT . Condition (ii) remains satisfied for these values of l since the edge
sets are unchanged; moreover, since l ≤ l? − 1 ⇒ l ≤ β′(j?), even if j? happened to be the head of a
component of E≤lT ′ , condition (i) would be satisfied.

Next, we initialize set El
?

T ′ to contain all the edges in El
?

T . It may however happen that j? was the head of

a connected component C in E≤l
?

T ′ ; since β′(j?) < l?, this component C would now violate condition (i).
In this case, we claim that there must be some vertex j /∈ C such that d(j, C) ≤ 2αl

?+1. Suppose not;
then Lemma 2.3 implies that there is a vertex v ∈ C such that ρi(v) ≥ l?, and so β′(v) ≥ l?. But then
j? cannot be the head of C, a contradiction. We now add an edge between the claimed j /∈ C and its
closest vertex in C, with the cost of this edge at most 2αl

?+1—this completes the description of El
?

T ′ .
Note that this satisfies condition (i), since the vertex j /∈ C belonged to a component whose head had
β value at least l?, and adding the edge between C and that component fixes the problem for C.

For l ≥ l?, we define the edge sets ElT ′ to inductively maintain the following invariants: (a) each

component of E≤lT ′ consists of union of some of the components of E≤lT , and (b) the vertex j? is not the

head of any component of E≤lT ′ . As a base case, this holds for l = l?. Suppose the invariants hold for

some l ≥ l?. We add all edges of El+1
T to El+1

T ′ , except for edges that connect two vertices in the same

component of E≤lT ′ . It is easy to check that the invariants continue to hold, and that the set of edges

El+1
T ′ satisfy conditions (i) and (ii) for validity with respect to β′: the main observation is that we are

not changing the connectivity structure of E≤l+1
T ′ by dropping these edges. Since we added at most one

new edge at level l?, we will drop at most one edge in this process. Hence the symmetric difference
between T and T ′ is at most 2, and the theorem follows.

We now show that a Lipschitz property also holds when adding a new vertex.

Lemma 2.10 Suppose T is a valid tree on [i] with respect to β. Consider a new function β′ : [i+ 1]→
Z≥0 defined thus: β′(j) := β(j) if j ≤ i, and β′(i + 1) := Init(i + 1). Then, there is a valid tree T ′

with respect to β′ such that |T ′4T | = 1. Moreover, if β was admissible, then so is β′.

8



Proof. Let l? denote Init(i + 1). We know that if j? ∈ [i] is the closest vertex to the new vertex
i + 1, then 2αl

?+1 < d(j?, i) ≤ 2αl
?+2 (Claim 2.7). For l 6= l? + 1, we set ElT ′ := ElT , and we define

El
?+1
T ′ := El

?+1
T ∪ {(j?, i+ 1)}. It is easy to verify that T ′ is valid with respect to β′.

Note that if β was admissible, then using the facts that the ranks of the vertices can never increase,
and that β′(i+ 1) = ρi+1(i+ 1), we get that β′ is admissible.

Observe that rank functions {ρi}i produced by the clustering procedure upon each arrival are always
admissible. Hence, starting from T ?i−1, we can add a single edge (from i to its closest vertex in [i− 1])
using Lemma 2.10, and then perform at most ‖ρi − ρi−1‖H edge swaps (using Lemma 2.9) to get
the tree T ?i valid with respect to ρi. This tree is constant competitive, because of Lemma 2.8 and
Lemma 2.2); moreover, the results in Section 3 will show that

∑n
i=1 ‖ρi − ρi−1‖1 ≤ O(n), which

gives us another constant-amortized-swaps algorithm. However, there may be rounds that perform
a non-constant number of swaps, so this does not give us our final result. To get both constant-
worst-case-swaps and constant competitiveness, we need another admissible function—the virtual rank
function—which we define next.

2.3 Defining the Virtual Rank Function

We now describe how to maintain an (admissible) virtual rank function νi for all rounds i. We will
ensure that νi and νi−1 only differ in a constant number K of coordinates—we can then use Lemmas 2.9
and 2.10 to construct a corresponding valid tree Ti which differs from Ti−1 only in a constant number
of edges. Furthermore, we need to keep the cost of Ti, which is ≈

∑
j>0 α

νi(j), as small as possible. A
natural way to obtain νi from νi−1 is to decrease the virtual rank of those K vertices for which νi−1(j)
values are highest (provided νi−1(j) is strictly larger than ρi(j)).

Motivated by this, we define a total ordering on pairs (j, k), where v is a vertex and k is an integer: we
say that (j, k) ≺ (j′, k′) if either k < k′, or else k = k′ and j < j′. We formally give the algorithm for
maintaining virtual ranks in the figure below.

Virtual Ranks :

1. Initially, we just have the root vertex 0. Define ν0(0) =∞.
2. For i = 1, 2, . . .

(i) Run the clustering algorithm Ri to define the rank function ρi.
(ii) Set νi(i) as Init(i).
(iii) Define Q(i) = {(j, k) | j ∈ [i− 1], k ∈ [ρi(j) . . . (νi−1(j)− 1)]}.
(iv) Let QK be the set of the K highest pairs (w.r.t. ≺) from Q.
(v) Define the first i− 1 coordinates of νi as follows:

νi(j) :=

{
νi−1(j) if (j, ?) /∈ QK

min{k | (j, k) ∈ QK} if (j, ?) ∈ QK

Figure 1: Algorithm maintaining virtual ranks; K = 2α2.

An important observation about the definition of νi: the setQK might contain both tuples (j, k+1), (j, k)
for some j ∈ [i] and k ≥ 0. This is wasteful, since when reducing the virtual rank of j to k, we don’t
need to explicitly reduce it to k+ 1 first. But it makes the analysis cleaner, and we pay a slightly larger
constant in the budget. We omit such optimizations for purposes of clarity.
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2.4 The Final Algorithm

The final constant-budget algorithm is the following. Initially, T0 is just the root vertex 0. Given a valid
tree Ti−1 with respect to the admissible virtual rank function νi−1, we obtain Ti as follows. We first run
the clustering algorithm to get ρi. Then we construct the virtual rank function νi as described in the
previous section, and finally construct a valid tree Ti with respect to νi. Lemma 2.10 and Lemma 2.9
imply that we can construct Ti from Ti−1 by adding one edge and swapping at most K edges. The
algorithm outputs Ti at the end of each round i.

3 Analysis

The constant number of swaps is enforced by the very definition of the virtual rank function, so it
remains show that for each i, the cost of the tree Ti is close to the cost of the optimal Steiner tree at
the end of round i, i.e., Wti(νi) ≈ Wti(ρi). One approach is to ensure the functions νi and ρi remain
close coordinate-wise close. We do not know how to ensure this, but we do achieve closeness in cost.

Let us first give an overview of the proof. The main problem is that on arrival of vertex (i+ 1), there
may be many vertices in [i] whose ranks decrease, i.e., ρi+1(j) = ρi(j)− 1. Since νi and νi+1 can differ
in only a constant number of locations, the virtual ranks now trail the actual ranks in many places.
And this could potentially happen repeatedly. Our first technical result is that such bad events cannot
happen in quick succession. We show that if rank of a vertex j decreases by at least 2 between two
rounds i and i′—i.e., ρi′(j) ≤ ρi(j)− 2—then many arrivals must have happened close to j after round
i. We charge the rank decrease of j to one such arrival after round i, and prove that this charging can
be done so that any arrival gets charged only a constant number of times. More formally, for every pair
(j, k) which denotes that the rank of vertex j ∈ [n] has fallen to k ∈ [(ρn(j)− 2) . . . (Init(j)− 1)], we
charge a vertex l that arrives after the rank of j drops to k; moreover, each vertex l gets charged only
K times. The proof of this charging lemma appears in Section 3.1.

