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ABSTRACT

Several combinatorial optimization problems choose elements to
minimize the total cost of constructing a feasible solution that sat-
isfies requirements of clients. In the @®NER TREE problem, for

example, edges must be chosen to connect terminals (clients); in

R. Ravit Amitabh Sinhat

We use this framework to derive constant factor approximations
for stochastic versions of BRTEx COVER, STEINER TREE and
UNCAPACITATED FACILITY LocATION for arbitrary distributions

7 in one fell swoop. For special (product) distributions, we obtain
additional and improved results. Our techniques adapt and use the

VERTEX COVER, vertices must be chosen to cover edges (clients); M°tion Of strict cost-shares introduced in [5].

in FACILITY LOCATION, facilities must be chosen and demand ver-
tices (clients) connected to these chosen facilities.

We consider a stochastic version of such a problem where the so-
lution is constructed in two stages: Before the actual requirements

materialize, we can choose elements firgt stage. The actual re-

quirements are then revealed, drawn from a pre-specified probabil-

ity distribution 7; thereupon, some more elements may be chosen
to obtain a feasible solution for the actual requirements. However,
in this second(recourse) stage, choosing an element is costlier by
a factor ofc > 1. The goal is to minimize the first stage cost plus
the expected second stage cost.

We give a general yet simple technique to adapt approximation al-
gorithms for several deterministic problems to their stochastic ver-
sions via the following method.

e First stage:Draw o independent sets of clients from the dis-
tribution = and apply the approximation algorithm to con-
struct a feasible solution for the union of these sets.

e Second stageSince the actual requirements have now been
revealed, augment the first-stage solution to be feasible for
these requirements.
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1. INTRODUCTION

Infrastructure planning problems involve making decisions un-
der uncertainty about future requirements; while more effective de-
cisions can be made after the actual set of clients have material-
ized, the decision-making costs are inflated if deferred until then.
The following simple two-stage model captures this tradeoff effec-
tively. Future requirements are uncertain, but are assumed to be
drawn from a known probability distribution (e.g., from demand
forecasts, industry outlooks). In light of this information,aartici-
patorypart of the solution may be constructed in a first-stage at the
current costs. Subsequently, the requirements facing the planner
materialize in the form of a client set (drawn from the distribu-
tion), and the first-stage solution must&egmentedo satisfy the
revealed requirements. The elements chosen in this second stage
are costlier than when chosen earlier, reflecting the need for careful
(first-stage) planning. Given the uncertainty of the requirements,
the traditional minimum-cost goal may be adapted to minimize the
total expecteatost of the solution.

As an example, consider thaSCHASTIC STEINER TREEprob-
lem that specifies an inflation parameteand a probability distri-
bution7 on the set of terminal nodes (which are clients) that have
to be connected to the root in a given rooted discrete metric space.
A subset of edge&, may be bought by paying the original lengths
in the first stage. Once the actual set of termirfals revealed, we
must then buy the recourse edg@s at o times their lengths so
thatS is connected to the root by edgeshlb U E's. The objective
is to minimizec(Ep) + E[o ¢(Es)]. Here the expectation is over
7, the randomness in the set of terminals revealed.



The framework is that aofivo-stage stochastic optimization with FORESTproblem and improve the approximation ratios of the cor-
recourse[13, 12, 23] which may be paraphrased as “On Monday, responding versions of SRTEX COVER and FACILITY LOCATION
we only know the input distribution on the clients, and we can buy to 3 and 6 respectively.
some resources. On Tuesday, the client set is now completely spec- While a natural approach to utilizing an approximation algorithm
ified, but things are now more expensive (in our case, by a factor for a deterministic problem is to set the client requirements at their
o); we mustbuy any additional resources needed to get a feasible expected value according te, we note that this approach can-

solution to the instance.”
Following this framework, in $OCHASTIC VERTEX COVER,

not yield bounded approximation ratios even in simple examples.
Rather, using the full power of sampling in building the first stage

the clients are edges to be covered, and we are given a probasolution gives a provably good solution as we demonstrate.

bility distribution over sets of edges that will arrive; vertices be-
comeo times more expensive after these edges are revealed. Th
STOCHASTIC FACILITY LOCATION problem on a metric space
containing clients and facilities with opening costs defines a prob-
ability distribution over the set of clients that will require connec-
tion to open facilities. Opening facilities becomesimes costlier

in the second stage. The objective, in addition to expected cost of
opening facilities, also includes expected connection costs of the
revealed clients to their closest open facilities.

Our Results. In this paper, we give a simple yet general frame-
work to translate approximation algorithms for deterministic opti-
mization problemsinto approximation algorithms for correspond-
ing stochastic versions with second-stage inflation parameter
Given ana-approximation algorithm for the classical problem, one
can use it in the following framework:

1. Boosted SamplingSamplec times from the distributionr
to get sets of client®s, ..., D,.

2. Building First Stage SolutionBuild ana-approximate solu-
tion for the clientsD = U; D;.

3. Building Recourse:When actual future in the form of a set
S of clients appears (with probability(S)), augment the
solution of Step 2 to a feasible solution f8r

Note thatwe do not need to know the distributianexplicitly;
it could be a black-box from which we can draw samples. (In
practice, these samples could be drawn from market predictions,
or from Monte-Carlo simulations.) Thus we can sidestep the often-
lethal problem of handling an exponential number of scenarios.

Informal Main Result 1.1 If the a-approximation algorithmA
satisfies some technical properties (the problesuisadditiveand

A admits ag-strict cost-sharingunctiorf), then the above frame-
work yields ana + 8 approximation for the stochastic version of
the problem.

The framework is laid out in Section 2 and the formal result
is Theorem 3.1. Using this framework, we show that stochastic
variants of SEINER TREE, FACILITY LOCATION, and VERTEX
CoVER have constant-factor approximation algorithms; the details
are in Sections 4-5. The approximation ratiognd strictness of
the corresponding cost-shar@sand the resulting guarantees for
the stochastic variants are summarized in Figure 1.1.

