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ABSTRACT Keywords

We give simple and easy-to-analyze randomized approxbmaii
gorithms for several well-studied NP-hard network desigobp
lems. Our algorithms improve over the previously best knapn
proximation ratios. Our main results are the following.

e We give a randomized 3.55-approximation algorithm for the
connected facility locatioproblem. The algorithm requires
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1. INTRODUCTION

We give simple and easy-to-analyze randomized approximati
algorithms for three well-studied NP-hard network desigabp
lems. Our algorithms improve over the previously best knapn

three lines to state, one page to analyze, and improves theproximation ratios. We first give the definitions of theselgems,

best-known performance guarantee for the problem.

e We give a 5.55-approximation algorithm fairtual private
network design Previously, constant-factor approximation
algorithms were known only for special cases of this prob-
lem.

e We give a simple constant-factor approximation algorithm
for thesingle-sink buy-at-bulk network desigroblem. Our

deferring both their applications and related work to the efithe
section.

Connected Facility Location (CFL). In theconnected facility lo-
cation problem(CFL), we are given an undirected gragh =

(V, E)) with non-negative costs. on edges, a séb C V of de-
mands and a parameted > 1. Each demand € D has a
non-negativeveightd;. A solution to an instance of CFL consists
of a setF C V of facilities to be opened, an assignment of de-

performance guarantee improves over what was previously mands to open facilities, and a subgraplf G' spanningF” (with-

known, and is an order of magnitude improvement over pre-
vious combinatorial approximation algorithms for the prob
lem.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems
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out loss of generality]” is a tree). If such a solution assigns the
demandj to the open facilityi(j) € F', the cost of the solution is
defined asy_ ., d; - €(j,i(j)) + M 3 cp ce, Wherel(-,-) de-
notes the shortest-path distance between two verticés (w.r.t.
edge lengthg.). Connected facility location is thus the classical
uncapacitated facility location problem, with no costs dpening
facilities but with the additional constraint that openilities must
be connected together.

Virtual Private Network Design (VPND). In an instance o¥/ir-
tual Private Network desigVPND) we are again given an undi-
rected network with non-negative edge costs, al3&t V' of de-
mands, and two non-negatithresholdsb;,, (j) and bo..(j) for
each demand € D. These thresholds specify the maximum
amount of traffic that demangwill receive from and send to other
demands. AD x D matrix describing the amount of (directed) traf-
fic between each pair of demandsvaid if it respects all thresh-
olds. A feasible solution to an instance WPND is given by a
pathP;; for each (ordered) demand péir j) and by capacities.

on edges sufficient to support all valid traffic matrices hviraffic
from to j routed on the patl®;;. The objective is to find a feasible

solution minimizing the cos} __. ; ceu..

Single-Sink Buy-at-Bulk Network Design §SBB). In an instance
of single-sink buy-at-bulk network desi¢$SBB), we are given an
undirected graph with non-negative edge costsnkvertext, and

a setD C V of demands We are also giverk types ofcables
each specified by a capacity and a cost (per unit length). Blease
minimum-cost way of installing sufficient capacity on theyed so
that a prescribed amount of flow can be sent simultaneousty fr
each demand to the sink The cost per unit of capacity of a ca-



ble (the “bang for your buck”) typically decreases as thdeabst
increases, in accordance withonomies of scale

Our Results
Our main results are the following.

1. We give arandomized approximation algorithm@éi. with
a performance bound @f-psr, using apsr-approximation
algorithm for the Steiner tree problem; the currently sewstll
available value fopsr is 1.55 [23]. This simple, intuitive
and easily analyzed algorithm improves over the previously
best known guarantee 6f+ psr, due to Swamy and Ku-
mar [25].

. We resolve the main open question posed in [13] by giv-
ing a 5.55-approximation algorithm fetirtual private net-
work design Previously, constant-factor approximation al-
gorithms were known only for special cases of this prob-
lem [9, 13]; the best known algorithm for the general case
was a0 (log n log log ) algorithm obtained by applying the
tree embeddings of [6].

. We give a simple constant-factor approximation algarith
for thesingle-sink buy-at-bulk network desigroblem. Our
performance guarantee improves over what was previously
known [26] by roughly a factor of 3, and gives an even-
greater improvement over previous combinatorial approxi-
mation algorithms for the problem [12].