How can we use this charging argument to define the νi function for each round i? As a thought
experiment, suppose we were allowed a small amount of look-ahead. Then we could proceed as follows :
suppose ρi(j) decreases by 1 in round i + 1, i.e., ρi+1(j) = ρi(j) − 1, and we know that the rank of j
will decrease by at least 1 more in future. If ρi(j) < νi(j), we add (j,ρi(j)) to a queue. In round i+ 1,
we pick any K pairs from the queue; if we pick (j, k), we decrease the virtual rank of j to k. Using the
above charging argument, we can show that following such a strategy means the functions νn and ρn
differ by at most two (additively) in each coordinate. And Lemma 2.8 then implies that the cost of our
tree is within a constant of the optimal Steiner tree on [n].

Unfortunately, we do not have the luxury of this look-ahead, and so we instead follow a greedy strat-
egy: in any round, among all the pairs (j, k) in the queue, we pick the ones with highest k (thereby
decreasing the cost of the tree by the maximum possible). By a careful matching-based argument given
in Section 3.2, we show that this strategy indeed works. We look at an arbitrary round n for rest of
the analysis—our goal is to compare the cost of the tree Tn constructed by our algorithm at the end of
round n, and the optimal cost opt([n]).

3.1 The Charging Argument

In this section, we describe the charging scheme, which charges every rank decrease of a vertex (except
the two most recent rank decreases for each vertex) to one of the subsequent arrivals, such that each
arrival is charged at most K = 2α2 times. Formally, we will prove the following result.

Theorem 3.1 Let L be the set of the (“not so recent”) rank decreases until this point, and defined as
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follows:

L :=
⋃
j∈[n]

{j(k) | k ∈ [ (ρn(j) + 2) . . . (Init(j)− 1) ]}

Then there is a map F : L→ [n] assigning the rank changes to rounds such that

(a) (constant budget) at most K = 2α2 rank changes from L map to any round i ∈ [n],
(b) (feasibility) if F (j(k)) = i, then j’s rank dropped to k at or before round i (i.e., ρi(j) ≤ k), and
(c) (monotonicity) if j(k), j(k−1) both lie in L, then F (j(k)) ≤ F (j(k−1)).

(Note that j(k) is a syntactic object, not j raised to the power of k.) The proof of this theorem is
by constructing a (b-)matching in a suitable bipartite graph. In Section 3.1.1, we give some technical
results which show that when the rank of a vertex decreases by at least two, then many new arrivals
will happen close to this vertex. In Section 3.1.2, we describe the bipartite graph, and use the technical
results to prove the existence of a fractional b-matching, and hence an integral b-matching, in this graph.

3.1.1 Disjoint Balls and Witnessing Rank Decreases

Consider a round i ∈ [n] and integer k ≥ 0. Let Aik be the set of vertices j ∈ [n] which satisfy one of
the following two conditions: either (i) j ∈ [i] and ρi(j) ≥ k, or (ii) j ∈ [n] \ [i] and Init(j) ≥ k. I.e.,
Aik has all those nodes that have arrived by round i and have rank at least k in that round, or will have
an initial rank at least k when they arrive in the future.

For vertex v ∈ [i], define κi,t(v) to be the cluster in Ci(t) containing v. We extend this definition to the
nodes arriving after round i by defining κi,t(v) for such a node v ∈ [n] \ [i] to be the singleton set {v}.

Lemma 3.2 For round i and rank k, the balls B(κi,k(j), α
k+1) for j ∈ Aik are disjoint.

Proof. Let j, l ∈ Aik. First assume that j, l ∈ [i]. Then the clusters in Ci(k) containing j and l
respectively are disjoint (because they both have rank at least k, by the definition of Aik), and hence
the distance between them is at least 2αk+1.

Now suppose at least one of j, l does not lie in [i], and say l arrives after j. The result follows directly
from Claim 2.7.

The next lemma says that for a vertex j with “high” rank k in some round such that its rank subsequently
falls below k, this decrease in rank is witnessed by arrivals close to j’s cluster, whose initial ranks
(collectively) are large.

Lemma 3.3 For round i and rank k, suppose j ∈ Aik. Moreover, suppose ρn(j) ≤ k − 2. Let X :=
{i+ 1, . . . , n} \ {j}, and let Y := X ∩B(κi,k(j), α

k+1) be the points in X that are within distance αk+1

of j’s component in Ci(k). Then, ∑
l∈Y

αInit(l) ≥ αk−2. (3.3)

Furthermore, for any vertex l ∈ Y , Init(l) ≤ k.

Proof. First consider the case when j ∈ [i], and hence X = [n] \ [i]. Let C represent j’s component
κi,k(j) in Ci(k). Since ρi(j) ≥ k, j is the leader of C, and hence it arrived before all other vertices in
C. For a set S and parameters b, b′, define the annulus B(S, b, b′) to be {l | d(l, S) ∈ (b, b′]}—note the
half-open interval in the definition. In case b ≥ b′, note that the annulus B(S, b, b′) is empty.

Observe that B(C, 0, 2αk+1)∩ [i] = ∅, just because if there were any other cluster within distance 2αk+1

of C, we would have merged C with this cluster during phase k of Ri. Let the vertices in Y—i.e., those
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which arrive after round i in B(C,αk+1) be l1, l2, . . . , ls. Let us use l0 to denote the vertex i. For an
index u ≤ s, let ∆u denote the cumulative value

∑u
u′=1 α

Init(lu′ ) (we define ∆0 as 0). Let l[u] denote
the set of vertices {l0, l1, . . . , lu}.

Claim 3.4 For all u ∈ [0 . . . s], the annulus B(C, 2α2∆u, α
k+1 − 2α2∆u) does not contain any vertex

from l[u].

Proof. The proof is by induction on u ∈ [0 . . . s]. The base case is when u = 0, where the claim follows
from B(C, 0, 2αk+1) ∩ [i] = ∅. Now suppose the claim is true for some u < s. The next vertex to arrive
after lu in B(C, 0, αk+1) is lu+1. By induction hypothesis, at the beginning of round lu+1, the annulus
B(C, 2α2∆u, α

k+1− 2α2∆u) is still empty. For a contradiction, suppose lu+1 lies in the smaller annulus
B(C, 2α2∆u+1, α

k+1 − 2α2∆u+1), then the ball of radius 2α2(∆u+1 −∆u) = 2α2+Init(lu+1) around lu+1

would be empty in round lu+1. But this contradicts Claim 2.7. This proves the claim for u + 1, and
hence for all u ∈ [0 . . . s].

Observe that the inequality (3.3) asks us to show that ∆s ≥ αk−2. For the sake of contradiction, suppose
∆s < αk−2. In this case Claim 3.4 says that the annulus B(C, 2αk, αk+1 − 2αk) is empty at the end
of round ls; since there are no further arrivals in B(C,αk+1), the annulus B(C, 2αk, αk+1 − 2αk) is also
empty after round n. Since α ≥ 6, this means that B(C, 2αk, 4αk) is empty. If C ′ denotes the ball
B(C, 2αk), the following two properties hold:

• The set C ′ does not contain any vertex from [i]\C. This is because B(C, 2αk+1) does not contain
any vertex from [i] \ C, proved in the base case of Claim 3.4. Moreover, since j was the leader of
the cluster C in round i, j is the earliest vertex in C ′ as well.
• B(C ′, 2αk) = C ′, just because the annulus B(C, 2αk, 4αk) was empty.

