
Provisioning a Virtual Private Network:

A Network Design Problem for Multicommodity Flow�
Anupam Guptay Jon Kleinbergz Amit Kumarx Rajeev Rastogi{ Bulent Yener{

Abstract

Consider a setting in which a group of nodes, situated in a large underlying network, wishes to
reserve bandwidth on which to support communication. Virtual private networks (VPNs) are services
that support such a construct; rather than building a new physical network on the group of nodes that
must be connected, bandwidth in the underlying network is reserved for communication within the
group, forming a virtual “sub-network.”

Provisioning a virtual private network over a set of terminals gives rise to the following general
network design problem. We have bounds on the cumulative amount of traffic each terminal can send
and receive; we must choose a path for each pair of terminals, and a bandwidth allocation for each edge
of the network, so that any traffic matrix consistent with the given upper bounds can be feasibly routed.
Thus, we are seeking to design a network that can support a continuum of possible traffic scenarios.

We provide optimal and approximate algorithms for several variants of this problem, depending on
whether the traffic matrix is required to be symmetric, and on whether the designed network is required
to be a tree (a natural constraint in a number of basic applications). We also establish a relation between
this collection of network design problems and a variant of the facility location problem introduced by
Karger and Minkoff; we extend their results by providing a stronger approximation algorithm for this
latter problem.

1 Introduction

Consider a setting in which a group of nodes, situated in a large underlying network, wishes to reserve
bandwidth on which to support communication. Virtual private networks (VPNs) are services that support
such a construct; rather than building a new physical network on the group of nodes that must be con-
nected, bandwidth in the underlying network is reserved for communication within the group, forming
a virtual “sub-network” [7, 8, 21].�A preliminary version of this paper appeared in the Proceedings of the 33nd Annual ACM Symposium on Theory of Com-
puting, 2001[?].yBell Labs, 700 Mountain Avenue, Murray Hill NJ 07974. Email: anupamg@research.bell-labs.com. Much of this
research was done when the author was at the Department of Computer Science, Cornell University, and was supported by NSF
grants CCR-9700029 and DMS-9805602, and ONR grant N00014-98-1-0589.zDepartment of Computer Science, Cornell University, Ithaca NY 14853. Email: kleinber@cs.cornell.edu. Supported
in part by a David and Lucile Packard Foundation Fellowship, an ONR Young Investigator Award, and NSF Faculty Early Career
Development Award CCR-9701399.xDepartment of Computer Science, Cornell University, Ithaca NY 14853. Email: amitk@cs.cornell.edu. Supported in
part by Lucent Bell Labs and the ONR Young Investigator Award of Jon Kleinberg. Part of this work was done while visiting
Lucent Bell Labs.{Bell Labs, 700 Mountain Avenue, Murray Hill, NJ 07974. Email: frastogi, yenerg@research.bell-labs.com

1

Setting up such a virtual private network gives rise to a collection of basic optimization problems. Since
bandwidth must be reserved at a cost, we would like to reserve as little as necessary to support the
expected communication. At the same time, the VPN must be flexible enough to support a range of
possible communication patterns among the nodes it serves; in other words, a single traffic matrix is not
known in advance, since communication patterns will be changing over time. Finally, it is often desirable
for the subgraph on which bandwidth is reserved to have a simple structure that will facilitate routing in
the resulting VPN. Thus, we are essentially dealing with a network design problem for multicommodity
flow in which the node-to-node demands are not known with certainty at the outset.

Duffield et al. [7] recently proposed a natural model for expressing VPNs that allows a large degree of
flexibility in formulating possible traffic patterns. We are given an undirected graph G = (V;E) (the
underlying network) with a cost ce on each edge; and we are given a set of terminals W � V that wish
to establish communication. In the simplest form of the model (the symmetric case) each terminal i 2 W
has an upper bound b(i) on the cumulative amount of traffic that can be sent or received by i at any point
in time; we must choose bandwidth reservations and node-to-node paths so that any set of demands

respecting these upper bounds can be feasibly routed. More formally, a valid traffic matrix ~d on W is an
assignment of a demand dij � 0 to each unordered pair i; j of terminals that respects the cumulative upper
bounds fb(i)g: for each i, we have

Pj dij � b(i). A virtual private network for W is then provisioned
by selecting a path Pij for each unordered pair of terminals i; j 2 W , and reserving some (real-valued)
amount of bandwidth xe � 0 on each edge e. We must choose fPijg and fxeg in such a way that in

the graph G with edge capacities fxeg, the demands corresponding to any valid traffic matrix ~d can be

routed along the paths fPijg — in other words, for every valid ~d, we have
Pij:e2Pij dij � xe: The goal is

to minimize the total cost of the reserved bandwidth,
Pe cexe.

For example, in Figure 1, we have two possible sets of paths fPijg for a symmetric instance with three
terminals labeled 1, 2, and 3. Suppose that b(i) = 1 for each i, and each edge cost is equal to 1. In the
solution on the left, each edge is in either 0 or 2 paths; the crucial point is that for edges e in the latter
category, we need only set xe = 1. Indeed, although such an edge e appears in two paths, the valuesfb(i)g imply that e will never be required to carry more than one unit of demand under any valid traffic
matrix. Thus, there is a solution of cost 7 using the paths on the left. Using the paths on the right, on the
other hand, we must still reserve xe = 1 for each edge e appearing in any path, since there is some valid
traffic matrix in which it must carry one unit of flow. Hence we now incur a cost of 11; this higher cost is
due to poorer multiplexing of the paths.

Our problem thus has both discrete and continuous aspects. We may reserve an arbitrary real-valued
amount of bandwidth on each edge, but must specify a fixed path Pij in advance on which to route thei-j flow under any traffic matrix. The requirement that each i-j flow be routed on a fixed path Pij is
motivated by applications that require guarantees on delay and throughput; an important application of
this type is voice over IP, where strong real-time requirements prevail. Finally, a fundamental feature of
our problem is that the selection of paths and bandwidths must be adequate for a continuum of possible
traffic scenarios — any matrix that respects the bounds fb(i)g.

For many of the key applications of this model, we need to impose the requirement that the union of
the edges in the path set fPijg should form a tree. This corresponds to the general notion raised earlier
that the underlying virtual private network should be structurally simple enough to facilitate routing.
A tree structure is crucial for scalability in representing and configuring the routes with respect to each
terminal. Also, MPLS (MultiProtocol Label Switching), which is emerging as a standard for setting up
paths between pairs of terminals, is considerably simplified when trees are used, since fewer labels have

2

2

3

P

P

P

12

13

23
1

2

3

P

P

P

12

13

23
1

Figure 1: Two possible sets of paths for a 3-terminal symmetric instance.

to be used, and label stacks on packets are not as deep [6]. Furthermore, trees simplify restoration of paths
in case of link failures, since all paths traversing a failed link can be restored as a single group, instead of
each path being restored separately. Thus we will be considering two versions of the symmetric model:
one in which the reserved paths must form a tree, and a more general one in which they may have an
arbitrary structure.