Related Work

The connected facility location problem has received atarsible
recent attention both in the operations research litezdtlif, 19]
and in the computer science community [13, 15, 16]. In addi-
tion to modeling the basic scenario of facility location ifniah
some infrastructure among facilities must also be buik, phob-
lem naturally arises as a subroutine in several networkgdesi-
gorithms (see [13, 15]). Karger and Minkoff [15], motivatby
the so-callednaybecasproblem, gave the first constant-factor ap-
proximation algorithm for the problem. This algorithm isngile
and combinatorial, but has a relatively large performancaran-
tee. Gupta et al. [13] subsequently employed an LP-rounapag
proach to improve the approximation ratio. Very recentlyay
and Kumar [25] discovered a primal-dual 4.55-approximatid-
gorithm for the problem.

The virtual private network design problem considered is th
paper was defined by Fingerhut et al. [9] and, subsequendyran
dependently, by Duffield et al. [8]. It was later studied byp&u
et al. [13] with an eye toward approximation algorithms.oPto
the present work, constant-factor approximations werg kmbwn
for restricted versions o¥PND, such as the special case with
bin(J) = bout(j) for all demandgj [9, 13], and the case in which
feasible solutions are restricted to route traffic on a ti&. [

Buy-at-bulk network design has been intensively studiesnfr
the viewpoint of approximation algorithms over the past f@ars.
After the problem was introduced by Salman et al. [24], a lomg
of papers—that we will not review in detail here—have présen
successively superior algorithms for increasingly genezesions
of the problem [1, 2, 6, 10, 11, 12, 18, 20, 21, 26]. For$58B
problem considered here, the first nontrivial approxinratieas
found by Awerbuch and Azar [2], using the tree embeddings of
Bartal [5], and the first constant-factor approximation waen by
Guha et al. [12]. The performance guarantee of the combiahto
algorithm of [12] was not stated explicitly, though Talw@6] es-
timated it to be roughly 2000. Talwar [26] subsequently game

LP-rounding algorithm with an improved performance gutean
of 216. For the special case of “access network design,” kseye
et al. [21] gave a simple randomized algorithm with a cortzey
tor guarantee, but it is unclear how to extend the analysthaif
algorithm to the more general case.

Finally, we note that many of these problems have also been
studied in an online setting. Indeed, an online version efdh
gorithm of Section 2 is known to b@(log n)-competitive for the
so-called “rent-or-buy” problems [3, 4, 7], which are clyselated
to theCFL problem that we study hefeHowever, these techniques
were not previously known to lead to constant-factor apjonax
tion algorithms for any of these offline problems.

Organization

In Section 2 we describe o2 + ps7)-approximation algorithm
for connected facility location. Building on the techniguesed
to analyze this algorithm, in Section 3 we give the first canst
factor approximation algorithm for VPN design. In Sectiowé

present a simple 72.8-approximation algorithm for the Isirsink

buy-at-bulk network design problem.

2. CONNECTED FACILITY LOCATION

In this section, we present an intuitive and easy-to-imglem
randomized approximation algorithm f&@FL with performance
guarante€ + psr, Using apsr-approximation algorithm for the
Steiner tree problem. With the Steiner tree algorithm of iR®b
and Zelikovsky [23], we obtain a 3.55-approximation, impng
upon the primal-dual 4.55-approximation algorithm of Swaand
Kumar [25].

We recall from Section 1 that in an instance(fL, we are given
an undirected grapty = (V, E') with non-negative edge costs,
a setD C V of demands, and a paramefdr > 1. The objective
is to identify a subsefF’ of the vertices/” as open facilities, and to
build a Steiner tre@& connectingF’ to minimize

> dj - 0(i(j), §) + M - e(T),

JjeED

wherei(j) is the closest open facility to demand/ is shortest-
path distance (w.r.t. edge lengtg, d; is the weight of demang,
andc(T') is the cost of the edges in the Steiner tieéMNe will call
the first term of the objective function tleennection costand the
second term th&teiner costWe will refer to edges in the Steiner
tree asbought and edges in a shortest path between a derjand
and its nearest open facilityj) asrented

We assume knowledge ofreot facility r € V' that is assuredly
open in some optimal solution. This assumption is withoas lof
generality, since allV'| “guesses” for a root can be tried one by
one, with the best of all solutions obtained returned asuduty/e
also assume for simplicity tha = 1 for all demandg € D; this
assumption is easy to remove, as we show at the end of thersecti
Let C*, S™ be the connection and Steiner costs of some optimal
solutionOPT that opens facility-. Let Z* = C* + S* denote the
cost incurred bYOPT, F* C V the facilities opened i®PT, and
T~ the Steiner tree ofi”™ in OPT.