Using the latter property and applying Lemma 2.3 with set S set to C ′, and round i set to n, we infer
that j’s cluster κn,k−1(j) must be contained within C ′, and j is the leader of this cluster κn,k−1(j). But
this contradicts the assumption that ρn(j) ≤ k − 2.

To show that the initial ranks of l1, . . . , ls are at most k, observe that d(lj , C) ≤ αk+1 by the definition
of Y . Consequently, in Rlu , lu must share a cluster with at least one vertex of C in the clustering
Clu(k). Since all nodes in C are from [i] and arrive before lu, lu cannot be the leader of its component.
This completes the proof for the case j ∈ [i].

The other case is when j 6∈ [i]. Since j ∈ Aik, its initial rank Init(j) ≥ k. This means B(j, 2αk+1)
does not contain any vertex from [j] other than j itself—in other words, κj,k(j) = {j}. Now we can use
the same arguments as above, just starting from round j (since there are no arrivals in B({j}, 2αk+1)
during rounds i to j).

We can extend Lemma 3.3 to subsets of Aik as follows.

Corollary 3.5 For round i and integer k, let S ⊆ Aik. Moreover, for each j ∈ S, assume ρn(j) ≤ k−2.
Let X = [i+ 1 . . . n] \ S, and let Y := X ∩ (∪j∈SB(κi,k(j), α

k+1)). Then,∑
l∈Y

αInit(l) ≥ |S| · αk−2. (3.4)

Furthermore, for any vertex l ∈ Y , Init(l) ≤ k.

Proof. By Lemma 3.2, the balls B(κi,k(j), α
k+1) are disjoint, so we can define Yj as X∩B(κi,k(j), α

k+1)
for each j ∈ S, and apply Lemma 3.3 to each one of them separately.
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3.1.2 Constructing the Mapping F via a Matching

We construct a bipartite graph H = (L,R = [n], E). Here the set L is as described in the statement
of Theorem 3.1; i.e., they are of the form j(k) indicating that the rank of j fell to k at some round in
the past, and has subsequently fallen to k − 2 or lower by the end of round n. The nodes in R simply
represent arrivals [n]. The edge set E is constructed as follows: we have edge (j(k), i) if ρi(j) ≤ k. (Note
that this condition is same as the feasibility condition of the map F in Theorem 3.1). We say that edge
(j(k), i)’s rank is k.

Some notation: let Γ(v) denote the set of neighbors of a node v in L ∪ R, and E(v) denote the set of
edges incident to v. The main result of this section is the following:

Theorem 3.6 There exists an assignment of non-negative values {xe}e∈E to the edges of H such that

(a) for any node j(k) ∈ L,
∑

e∈E(j(k)) xe = 1, and

(b) for any node i ∈ R,
∑

e∈E(i) xe ≤ 2α2.

Moreover, if α is integer, these xe can be chosen to be in {0, 1}.

We first note how Theorem 3.6 implies Theorem 3.1.

Proof of Theorem 3.1: If xe = 1 for some edge e = (j(k), i), we define F (j(k)) = i. It is easy to check
that the mapping F satisfies the first two requirements of Theorem 3.1. It remains to ensure that F
satisfies the monotonicity property. Suppose F (j(k)) > F (j(k−1)) for some pair j, k. Then by swapping
the values of F (j(k)) and F (j(k−1)), we ensure that F (j(k)) ≤ F (j(k−1)); moreover, this swap preserves
the first two properties of F . We iteratively fix all such violations of the monotonicity property this
way. �

To prove Theorem 3.6, we partition the edges of H into subgraphs depending on their rank, and set
the xe values for each of these subgraphs independently. Specifically, for k ≥ 0, define the bipartite
graphs Hk = (Lk, Rk, Ek) where Lk = {j ∈ [n] | j(k) ∈ L}, and Rk = {i ∈ [n] | Init(i) ≤ k}. For an
edge (j(k), i) ∈ E: if Init(i) ≤ k then we get a corresponding edge (j, i) ∈ Ek, else this edge is simply
dropped. We now prove the following stronger lemma about each Hk.

Lemma 3.7 For each k, there exists an assignment of non-negative values {xe}e∈Ek to the edges of Hk

such that

(a) for any node j ∈ Lk, if Ek(j) is the set of edges incident to j,
∑

e∈Ek(j) xe = 1, and
(b) for any node i ∈ Rk,

∑
e∈Ek(i)

xe ≤
α2+Init(i)

αk
. (3.5)

Proof. The proof is constructive. We start with xe = 0 for all e ∈ Ek. For each right node i ∈ Rk,
define its initial potential Φk(i) = α2+Init(i)

αk
; this potential will measure how much xe value can be

assigned in the future to edges in Ek(i). Moreover, recall that i ∈ Rk ⇐⇒ Init(i) ≤ k.

For a vertex j ∈ Lk, let Roundk(j) be the first round in which rank of j becomes k—i.e., Roundk(j) =
min{i | ρi(j) = k}. Order the vertices in Lk in non-increasing order of their Roundk(j) values—let this
ordering be j1, . . . , js. Hence j1 is the last vertex to achieve rank k, and js is the first vertex to do so.
The algorithm in Figure 3.1.2 greedily sets the xe values of the edges incident to the vertices in this
order.

Observe that if the algorithm terminates successfully, we have an assignment of xe values satisfying
properties (a) and (b). Indeed, property (a) is guaranteed by property (i) of the algorithm, and the
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Algorithm Fractional-Matching(Hk) :

Let j1, j2, . . . , js be the vertices in Lk in non-increasing order of Round(·).
For u = 1, . . . , s

Find values of xe for edges e ∈ Ek(ju) such that
(i)
∑

e∈E(ju)
xe = 1, and

(ii) if e ∈ Ek(ju) has right end-point i in Rk, then xe ≤ Φk(i).
For each (ju, i) ∈ Ek(ju), decrease Φk(i) by xe.

Figure 2: The fractional matching algorithm for a fixed value of k

inequality (3.5) follows from the fact that the potential Φk(i) captures exactly how much the xe values
can be decreased without violating (3.5), and these potentials never become negative. So it suffices to
show that for any vertex ju ∈ Lk, the algorithm can find values {xe}e∈Ek(ju) satisfying properties (i)
and (ii) during iteration u.

The proof is by induction on u. Suppose the algorithm has successfully completed the steps for
j1, . . . , ju−1, and we are considering ju. Consider Roundk(ju), the round in which rank of ju first
becomes k. For the sake of brevity, let r? := Roundk(ju). Consider any node jp with p ≤ u: such a node
is either ju itself, or it has already been processed by the algorithm. There are two cases:

• Case I: jp ≤ r?; i.e., jp arrived at or before the round in which ju attained rank k. Since p ≤ u,
our choice of the ordering on nodes of Lk ensures that jp itself attains rank k in or after this round
r?. Hence its rank in round r? must be at least k, and hence jp ∈ Ar?k. 2

• Case II: jp > r?; i.e., in the round where ju attained rank k, jp has not arrived at all. However,
we know jp eventually attains rank k, so its initial rank Init(jp) is at least k. Consequently,
jp ∈ Ar?k in this case as well.