We also consider the special caseimdependent decisionin
this, each client has a probabilityr; of arrival independentf
other clients, and the probability(S) of the setS materializing
is given by [ 7 [1;45(1 — ;). For this model, we can also
give a 8-approximation for the stochastic version of theISER

'While the approximation algorithm solves the deterministic coun-
terpart of the problem as opposed to gtechasticone, there is no
requirement for this algorithm itself to be deterministic, e.g., ran-
domized approximation algorithms can just as well be used in ou
framework.

2These terms will soon be defined, in Definitions 2.1 and 2.2 re-
spectively.

r
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Related Work. The study of stochastic optimization [2, 10] dates
ack to the work of Dantzig [3] and Beale [1] in 1955; these papers
defined the notions aftochastic linear programmingStochastic

LPs have been very widely studied since, and several gradient-
based and decomposition-based approaches are known for two-
stage versions of stochastic linear programming. On the other hand,
only moderate progress has been reported for stochastic integer
(and mixed-integer) programming in both theoretical and compu-
tational domains; see [23, 13] for details.

While stochastic scheduling problems have been studied exten-
sively in the literature [19], the papers often try to identify cases
where some standard scheduling policies yield optimal results, or
the results hold for some special distributions (e.g., where job sizes
are exponentially distributed), or focus on problems for which the
deterministic versions are polynomial-time solvable. There are, of
course, exceptions; see, e.g., [14, 4, 16, 24].

Very recently, there has been a surge of interest in stochastic ver-
sions of NP-hard problems, with papers on the topic by Ravi and
Sinha [21], and independently, by Immorlica et al. [7]. Both these
works look at versions of our model with some restrictions on the
distribution7, while we considearbitrary distributionsz. In par-
ticular, they consider the following cases.

e thescenario modelwhere the distributiom has its support
on a family F of possible subsets explicitly given as part of
the input (and hence the algorithms are allowed to take time
poly(|F],n)), and

e theindependent decisiomaodel, where each elemephas
an associated probability;, and the probability of a set
m(S) = [Ijes ™ [1;45(1 — 7). (l.e., the sets are chosen
by flipping a coin independently for each element.)

Since our algorithms in Sections 4 and 5 work éobitrary dis-
tributions, our theorems hold in both the above models as well. In
particular, our3.55- and3-approximations for stochasticT8INER
TReEeand VERTEX COVERin the independent model improve upon
the O(log n)- and6.3-approximations in [7] respectively.

One can define (as in [21]) other stochastic variants of the prob-
lems we define here: e.g., one can imagine that there are multiple
inflation parameters, and that instead of all things getting dearer
by o, different parts of the problem change in different ways. This
work leaves open the question of whether our framework can be
extended to handle such multiple-parameter stochastic problems.

Stochastic Steiner Tree appears similar tattagbecagproblem
of Karger and Minkoff [11]; however, the latter is a single-stage
optimization problem. Finally, though some of our techniques, in-
cluding strict cost-shares come from the work of [6, 5], the prob-
lems considered there are deterministic optimization problems.

2. MODEL AND NOTATION

We define an abstract combinatorial optimization problem that
we will adapt to a stochastic setting. To defiiea combinatorial
optimization problem, letV be the universe alients(or require-
ments), and leX be the set oElementghat we can purchase. For
any F' C X, letc(F) denote thecostof the element seF'. Given



Problem Non-Stoc. Approximation | Strictness Stochastic Approximation
Ratioa 8 General Distrib.| Indep. decisions
Steiner Tree | 1.55 (Robins & Zelikovsky) 2 3.55 3.55
Vertex Cover 2 (Primal-dual) 6 8 3
Facility Location 3 (Mettu-Plaxton) 5.45 8.45 6
Steiner Network 4 (Guptaetal.) 4t - 8

Figure 1.1: Result Summary . *Weaker strictness that gives approximations only in the independent decisions model.

a set of clientsS C U, let Sols(S) C 2* be the set ofeasible
solutionsfor the client setS. The deterministic versiorDet(II)
specifies a fixed subset of clierfisC U, and the objective is to re-
turn F € Sols(.S) with least cost. We denote I§yPT(S) a solution
in Sols(.S) of minimum cost.

been used in the context of game-theory [8, 9, 17, 18, 25]. We will
use (a slight variant of) a cost-sharing function defined recently by
Gupta et al. [5]: in contrast to previous cost-sharing mechanisms,
this cost-sharing function is defined relative to a fixed (approxima-
tion) algorithm for the problenfl.

Definition 2.1 We require that all the problenig we consider sat-
isfy sub-additivity This property states that i§ and S’ are two
sets of clients with solution8 € Sols(S) and F’ € Sols(S”), then
we must have that (i U S’ is a legal set of clients fofl, and (ii)
FUF' €Sols(SUS").

Definition 2.2 Given ana-approximation algorithrod for the de-
terministic problenil, the functiort : 2V xU — R>¢ is aB-strict
cost-sharing functioif the following properties hold:
P1. Foraset C U, &(S,j) > Oonlyforj € S.
P2. Foraseb C U,> ", c&(S,5) < c(OPT(S)). (faimess)
P3. If S = SwT, theny . . &(5',7) > (1/8)x cost ofaug-
mentingthe solutionA(.S) to a solution inSols(S’). (strict-
ness)

For example, consider theT8INER TREE problem on a graph
G = (V, E); the clientsU = V are the set of vertices, and the
elementsX are edges of the graph. To ensure sub-additivity,
we require aoot vertexr. The cost of a set of edgds C X is
c(F) =Y .cp ce- Given asetS C V of terminals the solutions
areSols(S) = {T'| T connects all vertices &f U {r}}.

Given any problenil, we can define a variant adapted from the
framework oftwo-stage stochastic programming with recouese
follows.

e There will betwo stage®f purchasing. Let > 1 be a given
inflation parameter every elementt € X costsc, in the
first stage but cosis c,. in the second.

e In the first stagethe algorithm is only given access to an ora-

cle that can draw from the probability distributian: 2V —
[0,1] in time poly(|U]). It can then construct first-stage
solutionby buying a set of element%, at costc(Fp).

e In the second stagene setS C U of clients isrealized
according to the distribution; i.e., the probability thaf is
realized ism(S). We assume that this sstis conditionally
independent of any of our actions in the first stage. Now the
second-stage solutiofalso called theecoursg consists of
a set of element#’s purchased at the inflated cast(Fs).

