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ABSTRACT

In a traditional classification problem, we wish to assigh la
bels from a sef to each ofn objects so that the labeling is
consistent with some observed data that includes paingise r
lationships among the objects. Kleinberg and Tardos rgcent
formulated a general classification problem of this type, th
“metric labeling problem”, and gave &(log | L|loglog |L|)
approximation algorithm for it. The algorithm is based on
solving a linear programming relaxation of a natural intege
program and then randomized rounding.

In this paper we consider an important case of the metridlabe
ing problem, in which the metric is the truncated linear met-
ric. This is a natural non-uniform and robust metric, and it
arises in a number of applications. We give a combinatorial
4-approximation algorithm for this metric. Our algorithena

Eva Tardos'

be classified [7; 12]. Kleinberg and Tardos [19] recently for
mulated a general classification problem which they calhed t
metric labeling problemThey also gave a@(log ! log log [)-
approximation algorithm for the general metric labelinglpr
lem, wherel is the number of labels. Their approximation
algorithm is based on solving a linear programming relaxati
of an integer program formulation and then rounding the-solu
tion randomly. In this paper, we give a fast combinatorial 4-
approximation algorithm for the special case of the truedat
linear metric.

Classification and the Metric Labeling Problem: The tra-
ditional classification problem can give rise to the follogi
labeling problem. Consider a sEtof n objects that we wish

to classify, and a sel of [ possible labels. Aabeling of P
over L is simply a functionf : P — L; we choose a label
for each object. The quality of our labeling is based on the

natural local search method, where the local steps are basedcontribution of two sets of terms.

on minimum cut computations in an appropriately constmlicte
graph. Our method extends previous work by Boykov, Veksler
and Zabih on more restricted classes of metrics.

1. INTRODUCTION

In a traditional classification problem, we wish to assige on
of [ labels (or classes) to eachwobbjects, in a way that is con-
sistent with some observed data that we have about the prob-
lem that includes pairwise relationships among the objects
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e For each objecp € P and labeli € L, we have a
non-negativeassignment cost(p, :) associated with as-
signing the label to the objecip.

e We have a grapl&z over the vertex seP, with edge
setE indicating the objects that are related; each edge
e = {p,q} will have a non-negative weight., indi-
cating the strength of the relation. In addition, we have
a distance functior(-, -) on the setZ of labels. If we
assign label to objectp and labelj to objectq, and
e = {p,q} is an edge of7, then we pay aeparation
costwe d(%, ).

Thus, thetotal costof a labelingf is given by

QU =D clp fe)+ Y wed(f(p), f())-

peEP e={p,q}tEE

Thelabeling problemasks for a discrete labeling of minimum
total cost. Recall thatdistanced : L x L — R is a function
that is symmetric and(i,7) = 0 for all : € L. If d also
satisfies the triangle inequality, théis ametric[11, page 27].
The labeling problem is calleahetricif the distance function
d(-,-) is a metric on the label sét.

In this paper, we consider the important case when the labels
are the positive integers and the metric distance between la
belsi andj is given by thetruncated linear metriai(i, j) =



min{M, |z — j|}, for which we give a fast flow-based 4 ap-
proximation algorithm. In the next subsection, we disculg w
this is a natural metric to be singled out for study by consid-
ering two well-studied problems from vision: the problem of
“restoring” an image that has been degraded by noise [3; 14],
and the visual correspondence problem [20] that is the lo&sis
determining depth and motion in an image.

The Truncated Linear Metric: Motivations and Applica-
tions: The labeling problem is closely related to the theory
of Markov Random FieldédMRFs). Suppose that we have ob-
served datg’(p) for each objecp € P. We assume thaf’
was obtained from a labeling by the introduction of inde-

are sufficiently different to suggest object boundaries,
the distancel(¢, j) should be constant.

In the image restoration problem for a grey-scale image, the
possible intensities are integers, and the simplest antimabts
ural metric function that satisfies our properties is tha¢aied
linear metricd(z, j) = min{M, |i — j|}.