In addition to the symmetric model, there is a more general asymmetric formulation of the problem:
flows are directed in the sense that the i-j flow is distinct from the j-i flow. Thus, each node now has two
upper bounds, (bin(v); bout(v)), which represent upper bounds on the amount of flow that the terminali can receive and send, respectively. A valid traffic matrix ~d on W is now an assignment of a demanddij � 0 to each ordered pair i; j of terminals that respects these cumulative upper bounds: for each i, we
have

Pj dij � bout(i) and
Pj dji � bin(i): The remainder of the formulation is completely analogous:

we must choose bandwidth reservations fxeg and paths fPijg for each ordered pair of terminals (i; j); and
these must be chosen so that the demands corresponding to any valid traffic matrix can be routed with
capacities fxeg on the paths fPijg. Again, the goal is to minimize total cost.

One setting in which the asymmetric model naturally arises is that of terminals that are able to generate
data at a much lower rate than they are able to receive it. This corresponds to the case in which, for each
terminal i, bin(i) is so large that it exceeds the sum of bout(j) over all other j. We will refer to this as the
source-limited case. For brevity, when bin(i) �Pj 6=i bout(j), we will sometimes write bin(i) =1.

Our results. We consider the four variants of the model discussed above: the flows may be symmetric
or asymmetric, and the structure of the VPN may be a tree or a general subgraph. We denote these
variants by the abbreviations SymT , SymG, AsymT , and AsymG; here the suffix T represents the case in
which the solution must be a tree, and the suffix G represents the case in which the solution may be any
subgraph.

We first show that there is polynomial-time algorithm to solve SymT optimally. The problem AsymT , on
the other hand, is NP-complete, and we give a constant-factor approximation algorithm. We obtain the
approximation algorithm in two steps. First, by adapting and strengthening our analysis of the symmetric
case, we reduce AsymT to the following Connected Facility Location Problem:� We are given a graph G with edge lengths, a set of demand nodes in the graph, and a set of candidate

facility nodes; we must open a subset of the facilities, and assign each demand node to one of them.
As in the traditional facility location problem, we pay a cost fi for opening a facility at node i,
and we pay a cost proportional to the demand-distance product for assigning demand node j to
facility i. The new feature is that we incur an additional cost: we must also choose a Steiner tree T
which connects all the open facilities, and we pay an additional cost proportional to the total edge
length of T .

3

This problem was introduced by Karger and Minkoff [15], who developed an algorithm approximating
the optimum to within a constant factor. We provide a significantly improved constant-factor approxima-
tion algorithm for the Connected Facility Location problem, adapting a rounding technique of Shmoys,
Tardos, and Aardal [22]. Combined with our underlying reduction, this yields an approximation algo-
rithm for AsymT . Although we arrived at the Connected Facility Location problem as a step in approx-
imating network design, we feel it is a very natural problem in its own right — it essentially captures a
setting in which facilities need to communicate easily with one other (e.g. for maintaining consistent data,
or re-balancing physical supplies).

We next turn to the case in which the underlying VPN may be an arbitrary subgraph. We provide a2-approximation algorithm for SymG, by showing that there is a tree solution whose cost is within a
factor of two of an optimum that is allowed to use arbitrary subgraphs. We do not know of a good
approximation algorithm for general instances of AsymG, and leave this as an open question. However,
for the source-limited case, we obtain a constant-factor approximation algorithm by showing that there
is always an optimal solution for source-limited instances in which the underlying set of paths forms a
tree. As a result, an approximate solution can be obtained using algorithms for computing approximately
optimal Steiner trees.

In approaching these problems, we have found it useful to consider the natural fractional relaxations SymF
and AsymF , in which we must reserve bandwidth xe � 0 on each edge e so that in the graph G with
capacities fxeg, there is feasible fractional multicommodity flow for the set of demands corresponding to
any valid traffic matrix. Essentially, this fractional version of the problem has the following interpretation:
the bandwidth reservations must be determined in advance, but once we are given a traffic matrix, we
may then choose a multicommodity flow that is feasible with respect to the reserved bandwidth; fractional
flow paths for all pairs do not have to be fixed in advance of learning the traffic matrix. Although this
does not correspond to the way in which VPNs are generally provisioned, this fractional model provides
a useful bound for purposes of comparison. However, despite its close connection with multicommodity
flow, there are cases in which this fractional relaxation is actually hard to solve optimally — in particular,
we show it is co-NP hard with asymmetric traffic bounds on a directed graph.

Finally, we consider the case where the edges of G have capacities, and the allocated bandwidth xe can be
at most the capacity ue. In this case we show that even checking feasibility of SymT and SymG is hard.
We also give a bicriteria approximation algorithm for SymF in this case.

Connections to Related Work. The connected facility location problem was first studied by Karger and
Minkoff [15], who obtained a constant-factor approximation algorithm. Their approach works in two
stages. The first stage decides which facilities to open by “clustering” demands as much as possible
(see also the paper by Guha et. al. [12]). In the second stage, they prove that it does not cost much to
connect these facilities by a minimum Steiner tree. Our algorithm formulates a single linear programming
relaxation for the combined problem, leading to a significantly improved constant factor. The connected
facility location problem is also related to other facility location variants, including multi-level and load-
balanced facility location [1, 12], as well as to the problem of finding connected vertex covers [3].

The main network design problems considered here are related to algorithmic work on two other network
design models, namely survivable network design and buy-at-bulk network design, but with some crucial
differences.

In survivable network design (see, e.g., [10, 13, 23, 24]), we are given a graph G with integer-valued flow
requirements fij between certain pairs of nodes i and j. We must choose a minimum-cost subgraph H
of G so that for each pair i; j, there are at least fij edge-disjoint i-j paths in H . Thus, this is essentially a

4

single-commodity network design problem; the subgraph constructed needs to satisfy the demand for any
single pair of nodes, but not for multiple pairs simultaneously.

In buy-at-bulk network design (see, e.g., [2, 4, 20]), there is a specified demand dij between every pair of
nodes in a graphG, and we must buy capacity on edges as cheaply as possible so as to support a (fractional
or integral) multicommodity flow satisfying all the demand. Now, the demand here is assumed to be
known exactly, so if costs were linear in the amount of capacity purchased the following simple approach
would work: for each pair i; j separately, buy dij units of capacity on any shortest i-j path. The problem
in the buy-at-bulk model is complicated by “economies of scale,” which is reflected in the fact that the
cost of capacity is a concave function of the amount purchased.

Thus, the main qualitative difference in the problems we consider is the notion of quantifying over possi-
ble traffic scenarios: we must provision a single network (with paths for routing) in advance, and it must
support any traffic pattern that is consistent with certain initial guarantees provided by the terminals.

2 Tree Solutions

This section addresses the problem of designing the best tree solution in both the symmetric and asym-
metric situations. It turns out that in the former case, the optimal tree can be computed in polynomial
time, while the latter case is NP-hard. For the latter case, we design an approximation algorithm using a
reduction to Connected Facility Location (CFL).