The union of the sety U F's must lie inSols(S), i.e., the
first and second stage solutions taken together give a feasible
solution for the realized set of clients.
The objective of an algorithm for the stochastic probic(11)
is to select a seky, and then, given a sétfrom the distributionr,

Formally, we require the existence of a polynomial time al-
gorithm Aug , which can augment(S) to a solution in
Sols(S") atcostatmosg -, £(S", ).

Define the functiorg (S, A) as the sunp_, _ , (5, 7).

Remark 2.3 Note that one possible algorithAwug , is obtained

by just zeroing out the costs of elements already picked (),

and runningA again. In all cases we consider, there are natural
algorithms.A for which thisAug 4, ensures strictness; however, in
this paper, we choose algorithras and Aug 4 that complement
each other and give better approximation ratios.

3. APPROXIMATIONVIACOST SHARING

In this section, we give a general technique for converting an ap-
proximation algorithmA for a deterministic probleret(II) into
an approximation algorithm for the stochastic vers&uoc(II),
provided the problenil satisfies sub-additivity, and there is a cost-
sharing functiorg that is strict w.r.t.A.

3.1 Algorithm: Boosted Sampling

Given an instance of a stochastic probl8mc(II), the goal of
the first stage is to buy the elements that will be useful for the un-
to selectF’s to minimize the expected cost of the solution: known client set realized in the second stage. Since our algorithm is
not clairvoyant and hence cannot see the future, the next best thing

o(Fo) + Lscy m(S)oe(Fs). 1) it can do is to sample from the distributian and use the samples
Hence the stochastic version of the Steiner Tree problem allows usas an indication of what the future holds. This simple idea is the
to purchase some edgés in the first stage, and once the set of basis of our method.
realized clientsS C V is revealed, to buy some more eddgésso A naive attempt would be to sample once from the distribution
that Fy U F's contains a tree spannirff) and use the set obtained as our prediction for the future: however,
. . this is not aggressive enough in that it ignores the fact that the future

2.1 Cost sharing functions is more expensive by a factor of In fact, ass — oo, the optimal

We now define theost-shareghat are used crucially to bound  solution would be to assume that every clientimwill be realized
the performance of our approximation algorithms. Loosely, a cost- and must be accounted for in the first stage itself. Motivated by
sharing function is one that divides the cost of a solutione these concerns, the algorithm for the problSmac(II) is stated
Sols(S) among the client sef. Cost-sharing functions have long  below, in terms of thex-approximation algorithni for II, which



comes equipped with @-strict cost-sharing function (and hence an
associated augmentation algoritidmg 4 ).

Our algorithm requires a number of samples that is linear.in
Indeed, if all we have is a sampling access to the distributioit
is not hard to see th&2(o) samples are needed. In many practi-
cal situations, this may not be a concern, unless the valueisf

need to bound our expected second stage cost, whicB[i&( Fs)].
The-strictness of the cost sharing functigpimplies thatc(Fs) <
B&(DUS,S). Infact, we even have(Fs) < B§(DUS, S\ D).
Consider the following alternate probabilistic process to gener-
ate the setd); and the setS: Draw o + 1 independent samples
131, 132, e ﬁaﬂ from the distributionr. Now choose a random

exorbitant. In some cases (e.g., see Section 6), additional informa-yajye K uniformly from {1,2,...,0 + 1}, and setS = Dx and

tion about the distributionr can be used to make the running time
independent ob. Let |o]| denotes rounded down to the nearest
integer.

Algorithm Boost-and-Sample(IT)

1. Draw|c | independent sampld3;, D, ..., D|,, of the re-
alized clients by sampling from the distributian Let D =
Ui D;.

2. Using the algorithmA, construct anc-approximatefirst-
stage solutior¥y € Sols(D).

3. If the client setS is realized in the second stage, use the
augmenting algorithrug , from (P3) to computé’s such
that Fy U F's € Sols(S).

The following theorem is the main result of the paper:

Theorem 3.1 Consider a combinatorial optimization problebh

that is sub-additive, and lel be ana-approximation algorithm
for its deterministic versiorDet(II) that admits aj3-strict cost
sharing function. Themoost-and-Sample(II) is an (a + 3)-

approximation algorithm fo6toc(II).

We will prove Theorem 3.1 in the rest of the section. In the next
section, we illustrate an application of this theorem to obtain an

approximation algorithm for the 1™ ®CHASTIC STEINER TREE. In

subsequent sections, we go on to consider several other problems,
and show that their approximation algorithms and attendant cost
sharing functions provide approximation algorithms for the corre-

sponding stochastic versions.

Proof of Theorem 3.1: To simplify the notation, we shall as-
sume that is an integer, i.e.c = |o]. Itis straightforward to

D = U#KZA)Z-. This process is identically distributed to the origi-
nal process, since we are picking the sets independentlyD lbet
the union ofall the D;’s, and letD_; be the uniornu;»; D; of all

the sets excepb;.
Since the cost sharing function is fair (Property P2), we have

7+l ¢(D, D \ D—;) < ¢(OPT(D)).
By our random choice ok, we get

Ex[{(D, Dk \ D-x)] < 747¢(OPT(D))
Since the alternate process is probabilistically identical to the one

we used to pickD and.S,

Ep,s[¢(DUS, S\ D) =Es [¢(D, D \ D-x)]

< 515 E5[c(OPT(D))]

(3.3)

~

To complete the argument, we now show tgic(OPT (D))] <
2+l 7 To derive a feasible solution ®, defineF; = Fy U
Fgl U FL§2 U...u F]_i)a r Again, the fact thaf, € Sols(D)
follows from sub-additivity ofilI. Thus we have

E5[c(OPT(D))] < e(Fy) + 7 Ep, [e(Fp,)]

K2
<Zi+(o+1)Z

S TH(Z5+2Z7) = (34)

ThusEs|c(Fs)] < BEp,s[((DUS, S\ D)], which using (3.3)
and (3.4), is bounded b§' Z*. Finally, since our second stage cost
iso c¢(Fs), our expected second stage costigo ¢(Fs)] < 8 Z".
Putting together the first and second stage costs gives the bound

o+1 *
ol 7%,

verify that the proof can be carried out for arbitrary real values of |3imed in the theorem. m

g

solutions separately. Ldi; be the first-stage component of the

We will bound the expected costs of our first and second-stage Remark 3.2 One might wonder whether tighter results can be ob-

tained by choosing some number other tharj for the number

optimal solution, andF’s be the second-stage component if the set of samples used in constructing the first-stage solution. We be-

of realized clients isS. Hence
the optimal cosZ* = c(Fg) + > 5 m(S) o c(F3).