An application where non-uniform, robust metrics are even

more important arises in the visual correspondence prgblem

which is the basis of determining motion and depth from the

camera in animage. In thésual correspondence probleme

are given two images of the same scene, a pixel in one image

pendent random noise at each object. We wish to decide on corresponds to a pixel in the other if both pixels are projec-

the most probable “true” labeling of P given this data. A
Markov Random Field can be defined by a graph on the ob-
jects, with edges indicating dependencies between thetsbje
We need to assume that in the “true” labelifithe probability

tions along lines of sight of the same physical scene element
The problem is to determine this correspondence between pix
els of two images. To apply the labeling problem to solve this
problem we arbitrarily select one of the images to be the pri-

that an object has a certain label depends only on the labelsmary image. The quantity to be estimated for each pixel is

of the neighboring objects. Now the labeling problem above
can be restated as the problem of finding fiteat maximizes
the a posterioriprobability Pr[f|f'], if the underlying MRF

the difference of its place on the image, and the place of the
corresponding pixel on the other image (called disparity).
This disparity is in one-to-one correspondence with thetdep

model satisfies two standard assumptions of Homogeneity and of the corresponding point in the scene from the camera. ISmal

Pairwise Interactions. (See [19] for more details on the-con
nection to MRFs.) Next we give two applications from vision
when the truncated linear metric is important. Both thesépr
lems can also be formulated using MRFs, but here we will give
a direct description.

In both these applications, we are given a large grid of pix-
els as our graph. In thienage restoration problerwve want

to label each pixel with its “true” intensity. We are given an
“observed” intensityf’ (p) for each pixel, that is the result of
corruption by noise. We would like to find the best way to label
each pixel with a (true) intensity value, based on the olesbrv
intensities and the special structure of the image. Ouraéte
nation of the “best” labeling is a labeling problem basedhan t
trade-off between two competing influences: We would like to
give each pixel an intensity close to what we have observed;
furthermore, since real images are mainly smooth, with-occa
sional boundary regions of sharp discontinuity, we wouké li
spatially neighboring pixels to receive similar intensigjues.
The labels for this problem are the possible intensities, an
we assign a penalty af. d(i, j) if neighboring pixels are as-
signed labels andj respectively.

Now consider the desired properties of a distance function
d(-,-). Small differences in intensity can reflect, for exam-

differences in depth on neighboring pixels can reflect sigpi
objects (i.e., an object that starts close to the camerag)but
tends to some distance), while large differences in depth ar
likely to reflect object boundaries. As before, a non-umifor
and robust metric seems natural to use. The possible depths
values are integer multiples of some small shift, and the-tru
cated linear metric is a extremely natural metric to use i th
case.

Previous Results: Traditional local search methods (such
as simulated annealing) with simple local steps (such as re-
labeling one object) have previously been used extensteely
solve such classification problems. However, the algosthm
were known to perform poorly in practice, and no bounds were
known for the performance.

Some special cases of the labeling problem are known to be
solvable in polynomial time using max-flow computations- Be
sag [3] and Greig et al. [15] showed that the casé ef 2
labels is polynomially solvable as a two-terminal minimum
cut problem. Another special case when the metric labeling
problem reduces to two-terminal minimum cuts was discov-
ered independently by Boykov et al. [4; 21] and Ishikawa and
Geiger [16]. They considered metric labeling with the |agel
beingL = {1,...,I} and the distance between two labgls

ple, gradual changes in lighting, and hence should receive a and; beingd(i, j) = |i — j|. However, the linear metric is not

small penalty. Large changes in intensity are likely to mfle

robust and labeling with it can lead to over-smoothing. The

object boundaries, and hence should receive a large penalty work of Karzanov [18] focussed on some other polynomially

In addition, we want the penalty to lbebust once the differ-
ence of the assigned labels is large enough to suggest a obje
boundary, the penalty should be constant. If the penaltg-fun
tion is not robust, there is a possibility of over-smoothatg
the boundaries, i.e., object boundaries may become fuzzy. |
summary, we want a metric on the labels with the following
two properties.

e The metric should not be uniform, if two labelsj € L
are similar, thani(¢, j) should be small.

e The metric should be robust, once two labgl € L

solvable special cases of the labeling problem.