We now state our approximation algorithm foFL. The algo-
rithm can be viewed as a randomized reductioRBE to the prob-
lem of finding a good Steiner tree, followed by the constarctf
a shortest-path tree.

'Precisely, thesingle-sink rent-or-buy network design problem
also known as theetwork leasing problemis identical to con-
nected facility location except for the additional constrahat a
root vertex is required to be open in any feasible solution.



2.1 The Algorithm simpLECFL

C1. Mark each demand € D with probability 1/M, and let
D' C D denote the set of marked demands.

C2. Construct @s-approximate Steiner tree di= D' U{r},
andbuythe edges of this tree.

C3. Assign each demand to its closest facilityFin
Our main theorem in this section is the following.

THEOREM 2.1. The algorithmSIMPLECFL is a (2 + psr)-
approximation algorithm foCFL.

The theorem will follow directly from the next two lemmas,
which bound the expected Steiner cost and the expected conne
tion cost separately.

LEMMA 2.2. The expected cost of Step (C2) is at mgst-Z*.

PrROOF It suffices to show that the expected cost of a min-cost
Steiner tree on the (random) set of facilitiesis at mostZ™. We
will prove this by usingT™™, the Steiner tree o™ in OPT, to
exhibit a (random) Steiner trée on F' with expected cost at most
zZ.

We define the Steiner tr&@on F' as the union of the edgesBf
and the edges on shortgst™(j) paths forallj € F\ {r} C D,
where j is assigned ta*(j) in OPT. The cost ofT* C T is
deterministicallyS*. For a demand € D, the cost incurred for
buying the shortest-i* (j) path isM - £(j,4"(j)) with probability
1/M (if j € F) and O otherwise (iff ¢ F). In the worst case, all
of the boughtj-i* (j) shortest paths are edge-disjoint; linearity of
expectation then implies the lemma:

E[o(T)] < S+ 3 (/M) M (G, (j) = §" +C" = 7",
JjED
O

LEMMA 2.3. The expected cost of Step (C3) is at nfosg ™.

PrROOF We first observe that the expected cost of the connec-
tions made in Step (C3) is independent of the particulan8tdiee
constructed in Step (C2). We can therefore assume in ouysisal
without loss of generality, that the Steiner tree of Step) (€8iven
by the minimum spanning tree (in the graph of shortest-path d
tances) orD.

We now view the algorithm s1PLECFL, employing the MST
heuristic, in a new but essentially equivalent way. Instefftip-
ping coins for all demands at once, the new algorithm consithe

demands one by one in some order and flips a coin for each in turn

Depending on the outcome of the coin flip, the demand is e{th)er
marked, added td’, and joined to the preexisting Steiner tree, or
(b) connected to some previously marked vertek'in

To decide the order on the vertices, we maintain two setshé\t t
beginning of step, let A; be the set of vertices previously consid-
ered by the algorithm, anB; C A, those that have been marked.
Initially, A; = B, = {r}. In stept, we pick the vertex, € V'\ A;
that isclosesto B; and flip a coin for it. With probabilityl /M (the
outcome we call “heads”), we defink;.+; and B;+1 by addingv:
to both the setsl; and B;, and we update our Steiner tree by buy-
ing the shortest path fromy to its nearest neighbor iB;. If the
coin reads “tails”, we sel;; = A; U {v¢} andB;4+, = B, and
assignu; to its nearest neighbor iB,.

A key observation is that the incremental process by whieh th
Steiner tre€el’ is constructed on the marked faciliti#s is noth-
ing more than Prim’s MST algorithm [22], running in the gragth

shortest-path distances among vertice#'inThus, this new ran-
domized process faithfully implements the first two stepSiof-
PLECFL. The connection cost incurred by this process is no less
than that incurred by 1PLECFL; we now complete the proof by
showing that the expected connection cost for this new dlgoris

at most2Z*.

Let the random variabl&X; denote the cost from renting (as-
signing v, to its nearest neighbor iB;) minus the cost of buying
(addingv; to B; and connecting it to the existing Steiner tree) in
stept of the algorithm. LetX = . X; denote the connection cost
minus the Steiner cost of the solution produced. The expactieie
of X}, conditioning on the first — 1 coin flips so that; and B
are deterministically known, il —1/M) - €(v¢, By) — (1 /M) M -
{(ve, By) < 0. This inequality holds for any outcome of the first
t — 1 coin flips and hence holds unconditionallf [ X;] < 0
for all ¢. By linearity of expectationE[X ] < 0 and the ex-
pected connection cost incurred by the incremental algoris at
most the expected cost of the MST éh The latter is at most
2Z* by Lemma 2.2, since the MST heuristic is well known to 2-
approximate the min-cost Steiner tree. The proof is coraplei]

2.2 Extensions

Our analysis of algorithm ®1PLECFL is flexible and permits
several extensions, as follows.