Let us denoteZ§ = c(F3) andZ; = > o m(S) o c(F3).

First stage: We claim that there is an elemeft € Sols(D)
such tha€[c(F})] < Z*. Indeed, defind, = F U F}, U Fp, U
...UFp, . The fact that; € Sols(D) follows from sub-additivity
of the problendI. Therefore,

Eple(F1)] < e(Fy) +Ep[X0, c(Fp,)]
=c(F5) + Y0, Ep,[c(Fp,)]
=c(Fy)+0 > gn(S)c(F3)

the penultimate equality following from the fact that each of the
D;’s are chosen from the probability distributian Since we have
ana-approximation algorithm foDet(IT), our solutionF; satisfies
E[c(Fo)] < ac(F}), which in turn is at mosk Z*, bounding our
first stage costs.

Second stagelet S be the set of realized clients, and Ié¢ be
the result of our algorithmug , such thatFy U F's € Sols(S). We

(3.2)

= 7%,

lieve that while small and problem-specific improvements might
be possible, samplings | times is the best possible for Theorem
3.1. Sampling fewer thafo | times does not improve the bound

on the first stage cost since the optimal solution might have a large
first-stage component; it hurts the second-stage cost since the pro-
portionate cost of the second-stage is nhow much larger. Sampling
greater tham times clearly hurts the first-stage cost, while offering
no improvement in the second-stage cost guarantee (for example,
when all scenarios require disjoint solutions).

4. STOCHASTIC STEINER TREES

In the classical deterministicTRINER TREE problem, we are
given a set of vertice¥, and the costs. on edges satisfy the tri-
angle inequality. (This assumption is without loss of generality,
since we can take the metric completion of the graph.) We assume
there is a designatedot vertexr. Given a set of terminals (i.e., the
clients), the goal is to buy a set of edges (the elements) of minimum
cost so that the terminals and the redie in a connected compo-
nent. Note that the presence of the root ensures that the problem is
sub-additive.



Now let us consider the probleBtoc(STEINER TREE): in the
first stage, we can buy some edg@sat cost}__ . c.. Inthe
second stage, a set of termin&lsC V is realized with probability

Theorem 5.1 The cost sharing functiofigiven by Rl and Tardos
is 5.45-strict for the3-approximation algorithm of Mettu and Plax-
ton. Hence, there is a8.45-approximation algorithm for

7 (S), after which we may buy some more edges to connect the Stoc(FACILITY LOCATION).

terminals to the root; however, these edges must be bought at cost

o c. each.

Theorem 4.1 There exists &-approximate algorithmA for STEI-
NER TREE, along with a cost sharing functicghthat is 2-strict for
A.

PROOF The algorithmA is simply Prim’s algorithm [20] for
minimum spanning tree; given a set of termin&lsit ignores the
vertices not inS' U {r}, and builds aIST on S U {r}. Itis well-
known that the cost(.A(.S)) of anyMST is within a factor of 2 of
the cost of the optimal Steiner tré&PT(S).

Given anMST A(S) on the set of terminals, let us imag-
ine it to be rooted at; for j € S, set&(S, ) to be half the
cost of the edge connectiggto its parent inA(.S), which we call
j’s parental edgein A(S). Clearly, if j ¢ S, then&(S, 5)
0. By definition, . &(S,j) = 1 ¢(A(S)); since theMST

is a 2-approximation to the Steiner tree problem, this implies that

1 ¢(A(S)) < ¢(OPT(S)), and hencg is fair.

Finally, to prove the2-strictness, consider a séf = Sw T.
The augmenting procedureug , basically zeroes out the edges of
A(S) and runs Prim’s algorithm; i.e., it takes the solutidiS),
and for eacly € T, adds the parental edge pfn A(SUT). We
claim this gives a solution ifols(SUT). (Indeed, each verteke
T whose parent ipd(SUT) was inSU{r} will now be connected
to A(S), and hence te; the general argument follows by a simple
induction.) Since these edges cBst ZjET &(SUT, j), we have
proved the theorem.[]

PROOF Let us briefly review the algorithm of Mettu and Plax-
ton [15], and the cost sharing defined 3l Bnd Tardos [18]. Lef
be a set of clients. For a facility, let B(p, 7) be a ball with center
p and radiusr. We define theopening timet, (S) of a facility p
w.r.t. the set of clients§ to be the unique radius such that

Ir=

Let the setC,(S) = {j € S| c(J,p) < tp(S)} be called the
contributing sefor p. Note that if we charge each client}, the
amountt, (.S), we exactly recover the facility cost pfplus the cost
of assigning clients i}, to p. We drop the set of clients from the
notation, and say, instead oft, (S) when there is no danger of
confusion. The cost shares of clients are then defined as

§(8,7) = min{ max(t,(S), c(j; p)) }-

ZJ‘GB(p,‘r)rmS? (T - C(j,p)). (55)

(5.6)

Intuitively, the contribution of usej towards the facilityp should

be eithert, if j € C,, or the connection cost(j, p) if j ¢ C,.

The client can (and does) choose to contribute only to the least de-
manding facility; the facilityp for which this minimum is attained

is called theprimary facility of 5 (in the run onS). A facility p is

said to bawell-fundedif £(S, j) > t,(S)/3forall j € C,.

The algorithmA we use is a slight modification of the algorithm
of Mettu and Plaxton; given a set of clients .4 considers all the
well-funded facilitiesp in order of increasing opening tintg(S).
For each such (well-funded) facility, the algorithm declares it
openif there are no previously opened facilities within a radius

Note that the argument for strictness only required that each ver- 2, (S) aroundp.

tex in the solutionA(S) was connected to the root, and hence the
same cost shares are asstrict for anyheuristic for Steiner Tree.
Now, using thel.55-approximation for $SEINER TREE [22] and
Theorem 3.1, we obtain the following improved theorem:

Theorem 4.2 There exists a factor.55 approximation algorithm
for STEINER TREE, along with a cost-sharing functiof that is

2-strict for it. Hence, there is 8.55-approximation algorithm for
Stoc(STEINER TREE).