Look at the set S = {j1, j2, . . . , ju} ⊆ Ar?k. By the construction of the graph H, the final rank of
each node in Lk is at most k − 2. Now Corollary 3.5 implies the existence of the set Y of vertices with∑

l∈Y α
Init(l) ≥ u·αk−2. Moreover, it ensures that each vertex l ∈ Y has Init(l) ≤ k, and hence belongs

to Rk. Finally, this set Y ⊆ [r?+ 1 . . . n], and so ju has edges to all these nodes in Y ⊆ Rk—this follows

from the observation that ju achieved rank k in round r?, and hence edges (j
(k)
u , i) were added to E for

all i ≥ r?. Combining all these facts, we infer that the initial potential of nodes in the neighborhood of
ju in the graph Hk is at least ∑

l∈Y

α2+Init(l)

αk
≥ u · αk−2 · α2

αk
≥ u.

Since each preceding jp results in a unit decrease in potential, the total decrease in the potential of
these nodes in Y in previous steps is at most u−1. Hence, in iteration u, the remaining potential of the
neighbors of ju must be at least 1, which means the algorithm can always define the xe values satisfying
properties (i) and (ii).

Finally, we use Lemma 3.7 to complete the proof of Theorem 3.6.

Proof of Theorem 3.6: Given the graph H = (L,R,E), each rank-k edge (j(k), i) ∈ E either gives rise
to an edge (j, i) ∈ Hk, or is ignored. Independently apply Lemma 3.7 to each Hk to get an assignment
of xe to each edge in ∪Ek, and let each edge in E inherit the xe value of its corresponding edge in ∪Ek.
(If there is no such corresponding edge, set xe = 0.) Since each node j(k) corresponds to exactly one
node j ∈ Lk, Lemma 3.7(a) implies Theorem 3.6(a).

2Recall that Aik was defined immediately after Lemma 2.3.
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Now for the fractional degrees of nodes on the right. For each node i ∈ R, note that this node i ∈ Rk
only if Init(i) ≤ k. All edges incident to i that do not belong to any of these graphs have xe = 0.
Hence, adding (3.5) for all values k ≥ Init(i), we get

∑
e∈E(i)

xe =
∑

k≥Init(i)

∑
e∈Ek(i)

xe ≤ α2(1 + 1/α+ 1/α2 + · · · ) =
α3

α− 1
≤ 2α2.

The last inequality uses the fact that α ≥ 2. Finally, the statement about {0, 1} xe values follows from
the integrality of the b-matching polytope. �

3.2 Bounding the Cost

We now show that for any n ≥ 0, the cost of a valid tree with respect to the virtual rank function νn
is within a constant of opt([n]). Recall the weight function Wtn(·) defined in (2.1).

Theorem 3.8 For any round n ≥ 0, Wtn(νn) ≤ α2 ·Wt(ρn).

Before we prove this theorem, we use it to prove Theorem 2.1

Proof of Theorem 2.1: Let Tn be the valid tree with respect to νn constructed by our algorithm.
The result follows from the following inequalities :

cost(Tn)
Lemma 2.8
≤ 2α3

α− 1
·Wtn(νn)

Theorem 3.8
≤ 2α5

α− 1
·Wtn(ρn)

Lemma 2.2
≤ 2α5

(α− 1)2
· opt([n]).

�

We now complete the proof of Theorem 3.8.

Proof of Theorem 3.8: Consider the last round i? ≤ n such that, at the end of round i?, we had
νi?(j) = ρi?(j) for all j ∈ [i?]—the most recent round after which we had no more pending rank
reductions. (There exists such an i?, since this property is satisfied at the end of rounds 0 and 1.) This
means that at the end of round i?, the tree Ti? was valid with respect to the rank function ρi? , and
not just the virtual rank function νi? . Moreover, in every round i ∈ [(i? + 1), . . . , n], the algorithm
must have done K rank reductions. Indeed, if νi−1(j) > ρi(j) for some round i and vertex j ∈ [i− 1],
then we add the pair (j,ρi(j)) to the set Q(i) in the algorithm for defining virtual ranks (Figure 2.3).
Hence, if the algorithm does less than K rank reductions in some round i > i?, then |Q(i)| ≤ K, and
νi(j) = ρi(j) at the end of round i. But this would contradict the definition of i?.

What rank reductions was the algorithm doing (or trying to do)? These are represented by the set

X := ∪j∈[n]{j(k) | k ∈ [ρn(j) . . . (ρmax(i?,j)(j)− 1)]} .

Indeed, at each round i ∈ [(i?+ 1) . . . n], the algorithm does K of the swaps in this set. So now consider
a bipartite graph H ′, where the vertices on the left are X, and there are K vertices i1, i2, . . . , iK on
the right for every round i ∈ [(i? + 1) . . . n]. Put an edge between j(k) and a unique copy of i if the
algorithm reduced j’s virtual rank to k in round i. This gives us a matching MA; since the algorithm
does K swaps each round, each node on the right is matched.

Recall Theorem 3.1, and the definitions of set L and the map F : L→ [n]. Note that X 6⊆ L in general,
since L does not contain j(ρn(j)) and j(ρn(j)+1) for each j. However, X ⊆ L∪{j(ρn(j)), j(ρn(j)+1) | j ∈ [n]}.
The map F clearly maps X ∩ L to [n]; we claim F maps X ∩ L to [(i? + 1) . . . n]. To see this, consider
j(k) ∈ X ∩L: j achieves rank ρi?(j)− 1 only in round i? + 1 or later, and hence the feasibility property
of F says that F (j) ≥ i? + 1, which proves our claim. Hence, we can think of F as giving another
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matching MF on the bipartite graph H ′ defined above: if F (j(k)) = i, then we add an edge between
j(k) and a distinct one of the K copies of i; we need at most K copies due to the “constant budget”
property of F . Furthermore, MF matches every vertex in X ∩ L to some vertex on the right.

Given these two matchings, MA capturing the algorithm’s behavior, MF encoding the “suggested sched-
ule” given by the mapping F , it is natural to consider their symmetric difference MA4MF , which
consists of paths and cycles and argue about these. It will be convenient to introduce one last piece of
notation. For an edge e = (j(k), is) ∈ MF ∪MA, where is is one of the K copies of i, we associate the
quantity deficit(e) := αk+1−αk. Since we think of (j(k), is) as reducing the rank of j from k+ 1 to k
in round i, and so deficit(e) intuitively denotes the reduction in the total cost by this rank reduction
in round i. The following easy-to-prove claims make this intuition formal.

Claim 3.9 For the matching MA,

Wtn(νn) ≤Wtn(νi?) +
n∑

i=i?+1

αInit(i) −
∑
e∈MA

deficit(e),

whereas for the matching MF ,

α2 ·Wtn(ρn) ≥Wtn(ρi?) +
n∑

i=i?+1

αInit(i) −
∑
e∈MF

deficit(e).