2.1 The Symmetric Case: SymT
Consider any instance I of the problem on G = (V;E), where the terminals are W = fv1; : : : ; vkg � V ,
and the upper bound (or threshold) for terminal vi is b(i) � 0. A solution to this instance of SymT is a treeT = (V 0; E0) with W � V 0 � V , where each edge e 2 E(T) is allocated a bandwidth xe. The cost of the
tree T is

Pe2T cexe, and is denoted by C(T). The objective is to find a tree such that C(T) is minimum.

Before we begin, let us look at the structure of any solution to this problem. It is clear that any demand
between a pair of vertices must be routed on the unique simple path between them in the tree. We claim
that this determines the bandwidth allocation xe on the edges and hence the cost C(T). Indeed, given
a tree T and an edge e 2 T , let Le and Re be the trees obtained by deleting e, and let b(Le) and b(Re)
be the sums of the thresholds for the terminals in the two trees. Now the edge e must have bandwidth
at least minfb(Le); b(Re)g, since it is possible to set up a valid traffic matrix which requires this amount
of flow to pass through e, in which all the terminals on the lighter side want to send flow to the heavier
side. Furthermore, this bandwidth is sufficient as well, and hence we can set xe to be minfb(Le); b(Re)g.
Finally, note that each leaf of T must be a terminal, since no flow will ever pass through a non-terminal
leaf, and hence it can be deleted.

We can now construct a directed tree ~T by directing the edges of T towards the lighter side as follows:
if b(Le) < b(Re), we direct the edge e towards Le; if b(Re) < b(Le) then we direct it towards Re; and ifb(Le) = b(Re) then we direct it towards the component which contains some fixed leaf l. Let us now state

some useful facts about ~T .

Lemma 2.1 There exists a unique vertex r 2 ~T with in-degree 0. Furthermore, every edge in ~T is directed away
from r.

5

Proof: Any directed tree has at least one vertex r with in-degree 0. Let e = (x; y) such that r is closer to x
than to y in T . We want to show that e is directed from x to y in ~T . This implies that every other vertex in~T has in-degree exactly 1, which implies the uniqueness of r as well.

Let P be the path in T from r to x. We know that the first edge e0 = (r; u) of P is directed away from r.
So, if Le0 ; Re0 are the two components of T � e0 and r 2 Le0 , then b(Re0) � b(Le0). Let Le; Re be the two
components of T �e such that x 2 Le. It is easy to see that Le0 � Le and hence Re � Re0 . Combining these
facts, we get that b(Re) � b(Re0) � b(Le0) � b(Le). If b(Re) < b(Le), then e is directed from x to y and so
we are done. The other possibility is b(Re) = b(Le), in which case we must have Re = Re0 , Le = Le0 andb(Le0) = b(Re0). But since e0 is directed towards Re0 , it must be the case that l 2 Re0 . This, in turn, implies
that l 2 Re and thus e must also be directed towards Re, proving the result.

If the tree T is now imagined as being rooted at the vertex r, the above lemma implies that all edges
are directed away from the root. It is easy to see that the bandwidth of an edge connecting a nodeu 2 T to its parent pT (u) is now exactly b(Tu), where Tu is the subtree rooted at u, and hence C(T) =Pu2T c(u;pT (u))b(Tu). For the rest of this section, let us interpret ce as being the length of an edge. The
following lemma provides an alternate way to look at the cost of the tree T , given the vertex r.

Lemma 2.2 For a tree T with edge-lengths ce and root r as above, C(T) = Pu2T b(u) dT (r; u), where dT is the
distance in T according these edge-lengths. Furthermore, for any other vertex v 2 T , C(T) �Pu2T b(u) dT (v; u).
Proof: The cost of T is Xu2T c(u;p(u)) Xv2Tu b(v) =Xv2T b(v) Xu above v c(u;p(u)):
However, the inner sum is exactly the distance from v to r with edge-lengths ce, which proves the first

part of the lemma. For the second part, it suffices to show that for every directed edge e = (x; y) in ~T , the
weighted sum of the distances from x is no larger than from y. Let Le; Re be the two components of T � e,
with x 2 Le. Now Xu2Tb(u) (dT (x; u)� dT (y; u))= Xu2Le b(u) (dT (x; u)� dT (y; u))+ Xu2Re b(u) (dT (x; u)� dT (y; u))= � Xu2Le b(u)ce + Xu2Re b(u)ce= ce (b(Re)� b(Le)) � 0;
where the last inequality follows from the fact that b(Re) � b(Le), since e is directed towards Re.
Theorem 2.3 The optimal tree solution for the symmetric case can be computed in O(S(G)) time, where S(G) is
the time required to compute all-pairs shortest-paths on graph G.

6

Proof: For the optimal tree T �, there exists a vertex r 2 T � such that the cost of the shortest-path treeT connecting r to the set W is exactly the cost of T �, and thus is just as good a solution as T itself. But
now a natural algorithm for finding the optimal tree suggests itself: for each vertex u 2 V , we find the
shortest-path tree T u connecting u to the vertices of W . We output the tree among these for which the
cost C(T u) is the least. The facts above immediately imply the following theorem. To see that this is
optimal, note that C(T u) � C(T r). This, by the second part of Lemma 2.2, is at most

Pu b(u)dT r (r; u) �Pu b(u)dT �(r; u) = C(T �).
2.2 The Asymmetric Case: AsymT
While we could efficiently compute the optimal solution in the symmetric case, the situation in the asym-
metric case is more complicated, since the problem AsymT turns out to be NP-hard.

Theorem 2.4 The problem AsymT is strongly NP-hard and max-SNP hard.

Proof: We give an approximation-preserving reduction from the minimum Steiner tree problem, which
is strongly NP-hard [9]. Given a Steiner tree instance I on the graph G = (V;E) with edge weights ce
and required vertices R, we create an instance I 0 of AsymT , where the edge weights are ce, R is the set of
terminals, each with thresholds (bin =1; bout = 1).
Consider any tree solution T for I 0, and an edge e 2 T . Deleting e creates two subtrees Le and Re. Clearly,
the bandwidth allocated to the edge e must be bout(Le) + bout(Re), since it is possible to set up a valid
traffic matrix where each terminal in Le sends flow to some terminal in Re, and vice versa. Furthermore,
this is the maximum possible flow across the edge e. Since this quantity is simply bout(W) = jRj, the cost
of the tree is jRjPe2T ce. Finding a tree minimizing this cost is the same as finding the optimal Steiner
tree, which completes the proof.

However, we can reduce finding the optimal tree to the following NP-hard facility location problem.

Definition 2.5 An instance of Connected Facility Location is specified by a graph G = (V;E) with edge lengthsce, a set of demand nodes D where each vertex j 2 D has a demand dj > 0, facility costs fi associated with
opening a facility at location i 2 V , and a parameter M � 1. The objective is to open a set of facilities F , to assign
some open facility i(j) to each demand node j, and to connect up all the vertices in F with a Steiner tree T so as to
minimize Xi2F fi +Xj2V djci(j)j +MXe2T ce;
where cuv denotes the length of the shortest path between u and v in V .