1. A naive way to allow non-uniform integral (or, by scaling,
rational) demands, that will also be useful in later sectjos
to modify Step (C1) so that; coins are flipped for a demand
j with weightd;; the demand is marked if at least one coin
reads heads. Conceptually, we replgcky d; co-located
demands, each with weight 1. Since this is equivalent to
flipping a coin forj that comes up heads with probability
1—(1—1/M)% , this process can be implemented efficiently
even when demand weights are not polynomially bounded.

A simpler solution for connected facility location, thatedo
not require integral demands, is to mark a demgnd D
with probabilitymin{1, d; /M }. Only cosmetic changes are
required to generalize the proof of Theorem 2.1 to handge thi
modification.

2. The running time of the algorithm can be improved by a fac-
tor |V/| by choosing a root vertexuniformly at random from
vertices inD. Modifying the above analysis gives a perfor-
mance guarantee @f(2 + psr) for this faster algorithm,
wherea = 1+ M/|D| is, without loss of generality, at most

3. Iffacilities cannot be opened at arbitrary vertices efgnaph
(equivalently, facilities have costs that are either O+av),
relocating each demand to the nearest potential facility an
running SMPLECFL provides &4 + psr)-approximation.
With general facility costs, a constant-factor approxiorat
can be obtained from algorithmi@PLECFL by comput-
ing an (approximate) Steiner Tree-Star [16, 25] instead of
a Steiner tree in Step C2. The performance guarantee is
slightly inferior to that of the 8.55-approximation algibiin
of Swamy and Kumar [25], and the details of this reduction
are omitted from this extended abstract.

3. VPN DESIGN

Motivated by the shortcomings of estimating or assumingno
edge of a fixed traffic matrix for a network, researchers psego
the problem ofvirtual private network (VPN) desigi8, 9]. Recall



from Section 1 that in this problem we are givitmesholds;, (j)

cost due to receivers in Step (V4), and the expected costalue t

andb,.¢(j) on the amount of traffic that enters and leaves a demand senders in Step (V4).

j € D C V of anetworkG = (V, E) with edge costs.. The ob-
jective is to design a network which can handletraffic patterns
that respect the specified upper bounds. Formally, traffipéi-
fied by aD x D matrix of non-negative real numbers, with entry
d;; denoting the amount of traffic sent from demarid demand;.
Atraffic matrix isvalid if the traffic incoming to any nodg_, d;; is

at mosth;,, (j); also, the outgoing traffi§ ", d;; should be bounded
above byb,,:(j). We assume that thresholds are integral.

A solution to aVPND instance reserves bandwidih on edge
e in the graph, and fixes pathg; between each ordered pajrj
of demand nodes such that all valid traffic matrices can beecbu
using these paths without violating the reserved capacitiehe
cost of a solution i c.u. and we seek a solution of minimum
cost.

In this section, we give a simple 5.55-approximation aldponi
for this problem. Prior to our work, the best known solutioasma
straightforward application of Bartal’s tree embeddirgjs this ap-
proach only guarantees éX{(log n log log n)-approximation, where
n = |V] is the number of vertices. For the special case when
bin (J) = bout(4) for all demandg, a 2-approximation is known [9,
13], and Gupta et al. [13] gave a 10-approximation for theigbe
case in which the the union of the routing pa{f3; } is required
to form a tree.

Before stating our approximation algorithm, we make a ceupl
of simplifying assumptions. By making many copies of each de
mand, we can assume that each demgaris one of two types:

a senderwith b;,(5) = 0 andboy:(j) = 1, or areceiverwith
bin(j) = 1 andb,u:(j) = 0. As in Subsection 2.2, with a little
more care this reduction can be efficiently implemented evieen
thresholds are not polynomially bounded. We will also asstimat
the receivers,R, outnumber the senders, The algorithm and
analysis whefjR| < |S| is symmetric. We will letA/ denote the
number|S| of senders.

The following algorithm, which we call PLEVPN, builds a
high-bandwidth “core” on one sender and a subset of thewveri
and routes all other senders and receivers to it using stqa¢hs.