Proof. We argue about MA first. Consider a round i ≥ i? + 1, and let the neighbors of the K copies of

i (in the matching MA) be j
(r1)
1 , . . . , j

(rK)
K . Then, νi(ju) = ru, and we must have had νi−1(ju) ≥ ru + 1,

for all u = 1, . . . ,K. In the matching MA, each of the vertices ju will be matched to a unique copy of
i, say it is iu. Furthermore, one new arrival (vertex i) happens during round i. Therefore,

Wti−1(νi−1)−Wti(νi) =

K∑
u=1

(
ανi−1(ju) − ανi(ju)

)
− αInit(i)

≥
K∑
u=1

deficit((j(ru)u , iu))− αInit(i)

Summing the above for all i = i?+1, . . . , n gives us the result for MA. Now consider MF . For any vertex
j, let i0 denote max(j, i?). Then matching MF matches all the vertices in {j(ρi0 (j)−1), . . . , j(ρn(j)+2)}
(which is empty if ρi0(j)− 1 < ρn(j) + 2). The sum of the deficit of all these edges is exactly αρi0 (j) −
αρn(j)+2. Summing this over all j gives us the second part of the lemma.

Lemma 3.10
∑

e∈MA
deficit(e) ≥

∑
e∈MF

deficit(e).

Proof. Recall that the bipartite graph H ′ has vertices from X on the left and [(i?+1) . . . n]×K on the
right. Also MA completely matches the vertices on the right of H ′. The symmetric difference MA4MF

of the two matchings consists of paths and cycles. Any cycle means that the total deficit of the edges
from MA and MF in it are equal. What about a path? Since MA matches every vertex on the right,
we know that any path is either of odd length (ending with MA-edges), or of even length with both the
end-points being on the left. In the former case, the total deficit of edges from MA in this path is at
least that of edges from MF . So the remaining case is when the path P consists of an equal number of
(alternating) edges from MF and MA, and the end-points of P lie on the left side of H ′.

Let the vertices from the left side of the bipartite graph in this even path P be x0, x1, x2, . . . , xs (in

order of their appearance in P ). Each xu is of the form j
(ku)
u , and let us define val(xj) := kj . Assume
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w.l.o.g. that x0 is matched by MF (and unmatched in MA) and xs is matched by MA (and unmatched
in MF ). Since x1, . . . , xs−1 are matched in both MA and MF ,∑

e∈P∩MA

deficit(e)−
∑

e∈P∩MF

deficit(e) =
(
αks+1 − αks

)
−
(
αk0+1 − αk0

)
. (3.6)

Thus, we will be done if we show that ks ≥ k0; i.e., val(xs) ≥ val(x0). We prove this next.

For any matching M and node u that is matched in M , let M(u) be the other endpoint of the matching
edge containing u. Let I be the right vertices (arrivals) on the path P , say I = {i1 ≤ i2 ≤ . . . ≤ is}.
They may appear in any order on the path, this ordering is just based on arrivals. For u ∈ {0, 1, . . . , s},
let Iu = {i1, i2, . . . , iu}; hence I0 = ∅ and Is = I. Define an auxiliary graph Qu on the vertex set
{x0, x1, . . . , xs}, by adding an edge between MF (i) and MA(i) for each i ∈ Iu. Hence Q0 has no edges,
and Qs is the path 〈x0, x1, . . . , xs〉. It is to see that each component of Qu is a path with a “head”
vertex which is the least indexed one and which is not yet matched to anyone in Iu by MA, and a “tail”
which has the highest index and is not matched to anyone in Iu by MF . As a sanity check, in Q0, each
node is both head and tail of its component. In Qs, there is a single path with x0 as the head and xs
as the tail. We now prove the following lemma by induction on u.

Claim 3.11 For each u ∈ {0, 1, . . . , s} and each component of Qu, value of the tail of this component
is at least that of its head.

Proof. The base case is trivially true. Now suppose the claim is true for Qu−1, and we get Qu by adding
an edge between MF (iu) = xa and MA(iu) = xa+1. It must be that xa is the tail of its component with,
say, xp as the head. And xa+1 is the head of its component, say xq is the tail. By the I.H.,

val(xq) ≥ val(xa+1). (3.7)

Moreover, when the algorithm was choosing the rank reductions to perform at round iu, both xp and
xa+1 were candidates to be matched. Since we chose xa+1 greedily to have maximum value, we have
val(xa+1) ≥ val(xp). Combining with (3.7), we get val(xq) ≥ val(xp). Since the new component has
head xp and tail xq, this proves the inductive step and hence Claim 3.11.

Applying Claim 3.11 for u = s, we get val(xs) ≥ val(x0), and hence the total deficit of edges in
P ∩ MA is at least that of edges in P ∩ MF by (3.6). Summing this over all alternating paths in
MA4Mf completes the proof of Lemma 3.10.

By the definition of i?, we know that Wtn(νi?) = Wtn(ρi?). Moreover, we have
∑

e∈MA
deficit(e) ≥∑

e∈MF
deficit(e) by Lemma 3.10. Plugging these into Claim 3.9, we get that

Wtn(νn) ≤Wtn(νi?) +
n∑

i=i?+1

αInit(i) −
∑
e∈MA

deficit(e)

≤Wtn(ρi?) +

n∑
i=i?+1

αInit(i) −
∑
e∈MF

deficit(e)

≤ α2 ·Wtn(ρn).

This completes the proof of Theorem 3.8 (and of Theorem 2.1). �
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4 Just One Swap

In the previous section, we proved a weaker version (Theorem 2.1) of our main theorem (Theorem 1.1):
using a constant number K = 2α2 of swaps per arrival, we could maintain a tree Tn with cost at
most some other constant C = 2α5

α−1 times the optimum tree opt([n]). We now show how to trade
off the number of swaps for the approximation guarantee, and get a constant-factor approximation
while performing at most a single swap per iteration. It is unclear how to convert a generic algorithm
that performs K swaps and maintains a C-approximate tree into one that performs a single swap and
maintains a f(C,K)-approximation—this is another place where our dual-based proof strategy comes
handy, since it allows us to perform such a conversion.

To understand the new ideas, recall the previous algorithm/analysis used the following conceptual steps:

1. We show that all but the two most recent rank decreases for each vertex can be scheduled so that
at most K changes are performed at each step. (Theorem 3.1.)

2. The algorithm takes the set of all the rank changes that have not yet been performed (i.e., the
set Q(i) = {(j, k) | j ∈ [i − 1], k ∈ [ρi(j) . . . (νi−1(j) − 1)]} where the virtual rank function νi−1
lags behind the real rank function ρi, and greedily chooses K of the most beneficial changes to
perform. (This defines νi, and is described in Section 2.3.)

3. Finally, we show (in Theorem 3.8) that this greedy process ensures the potential function Wt(νi) ≤
α2Wt(ρi), and hence the cost of our tree is not much more than that of the optimal tree.

The main change to get a single-swap algorithm is this: suppose we don’t try to schedule all the
not-so-recent rank changes (as in Step 1 above), but only some subset of the rank changes, such that
two successive rank changes in this set for any vertex differ by approximately K. Since we are then
scheduling approximately 1/K as many rank decreases as in Theorem 3.1, we can get a version of
that theorem with at most one rank change being mapped to each time step. Now we can change the
algorithm (in Step 2 above) to greedily choose the single most beneficial rank change and perform it.
The rest of the argument would follow pretty much unchanged. Since the virtual rank functions lags
the real rank functions on average by an additive K, the corresponding tree is now αO(K)-approximate
instead of being αO(1)-approximate. Since K is a constant, we prove Theorem 1.1.

In the rest of the section, we first prove an analog of Theorem 3.1, describe the modified algorithm to
define the virtual ranks νi(), and finally describe the changes in the rest of the arguments due to these
changes.