This improves on thé& (log n)-approximation for théndepen-
dent decisions/ersion ofStoc(STEINER TREE) given by Immor-
licaetal. [7].

5. OTHER APPLICATIONS

This section will be devoted to looking at several other (deter-
ministic) problemsII; for each problem, we will give am-ap-
proximation algorithmA and its accompanying-strict cost-share
function. Our results have been summarized in Figure 1.1.

5.1 Facility Location

Aninstance of BCILITY LOCATION s given by a set of facilities
F and a set of client$. The distances;; between any pair of
pointsi, j from F' U S form a metric. Each facility has opening
cost f,,; the goal is to open a subset of faciliti#¥ to minimize

the opening costs plus the sum of distances from each client to its

closest open facility:
Zng’ fP + ZjES C(.ja F/)

The main result foBtoc(FACILITY LOCATION) is the following:

For each open facility, .A assigns all clients i, to p. (By
construction, the setS, for open facilitiesp are disjoint.) It then
assigns each client not lying in anty, to its closest open facil-
ity. The following facts can be derived from the arguments in [15]
and [18]:

1. Foreach open facility, the cost shareq S, C},) of the clients
in Cp, pay 1/3 of f, plus their assignment cost. (See [18,
Lemma 2.4] and the preceding discussion therein.)

2. For each facility, there exists avell-fundedfacility ¢ (pos-
sibly p = ¢) such thate(p, q) < 2 (¢, — tq). (Note that it
must be that, < ¢,.)

3. For each facilityp, there exists ampenfacility ¢ within a
distance of2t,. Hence, ifp is a primary facility for some
clientj, thenc(j, q) < 3¢(S, ).

To show strictness of, we must specify the algorithrAug ,
which augments a solutiod(S) to cover a set of new clientg
with S NT = . In the following, letC, = C,(S U T) denote
the contributor set of a facility in the runA(S U T'). Similarly,
when we say a facility is well-funded, we mean that is well-
funded in the runA(S U T). A facility p is called T-heavyif
|CpNT| > b|Cy| (where the parametére (0, 1) will be specified
later), and isT-light otherwise. Note that &-light facility must
have|C, N S| > (1 — b)|Cy|.

Claim 5.2 If pis aT-light facility, then

tp(S) < T ta(SUT) — (s e, nr €, p).



PROOF Consider the set, = {j € SUT | ¢(j,p) < tp}; by
the definition (5.5),

ot Y ciip) = 1Cplto(SUT)

J€C
Sincep is T-light, |C, N'S| > (1 —b) |Cy.
fo+ Z c(d,p) = 1Cp|tp(SUT) - Z (4, p)
JjECPNS JjECL,NT
t,(SUT)

IN

|Cy N S|

- Z C(j7p)'

JECNT

1-b

which means facility was already paid for at timg (SUT') /(1 —
b) — zjeCpﬁT c(4,p)/(|Cp N S]) in the run A(S), proving the
clam. O

Augmentation procedure Aug ,: To augmentA(S) to coverT’
as well, we pick a subset of well-funddd&theavy facilities to open
greedily in a manner very similar to that.i(S U T): we consider
all well-fundedT-heavy facilities in order of increasing (S UT'),
and open a facility if there is no facilityq already open within
aradius2¢,(S UT) of p. (Note thaty may have been opened in
either.A(S), or in the augmenting phase befgrevas considered.)
We never open an§-light or non-well-funded facilities. At the
end of this procedure, for a clieft € C}, whosep is open, we
assignj to p; else we assigy to the closest open facility.

Claim 5.3 The augmentation cost for a séf’ is at most

(3+V6) X er E(SUT,j).

PrROOF Firstly, consider any well-funde’-heavy facility p.
Sincep is T-heavy, the shares of clients @, N T' can pay for
ab/3 fraction of the facility cost plus their own connection costs.
Hence we must consider clienfswhose primary facilityp is ei-
ther not well-funded or nof-heavy. We claim that in both cases
there must be a facility close gpopened either byA(.S), or in the
augmenting phase. Note that by the properties of the algotithm
there is a well-funded facility such that,(SUT) < ¢,(SUT)
ande(p, q) < 2 (,(SUT) — t4(SUT)).

Now, if ¢ is T-heavy, by the properties of our augmentation pro-
cedure, there must a facility that was open in the augmentation
step such that(q,r) < 2t,(S U T). On the other hand, i is
T-light, we have that,(S) < t,(SUT)/(1 —b) by Claim 5.2
above. Thus, in the rud(S), there must be an open facilitysuch
thate(q, r) < 214(S) < (2/(1— b)) t(SUT).

In both cases, the assignment cost of the cljestbounded by

() < e(G,p) + e(p, @) + ¢(g,7)

2
<c(d,p) +2tp(SUT) —tg(SUT)) + 1-b ta(SUT)
2
<c(j,p) + =% tp(SUT)
2 .
To balances /b and(1 4 2/(1 — b)), we can now pick = 3 — /6
to get the desired result.[]

<(1+

Sincel = 3 + v/6 < 5.45, this proves the theorem.

5.2 \ertex Cover
In the Vertex Cover problem, we are given a gra@ph= (V, E)

to choose a subs@t’ of the vertices so that each edgecered

i.e., at least one of its adjacent vertices is chosen. In the stochastic
version, we pay, for picking a vertexv in the first phase, and

o ¢, for picking it in the second phase. We will prove the following
theorem:

Theorem 5.4 There is a8-approximation algorithm foBtoc(VER-
TEX COVER).

Before we do this, let us define a version of the problem called
Relaxed Stochastic Vertex Covemn the relaxed version of the
stochastic problem, we are allowed to make payments to a vertex
in both stages, with'(v) andp®(v) being payments made to
in the first and second stage respectively. A vertdég chosen if
and only ifp'(v) + p*(v)/o > c,. Again, given a set of real-
ized edges, the set of chosen vertices must form a feasible vertex
cover forS. The cost of our solution is just the sum of payments,
i.e. > ,cv P (v) + p*(v), and the goal is again to minimize the
expected cost.