The reduction involves some amount of detail, which we defer to the Appendix. However, let us briefly
sketch some of the underlying ideas. Given a tree solution T , we can infer the allocation on an edge e thus:
if deleting the edge e creates subtreesLe andRe, then xe = min fbin(Le); bout(Re)g+minfbin(Re); bout(Le)g.

We can again define a directed tree ~T by replacing each undirected edge by two directed edges, where the
directions indicate which of the subtrees attain the minima in the above expression. It can be shown
that the edges of T where both directed edges have opposite directions forms a connected component ofT which corresponds to the Steiner tree in CFL, while those where the edges have the same direction
behave in a manner similar to the SymT case and correspond to the connection costs.

7

2.2.1 Approximation algorithms for CFL
Consider an instance I of the Connected Facility Location problem, as defined in Definition 2.5. Let
us assume that we know some vertex v which is opened as a facility in the optimal solution. (We can
discharge this assumption by trying out all possible vertices v.) It is not difficult to check that we can
formulate the problem as the following 0-1 integer program, where yi indicates if a facility is opened at
location i, xij indicates whether demand point j is assigned to facility i, and ze indicates whether edge e
is part of the Steiner tree connecting the opened facilities.min Xi2V fiyi +Xj2D djXi2V xijcij +MXe2E ceze (IP1)

s.t.
Xi2V xij = 1 for all j 2 D (2.1)xij � yi for all j 2 D; i 2 V (2.2)Xi2S xij � Xe2Æ(S) ze for all S � V; v =2 S and j 2 D (2.3)xj ; yi; ze 2 f0; 1g

As usual, we relax (IP1) to a linear program (LP1) by replacing the 0-1 requirements by the constraintsxij ; yi; ze � 0. We can show that (LP1) can be solved in polynomial time using the ellipsoid algorithm.

Theorem 2.6 The optimal (possibly fractional) solution to (LP1) can be rounded to an integer solution increas-
ing the cost by at most a factor of 12. Furthermore, in the case where all the fi = 0, we can get an improved
approximation guarantee of 10.

Proof: The basic idea of the rounding algorithm is similar to the one given by Shmoys et al. [22]. The
algorithm first performs a filtering step [16, 17] followed by clustering, after which a facility is chosen
from each cluster. By the properties of the filtering, the cost of opening this facility and connecting the
demand points to it is not much more than the fractional cost. However, showing that a near-optimal
Steiner tree connecting these facilities has low cost requires more work. To show this, an auxiliary graph
is created in which some of the potential facilities in each cluster are contracted, and an approximate
Steiner tree is constructed in this collapsed graph. Finally, this tree is extended to a Steiner tree of low cost
in the original graph, completing the proof. The details are given below.

Filtering: Let x; y; z be the optimal fractional solution to this LP. Let 0 < � < 1 be a constant whose value
we will fix later. For each demand point j, define cj(�) as follows: let � be a permutation such thatc�(1)j � c�(2)j � � � � � c�(n)j . Define i� = minfi0 :Pi0i=1 x�(i)j � �g, and cj(�) to be c�(i�)j . We will use the
following fact extensively: (1� �)cj(�) � Xi�i� x�(i)jc�(i)j � nXi=1 cijxij : (2.4)

Let us define a new solution x0; y0; z0 as follows : for each demand point j, set �j =Pi:cij�cj(�) xij . Definex0ij to be xij=�j if cij � cj(�), and 0 otherwise. For each i, define y0i = minf1; yi=�g. For each edge e,
define z0e = ze=�. It is easy to verify that this new solution is feasible for (LP1). Moreover, (2.4) tells us

8

that we can assign a demand j to any facility i such that x0ij > 0 without incurring a loss of more than1=(1 � �) in the assignment cost.

Clustering: We now define a family of disjoint clusters, where each cluster is a set of demand and facility
points. The cluster C1 is defined by choosing a demand point j called the center of the cluster C1, which is
the point with the minimum cj(�). To do this, let � > 1 be a constant whose values will be decided later.
Let F1 be the set of facilities i such that x0ij > 0. All the facilities in F1 are added to the cluster C1, as are
all demand points j0 such that x0ij0 > 0 for some i 2 F1. (In particular, j 2 C1). Furthermore, if there is a
demand point j00 such that one of the facilities in F1 is within a distance �cj00(�) of j00, then j00 is reassigned
to the closest facility in F1, and is also added to C1. The vertices in C1 are now deleted, the clusters are
formed in the remaining graph until it is depleted, at which time we have disjoint clusters C1; C2; : : : ; Cr.
The fact to notice here is that if there are two clusters Cp and Cq with centers j and j0, then any facility inFp is at least at distance (� � 1)maxfcj(�); cj0(�)g from any facility in Fq .

Picking the facilities: For each cluster Ck, we pick the facility i�k 2 Fk with the lowest cost f�k , and assign
all the demand points in Ck to this facility. By (2.1), (2.2) and a simple averaging argument, the cost of
opening this facility will be at most

Pi2Fk fiy0i, and hence the total facility cost will be at most
Pi2V fiyi=�.

We also claim that this does not increase the assignment cost substantially. Indeed, if j0 is a demand point
such that x0ij0 > 0 for i 2 Fk, the triangle inequality implies that the distance of j0 from any facility in Fk
is at most cj0(�) + 2cj(�) � 3cj0(�). If a demand point j0 was reassigned to a facility in Fk, then the j0
is at most �cj0(�) + 2cj(�) � (� + 2)cj0(�) distance from any facility in F1. Now (2.4) implies that the
assignment cost of any demand point will increase by a factor of at most (� + 2)=(1 � �).
The Steiner tree: We will now construct a Steiner tree connecting the opened facilities whose cost is not
much more than

Pe ceze. For each cluster Ck, the nodes in the set Fk are contracted into a supernode �k,
and let the resulting contracted graph be denoted by Gc. Since the sets Fi are disjoint, each supernode
will be distinct, and let SF be the set of these r supernodes. If the vertex v is not included in any of
the supernodes, it is also added to SF . The variables x0 can be defined on this new graph in the natural
fashion by setting x0�kj =Pi2Fk xij . Let S be any subset of nodes in G0 such that SF \ S and SF � S are
both non-empty, and assume that v =2 S. (This is without loss of generality, since we can always replaceS by V � S.) Now (2.1) and (2.3) imply that

Pe2Æ(S) ze � Pi2S x0�kj = 1, where �k is a supernode in S
and j is the center of the cluster Ck. Thus z0e is a feasible fractional solution to the LP relaxation of the
Steiner tree problem on G0 with SF as the set of required nodes. Since the integrality gap of the Steiner
tree LP is at most 2, we can use any algorithm to find a good approximation to the minimum Steiner treeT 0 connecting vertices in SF with cost at most 2Pe cez0e.
The final step is to use T 0 to find a cheap Steiner tree T in the original graph G connecting the open
facilities. This becomes slightly involved due to the following fact: if we interpret the tree T 0 in G, it may
be the case that the edges do not form a connected subgraph. This is because edges incident to �k in G0
may be actually be incident to different vertices of Fk in G. To handle this problem, we add edges to
connect the center of the cluster Ck to all these vertices and to i�k, the facility opened in cluster Ck. These
edges, along with the edges of T 0 form the Steiner tree T .