4.1 A Modified Charging Theorem

Our new algorithm will be interested in those values of ranks of a particular vertex which are separated by
multiples of K. Motivated by this, we define, for a vertex j, the set Z(j,K) as {Init(j)− lK | l ∈ Z≥0}.
Recall the set L from Theorem 3.1, and define L′, the sparsified version of L, as follows:

L′ :=
⋃
j∈[n]

{j(k) | k ∈ Z(j,K) ∩ [ (ρn(j) +K + 1) . . . (Init(j)−K) ]} (4.8)

(Again, note that j(k) is a syntactic object, not j raised to the power of k.)

Theorem 4.1 There is a map F ′ : L′ → [n] assigning the rank changes to rounds such that

(a) (unit budget) at most one rank change from L′ maps to any round i ∈ [n],
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(b) (feasibility) if F ′(j(k)) = i, then j’s rank dropped to k at or before round i (i.e., ρi(j) ≤ k),
and

(c) (monotonicity) if j(k), j(k−K) both lie in L′, then F ′(j(k)) ≤ F ′(j(k−K)).

Proof. For each element j(k) ∈ L′, consider the set S(j(k)) := {j(k), j(k−1), . . . , j(k−K+1)} of size K. By
the definition of L′, these sets for different elements of L′ are disjoint; moreover, each set S(j(k)) is a
subset of the set L (as defined in Theorem 3.1). Now consider the map F : L→ [n] given by Theorem 3.1:
this can be viewed as a bipartite graph between L and [n] where all nodes in L have unit degree and
nodes in [n] have degree at most K. We delete the nodes in L not belonging to ∪j(k)∈L′S(j(k)), and

contract nodes in each S(j(k)) for j(k) ∈ L′ into a single “supernode”. The resulting bipartite graph has
left-degree exactly K, and the right degree at most K—and by Hall’s theorem, has a matching where
every supernode on the left is matched. This immediately gives us the map F ′: if the edge out of the
supernode for S(j(k)) goes to i ∈ [n], we set F ′(j(k)) := i.

Property (a) follows from construction. For property (b), observe that the edge from S(j(k)) to i
in the contracted graph is inherited from the fact that F (j(k−c)) = i for some c ∈ [0 . . .K − 1]; by
Theorem 3.1(b), this means ρi(j) ≤ k − c and hence at most k. Finally, the monotonicity of F ′ follows
from that of F .

4.2 Modified Procedure to define Virtual Ranks Function

We now describe the modified algorithm to maintain the virtual ranks. This will be similar to the
algorithm in Figure 2.3, except that the virtual ranks, for a vertex j, will take values in Z(j,K) only.
The modified algorithm is described in Figure 3. It is similar to our earlier algorithm, except that we
improve the virtual rank values in multiples of K only. It is easy to check that for any vertex j ∈ [i],
νi(j) lies in Z(j,K).

Virtual Modified-Ranks :

1. Initially, we just have the root vertex 0. Define ν0(0) =∞.
2. For i = 1, 2, . . .

(i) Run the clustering algorithm Ri to define the rank function ρi.
(ii) Set νi(i) as Init(i).
(iii) Define Q(i) = {(j, k) | j ∈ [i− 1], k ∈ [ρi(j) . . . (νi−1(j)− 1)] ∩ Z(j,K)}.
(iv) Let QK be the set of the K highest pairs (w.r.t. ≺) from Q.
(v) Define the first i− 1 coordinates of νi as follows:

νi(j) :=

{
νi−1(j) if (j, ?) /∈ QK

min{k | (j, k) ∈ QK} if (j, ?) ∈ QK

Figure 3: Modified algo. for virtual ranks; K = 2α2.

4.3 Modified Version of Theorem 3.8

We now prove the analogue of Theorem 3.8.

Theorem 4.2 Using the new definition of νn, for any round n ≥ 0, Wtn(νn) ≤ α2K+1 ·Wt(ρn).

Proof. The proof proceeds along the same lines as that of Theorem 3.8. We point out the main
modifications to the proof of Theorem 3.8. For a vertex j and non-negative integer k ≤ Init(j), define
dkej,K as the smallest element of Z(j,K) which is at least k. For a round i and rank vector ρi, define
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the rounded rank vector dρie as follows : for each j ∈ [i], dρie(j) := dρi(j)ej,K . Since νi(j) values lie
in Z(j,K), it is easy to check that for any round i, νi is component-wise at least dρie. The round i?

is defined as the last round i in which νi = dρie. Again, it is easy to check that we will do one rank
update in every round after i?.

The set X is now defined as

X := ∪j∈[n]{j(k) | k ∈ Z(j, k) ∩ [ρn(j) . . . (ρmax(i?,j)(j)− 1)]} .

In the bipartite graph H ′, we need to keep just one copy for each round. In the matching MA′ , we
have an edge between j(k) and i if our algorithm set νi(j) to k in round i. As before, MA′ matches all
vertices on the right of H ′ (which represent rounds i?, . . . , n). We can define the matching MF ′ using
the mapping F ′ given by Theorem 4.1. One can again check that F ′ maps X ∩L′ to [(i? + 1) . . . n]. We
have an edge (j(k), i) in the matching MF ′ if F ′(j(k)) = i.

We look at the symmetric difference of the two matchings : MF ′4MA′ . For an edge e = (j(k), i) ∈
MF ′ ∪MA′ , define deficit(e) as αk+K − αk. We can now show the following analogue of Claim 3.9
holds. For the matching MA′ ,

Wtn(νn) ≤Wtn(νi?) +
n∑

i=i?+1

αInit(i) −
∑
e∈MA

deficit(e), (4.9)

whereas for the matching MF ′ ,

αK+1 ·Wtn(dρne) ≥Wtn(dρi?e) +
n∑

i=i?+1

αInit(i) −
∑
e∈MF

deficit(e). (4.10)

The proof of Lemma 3.10 carries over without any changes (using the modified definition of deficit(e)).
So, combining inequalities (4.9) and (4.10), we get

Wtn(νn) ≤ αK+1 ·Wtn(dρne).

But the vectors ρn and dρne differ by at most K in each coordinate. Hence, Wtn(dρne) ≤ αKWtn(ρn).
This proves the theorem.

Proceeding as in the proof of Theorem 2.1, we get

cost(Tn) ≤ 2α2K+4

(α− 1)2
· opt([n]).

This proves Theorem 1.1.

In fact, we can prove a stronger version of Theorem 1.1.

Theorem 4.3 Given a parameter δ, 0 < δ ≤ 1, there is an online 2O( 1
δ
)-competitive algorithm for

metric Steiner tree which performs at most one swap upon each arrival, and at most δ swaps on each
arrival in the amortized sense.

Proof. We give a sketch of the proof. Assume without loss of generality that 1
δ is an integer. The main

idea is again to strengthen Theorem 3.1. We were able to get a stronger version of this theorem, i.e.,
Theorem 4.1, by grouping vertices of L into groups of K.

Let K ′ denote K
δ . Define

L′′ :=
⋃
j∈[n]

{j(k) | k ∈ Z(j,K ′) ∩ [ (ρn(j) +K ′ + 1) . . . (Init(j)−K ′) ]}.
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Let [n]δ denote those elements of [n] which are multiples of 1
δ . We can now generalize Theorem 4.1

even further to show that there exists a map F ′′ : L′′ → [n]δ such that

(a) (unit budget) at most one rank change from L′′ maps to any round i ∈ [n]δ,
(b) (feasibility) if F ′′(j(k)) = i, then j’s rank dropped to k at or before round i (i.e., ρi(j) ≤ k),
(c) (monotonicity) if j(k), j(k−K

′) both lie in L′, then F ′′(j(k)) ≤ F ′′(j(k−K′)).
The proof again follows that of Theorem 4.1, where we now group vertices of L into groups of size K ′

and those of [n] into groups of size 1
δ . Our online algorithm is same as that in Figure 3, with K replaced

by K ′. Moreover, we perform the steps of this algorithm only for those rounds i which are multiples of
1
δ (i.e., in Step 2, if i is not a multiple of 1

δ , then we just perform steps 2(i) and 2(ii)). The proof now
proceeds as in that of Theorem 1.1.