V1. Choose a sendaruniformly at random.

V2. Mark each receivej with probability1/M, and letR' be the

set of marked receivers.

V3. Construct gs-approximate Steiner tréE; on F = R' U

{s}; install capacityM on all edges of’,.

V4. For all senders and receivefsiot in the tre€l’s, install one

unit of capacity on the shortest path betwgeand the sef'.

In Step (V4), the effect of installing capacity on differshirtest
paths is cumulative; put differently, the capacity ingdllon an
edge outside dT; is precisely the number of such shortest paths in
which it is contained.

To begin the analysis, |16t denote the (random) set of edges that
are assigned a nonzero capacity bySLEVPN. With a consistent
tie-breaking rule for shortest paths in Step (V&) will be a tree.
The following lemma is straightforward.

LEmMMA 3.1. With probability 1, the tred’ produced bySim-
PLEVPN is a feasible solution.

LEMMA 3.2. The expected cost incurred in Step (V3) is at most
psT-Z", whereZ* is the cost of an optimalPND solutionOPT.

PROOF. We begin with an equivalent description of the random
selection performed in Steps (V1) and (V2). Each receiveka
sender uniformly at random, and we denotelbythe random set
of demands picking sender We then pick a sendaruniformly at
random, and the Steiner tree instance of Step (V3) is thenetkfi
on Dy U {s}. The first two steps of ®1PLEVPN can be viewed
as these same two (independent) selection steps, with tueise
selected first and the random assignments of receivers tesen
second (recall there ar®f senders in all). To prove the lemma,
it therefore suffices to prove that the expected cost of aimapt
solution to a random Steiner tree instanceldnuU {s} is at most
Z* [M. We will prove this inequality for an arbitrary fixed asso-
ciation of receivers to senders; the unconditional inggughen
follows.

Fix a partition{D; }scs of the receivers, and I&f; denote a
min-cost Steiner tree 0B, U {s}. Showing thafl’; has expected
cost at mostZz™ /M (over theM choices fors) is tantamount to
proving thatOPT can be “decomposed” inttf trees, each capable
of handling any communication between a sender and its iassdc
receivers:

To prove this inequality, first recall that the optimal saatOPT
must specify a pattP,.; between each sendeland receiver. For

a senders, let G5 be the subgrapl,cp, P.s. SinceGs spans
D, U {s}, c(Ty) < ¢(Gs). If edgee appears ik > 0 subgraphs
of the formGs, then it is a member o sender-receiver paths that
share no endpoints. Since simultaneous routing of traffitheese

k paths must be supporte@PT must install at leask units of
capacity ore. Therefore,

7" >N e(Gs) 2> (1)),

which proves the lemma.d

The expected cost of joining the receivers to the centra aor
Step (V4) of SMPLEVPN can be bounded above Bg " in a man-
ner identical to the proof Lemma 2.3; we omit further details

LEMMA 3.3. The expected cost incurred in Step (V4) from in-
stalling capacity on-F' shortest paths for all receiversis at most
27",

Our final lemma bounds the expected cost of joining senders to
the high-bandwidth core.

LEMMA 3.4. The expected cost incurred in Step (V4) from in-
stalling capacity ors’-F shortest paths for all sendes$is at most
2Z".

PROOF Itsuffices to show that, if a senders picked uniformly
at random, then

E [Zs,esf(s,sl)] S 2Z*7

We now bound the expected cost of the solution produced by where/(-,-) denotes shortest-path distancednTo prove this in-

algorithm SMPLEVPN. We will do this by bounding three parts
of the cost separately: the expected cost of Step (V3), theatzd

equality, we fixa sel’ C R of M receivers. Any perfect matching
M of R" andS naturally induces a valid traffic matrix that implies



alower bound of -, ., £(r, s) on Z*. Averaging over allM!
possible perfect matchings, we obtain

]. *
ar Z 6(7"7 S) < Z ’
r€ER',s€S

since each receiver-sender pairings) appears ifM —1)! of the
M! perfect matchings. It follows from this inequality that

Eees | Y _Urs)| < 2" (3.1)
reER'
Also,
D s, )< D )+ Y (S
s'esS reRr’ (r,s")eM
<Y Urs)+2Z27 (32
reR’

for an arbitrary perfect matchingt of R’ andS. Combining (3.1)
and (3.2) yields the lemma.

Combining Lemmas 3.2-3.4 with the Steiner tree algorithm of
Robins and Zelikovsky [23] yields the main theorem of thistige.