Kleinberg and Tardos [19] provided the first polynomial-¢im
approximation algorithm for the metric labeling problenhey
gave anO(log [ log log [)-approximation algorithm with re-
spect to an arbitrary graph on the set of objects, and an ar-
bitrary metric on the set of labels. For the special case @f th
uniform metri¢ in which all distances are equal tpthey gave

a 2-approximation algorithm. For the general case, they use a
result of Bartal [1; 2] which says that every metric can be ap-
proximated by hierarchically well-separated tree mettiow-

ever, the best approximation of the truncated linear mefitic



a random hierarchically well-separated tree metric hawdis
tion O(log M), and hence for the case of the truncated linear
metric the analysis gives only ail(log M )-approximation.
Furthermore, the approximation algorithm is based on sglvi

a linear program (that corresponds to a fractional classific
tion problem), and rounding its solution. The linear pragra
involved is quite large, and this causes the method to be too
slow to be practical for images.

The metric labeling problem is an extension of the well-g&dd
multiway cut probleni8; 9; 10; 13; 17], in which one must
find a partition of a graph intbsets in a way that is consistent
with an initial assignment of certain vertices to these, satd
which cuts as few edges as possible. Boykov et al. developed
the connection betweamiformlabelings, with! > 2 labels,
and multiway cuts in a graph, showing a direct reduction from
labelings to multiway cuts [4]. However, their reduction re
quires the use of edges of enormously large weight, and so it
is not approximation-preserving. In [4; 6; 5; 21], they also
developed some flow-based local search heuristics for-label
ing problems using the uniform metric. Their methods can be
thought of as clever extensions of the multiway zdlation
Heuristic of Dahlhaus et al. [10]. For one of their heuristics
[6], they prove that any local optimum is a 2-approximation.
In fact, it is possible to adapt their proof to show that the lo
cal improvement heuristic provides2a+ e-approximation in
polynomial time. In [4; 21], they show that the heuristicscal
perform very well in practice. They also consider other met-
rics, and in [5; 21], they show that a similar local improverne
step can be described for any metric, but in general theljocal
optimal solution can be arbitrarily far from optimum. In par
ticular, for the truncated linear metric, this method pdas a

2 M -approximation algorithm [5; 21], wher® is the upper-
bound used in defining the metric.

Our Results: In this paper we consider the metric labeling
problem with the@runcated linear metricwhich is the simplest
and arguably the most natural non-uniform and robust metric
We assume that the metric distance between labaigl j is
given by the truncated linear nordti, j) = min{M, |i — j|}.

Our first observation is that the truncated linear metric loan
approximated by a random tree metric with expected stretch
at most 3 (See figure 2.1). The trees used by this approxima-
tion are not hierarchically well-separated, and hence atng
used directly in the algorithm of [19]. However, it is podsib

to combine the ideas of the linear programming and round-
ing with the flow algorithm for the (untruncated) linear nietr

to obtain a constant factor approximation algorithm. Unfor
tunately, this constant is quite large, and furthermorbyiisg

the large LP still remains practically infeasible. We wititn
describe the details of this linear programming and roundin

method here as our main result is a simpler and better approx-

imation algorithm.

Our main result is a flow based local improvement algorithm
that gives a factor 4-approximation to the optimum. A key
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Figure 2.1: The embedding for the truncated linear metric

linear metrics. Now recall that the metric labeling problem
on the (untruncated) linear metric can be solved optimadly u
ing flows and cuts, and further that the uniform metric can be
approximated well using a flow based local search. Our algo-
rithm is a local search method for the truncated linear roetri
that is obtained by a clever combination of these two tech-
nigues which gives us the claimed approximation guarantee.

2. TREE METRICS AND RANDOM
PARTITIONING

Consider a path of length where the vertices are the labels
L = {1,2,...,1} and edgedi,i + 1} are of unit length.
To this, we add edges of lengfti between all pairs of labels
{1,j} with |§ — j| > M. The geodesic metric generated by
this graph is exactly the truncated linear meffie= (L, d).

To embed this into a random tree, consider picking a random
offsetr € {1,2,... , M}, and for each positiot < k < {
which is equal to- (mod M), deleting all edges that connect
a pair of labelsi < k andj > k. This results in a set of
intervals each of length at most/. Let us call this set of
intervalsS,, the partition associated withr. Now we add the
lowest numbered vertex of each interval§h to a newroot
vertex with an edge of length/ /2 to get a tree. (See figure 2.1
for an example.)

Theorem 2.1 For any pair of labelsi, j € L, the distance
between them in any of the (random) trees is at leidst;),
and the expected distance between them is at Bafst ;).