5 A Tight Amortized Analysis

In this section, we analyze the following greedy algorithm of Imase and Waxman [IW91]. Given a
parameter ε > 0, their algorithm, which we call B1+ε, works as follows. It maintains a tree connecting
all the demands which have arrived so far. Let Ti be the constructed by the algorithm for vertices in
[i]. When the vertex i+ 1 arrives, it first connects i+ 1 to the closest vertex in [i]. Moreover, whenever
there is an edge e in the current tree and a non-tree edge f such that len(e) > (1+ε) len(f) and T +f−e
is also a (spanning) tree, we swap the edges e and f , i.e., we add f and remove e from the current tree.
We get the tree Ti+1 when this swapping process ends. It is immediate from the construction that the
spanning tree maintained has weight within a factor (1 + ε) of the best spanning tree. The goal is to
show that for any n and constant ε, the number of swaps made in the first n steps is O(n). Clearly, we
cannot hope for a better result, because there are simple examples showing that the arrival of a single
vertex might cause Ω(n) swaps.

Recently, Megow et al. [MSVW12] showed that a close variant of this algorithm (which “froze” edges
when they had a very small length and did not perform any swaps with them) performed at most
O(n/ε log 1/ε) swaps. In this section, we prove Theorem 1.2 and show that the algorithm B1+ε (without
additional freezing operations) performs only O(n/ε) swaps (and at most 2n swaps for ε = 1).

5.1 An Improved Bound for All-Swaps

Let T ? = {e1, . . . , en} be a minimal spanning tree on [n]. Suppose the greedy edges that we add for
vertices 1, . . . , n are respectively g◦1, . . . , g

◦
n. An edge in the final tree Tn is obtained by a sequence of

swaps starting from one of the greedy edges g◦r , for some unique r. Thus, we can define a bijection
between the edges in the final tree Tn, denoted by gf1 , . . . , g

f
n, such that for any r, gfr is obtained by a

sequence of swaps starting from g◦r . In this section, we denote the length of an edge e by c(e). Since
each swap replaces an edge by another that is a factor (1 + ε) shorter, an upper bound on the total
number of swaps performed is

log1+ε
c(g◦1)

c(gf1 )
+ · · ·+ log1+ε

c(g◦n)

c(gfn)
= log1+ε

∏n
i=1 c(g

◦
i )∏n

i=1 c(g
f
i )

(5.11)

Theorem 5.1 The quantity
∏n
i=1 c(g

◦
i )/
∏n
i=1 c(g

f
i ) is bounded by 4n. Hence the algorithm B1+ε per-

forms at most n(log1+ε 4) ∈ O(n/ε), and B2 performs at most 2n swaps.

This result improves on the result of [MSVW12] who gave a bound of O(nε log 1
ε ) on the number of

swaps for their freezing-based variant of B1+ε. In Section 5.2, we will show an example for which one
needs at least 1.25n swaps. Now, to prove Theorem 5.1, let us give a lower bound on

∏n
i=1 c(g

f
i ).
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Lemma 5.2
∏n
i=1 c(g

f
i ) ≥

∏n
i=1 c(ei).

Proof. By well-known properties of spanning trees (and matroids), there exists a bijection ψ between
the edges of T ? and Tn such that for all edges e ∈ T ?, the graph {T ? ∪ψ(e)} \ e is a tree [Sch03, Corol-
lary 39.12a]. Since T ? was chosen to have minimal total cost, c(e) ≤ c(ψ(e)). Therefore

∏n
i=1 c(ei) ≤∏n

i=1 c(ψ(ei)) =
∏n
i=1 c(g

f
i ).

In light of this claim, proving Theorem 5.1 reduces to showing the following lemma.

Lemma 5.3
∏n
i=1 c(g

◦
i ) ≤ 4n ·

∏n
i=1 c(ei).

The proof of this lemma will occupy most of the rest of this section. It is based on a few useful but
simple facts, which we prove next.

Lemma 5.4 There exists a function f : N→ R such that

(i) f(1) = 1, and for all ` ∈ N, f(`) ≥ 1

(ii) For all ` ∈ N,
`−1∑
i=1

f(`)

f(i) · f(`− i)
≤ 4.

The proof of this lemma is based on an unedifying calculation, and is deferred to Section 5.1.1. Note
that the constant 4 in Lemma 5.4 is the same constant 4 that appears in Lemma 5.3; if one is satisfied
with a worse constant, one could use f(`) = `2, for which a bound of 4

3π
2 is easy to prove.

Lemma 5.5 Consider a tree T with ` nodes, and a path P on this tree consisting of edges h1, . . . , hk
in order. For any edge e ∈ T , let `e and `′e denote the number of vertices in the two trees formed by
deleting e. Then there exists some edge h ∈ P such that

c(P )

c(h)
≤ 4

f(`h) · f(`′h)

f(`)
, (5.12)

where f(·) is the function from Lemma 5.4.

Proof. Suppose otherwise; then for all i,

c(hi) <
c(P )

4

f(`)

f(`hi)f(`′hi)
.

Hence,

c(P ) =

k∑
i=1

c(hi) <

k∑
i=1

c(P )

4
· f(`)

f(`hi) · f(`′hi)
≤ c(P )

4

`−1∑
j=1

f(`)

f(j) · f(`− j)
≤ c(P ),

which is a contradiction. (The third inequality just contains more non-negative terms than the second
one, and the last inequality used Lemma 5.4.)

Definition 5.6 For 1 ≤ i ≤ n, let ∆i be the smallest number such that there exists a partition of [n]
into i parts, such that the induced subgraph for each part has diameter at most ∆i.

Lemma 5.7 For 1 ≤ i ≤ n, suppose that hi is the i-th largest greedy edge, so that h1, . . . , hn is a
permutation of g◦1, . . . , g

◦
n and h1 ≥ · · · ≥ hn. Then c(hi) ≤ ∆i.
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Proof. For all 1 ≤ i ≤ n, let xi be the vertex associated with hi’s arrival, and define x0 = 0. Then
any edge in the subgraph induced by {x0, x1, . . . , xi} has cost at least hi. By definition, there exists a
partition of V into i components all of diameter at most ∆i. But two of the i+ 1 vertices {x0, . . . , xi}
must lie in the same component of the partition, so that their distance is at most ∆i, implying that
hi ≤ ∆i.

Moreover, note that
∏n
i=1 c(g

◦
i ) =

∏n
i=1 c(hi), so it suffices to bound the latter.