THEOREM 3.5. Algorithm SIMPLEVPN is a 5.55-approxima-
tion algorithm for the VPN design problem.

This resolves one of the main open questions from [13]. We had
already noted that, assuming consistent tie-breakingsadhgion
output by SMPLEVPN is a tree. Thus while tree solutions are not
in general optimal fo’VPND [13], some tree solution is always
near-optimal.

COROLLARY 3.6. Every instance 0 PND admits a tree solu-
tion with cost no more than 5.55 times that of an optimal (&ap
solution.

4. SINGLE SOURCE BUY-AT-BULK NET-
WORK DESIGN

In this section we give a simple constant-factor approxiomat
algorithm for the widely studie8SBB problem. Our algorithm is
based on that of Guha et al. [12], but our randomized teclesiqu
permit a simpler yet tighter analysis.

4.1 Notation and Preliminaries

Recall that in theSSBB problem we are given, in addition to
the usual undirected network with edge costsya vertexr and
a setD demandswith demandj wishing to sendi; units of flow
to the root. As usual, we denote the length of an edbg c¢. and
let £ denote shortest-path distance with respect to these kngth
Finally, there are cable typeq1,2,..., K}, with theith cable
having capacity:; and cost; per cable per unit length. We define
d; = o;/u;, which intuitively is the “incremental cost” of using
cable typei. We will assume that eaaly ando; (and by definition
0;) is a power of2. This assumption can be enforced while losing a
factor of 4 in the approximation ratio (round each capagitdown
to the nearest power & and eacty; up to the nearest power of
2).

We now note that costs and capacities must obey some geometri
scaling properties. By reordering cable types, we can asshat
u; < u; ando; < oj foralli < j. (If ws; < u; ando; > oy,
we can eliminate cable typdrom consideration.) Scaling, we can

assume that; = o1 = 1. The incremental cost then scale as
well; note that

for eachj < k, (4.3)

since otherwise we can eliminate cable typey replacing a cable
of type k by u; /u; copies of typej cables without increasing the
cost. Sinced; = oj/u; is also a power oR, this implies each
0j+1 < 9;/2 for all j, asu;j4+1 > 2u;. Finally, we definey, =
% ug; (4.3) implies thaly, < ug+1, and hence

O'k/uk < O’j/Uj

l=u1 <g1<ux<g2<...<ug < gg = 0. (4.4)

Let OPT denote an optimal solution with cost™ = . C*(j),
whereC™(5) is the amount paid for cables of type

We would like to assume that all demand weights are integral.
This assumption is not without loss of generality, for we dal
ready scaled cable capacities. Instead, we enforce this thvit
following “redistribution lemma”. Roughly speaking, tHesmma
shows how to take a “grouping parametéralong with a tree with
weights on its vertices, and randomly move weights througtize
tree so that the total weight at any node of the tree becontearei
0 orU. (For ensuring integral demands, we will talfeto be 1).
Moreover, this random process has two important properthes
probability that a vertex in the tree receives weights propor-
tional to its initial weight, and no edge of the tree carrigs tuch
flow during the reallocation.

LEMMA 4.1 (Redistribution Lemma). LetT be atree rooted
at r with each edge having capacity. For each vertey € T, let
w(j) < U be the weight located gtwith >, w(j) a multiple of
U. Then there is an efficiently computable (random) flow on the
tree that redistributes weights without violating edge aeifies, so
that each vertex receives a new weighi;) that is either0 or U.
Moreover,

Pr [jhasw'(j) > 0] =w(j)/U (4.5)
A deterministic version of this lemma appears in [14, Lemfa 1
The proof is fairly simple, and we give it here only for the saif

completeness.

vj.

PROOF. Let us replace each edge 1Tn by two oppositely di-
rected arcs. We first show that the lemma holds in this bitbdec
tree. First, we take an Euler tour of the vertices, yieldingee C.
We also pick a valug@” drawn uniformly at random fronf0, U].
We maintain a counte®, which initially is set ta0.

We next go around the cycle, starting at the verjex= r,
and visiting all the verticego, j1, - - . , jm in (say) clockwise or-
der. When we visit a vertey,, we setQ «+ @ + w(jx). Suppose
the counter@, just before reaching; was Q.ia, and Qnew =
Qoia + w(jk) is the value after accounting fgy,. If zU +Y €
(Qotd; Qnew] for some integex—i.e., the counter crossed the point
Y modulo U—then we “mark”j;, and ask that it sen@pc., —
(zU +Y) weight to the next marked vertex lying clockwise on the
cycle. In the other case, we ask that the vertex sghils weight
to the next marked vertex lying clockwise on the cycle. Not t
the construction ensures that each arc on the cycle catriesst
U units of weight; furthermore, a vertgxgets marked with proba-
bility w(5)/U, and this is exactly the probability that it h&sunits
of weight at the end of the process.