Note that by requiring' (v) € {0,¢,} andp?(v) € {0,0¢,},
we get back to our usual stochastic framework, and hence the re-
laxed problem allows us to make partial commitments to vertices
in the first stage. However, it turns out that we can convert any
algorithm A for the relaxed problem into an algoritha’ for the
unrelaxed version with the same expected cost. Indegd(if) is
the amount of money placed on verteky A in the first stage, the
algorithm A’ picks the vertexv in its first stage with probability
min{1,p'(v)/c,}. In the second stagel’ selects the vertex if
v was selected byl (that is,p. + p2/c > ¢,), and if A" has not
already selected it in the first stage. By linearity of expectations,
the expected cost incurred by in each phase is at most the cost
incurred byA in that phase. Thus it suffices to give an algorithm
and a cost sharing function for relaxed vertex cover.

The Algorithm A: We use a standard primal-dual 2-approxima-
tion algorithm A for vertex cover. LetS C FE be the set
of edges in the instance. For each edgeve have a dual
variabley., initially set to 0. We simultaneously raise all
dual variables at a uniform rate. A vertexbecomedight
when the duals of edges adjacent to it can pay its cost, i.e.
when}: s, ¥e = co. When a vertex becomes tight,
we freezeall edges adjacent to it, i.e., we stop raising their
dual variables. We continue raising the dual variables of all
unfrozen edges, until all edges become frozen.

Output: The algorithm places paymentgv) = >° ;. ve

on each vertex € V. Since each edge is adjacent to some
tight vertexw, it has been paid, and hence bought outright;
thus the solution is feasible fc.

The Cost Shares: Defineé(.S, e) = y.; since each edge pays both
its endpoints, it holds that; . p(v) = 2 s ye. Fur-
thermore,y__&(S, e) is just the LP dual value, and hence at
mostOPT(S).

Clearly, the algorithmA is a 2-approximation for the vertex
cover problem. To prove Theorem 5.4, it suffices to prove the strict-
ness oft for A.

Theorem 5.5 The cost share$ defined above are 6-strict with re-
spect to the algorithrd.

PROOF Let S andT be two disjoint sets of edges. To augment
the solutionA(.S) to handleT" as well, the augmenting algorithm
Aug 4 looks at the (relaxed) payment functipn: V' — R, for

with costse, on vertices. The clients are the edges, and our goal is the set of edges§, and runs the algorithna on the set of edgef



with the reduced costs, = ¢, —p(v). To prove strictness, we need
to compare this augmentation cost to the cost shéseu T, T).
To this end, we shall compare several runsgiadn different related
inputs.

e Run R;: This is the run of4 with original costsc,, on the
setS UT. Lety! be the duals produced. Let us define pay-
mentSp}q(v) = Zeeé(v)ﬂs Ye andp%(v) = Zeg&(v)ﬂT Ye
respectively.

Note thatp' = pir = ps + p> is exactly the payment
function computed byA. Furthermore, this is the run that
computes the cost-shar&sS U T, T)).

Runs Rs and Rr: The runRgs is the run ofA on the set
of edgesS, but with costs® = ¢ — p- (i.e., reduced by the
payments off" in R;). Similarly the runRr is on the edges
T, with reduced costs” = ¢ — p}.

Run Rs: This is A’s run on the edge sef, with original
costse, and hence corresponds to the actual run of the first
stage. Let)? be the duals ang?® the payments computed.

Run Rs: This is on the edge s&t, with reduced costs® =
¢ — p?; hence, this corresponds to the augmentation step for
T. Again,y*® andp?® are the duals and the payments.

By the definition ofRg, the freezing time of all edgese S in
the two runsRs and R; is the same; hence the dual is just the
dualy! restricted to the sef, andpl = p°. Similarly, the dual
yT from the runR” is identical to the duaj’ restricted tdl", and
pr = pT. We claim that, to prove the theorem, it suffices to prove
the following claim:

Claim5.6 3, p*(v) <33,y Ph(v).

Before we prove this claim, let us see how it proves Theorem 5.5.
Note that cost of the augmentation riy is exactly>" p*(v),
while the cost shares

(ST T) =Y ye=3 3 phv).
ecT veV

Hence¢(S U T, T') can defray at least one-sixth of the cost of the
run Rs, proving the theorem. [J

Proof of Claim 5.6: The proof relies on the following Lipschitz-
type property of the algorithmi: imagine the vertex costs to be
vectors inR!V!, and suppose the costs change by an ameJint

then [ Az|[1 < [Ips — p®|l1; this, by (5.7), is at mosfipy |1 +
lA1]]1 < 2|lp||1. Furthermore, plugging (5.7) into (5.8), we get

P’ —pr = —(pr + A1) + Aa.

Simplifying, this gives||p®||1 = || A1 + [|Az]l1 < 3|\p1Tl1. ]

Proof of Claim 5.7: Consider the two runs? and R of A
on the two cost vectors and¢ being executed in parallel. Let
p:(v) and p;(v) be the payments towards vertexaccumulated
in the respective runs until time We claim that the quantity
O(t) = Y, cv [(c(v) — pe(v)) — (C(v) — pe(v))| never increases
as a function ot. Since®(0) = |jc — ¢]j: and®(c0) = ||(p —

D) — (c—0)|l1 = ||A]|1, this will prove Claim 5.7.

Consider any edge = {u,v} at timet in both runs. Ife is
not frozen in either run, it causes batfw) andp(u) to increase
at unit rate; the same arguments hold #orSincew is not tight in
either run,c(u) — pi(u) > 0 and¢(u) — pi(u) > 0, and edge
contributes to both terms equally; hence it is currently contributing
at rate zero to the differende(u) — p:(u)) — (¢(u) — pe(u)). If
e is frozen in both runs, its current rate of contribution is zero as
well.