It now remains to show that the cost of T is not much more than that of T 0, which we will show by
charging the cost of these edges to the edges of T 0. Let us direct the edges in T 0 to form an outgoing
arborescence from v (or the supernode containing it). If we consider Fk (with center j), there is exactly
one facility ik which has an incoming arc in T 0, while there are outgoing arcs from facilities ik1 ; : : : ; ikr .

9

First, we will charge the edges connecting j to each of the ikl , which cost at most cj(�), to the path inT 0 connecting �k to the next supernode, which must be of length at least (� � 1)cj(�). It is easy to see
that these paths in T 0 must be disjoint, and hence the total cost of these edges is at most the cost of T 0.
The cost of the path hj; iki can be charged to the incoming edge, and the path hj; i�ki can be charged to
either an incoming edge or an outgoing one (in the case of the root). Summing up, the cost of T is at most1 + 4=(� � 1) times the cost of T 0, and hence at most 2(� + 3)=�(� � 1) times

Pe ceze.
This gives us a maxn 1� ; �+21�� ; 2(�+3)�(��1)o factor approximation algorithm for the problem. Setting � to be 0:45
and � to 3:86, we get a constant about 10.66. In the useful case when there are no facility costs, we can

open the facility ik in cluster Ci instead of i�k. So, the approximation ratio becomes maxn�+21�� ; 2(�+1)�(��1)o.

Setting � = 0:44; � = 3:04, we get a constant slightly less than 10.

This also gives the 10-approximation algorithm for AsymT . (We have not tried to optimize the constants
in the above analysis; better bounds are possible using randomization.) For the source-limited case where
each threshold is (bin = 1; bout = �), the arguments of Theorem 2.4 show that the optimal tree solution
corresponds exactly to the optimal Steiner tree connecting the terminal set, and hence can be approxi-
mated to within 1.55 [19].

3 Unsplittable and Fractional

Graph Solutions

3.1 The Symmetric Case

In this section, we show that a solution to SymT is a constant factor approximation to SymG. In fact, we
show something stronger; i.e., a solution to SymT is within 2(1 � 1=k) of the optimal fractional solution
to SymF .

To prove the result, let us define the Pairwise Demands problem PD(�). An instance of this problem is also
given by G = (V;E) with edge costs ce, and set W of k terminals, but now the objective is to find the least
cost allocation of bandwidth xe to the edges in G so that � units of flow can be sent between every pair of
terminals. This can be solved in polynomial time by taking the union of the shortest paths between each
pair of terminals, where xe is � times the number of the paths using e.
In the rest of this section, let us assume that b(v) = 1 for all v 2 W in an instance I of SymT under
consideration. Since we are finding an optimal tree solution, it can be shown that given an instance I 0
of SymT with arbitrary thresholds, we can create an instance I where all thresholds are 1 by replacing
a terminal of threshold b(i) by a star of b(i) nodes (with zero-cost edges), and the optimal tree solution
of I and I 0 remain the same. (This assumption will merely be required for the proofs, and not for the
algorithms.)

We now argue that the optimal solution to PD(1=(k � 1)) is close to the optimal solutions for both SymF
and SymT (where b(i) = 1 for all i 2W), and sinceOPT (SymF) � OPT (SymG) � OPT (SymT);
we will have shown that SymT is close to SymG.

10

Theorem 3.1 For any graph G = (V;E) with edge-costs ce, and set W of k terminals, it holds that:OPT (SymF) �OPT (SymG) � OPT (SymT)� 2(1 � 1k)OPT (PD(1k�1))� 2(1 � 1k)OPT (SymF):
Proof: The inequalities on the first line are obvious. For the last inequality, consider an optimal solutionS to SymF . Since each terminal has unit threshold, the demand vector dij = 1=(k � 1) for i; j 2 W is a a
valid traffic matrix, and hence S is a feasible solution to PD(1k�1) as well, and hence OPT (PD(1k�1)) �OPT (SymF).
Now consider an optimal solution S to PD(1k�1). For a terminal i 2 S, let Fi denote the portion of the flowS corresponding to sending 1=(k�1) units of flow from i to all other terminals. Also, for each terminal i, letTi be the shortest-path tree from i in the graph G (with edge lengths ce), and cost(Ti) =Pu2W dG(i; u) =Pu2W dTi(i; u) denote the sum of the cost of the paths in Ti from i to all other terminals in W . Now, note
that the optimal way of sending 1=(k � 1) units of flow from i to all terminals in S is to send them along
the unique path from i to each terminal in the tree Ti. This implies that (k � 1)cost(Fi) � cost(Ti). But
since the flow between i and j is being counted in both Fi and Fj , cost(F1) + � � � + cost(Fk) = 2cost(S),
and thus cost(T1) + � � � + cost(Tk) � 2(k � 1)cost(S). Now if cost(T1) � cost(Ti) for all i 2 W , thencost(T1) � 2(k�1)k cost(S).
Finally, we must show that there is a solution to SymT with cost at most cost(T1). But this is simple to
see by an argument similar to one used earlier: the number of times an edge e is counted in Ti is just the
number of nodes ofW in one of the subtreesLe created by deleting e, and hence at least minfb(Le); b(Re)g,
which is the required bandwidth allocation to e in T . This shows that T1 itself is a solution to SymT with
cost at most cost(T1), proving the theorem.

It can be seen that Theorem 3.1 implies that the optimal solution to PD(1=(k � 1)) is also within a factor
at most 2 of OPT (SymF), which gives us a 2-approximation algorithm to SymF .

3.1.1 When each vertex routes on a tree

The routing strategies used in most current systems are tree-routing protocols, where each terminal s has
a tree Ts (usually the shortest-path tree rooted at s) connecting s to all the terminals. When s wants to
send transmissions to a subset S of the terminals, it sends them unsplittably along the edges of this tree.
As discussed in the introduction, tree-routing has advantages like simplicity and scalability. To cast this
notion in our framework, we can search for the following restricted type of solution to an instance ofSymG: instead of specifying the paths Pij explicitly, we specify them by giving a tree Ti for each terminali. The transmissions between i and other vertices take place along the edges of Ti, and hence the collection
of trees implicitly defines the paths Pij .
This additional condition is clearly vacuous if we are seeking an optimal solution to SymT , since the
union of the paths Pij is clearly a tree. Interestingly, it turns out that if we are solving SymG and want
each terminal i to route unsplittably on a tree Ti, then there is an optimal solution in which all Ti are the
same — we cannot do better than simply to solve the corresponding instance of SymT on the terminals.