We shall not use this tree embedding directly; however, lit wi
influence the structure of both the algorithm and the analysi
we develop in the following section. We will need the fol-
lowing easy fact about the probability that two labels lie in
different intervals of a partitiors,..

Lemma 2.2 For any pair of labelsi, 5 € L, the probabil-
ity that 7 and j lie in different intervals of the partitio,. is
exactlyd(i, j) /M.

3. THELOCAL SEARCHALGORITHM

insight this algorithm comes from the above tree embedding. The local search algorithm starts with an arbitrary lalgelin

Any tree in the distribution consists of roughlyM equal of the vertices of the grap&'. It then makes a simple “local”
length edges leaving the root, and there is a linear segnfient 0 move whose goal is to decrease the cost of the labeling. If
length at most\ attached to each of them. (See figure 2.1.) making the move causes it to reach a new labeling whose cost
Thus the tree metrics in the embedding can be thought of as ais lower than the cost of the current labeling, it moves to the
combination of the uniform metric and a set of (untruncated) new labeling and continues.



Boykov et al. [6] use the following local improvement step.
Consider a label. In a single “local” improvement step they
allow relabeling any subset of the vertices with the labahd
they call this local move airexpansion moverlhey prove that

if the distance function on the labels is a metric, then tha be
i-expansion move can be found via a single min-cut compu-
tation in an appropriately constructed graph [6; 5]. Furthe
they prove that in the case of the uniform metric, any local
optimum is a 2-approximation to the global optimum [6; 21].
For metrics other than the uniform metric, however, a lgcall
optimal solution can be arbitrarily far from optimum. In par
ticular, for the truncated linear metric, their methodsegéds

2 M -approximation algorithm [5; 21], wher#/ is the param-
eter used in defining the truncated metric.

In this section we develop an analogous, but much more gen-
eral local improvement method. In a single local step we con-
sider an intervall of labels of length at most/, and allow
any subset of vertices to be relabeled by any of the labdls in
Given a labelingf, we call another labeling’ alocal relabel-

ing if it can be obtained fronf by such a local move, i.e., if
for all objectsf (p) # f'(p) implies thatf’(p) € I. Unfortu-
nately, we will not be able to find the best possible such local
move. However, we will later show that if the current label-
ing has cost sufficiently far above the minimum possible,cost
then our method will find a move that significantly decreases
the cost of the labeling.

In the algorithm, we repeatedly pick a random inter/gbf
length at mosf\f) and try to relabel some subset of objects to
the labels inl to decrease the cost of our labeling. After this
local step, each object will either have its label unchanged
will have a label in the interval. To perform this relabeling,
we will create a flow network and find a minimusn— ¢ cut

in this network. This minimum cut can be associated with a
new labelingf’, and if this new labelingf’ has a lower cost
than the cost of the original labelinfy we move to the new
labeling. In summary, the algorithm is the following:

Algorithm Local-Search:
repeat

pick a random interval
build the flow networkN; associated witld
if labeling given by the minimum cut
on Ny has lower cost
then move to new labeling.
until some stopping rule.

More formally, we will pick the random intervalsin the fol-
lowing manner: we pick a random integetM < r < [, and
setI to be the part of the interval of length starting from
offsetr thatliesinL. l.e,I = {r+1,r+2,... ,r+ M} N
{1,2,...,1}. We had claimed that this algorithm was moti-
vated by the tree-metrics of Section 2. To see this, notelileat
probability of any fixed intervall being picked is almost the
same as by the following alternative procedure: first ch@ose
random tree from the tree embedding of the previous section,
and then randomly pick one of the intervals in it.

In the next subsection, we will describe how to build the flow
network associated an intervalto which the labels can be
changed. We then analyze this algorithm in subsection 3.2,
showing, for instance, that running the algorithm until wach

D(p)  clp.i+1) c(p.i+2) c(p.j)
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Figure 3.2: The chain for vertgx

a local optimum (i.e., a state where none of the intervalddea
to an improvement) implies that we are close to the optimal
value.

3.1 The flow network

Let us consider an intervdlof labels. Assume that the labels
inthe intervall are{i +1,i+ 2,... ,j}, where(j — i), the
number of labels irT, is at mostM. (In fact, any interval we
consider will have length exactly/ except when it is some
initial or final portion of the line.) In this move, each vetta

G will either retain its label or move to a label ih We now
describe a flow networkv; = (V, A) associated with: it

will be a directed graph with a soureeand a sink;, and with
capacities on the edges. We describe the construction in two
steps.