Now suppose that is frozen in only one of the runs; say, it is
frozen in the runk but not in the runk (the other case is symmet-
ric). That means one of its endpoints must be tiglRjmw.l.0.g., as-
sume the tight vertex is. Thusc(w) —p:(u) = 0. In the runR, the
contribution ofe makes the terri(u) — pi(u) = |(c(u) —pe(u)) —
(¢(u) — pe(u))| decreasat unit rate. However, its contribution to-
wardsv, and hence towards the tefafv) —p: (v) — (¢(v) —pe (v))|
increases at a rate of at most 1 in the worst case. Hence, the quantity
® never increases. n

6. INDEPENDENT DECISIONS: STEINER

FOREST & OTHER IMPROVEMENTS

The independent decisionsiodel was defined in Section 1 as
the model when each cliefite U has a probabilityr; of requir-
ing serviceindependentlyf all other clients. For this special case
of our model, we show that a weaker version of strict cost-shares
is sufficient to obtain algorithms for stochastic problems. This al-
lows us to obtain approximations for some more problems (e.g., for
STEINER NETWORK), and obtain stronger results for others (e.g.,
for VERTEX COVERand FACILITY LOCATION) in the independent
decisions model.

Given a problenil, we uselnd(II) to denote the stochastic ex-
tension oflI in this independent decisions model. For this section,

their L, -distance), then we claim that the payments do not change We Will need the following weaker definition of strictness that holds

by more thar2 e. Formally,

Claim 5.7 (Lipschitz continuity) Consider two runsk and R of

A with the same edge séton two different cost vectorsandc,

and letp and p be the two vectors of payments computed. If we
defineA so that(p — p) = (¢ —¢) + A, then||Alj1 < [|le —¢€l}x.

The proof of the Lipschitz condition follows below; but let us
use it to complete this proof. First, we use it to compare the runs
Rs and R, (both being defined on the edge $8t defineA; so

that
P’ —ps=c—(c—pr)+ A1 =pp + Ag; (5.7)

then Claim 5.7 implies thatA1 |1 < ||pr||1. The second applica-
tion of Claim 5.7 is to the run&s and Rr (both on the edge set
T); itimplies that if A is such that

P’ —pr=(c—p°) — (c—ps) + Ax = p5 —p* + A2, (5.8)

only for additions of asingleclient.

Definition 6.1 Given ana-approximation algorithrpd for the de-
terministic problemII, the function¢ : 2V x U — R>o is a
B-uni-strict cost-sharing functioif properties (P1), (P2) hold in
conjunction with:
P3’. If S = Sw{j}, theng(S’, 5) > (1/8)x cost ofaugmenting
the solutionA(.9) to a solution inSols(S”). (uni-strictness)

Again, we need goly-time algorithmAug , that does the
augmentation with cost at most¢ (.S’ j).

6.1 The (Even Simpler) Algorithm ind-Boost

Let us define the (yet simpler) algorithm for the independent
case:
Algorithm Ind-Boost(IT)
1. Choose a sdb by picking each element € U with proba-
bility o 7; independently.



2. Using the algorithrmd, construct amv-approximate solution Ep[Bo;| T])=p8x%x0 xm x&{(DrwW{j},j). (6.10)

Fy € Sols(D). By uni-strictness of4, it follows that (6.10) is at least (6.9), and

3. LetS be the set of clients realized in the second stage. For o ) s[X;| 7] < 0. Since this holds for all’, Ep s[X;] < 0
each clientj € S, use the augmentation algorithAug , unconditi’onalfy and thus P =

of (P3") to computeF; such thatFy U F; € Sols(D U {j}).
Output F's = U‘jes F; as the second stage solution. Note Ep.s[v;] < B Epla;]. (6.11)
that by subadditivity/o U Fis € Sols(S). ’ To
Note thatind-Boost(II) can be implemented in polynomial time  Note that Properties (P1) and (P2) of the cost shaiesply that
regardless of how large is. Here is a version of the main Theo- _ N ,
rem 3.1 for the independent decisions model. This version assumes > Enlés] =Y Epl&(D, )] =En[Y_ &(D, )]

only the weaker property of uni-strictness, hence it is useful when jev jeu *jeD
fully strict cost sharing is not known, or when uni-strictness leads <Eplc(OPT(D))] < Z". (6.12)
to better approximation guarantees. Furthermore Ep s[Fs] < 3. Ep s[v;] by sub-additivity; us-

Theorem 6.2 Consider a deterministic combinatorial optimization ?g[g(]; )(fjlﬁ);';‘d (r%\%ii), mz gr;:;matmexpected second-stage cost
problemII that is sub-additive, and letl be ana-approximation s - P 9 '
algorithm for IT with a 3-uni-strict cost sharing function. Then 6.2 Steiner network

Ind-Boost(II) is an(« + 5)-approximation algorithm fotnd(II). The Steiner network problem is a generalization of the Steiner
PrROOF. While it is possible to prove this result closely follow-  tree problem, and is defined over an edge-weighted graph. A client
ing the lines of that for Theorem 3.1, we give a slightly different v is now a pair(s;, ;) of vertices, and given a set of clients

proof here. a feasible solution consists of a set of edgésuch that for each
First, some notation: let(S) = [];cqm; [[;45(1 — m;). Let (si,t;) € S, there is a path frons; to ¢; in F. The problem is
F{ be the first-stage component of the optimal solution, Bade easily verified to be sub-additive. The following result gives us the
the second-stage component if the set of realized clierfis @&d claimed 8-approximation fdnd(STEINER FOREST).
let Z* be defined as in Equation (3.2).
First stage: Again, we claim that there i$, € Sols(D) such Theorem 6.3 ([5]) There is a 4-approximation algorithm for the

that E[c(ﬁl)] < Z*: the actual proof is by a slightly different Steiner network problem which admits a 4-uni-strict cost-sharing

“coupling” argument. As a thought experiment, throw elements function.
of D into o setsDy, ..., D, independently and uniformly at ran-
dom. Now, sinceD was picked by sampling’ at rates 7;, each
D; is distributed as though we sampled elemert U with proba-
bility 7;. (The contents of differenD;’s are correlated negatively,

The reader is referred to [5] for the algorithm description and a
proof of Theorem 6.3. We note that algorithms with an approxi-
mation factor of 2 are known for the Steiner network problem, but
none of them admits a uni-strict cost-sharing function. We believe

but we will only use IiTearitz of expect*ations.). . that the techniques of [5] can lead to fully strict cost-sharing for
Definery = Fg UFp, UFD,U. . .UFp, . Again, Fi € Sols(D) Steiner Network, although we are still lacking a proof at this mo-
from sub-additivity, and ment.
Enle(F)] < e(F) +En[> e(Fp,)] 6.3 Facility Location
i=1 Improved results may be obtained for other problems which have

already been studied in Section 5.