Theorem 3.2 If S is an optimal solution to an instance I of SymG under the constraint that every terminal routes
along a tree, and S 0 is the optimal solution to SymT on I , then C(S) = C(S 0).

11

Proof: Let S be the optimal solution to SymG under the restriction that every terminal i routes its flow
along a fixed tree Ti. This implicitly defines a (simple) path Pij between i and j (which is the same asPji, since we are in the symmetric case). Let Pi be the set of simple paths defined by Ti, and ni(e) is the
number of paths in Pi using edge e. Also, let xe be the bandwidth allocated to edge e by S . We want to
show that

Pe cexe � C(S 0). As in the previous section, we can assume that b(i) = 1 for all terminals i in
the proofs.

To lower bound
P cexe, we make an auxiliary graph Ge = (W;Ee) for each e, where Ee contains the edge(i; j) if and only if Pij contains e. Note that the degree of i in Ge is ni(e). It is clear that xe is the maximum

fractional matching on Ge. We want to construct a feasible fractional matching by assigning weights wf
to each edge f 2 Ee, such that if Eie is the set of edges in Ge incident to i, then

Pf2Eie wf � 1. We will then
show that the cost of solution corresponding to this matching is large, and hence the cost corresponding
to xe must be larger still. For any terminal i and edge e, let us define yi(e) = minfni(e); k�ni(e)g, and for
a subgraph Ti, define y(Ti) = 1kPe2Ti ceyi(e).
Claim 3.3

Pi y(Ti) �Pe cexe = C(S).
Proof: To prove the claim, it suffices to show that 1kPi yi(e) = 1kPiminfni(e); k � ni(e)g � xe for all
edges e; and hence it suffices to construct a fractional matching in Ge whose value is at least the left side
of this inequality. To this end, let us definewf = 1k � yi(e)ni(e) + yj(e)nj(e)�
for each edge f = (i; j) in Ge. It is easy to verify that

Pf2Ee wf = 1kPi yi(e). We also have to ensure thatwf satisfies
Pf2Ee(i) wf � 1 and is a fractional matching in Ge. Let N(i) denote the neighbors of i in Ge.Xf2Fi wf = 1k Xj2N(i)�minfni(e); k � ni(e)gni(e)+ minfnj(e); k � nj(e)gnj(e) �� 1k Xj2N(i)�k � ni(e)ni(e) + nj(e)nj(e)�= 1k (k � ni(e) + ni(e)) = 1:

To complete the proof of Theorem 3.2, it suffices to show that y(Ti) � C(S 0)=k, which along with Claim 3.3
would imply that C(S 0) � C(S). Note that Ti is a tree joining all the terminals, and by the arguments of
Section 2.1, a feasible bandwidth allocation on the edge e is the smaller of the numbers of terminals in Le
and Re. This, in turn, can be seen to be bounded above by minfni(e); k � ni(e)g, and hence the optimal
tree solution has cost C(S) at most

Pe2Ti ceminfni(e); k � ni(e)g � k y(Ti), which completes the proof.

12

3.2 The Asymmetric Case

In the asymmetric case, we have results for the setting in which all thresholds are of the form (bin =1; bout = �). In this case, we show that the problems AsymT and AsymG are the same, and are in turn
within a factor of 2 of AsymF . Let B =Pu2W bout(u) in this section.

Theorem 3.4 For any instance I of AsymG, with all thresholds being (bin = 1; bout = �), there is an optimal
tree solution.

Proof: Consider an instance I of AsymG with all thresholds being (bin = 1; bout = �). Let T � be the
optimal Steiner tree connecting W , and let C� =Pe2T � ce be its cost. We will show that, for any solutionS to I assigning bandwidth xe to edge e, its cost C(S) =Pe2E cexe � BC�.

Let P be the set of k(k � 1) paths in S , one path between each distinct (ordered) pair of nodes in W .
Let Pe denote the set of paths in P which contain e. We claim that xe is equal to the sum of bout(i) forfi j9j s:t: Pij 2 Pe g; i.e., the sum of bout(i) for those i which are the left ends of some (directed) path inPe. Indeed, note that we can set up flows from each of these vertices so that exactly the claimed amount
of flow passes through xe, but no more.

If W = f1; : : : ; kg, consider the subgraphs T1; : : : ; Tk where Ti is the union of the paths Pij which connecti to the other vertices of W . Define c(Ti) = Pe2Ti ce. Since the tree Ti connects all the nodes in W ,c(Ti) � C�. Hence
Pki=1 bout(i) c(Ti) � BC�. Finally, we show that

P bout(i) c(Ti) = Pe2E cexe. Look at
an edge e, and the paths Pe that pass through it. Since we have already shown that xe is the sum of thebout(i) of the set of left endpoints i of these paths, it suffices to show that e appears in the Pi corresponding
to these very i’s. But this is immediate by the definition of Ti. This shows that the cost of the optimal
solution is at least BC�, completing the proof.

Furthermore, we can also show that the optimal unsplittable graph solution is within a factor of 2 of the
fractional solution.

Theorem 3.5 For any instance with all thresholds being (bin =1; bout = �),OPT (AsymF) � OPT (AsymT)= OPT (AsymG) � 2OPT (AsymF):
Proof: The first inequality is trivial, and the equality follows from the previous theorem. To see the final
equality, note that 1=B times the optimal solution S to AsymF is also feasible for the LP relaxation of the
Steiner tree problem and hence S has cost at least B=2 c(T �), where T � is the optimal Steiner tree. But by
the arguments of Theorem 2.4, OPT (AsymT) = B c(T �), and the theorem follows.

The result of Theorem 3.4 does not hold for the general case when arbitrary values of bin and bout are
allowed, as Figure 2 shows. We also do not know of an analogue of Theorem 3.5 for the general case, and
offer this as an open problem.

3.3 Fractional Solutions

Finding optimal solutions to the fractional variants appears to be quite difficult; and this is perhaps sur-
prising given the relationship to standard multicommodity flow problems. Part of the complication arises

13

1

1

1

1 1

(1,0)

(1,0)

(0,2)

(0,2)

2

2

Figure 2: Example showing that AsymG (on the left) may not equal AsymT (right), where numbers in italics
denote (bin; bout) values, numbers in boxes are bandwidth allocations, and thick black lines are assigned paths.

from the fact that the demands are not fixed, as in multicommodity flow, but allowed to range over all
valid traffic matrices.

Specifically, we prove the following.

Theorem 3.6 The problem AsymF is co-NP hard to solve on directed graphs.

The question of whether finding optimal fractional solutions is hard for undirected graphs (either in the
symmetric or the asymmetric case) remains as yet unresolved.

4 Network Design with capacities

In the previous sections, we assumed that any amount of bandwidth could be allocated to any edge in G.
A more general situation is one in which each edge has a capacity ue, and we must satisfy xe � ue. We
can show that the analogues of SymT and SymG in the capacitated case are NP-hard.

Theorem 4.1 The problem of deciding whether a given capacitated version of SymT or SymG has a feasible solu-
tion is NP-hard, even when all the capacities are at most 2.