For each vertey of the original grapltG, we add(;j —¢) nodes
{pi+1,...,p;j} to N;. (Figure 3.2 shows this construction.)
We add directed edg€®x, pr+1) and (px+1, px) forall k =
i+1,...j—1. Wethen attachp;: to s andp; to¢ by directed
edges in both directions. For the following discussion,ilt w
be convenient to think of the vertexas beingp;, and also of

t as being; +1.

Now we shall assign the capacities. For 1 < k < j, each
edge(pk, pr+1) is assigned a capacity equal to the assignment
costc(p, k), while the edg€pr+1, pr) is assigned an infinite
capacity. Finally, the edgép;+1, s) is assigned an infinite
capacity, while(s, p;+1) is assigned a capaci®y (p) which is
defined as follows: iff (p) € I, then we seD(p) = oo, else

D(p) = c(p, f(p))-

To see the rationale for this construction, consider anyi-min
mum s — ¢ cut in N;: the infinite capacity edges ensure that
this cut will include exactly one edge from the chain corre-
sponding to each vertex We interpret the edgépi, pr+1)
being cut to mean that the vertgxs assigned the labéi (if

k # i); if the edge(s,pi+1) is cut andf(p) ¢ I, then we
retain the original labef (p) for the vertexp. It is clear to see
that the assignment cost is exactly the capacity of the edge i
the cut, and thus the chain for vertegaptures the assignment
costs.

We also need to model the separation costs; for this we will
add edges between the chains. Consider an edge{p, q}

in the original graph. There will be different cases depend-
ing on the original labels gf andgq. One of the cases, when
neitherp nor g have their original label id is shown on Fig-
ure 3.3. For each of the corresponding nogleandg;,, where
(i+1) < k < j, we add a pair of oppositely directed edges
between them, each with capacity. If both p andq are la-
beled with vertices id, then we do nothing more. ff(p) & I

but f(q) € I, then we add an edde;+1, ¢i+1) With capacity
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Figure 3.3: Construction for the edgp, ¢}

we d(f(p),i+1). Finally, if both the labels do not lie ih, then

we add a new vertex,,. We then add two oppositely directed
edges betweep;+1 andv,, having capacities. d(f(p),i +

1), and opposite edges betweeg, andq;+1 having capaci-
tiesw. d(f(q),7+1). To complete the construction, we attach
an edge(s, vpe) With capacityw. d(f(p), f(q)). (A view of

this third case is given in Figure 3.3, where we have dropped
some of the infinite capacity edges, and used undirectedsedge
to indicate a pair of oppositely directed edges with ideaitic
costs.)

To see that this captures the separation costg, Ibe the la-
beling corresponding to a cut, and let us focus on the edge
e = {p, ¢}. If both the vertices retain their original labels, then
the cut will minimized when it passes through, v,,), and
incurs a cost ofv. d(f(p), f(g)), which is exactly the separa-
tion cost in this case. In case both the vertices are labeildd w
labels inI, then the cut value will be exactly. |f’ (p)—f'(q)|,
which is again the right separation cost.

However, if the cut indicates that one of the vertices (gpy
retains its labelf (p) ¢ I, andq is labeled with some element
f'(q) = k € I, then the cut will incur a separation cost of
weld(f(p),i+1)+(k—(i+1))]. Note that this value possibly
overestimates the actual separation cost in the new lapelin

Before we formalize the relation between cuts and labeling i

(i + 1)-expansion move, i.e., relabeling where labels can only
change to the labgl + 1).

Theorem 3.2 (Boykov et al. [6; 5]). The minimum cut of the
flow networkN; associated with an interval = {i + 1}
consisting of a single label is the optim@l + 1)-expansion
move.

We now summarize the important properties of the labeling
obtained by the minimum cut in the flow network for the gen-
eral case, when intervdl has more than a single node, but

does not contain all labels ib.