This process naturally induces a redistribution of weighthe
original tree as well; however, since each edge of the treerema
placed by two arcs, there is a danger that the capacity of ga ed
may be violated by a factor @& This can be handled by rudimen-
tary flow canceling. Let us consider an edggf the tree which was



replaced by two opposite areasanda. Suppose both the arcs carry
flow, with a path fromi to 5 usinga, and one from’ to ;' usinga.
We can now decrease the flow sent on these patlsdiyd instead
sende flow from i to 5/, and fromi’ to j. This does not change the
amount of weight reaching a marked vertex, but decreasesttile

flow crossinge. This process stops when each edge is used in only o tax; €F,

one direction, at which point the flow crossing each eddg of at
mostU, completing the proof of the lemma.[]

With Lemma 4.1, we can build as-optimal Steiner tredy
with cables of capacity = w1 = 1 that connects all the demands,
and use the procedure of Lemma 4.1 witfy) being the fractional
part of d; to collectintegral demands at some subset of vertices.
The cost of the network to do this rerouting is just the costhef
Steiner tree built; since the tree built by the optimal doluts a
candidate Steiner tree, we incur cost at mast x 3, C"(j)/o;
(recallo; = 1). Duplicating vertices if necessary, we can now
assume thad; = 1 for all j. We also assume that the number of
demand$D| is a power oR2; if not, we can place dummy demands
at the rootr to achieve this.

4.2 The Algorithm simpLESSBB

The algorithm we present closely follows that of Guha et] |
where the network is designed incrementally in stages. @ttt
stage, we use the valug; as an “aggregation threshold”, and
combine many demands (each of weigh} into a single demand
of weightwu¢+.. We buy cables on the paths required for this ag-
glomeration. At the end of all these stages, the demand esabke
root; the path in th&SBB solution for this demand is then defined
as the concatenation of the paths used in the aggregatigessta

To reiterate: at the beginning of tith stage, there is a sét; of
|D|/u: vertices with weightu,, and other vertices have weight 0.
(Initially D; = D, and we have enforced that each demga D
has weightd; = 1 = w:.) The steps of stageare:

S1. Mark each demand i, with probabilityp; = u./g¢, and
let D} be the marked demands.

S2. Construct @sr-approximate Steiner trég on F; = D; U

{r}. Install a cable of typét + 1) on each edge of this tree.

S3. For each vertex € Dy, sends itsu; weight to the nearest
member off}; using cables of type Letw (i) be the weight

collected at € F;.

S4. Avertexi € F; receivesu, weight each fromw; (7) /u. ver-

tices of D,. Divide these vertices into groups afi1/u¢

vertices each, leaving = (“’;—E” mod ”tu—jl) residualver-
tices at the end. For each groupwf;/u. vertices, send
the u;41 weight emanating from the group back frano a
random member of the group, building new cables of type

t + 1to do so.

After rerouting weight back to vertices d#, in this way for

all s € F;, we use Lemma 4.1 witli" = T}, w.(¢) = biue
andU = u.+1 to aggregate the weight from residual vertices
into groups of weight exactly:+;. For everyi € F; that
receivesu;+1 weight from this process, we send this weight
back to one ofi's b; residual vertices, chosen uniformly at
random, again building new cables of type 1 to do so.

We note thatD;; C D, forall t. Also, ift = K, thenpx = 0,
so in the final iteration no demands are marked and all wegght i
sent to the root in Step (S3). We now analyze the algorithm with
a sequence of simple lemmas.

LEMMA 4.2. For every non-root vertex € D and stage,
PI'[] € Dt] = l/ut

PROOF The proof is by induction. The claim is clearly true for
t = 1. For stage, considerj € D;. Supposg sends its weight to
in Step (S3). The vertekis either a residual vertex of
i, oritis not. In the former case, Lemma 4.1 assighs: weight
to ¢ with probability b;u: /ut+1, andj subsequently receives this
weight with probabilityl /b;. In the latter casej receives the group
of u:4+1 weight collected ai to which it belongs with probability
u¢ Jug+1. In either case,

Pr[jEDtH] :PI‘[] EDt+1|j€Dt] Pl‘[je.Dt] =
(we/ue1)(1/ue) = 1/t
([l

As a corollary of this result, we get that a non-root vertes lin
F} with probabllltypt X ]./Ut = 1/gt

LEMMA 4.3. Let T} be the optimal Steiner tree of;, and
T7) = Xeery ce- Then

BloI)] € Y -C0+X 7=C(). (49

s>t s<t

PrROOF We assume for simplicity that all demand weights were
initially 1 (i.e., that Lemma 4.1 was not needed as a prefzsing
step); the general case requires only a mildly more contglica
argument.