=c(F5)+ Y Ep,[e(Fp,)]
i=1 Theorem 6.4 There is a3-approximation algorithmA for the fa-
=c(F)+o Z”(S) o(FE) =2". ciIi_ty location problem, along with c_ost-share;stha_t are 3-uni-
5 strict w.rt. A. Hence, there is a6-approximation for
Ind(FACILITY LOCATION).

PrROOF The proof closely follows that of Theorem 5.1, which
the reader is urged to peruse. Here, we will be concerned with the
special case of the singleton get= {;}.

Consider the rund(S U {j}), and letp be the primary facility
of 5 in this run. Here is the augmentation procedaueg 4: if p
is open in the rund(.S), it simply assigng to p. If p is closed, it
has two options: i is {j}-heavy, it openg and assigng to it.
Otherwise, it assigngto the closest facility opened id(S).

We claim that the augmentation cost is at ma&tS U {5}, 5).
Indeed, if we decide to opefis primary facility p, £(S U {j},7)
can pay for @-fraction of the facility cost op plus assignment cost

Now ana-approximation algorithm fobet(IT) gives us a solution
Fy with E[e(Fo)] < ac(Fy) < o Z*, bounding our first stage
costs.

Second stagelet S be the set of realized clients, and g =
U,es Fj be the result of our algorithmug 4. Note that for all
j €8, Fo UF; € Sols({j}), thus by subadditivityFp U F's €
Sols(.S). We need to bound our expected second stage cost, which
is o E[c(Fs)], which we will bound by the expectdiist stagecost.

Define¢; for an elemeny € U to be the random variablg; =
&(D, j), andy; to be the cost of augmenting a solution forto
includej as well, in the case thgt€ S. (Hence,y; = c(Fj) if
jeSandy; =0if j ¢ S.) LetX; = ovp; — B ¢;. . ) L . c

Now let LiS conditifn on all th]e first-sjtage ci:in-tos§és".n U Of]_' If not, Claim 5.2 implies that, (5) < t,(S U {j}) \c‘ﬁ‘m N
except forj’s toss. LetD7 be all the vertices picked according to ‘“C(p’ﬁp;‘ We know that there is an open facilitywithin distance
T (which does not includg), and consider the expected value of 24 (.5) from p, and so reroutg to ». The connection cost in this
X; over the first-stage toss fgr and the tosses of the realized set ¢ase is at most
S.

| oA (.p)
Epslow| T)=0xm x (1—om)e(F;) and (6.9) c(.p) +2 (W Vi e ns T |cc,~:mPS|)



which is at mosB max(c(j, p), tp(S U {j})) = 3&(S U {j},7).
Since we need to minimizaax{1/b, 3}, the bestvalue is = 1/3,
finishing the proof. (]

6.4 Vertex Cover

We present the following improvement on th&-approximation
given forInd(VERTEX COVER) given by Immorlica et al. [7]. As
discussed in Section 5.2, to obtain an approximation algorithm for
Stoc(VERTEX COVER), it is enough to consider the relaxed ver-
sion of the problem, where we are allowed to make arbitrary pay-
mentsp! andp? to vertices in the two stages, with the verteke-
ing bought ifp* (v) 4+ p*(v) /o > c,. As mentioned there, results
for this relaxed problem can be easily transferred back to obtain an
algorithm in the standard model: this is done by choosing a vertex
with probability p* (v)/c, in the first stage, and then picking it in
the second stage if* (v) + p*>(v)/o > ¢, and it was not already
picked.

Theorem 6.5 There is a 2-approximation algorithmd for the re-
laxed Vertex Cover problem, and cost-shagethat are 1-strict
with respect ta4, thus giving us 8-approximation algorithm for
Ind(VERTEX COVER).

PROOF The algorithmA, as well as the cost shargsare the
same as in Section 5.2. To augment a solufgs’) on the addition
of the edgee = {u, v}, the augmentation procedufeig , opens
the endpoint whose reduced cost is less. l.e., if the payments in
A(S) are denoted by, we payd = min(c, — p(u),co — p(v))
to the vertex from{wu, v} that achieves this minimum and open it.
Proving strictness is now equivalent to proving tha ¢(S U
{e}e).

Indeed, consider the rund(S) and A(S U {e}). Both runs
behave identically till some endpoint ef sayu, goes tight in the
latter run. At that point, the payment made by other edgesito
A(SU{e}) is exactlyc, — £(SU{e}, e). Since the two runs were
identical till now, v has received this payment iA(S) as well,
and hence(u) > ¢, — &(S U {e},e). Hence(S U {e},e) >
cu — p(u) > 4, proving the theorem. [J

6.5 k-Hypergraphs

A set systemG = (V, E) on a ground seV with E C 2V
is called ak-hypergraph if the cardinality of each elementhhis
no more thark. The Hypergraph Vertex Cover problem is defined
as a straightforward generalization of the Vertex Cover problem to
hypergraphs. We briefly mention how we can obtaifkat+ 1)-
approximation folnd(k-HYPERGRAPH VERTEX COVER.

The standard primal-dual algorithm for vertex cover discussed in
Section 5.2 yields &-approximation for Hypergraph Vertex Cover,
since the dual variable of each edge is used to pay for at most all

its k& vertices. Defining reduced costs and cost shares as in the

k-hypergraph extension of the definitions in Section 5.2, the aug-
mentation procedur@ug , augments the solution to an edgéy
opening the vertex im whose reduced cost is minimum. This can
be verified to be 1-strict along the same lines as Theorem 6.5.

Corollary 6.6 There is ak-approximation algorithmA for the re-
laxed k-Hypergraph Vertex Cover problem, and cost-sharésat
are 1-strict with respect tol, thus giving us &k+1)-approximation
algorithm forInd(k-HYPERGRAPHV ERTEX COVER).
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