A minimum cut in N; can contain at most one of the edges
between the pairs of nodes; 1 andv,,, or betweeny; ., and

Upq, OF the edgd s, vy, ) for any edge: = {p, ¢} in the graph

G. To see this, note that only one edge in any pair of opposite
edges can be in the cut. Further, in any set of up to three per-
missible edges, the cost of any two edges is more than the cost
of the third one, sincé(-, -) satisfies the triangle inequality.
We call a cutsimpleif it has finite capacity, and it does not
cut more than one of the above five edges associated with any
edgee € F.

Theorem 3.3 The simple cuts in the flow netwalN are in
one-to-one correspondence with local relabeliffgsThe cost
of the relabelingQ (f') is no more than the cost of the associ-
ated cut, and the cost of the cut overestimates the cost tzf-the
beling by replacing the separation castd(f’ (p), f'(q)) for
edgese = {p, ¢} where exactly one end receives a labelin
by a possibly larger termv. [d(f' (p),i+1)+d(i+1, f'(g))].
Further, we have that

d(f'(p), f'(9)) <

d(f'(p),i+1)+d(i+ 1, f(9))
2M. (3.1)

IN |

3.2 The analysis

In this subsection, we show that when the algorithm reaches a
local minimum, then the cost of the labeling is no more than 4
times the minimal cost of any labeling. Further, we also show
that the algorithm converges to a such solution in polynbmia
time.

Let us fix an optimal labeling ™, and let the algorithm’s cur-
rent labeling bef. For any subseX C P, let A*(X) and

Ny, let us consider two simpler special cases. The first case is A(X) be the assignment cost that the optimum and the cur-

when the interval consists of all the labels. In this case, the
construction is the same as the one discovered independentl
by Boykov et al. [4] and Ishikawa and Geiger [16] for finding
the optimal labeling for the line metric.

Theorem 3.1 (Boykov et al. [4], Ishikawa and Geiger [16]).
The minimum cut of the flow network associated with an inter-
val I consisting of all the labels gives the optimal labeling for
the line metric orY.

The other special case is when the interval consists of desing
label I = {i + 1}. In this case, the construction above is
the same as the one by Boykov et al. [6] for finding the best

rent labeling pay respectively for the verticesXh and for a

set of edged” C E, let S*(Y') and S(Y") be the separation
cost for those edges paid by the optimum and the current so-
lution respectively. ClearlyQ(f) = A(P) + S(E) and the
optimum@(f*) = A*(P) + S*(E).

Consider the case when the algorithm chooses an intérval
Let P; be the set of vertices df to which f* assigns labels
from the intervall. Let E; be the set of edges iB(G) such

that the f*-labels of both endpoints lie ifi. Letd; C Er

be the set of edges such that exactly one end of the edge has
f*-label inI, the end with higheif*-label, andd;" be the set

of edges that only the end with lowgf -label has arf*-label

inI.



In the proof we will consider a random partitiaf. of the
labels, as defined in Section 2. Clearly,= U;ses, Pr and
Ures,. 07 = Uses, 0. We will used, to denote this union
of the boundary edgef the partition. Also note thabl =
Or U (Ures, Er). The edges i, will play a special role in
the analysis. The following lemma will be useful later.

Lemma 3.4 For a random partitionS,, the expected value
of M3 cp weisS™(E).

Proof. The probability that edge = {p, ¢} will be part of0,

is exactlyd(f*(p), f*(¢))/M, hence the edge contributes
wed(f*(p), f*(q)) to the expectation of the sum. This is ex-
actly the same as its contribution $5 (£). [

Consider the situation when the algorithm picks the intefva
One possible local move is changing the labels of vertices in
the regionP; to their labels in the optimum labeling*. We

will use this move to bound the improvement obtained in our
algorithm.

Lemma 3.5 For a labeling f, and an intervall, the local
relabeling move that corresponds to the minimum culVin
decreases the cost of the solution by at least

(A(PI) +S(Erud; U af)) -

((A*(P,)+S*(E,ua;)+M > wet2M Y we).
e€dy ecdf
(3.2)

Proof. The algorithm selects the minimum cut ;. The
labeling corresponding to this cut has cost at most the eapac
ity of the cut inN;. To prove the bound we have to show a
cut with small capacity. Consider the cut that corresponds t
the local move of relabeling all nodes iy to their f*-label.

Theorem 3.6 If the labeling f is a local optimum, its cost
Q(f) is at most 4 times the optimal ca@(f™).