We will exhibit a (random) grapld’; spanningF; that has low
expected cost. We first add €& all the edges iOPT possessing a
cable of type +1 or higher. IfE; is the set of edges with a cable of
types, thenc(E,) < C*(s)/os, which gives the first summation
of (4.6).

We completeG; by considering each vertexe F; \ {r} C D
inturn. InOPT, demandi may use severatr paths to send flow
to the rootr. (We unfortunately cannot assume without loss of
generality thaOPT is a tree). We randomly add & one of these
paths, with a path chosen with probability equal to the foacof
i's weight that it carries.

Consider an edge of G with no cable of type + 1 or higher.
Suppose for simplicity that only one cable is installedepsay of
type s < t. Thene lies in G; if and only if, for somei € D
and somei-r flow path P containinge in OPT, i was selected
for F; and thenP was selected among alr flow paths. Since
eachi € D lies in F; with probability 1/g;, it follows from the
Union Bound that lies inG, with probability at mosff. / g;, where
fe is the amount of flow ore in OPT. Sincef. < wu., edgee
contributes at most.us/g: to the expected cost @f;. On the
other hand, this cable of typeon edge: contributesrsc. toC*(s).
Thus the expected cost i@, for edgee is 1/(g: ds) times what
OPT pays for the cable. For edges on which multiple cables are
installed, this same analysis can be performed on a cabtzble
basis. Summing over all edges with no cable of typel or higher
now proves the lemma.[]

We now relate the cost of our algorithm to the cost of this cemd
Steiner tree or}.

LEMMA 4.4. The expected cost incurred in stagé at most
(3 + psr) or+1 E [¢(T7) ], whereTy is the optimal Steiner tree
on F;.



PROOF The cost of the Steiner tree in Step (S2) is at most

pst o+1 ¢(T), while the cost of Step (S3) is at m&st;1 ¢(T7')
by an argument analogous to that proving Lemma 2.3.
We complete the proof by bounding the cost of redistributire

flow back to randomly chosen demands in Step (S4). Lemma 4.1

ensures that the rerouting of weight from residual vertizaas be
accomplished using the cables of type 1 purchased in Step (S2),
and no new cables need be built. A groupugf, weight at a ver-
tex of F; is returned to one the;. /u. vertices ofD; from which
the weight emanated. Since the vertex is chosen at randeraxth
pected cost for the cables of type- 1 supporting this return trip is
the cost incurred for this weight in Step (S3), tindes: /d;. Sum-
ming over all groups and using the scaling properties oEimantal
costs, the total cost of the cables for routing flow back talcam
vertices ofD; is at most(1/2) - 20441 ¢(1}) < 041 ¢(T7), and
the lemma is proved. [

THEOREM 4.5. AlgorithmSIMPLESSBBIs a 72.8-approxima-
tion algorithm for theSSBB problem.

PROOF In our preprocessing step, we incur a factor 4 loss from

rounding the costs and the capacities to powetx éfurthermore,
we incur a cost ofpsr }-; C(j)/o; to ensure that we have in-

tegral demands at each vertex. The cost incurred duringlthe a

gorithm proper is obtained by plugging (4.6) into the statatrof
Lemma 4.4, and summing over &allThis shows that the coefficient
of C*(s) is at most

s—1
4 x (34 psr) ¥ (Zam/as + Z(st/(ss) . 4.7)
t=0

t>s

Since thes; andé; are powers of 2, both sums are geometric and

are bounded above by 2. This implies a guarante@ ef psr) x
4 x 4, which is at mos72.8. [

5. CONCLUSIONS

We have exhibited several simple randomized approximation
gorithms for network design problems that improve over tievip
ously best known performance guarantees. There are seadral
ural questions that demand further study. Can our algosthm
derandomized? Can the analysis of this paper be improveateor
there tight examples demonstrating that our analysis cftlago-
rithms is best possible? Is the randomized framework ofgajser
sufficiently powerful to tackle harder network design peshk?
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