This result, along with the result of Section 3.3, suggests that checking feasibility of even the fractional
version of this problem may be hard. The following theorem gives a simple approximation algorithm for
the fractional case of SymG which gives a solution which is within a constant factor of the optimum, and
while violating the capacity of any edge by a constant factor.

Theorem 4.2 There is a polynomial time algorithm for the the capacitated version of SymG which outputs a
solution whose cost is within a constant factor of the optimal solution cost. Further, this solution violates any edge
capacity by at most a constant.

Proof: Before stating the approximation algorithm, let us observe a simple fact about matchings in
graphs. Given vectors M1; : : : ;Mr of the same dimension, we say that a vector M is an approximate convex
combination of these vectors if there exist real non-negative constants �1; : : : ; �r such that M =Pri=1 �iMi
and

Pri=1 �i = 3=2. We say that M1 dominates M2 if each coordinate of M1 is at least the corresponding
coordinate of M2.

Given an undirected graph G0 = (V 0; E0), the fractional matching problem is to assign non-negative edge
weights ye to each edge in E0 such that for every vertex v 2 V 0, Pe2�(v) ye � 1, where �(v) is the set of

14

edges incident with v. Note that a matching in G0 is a fractional matching where each ye is 0 or 1. We can
view each (fractional or integral) matching as a vector of length jE0j.
Lemma 4.3 Each fractional matching in the graph G0 (viewed as a vector of length jE0j) is dominated by an ap-
proximate convex combination of matchings in G0.
Proof of Lemma 4.3: Consider the fractional matching polytope P of G0. It is well known that if M is
a vertex of P , then each coordinate of M is 0; 1=2 or 1 [18]. Clearly, it is enough to prove the lemma for
fractional matchings which are vertices of P . Let M be a vertex of P . Note that if E00 are the edges in M
with non-negative weight, then E00 is a set of vertex disjoint edges (call this E001) and odd cycles (call thisE002). Each edge in E001 gets weight 1 and edge in E002 gets weight 1/2. It is easy to see that E001 is a matching
and E002 can be expressed as union of three matchings M1;M2;M3. Clearly, E001 [Mi is also a matching.
Now, M is dominated by 1=2P3i=1 (E001 [Mi), which proves the lemma.

Without loss of generality, let us assume that the threshold of each terminal is 1. (Otherwise, replace a
terminal with threshold b(i) with a “star” having b(i) leaves, each leaf having threshold 1). We consider
the following pairwise demand between the terminal nodes W : for each vi; vj 2 W , let demand between
them be 1=k (recall that k = jKj). Let f denote an optimal flow for this pairwise demand. Let fi;j be the
flow between vi and vj and f(e) be the flow on an edge e.
We will allocate a bandwidth xe = 3f(e) on each edge. Clearly, this solution satisfies the requirements of
the theorem, and it suffices to show that this is a feasible solution. For every pair of vertices i; j 2 W , we
define a flow f 0i;j between them as follows : first send 1=k units of flow from i to each terminal r alongfi;r, and then from each terminal r, send 1=k units of flow to j using frj .
Let G0 be the complete graph on W as vertices. Note that any set of pairwise demands between the nodes
in W is a fractional matching in G0. We first show how to route any integral matching in G0 when the
reservation on an edge e is just 2f(e). Let M be a matching in G0: for every edge (i; j) in this matching,
send one unit of flow between them along f 0i;j . It is easy to see that this needs at most 2f(e) units of
bandwidth on an edge e, simply because the maximum traffic that gets routed via any vertex is at most
2. Since Lemma 4.3 shows that any fractional matching is an approximate convex combination of integral
matchings, this implies that any pairwise demand can be routed if the reservation on an edge is 3f(e) =xe, which proves the theorem.

Acknowledgments

We thank Éva Tardos for several useful discussions.

References

[1] Karen I. Aardal, Fabian Chudak, and David B. Shmoys. A 3-approximation algorithm for the k-level
uncapacitated facility location problem. Information Processing Letters, 72:161–167, 1999.

[2] Matthew Andrews and Lisa Zhang. The access network design problem. In Proceedings of the 39th An-
nual IEEE Symposium on Foundations of Computer Science, pages 40–49, 1998.

15

[3] Esther M. Arkin, Magnús M. Halldórsson, and Refael Hassin. Approximating the tree and tour
covers of a graph. Information Processing Letters, 47(6):275–282, 1993.

[4] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, pages 542–547, 1997.

[5] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility location andk-median problems. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pages 378–388, 1999.

[6] Bruce Davie and Yakov Rekhter. MPLS: Technology and Applications. Morgan Kaufmann Publishers,
2000.

[7] Nicholas G. Duffield, Pawan Goyal, Albert G. Greenberg, Partho P. Mishra, K.K. Ramakrishnan, and
Jacobus E. van der Merwe. A flexible model for resource management in virtual private networks. In
Proceedings of the ACM SIGCOMM, Computer Communication Review, volume 29, pages 95–108, 1999.

[8] Shivi Fotedar, Mario Gerla, Paola Crocetti, and Luigi Fratta. ATM virtual private networks. Commu-
nications of the ACM, 38(2):101–109, 1995.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A guide to the theory of NP-
completeness. W. H. Freeman and Company, San Francisco, 1979.

[10] Michel X. Goemans, Andrew V. Goldberg, Serge Plotkin, David B. Shmoys, Éva Tardos, and David P.
Williamson. Improved approximation algorithms for network design problems. In Proceedings of
the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223–232, 1994.

[11] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial
optimization. Springer-Verlag, Berlin, 1988.

[12] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and network de-
sign problems. In Proceedings of the 41th Annual IEEE Symposium on Foundations of Computer Science,
pages 603–612, 2000.

[13] Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. In
Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pages 448–457,
1998.

[14] Kamal Jain and Vijay Vazirani. Primal-dual approximation algorithms for metric facility location
and k-median problems. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pages 2–13, 1999.

[15] David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global knowledge. In
Proceedings of the 41th Annual IEEE Symposium on Foundations of Computer Science, pages 613–623,
2000.

[16] Jyh-Han Lin and Jeffrey Scott Vitter. Approximation algorithms for geometric median problems.
Information Processing Letters, 44(5):245–249, 1992.

[17] Jyh-Han Lin and Jeffrey Scott Vitter. �-approximations with minimum packing constraint violation
(extended abstract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages
771–782, 1992.

16

[18] László Lovász and Michael D. Plummer. Matching theory. North-Holland Publishing Co., Amster-
dam, 1986. Annals of Discrete Mathematics, 29.

[19] Gabriel Robins and Alexander Zelikovsky. Improved Steiner tree approximation in graphs. In Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770–779, 2000.

[20] F. Sibel Salman, Joseph Cheriyan, R. Ravi, and Sairam Subramanian. Buy-at-bulk network design:
Approximating the single-sink edge installation problem. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 619–628, 1997.

[21] Charlie Scott, Paul Wolfe, Mike Erwin, and Andy Oram. Virtual Private Networks. O’Reilly, 1998.