Proof. The fact thatf is a local optimum implies the improve-
ment indicated by the expression (3.2) is non-positive fyr a
intervalI, i.e., for all I

A(Pr)+ S(Eruo; Uof)
< AY(Pr)+ S*(ErUoy)

+M Y we+2M Y we. (3.3)

e€dy ecof

Now consider a partitiorS, and sum these inequalities for
each intervall € S,. On the left hand side we get(P) +
S(E)+ S(0,) as edges i@, occur in the boundary of two in-
tervals. This is at leagp(f), the cost of the labeling. Sum-
ming the right hand side, we get exactly (P) + S*(E) +
3M 37 5, we. SO we have that

Qf) <A (P)+ S™(B) +3M ) _ w.

€€,

for any partitionS,. Now we can take expectations. The left
side is a constant, and by lemma 3.4, the expected value of
the right hand side is at modt* (P) + 45™ (E). Thus we get
Q(f) < A" (P)+4S"(E) <4Q(f"),as claimed. I

In fact, we can also bound the number of steps we have to run
the algorithm to reach a near-optimal solution. Lkt be the
cost of the initial labeling.

Theorem 3.7 If the main loop of the algorithm is repeated
O((1/M)(log Qo + log e~ ")) times, then the expected cost of
the resulting labeling is at mogtt + €) Q(f*).

Proof. To estimate the expected decrease of the labeling cost
in one iteration, consider the following alternate procfss
selecting a random interval. First select a partitfnat ran-

The capacity corresponding to the assignment cost for nodesdom, and then select an intervake S,.. This process selects

in P; will be exactly A*(Pr), and the capacity corresponding
to separation cost for the edges iy will be S*(Er). For

each interval with roughly the same probability as the orre ou
algorithm used. The difference is that some partitions have

nodes and edges that do not change their label in this move, one more interval than others, and intervals in such pamtti

the capacity corresponding to their assignment and separat
cost will be unchanged.

Consider the edges 8 Ud;". These are the edges that possi-

have a slightly smaller chance of being selected.

Consider a labeling and a partitionS,.. We use Lemma 3.5
to estimate the improvement obtained if interyas used. As

bly change the label of exactly one of their ends. We estimate in the previous proof, we will sum the estimates over the et 0
the capacity corresponding to the separation cost of such anintervals in the partition. There are at m@atA/ ]+ 1 intervals

edgee = {p, ¢}, assuming is the end inP; by

weld(f*(p),i+1) +d(i+ 1, f(q))]

using Theorem 3.3. I € 0}, we use (3.1) to get a bound of
2Mw.. If e € 07 we have thaf*(q) <4, and sai(f*(p), i+

1) < d(f*(p), f*(¢))- Boundingd(i+1, f(g)) by M, we get
that the capacity corresponding to the separation of edgat
mostw. [d(f* (p), f*(¢)) + M]. Summing this over all edges
in &y U8}, we get exactly the claimed bound

Let us first assume that we have reached a local optimum, i.e.,

in S;., hence the expected decrease in the labeling cost when a
random interval is selected fro8). is at least

1 *
W(Q(f)—Q(f )_3Me%;rwe>-

But, by Lemma 3.4, for a randomly chosen partitiSp, the
expected value of this decrease is at least

o (fHamn -1u).

so in O(I/M) iterations the differenc&(f) — 4Q(f") is

a local move with any interval does not decrease the cost of expected to decrease by a constant factor. This implies the

the labeling.

claimed bound on the running time[]



It is easy to see that the algorithm can be trivially derandom
ized at a cost of a factdi + M) increase in the running time.
This can be done by considering all possifdle- M) intervals

and making the moves corresponding to the best possible in-
terval, or making local moves for each of tfie- M) intervals

in turn in a round robin fashion.

We note that in the special case of the uniform metric, our
algorithm becomes the 2-approximation algorithm of Boykov
et al. [6]. Since the uniform metric can be thought of as a
truncated linear metric witld/ = 1, the flow construction
finds the optimals + 1)-expansion move (see Theorem 3.2).
Using this instead of Theorem 3.3 in the proof of Theorem 3.6,
we get the result of [6] that any local optimal solution is a 2-
approximation. Further, we also get an analog of Theorem 3.7
saying that the expected cost of the labeling aftélog Qo +
loge™*) repetitions of the main loop of the algorithm have
been performed is at mo& + ¢) Q(f*).
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