Proof of Lemma 5.3: Consider a permutation e1, . . . , en such that for all k, ek lies on the longest
path Pk of the forest of k trees formed by deleting e1, . . . , ek−1 from T , and such that ek, Pk satisfy the
condition (5.12) in Lemma 5.5. Note that since Pk is the longest path in the forest, hence the diameter
of every component is at most Pk. By Definition 5.6 and the fact that the forest is a partition of [n]
into k parts, we get that ∆k ≤ Pk. Consequently,

∆k

ek
≤ Pk
ek
≤ 4

f(`e) · f(`′e)

f(`)
,

where ` is the size of the component that contains ek, etc. Multiplying over all k, the right side telescopes

to 4n·f(1)n+1

f(n+1) ≤ 4n. Here we used that f(n+ 1) ≥ 1 and f(1) = 1. Finally, putting everything together,
we get ∏n

i=1 c(g
◦
i )∏n

i=1 c(g
f
i )
≤
∏n
i=1 c(g

◦
i )∏n

i=1 c(`i)
=

∏n
i=1 c(hi)∏n
i=1 c(`i)

≤
∏n
i=1 ∆i∏n
i=1 c(`i)

≤ 4n · f(1)n+1

f(n+ 1)
≤ 4n,

where the first two inequalities above follow from Lemmas 5.2, 5.7, and the remaining two from the
preceding discussion. �

5.1.1 Proof of Lemma 5.4, and its Tightness

Proof of Lemma 5.4: We claim the function

f(`) =
(−1)`+1

2
( 1

2
`

) =
22`−1 (2`− 1)(

2`
`

)
satisfies the desired properties.

(i) Expanding the second formula out gives(
2``!
)

(2`−1`!)(2`− 1)

(2`)!
=

(2 · 4 · · · · · 2`)(2 · 4 · · · · · (2`− 2) · `)(2`− 1)

2`!

=
2 · 4 · · · · · (2`− 2) · `

1 · 3 · · · · · (2`− 3)

which is greater than ` ≥ 1.

(ii) We give two proofs of this fact. The first is via generating functions. Consider the formal power

series A(x) =

∞∑
`=1

x`

f(`)
.

Then

A(x)2 =
∞∑
`=2

x`
`−1∑
i=1

1

f(i)f(`− i)
(5.13)

23



But A(x) =

∞∑
`=1

−2

(1
2

`

)
(−x)` = 2− 2(1− x)

1
2 by the binomial theorem, so

A(x)2 = 4(A(x)− x) =
∞∑
`=2

4x`

f(`)
(5.14)

Equating coefficients of 5.13 and 5.14, we see that

`−1∑
i=1

f(`)

f(i) · f(`− i)
= 4.

Proof II: Here is a purely algebraic proof. Fix an `. First note that
n∑
0

(
x

i

)(
x

`− i

)
=

(
2x

`

)
for all real x; this identity is a polynomial in x and it holds for all integral x ≥ `, since both sides
count the number of ways to choose a subset of ` people from a room of x boys and x girls.

It follows that

`−1∑
1

f(`)

f(i)f(`− i)
=

`−1∑
1

−2

( 1
2
i

)( 1
2
`−i
)

( 1
2
`

)
=
−2( 1
2
`

)
[∑̀

0

(1
2

i

)( 1
2

`− i

)
−
(1

2

0

)(1
2

`

)
−
(1

2

`

)(1
2

0

)]

=
−2( 1
2
`

) [(1

`

)
− 2

(1
2

`

)]

=
−2( 1
2
`

) [−2

(1
2

`

)]
= 4

�

We can also show tightness of our technique: there is no function which can be used to get a constant
better than 4.

Lemma 5.8 There does not exist a function g : N → R and a constant 0 < C < 4 such that g(1) = 1
and for all ` ∈ N,

(i) g(`) ≥ 1

(ii)

`−1∑
i=1

g(`)

g(i)g(`− i)
≤ C

Proof. Suppose there existed such a function. Let A(x) =

∞∑
1

xi

g(i)
. Choose a ∈ (C4 , 1). By condition

(i), A(a) ≤
∞∑
1

ai =
a

1− a
is a positive real number. By condition (ii),

A(a)2 =

( ∞∑
1

ai

g(i)

)2
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=
∞∑
`=2

a`
`−1∑
i=1

1

g(i)g(`− i)

≤
∞∑
`=2

C
a`

g(`)

Therefore A(a)2 + C a
g(1) ≤ CA(a), or A(a)2 − CA(a) + Ca ≤ 0. But the quadratic y2 − Cy + Ca has

discriminant C2 − 4Ca < 0 and hence no real solutions in y. This is a contradiction, therefore no such
function g exists.

5.2 A Lower Bound on the Potential Function, and on All-Swaps

In this section, we show that algorithm B2 performs asymptotically more than n swaps. Previously
known examples only showed that B2 might need to perform at least n−1 swaps; the following example
shows that the correct (worst-case) number lies between 1.25n and 2n.

a b c d

e

Consider the tree on the left where the edges have length 1, except cd has length 2. We take k = m/4
copies of it and identify the vertex a in all k copies to get the tree T on the right. (The figure shows an
example k = 6.) There are 4k = m edges and m+ 1 nodes in this tree, and the final metric will be the
metric closure of this tree.

Suppose we give the vertices in the following order: we give all the copies of d, then copies of e, then
of c, then the vertex a, and finally the copies of b. Each copy of d (aside from the first) adds a greedy
edge of length 8. Each copy of e adds a greedy edge of length 4. The vertex a and each copy of c
adds a greedy edge of length 2. Finally, each copy of B adds a greedy edge of length 1. This means∏
i greedyi = 8k−14k2k+11k = 26k−2. Moreover, after our algorithm finishes, the final tree is just the

tree T , the product of whose edge lengths is 2k13k = 2k. This gives us a ratio of 25k−2 = 21.25m−2.
Hence we get that

∏
i c(gi) ≥ 21.25m−2

∏
i c(`i) for this instance. Moreover, it is easy to check that the

number of swaps performed by our algorithm is also 1.25m−O(1), which proves the claim.

6 Conclusions

This paper considers maintaining an O(1)-competitive Steiner tree in an online environment. In this
model, when a new vertex arrives the distances to previous vertices is revealed, and must form a metric
space. The algorithm is allowed to add an edge connecting this new vertex to previous vertices, and
also to add/delete a constant number of existing edges. It was previously known that a natural greedy
algorithm makes a total of O(n) additions/deletions and maintains a constant-competitive tree, which
implies that the number of changes per arrival is constant on average. In this paper we give an algorithm
that makes a single change per arrival in the worst case. Our idea is to use a new constant-amortized-
swaps algorithm, which is then de-amortized by carefully delaying some of the swaps, and showing that
these delays do not result in a significant blowup in cost. We also give a tight bound and a simpler
proof of the natural greedy constant-average-swaps algorithm.
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Several problems remain open: can we show that a primal-only greedy-like algorithm swap upon each
arrival suffices to give O(1)-competitiveness? (See [Ver12] for a related conjecture.) We have not
optimized the constants in our result, aiming for simplicity of exposition, but it would be useful to get
a smaller constant factor that would put it in the realm of practicality. Moreover, can we extend our
algorithm to the case where vertices are allowed to arrive and depart—the “fully-dynamic” case—and get
even a constant amortized bound? Finally, for which other problems can we improve results by allowing
a small number of changes in hindsight? And in what situations can we use similar de-amortization
techniques?
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[SV10] Martin Skutella and José Verschae. A robust PTAS for machine covering and packing. In ESA (I),
volume 6346 of LNCS, pages 36–47. Springer, Berlin, 2010.

[Var11] Ashwinkumar Badanidiyuru Varadaraja. Buyback problem - approximate matroid intersection with
cancellation costs. In ICALP (1), pages 379–390, 2011.

[Vaz01] Vijay V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001.

26
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