[22] David B. Shmoys, Éva Tardos, and Karen I. Aardal. Approximation algorithms for facility location
problems. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265–274,
1997.

[23] David P. Williamson. Approximation Algorithms for a Class of Graph Problems. PhD thesis, MIT, Septem-
ber 1993.

[24] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-dual ap-
proximation algorithm for generalized Steiner network problems. In Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, pages 708–717, 1993.

A The reduction from AsymT to CFL
In this Appendix, we describe a procedure that transforms instances of AsymT into instances of the Con-
nected Facility Location problem.

Consider any tree solution T to AsymT , and look at any edge e 2 T . As before, let Le and Re be the two
trees created by deleting e, and let the quantities bin(T 0); bout(T 0) for any subtree T 0 be defined in the usual
way. Let B = minfbin(W); bout(W)g. It is not difficult to see that the bandwidth allocation on the edge e
is xe = min fbin(Le); bout(Re)g+min fbin(Re); bout(Le)g (A.5)= min fbin(Le) + bin(Re); bin(Le) + bout(Le);bout(Re) + bin(Re); bout(Re) + bout(Le)g (A.6)

For the rest of the argument, let us assume that no leaf node in T has both bin and bout equal to 0.

Let us define a directed tree ~T from T , where each undirected edge e is replaced by two directed edges e0
and e00 with the same endpoints as e. The idea behind these edges is similar to that for the symmetric case:e0 is directed towards Le if bin(Le) > bout(Re); towards Re if bin(Le) < bout(Re); and towards the subtree
containing some fixed leaf l if they are equal. The edge e00 is directed similarly by comparing bin(Re) andbout(Le). The edge e 2 T is called decisive if e0 and e00 have the same direction in ~T , and indecisive otherwise.

Let us record some observations about T and ~T :

Claim A.1 If e is indecisive, then xe = B.

17

Figure 3: The structure of AsymT solutions: the shaded area is the core.

Proof: Since the edge e is indecisive, it must be the case that xe must be the smaller of bout(Le) + bout(Re)
and bin(Le) + bin(Re), which is B.

Now that we know that all indecisive edges have the same bandwidth allocated to them, let us turn our
attention to the decisive edges.

Lemma A.2 Let e be a decisive edge, such that both e0 and e00 are directed towards Le in ~T . Then every edge f 2 Le
is decisive and directed towards the component Lf of T � f which is contained in Le.
Proof: We know that bin(Le) � bout(Re) and bout(Le) � bin(Re). Let f be an edge in Le, and let Lf be the
component of T � f contained in Le. Let L0f denote Le � Lf (i.e., the subtree induced by these nodes).
Note that bin(Lf) = bin(Le)� bin(L0f) and bin(Rf) = bin(Re) + bin(L0f), which implies thatbin(Lf)� bout(Rf)= bin(Le)� bout(Re)� bin(L0f)� bout(L0f) � 0:
A similar calculation shows that bout(Lf) � bin(Rf). Now, if both the inequalities were strict, we would
be done. So assume that bin(Lf) = bout(Rf): this implies bin(Le) = bout(Re) and bin(L0f) = bout(L0f) = 0.
Since we have assumed that that no leaf in T has bin = bout = 0, the path joining e and f cannot have any
degree-three vertex. Also, bin(Le) = bout(Re) implies that the special leaf l is in Le, and by the previous
argument, it must be in Lf , and f 0 will be directed towards Lf . A similar argument shows this for f 00 also,
completing the proof.

Corollary A.3 The set of indecisive edges forms a connected subtree of T .

Proof: If f and g are two indecisive edges such that the unique path in T joining them contains a decisive
edge e. Lemma A.2 implies that one of f and g must be decisive, a contradiction.

An example of the structure of the tree T is given in Figure 3, where the thin directed edges are decisive

(where the direction indicates the common direction of its directed counterparts in ~T), and the thick
indecisive edges form a connected subtree. Note the following easy fact:

Fact A.4 If e is a decisive edge with e0 and e00 directed towards Le, then xe = bin(Le) + bout(Le).
18

Let us define a few useful terms: Let the core of T be the set of end-points of indecisive edges of T . Letc(E0) = Pe2E0 ce for E0 � E, and StT (V 0) be the minimal set of edges in T connecting vertices V 0 � V .
Let dT (v; V 0) denote the minimum distance in T from v to a vertex in V 0, with respect to the edge-lengthsce. Finally, for a subset V 0 � V , defineQT (V 0) = B c(StT (V 0)) + Xv2W(bin(v) + bout(v)) dT (v; V 0):
Claim A.5 The cost of a tree solution T is QT (core(T)). Furthermore, for any subset V 0 of vertices in T ,QT (core(T)) � QT (V 0).
Proof: The first part of the claim follows immediately from Claim A.1 and Fact A.4. For the second part,
it is useful to break up QT (V 0) into a weight assigned to each edge: each edge in StT (V 0) gets a weight
of B. For e =2 StT (V 0), let Le be the subtree of T � e not containing any vertex of W , and assign weightbin(Le) + bout(Le) to e. This weighted sum of the cost of edges in T , where each edge in T has been given
a weight which is one of the four quantities in (A.6), is at most QT (V 0). But QT (core(T)) is the same
sum, where the weight in this case is equal to the minimum of those four quantities, which proves thatQT (core(T)) � QT (V 0).
Let us give a procedure to find the optimal tree: find a tree T in V joining all demand points W , and
a subset K of the vertices in T which minimizes the quantity QT (K). To see that this is optimal, note
that Claim A.5 implies that the cost of T is QT (core(T)), which is at most QT (K). Consider the optimal
solution T �: it has cost C(T �) = QT �(core(T �)), which is also of the form Q�(�). But since our procedure
finds a pair T;K that minimizes that form, its cost is no more than C(T �), which proves the optimality.

For the final step of the reduction, let St(K) denote the optimal Steiner tree in G connecting K , and for a
vertex v, define dG(v;K) as the smallest distance from v to K in the graph G. Define Q(K) asQ(K) = B c(St(K)) + Xv2W (bin(v) + bout(v)) dG(v;K):
We now show that finding the set Kopt minimizing Q(K) (for K � V) is equivalent to solving AsymT , by
showing that Q(Kopt) = QT �(K�). Indeed, if V 0 is the set of vertices in StT �(K�), then Q(V 0) � QT �(V �)
and hence Q(Kopt) � QT �(V �). Conversely, if T 0 is the optimal Steiner tree connecting K and K 0 is the
node set of T 0, then Q(V 0) � Q(Kopt). Now for each node v 2W , we can add a shortest path to a node inV 0 such that the union of these paths and T 0 is still a tree, say T 00. But now QT 00(V 0) � Q(Kopt), and henceQT �(V �) � Q(Kopt), which completes the argument.

However, finding the set W is just an instance of CFL, where each fi = 0, each di = (bin(v) + bout(v)) andM = B, and hence Theorem 2.6 implies a 10 approximation to the optimal tree solution.

19

