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ABSTRACT

In a traditional classification problem, we wish to assign la-
bels from a setL to each ofn objects so that the labeling is
consistent with some observed data that includes pairwise re-
lationships among the objects. Kleinberg and Tardos recently
formulated a general classification problem of this type, the
“metric labeling problem”, and gave anO(log jLj log log jLj)
approximation algorithm for it. The algorithm is based on
solving a linear programming relaxation of a natural integer
program and then randomized rounding.

In this paper we consider an important case of the metric label-
ing problem, in which the metric is the truncated linear met-
ric. This is a natural non-uniform and robust metric, and it
arises in a number of applications. We give a combinatorial
4-approximation algorithm for this metric. Our algorithm is a
natural local search method, where the local steps are based
on minimum cut computations in an appropriately constructed
graph. Our method extends previous work by Boykov, Veksler
and Zabih on more restricted classes of metrics.
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be classified [7; 12]. Kleinberg and Tardos [19] recently for-
mulated a general classification problem which they called the
metric labeling problem. They also gave anO(log l log log l)-
approximation algorithm for the general metric labeling prob-
lem, wherel is the number of labels. Their approximation
algorithm is based on solving a linear programming relaxation
of an integer program formulation and then rounding the solu-
tion randomly. In this paper, we give a fast combinatorial 4-
approximation algorithm for the special case of the truncated
linear metric.

Classification and the Metric Labeling Problem: The tra-
ditional classification problem can give rise to the following
labeling problem. Consider a setP of n objects that we wish
to classify, and a setL of l possible labels. Alabeling of P
overL is simply a functionf : P ! L; we choose a label
for each object. The quality of our labeling is based on the
contribution of two sets of terms.� For each objectp 2 P and labeli 2 L, we have a

non-negativeassignment costc(p; i) associated with as-
signing the labeli to the objectp.� We have a graphG over the vertex setP , with edge
setE indicating the objects that are related; each edgee = fp; qg will have a non-negative weightwe, indi-
cating the strength of the relation. In addition, we have
a distance functiond(�; �) on the setL of labels. If we
assign labeli to objectp and labelj to objectq, ande = fp; qg is an edge ofG, then we pay aseparation
costwe d(i; j).

Thus, thetotal costof a labelingf is given byQ(f) =Xp2P c(p; f(p)) + Xe=fp;qg2Ewed(f(p); f(q)):
The labeling problemasks for a discrete labeling of minimum
total cost. Recall that adistanced : L�L! R+ is a function
that is symmetric andd(i; i) = 0 for all i 2 L. If d also
satisfies the triangle inequality, thend is ametric[11, page 27].
The labeling problem is calledmetric if the distance functiond(�; �) is a metric on the label setL.

In this paper, we consider the important case when the labels
are the positive integers and the metric distance between la-
belsi andj is given by thetruncated linear metricd(i; j) =



minfM; ji � jjg, for which we give a fast flow-based 4 ap-
proximation algorithm. In the next subsection, we discuss why
this is a natural metric to be singled out for study by consid-
ering two well-studied problems from vision: the problem of
“restoring” an image that has been degraded by noise [3; 14],
and the visual correspondence problem [20] that is the basisof
determining depth and motion in an image.

The Truncated Linear Metric: Motivations and Applica-
tions: The labeling problem is closely related to the theory
of Markov Random Fields(MRFs). Suppose that we have ob-
served dataf 0(p) for each objectp 2 P . We assume thatf 0
was obtained from a labelingf by the introduction of inde-
pendent random noise at each object. We wish to decide on
the most probable “true” labelingf of P given this data. A
Markov Random Field can be defined by a graph on the ob-
jects, with edges indicating dependencies between the objects.
We need to assume that in the “true” labelingf the probability
that an object has a certain label depends only on the labels
of the neighboring objects. Now the labeling problem above
can be restated as the problem of finding thef that maximizes
the a posterioriprobabilityPr[f jf 0], if the underlying MRF
model satisfies two standard assumptions of Homogeneity and
Pairwise Interactions. (See [19] for more details on the con-
nection to MRFs.) Next we give two applications from vision
when the truncated linear metric is important. Both these prob-
lems can also be formulated using MRFs, but here we will give
a direct description.

In both these applications, we are given a large grid of pix-
els as our graph. In theimage restoration problemwe want
to label each pixel with its “true” intensity. We are given an
“observed” intensityf 0(p) for each pixel, that is the result of
corruption by noise. We would like to find the best way to label
each pixel with a (true) intensity value, based on the observed
intensities and the special structure of the image. Our determi-
nation of the “best” labeling is a labeling problem based on the
trade-off between two competing influences: We would like to
give each pixel an intensity close to what we have observed;
furthermore, since real images are mainly smooth, with occa-
sional boundary regions of sharp discontinuity, we would like
spatially neighboring pixels to receive similar intensityvalues.
The labels for this problem are the possible intensities, and
we assign a penalty ofwe d(i; j) if neighboring pixels are as-
signed labelsi andj respectively.

Now consider the desired properties of a distance functiond(�; �). Small differences in intensity can reflect, for exam-
ple, gradual changes in lighting, and hence should receive a
small penalty. Large changes in intensity are likely to reflect
object boundaries, and hence should receive a large penalty.
In addition, we want the penalty to berobust: once the differ-
ence of the assigned labels is large enough to suggest an object
boundary, the penalty should be constant. If the penalty func-
tion is not robust, there is a possibility of over-smoothingat
the boundaries, i.e., object boundaries may become fuzzy. In
summary, we want a metric on the labels with the following
two properties.� The metric should not be uniform, if two labelsi; j 2 L

are similar, thand(i; j) should be small.� The metric should be robust, once two labelsi; j 2 L

are sufficiently different to suggest object boundaries,
the distanced(i; j) should be constant.

In the image restoration problem for a grey-scale image, the
possible intensities are integers, and the simplest and most nat-
ural metric function that satisfies our properties is the truncated
linear metric,d(i; j) = minfM; ji � jjg.
An application where non-uniform, robust metrics are even
more important arises in the visual correspondence problem,
which is the basis of determining motion and depth from the
camera in an image. In thevisual correspondence problem, we
are given two images of the same scene, a pixel in one image
corresponds to a pixel in the other if both pixels are projec-
tions along lines of sight of the same physical scene element.
The problem is to determine this correspondence between pix-
els of two images. To apply the labeling problem to solve this
problem we arbitrarily select one of the images to be the pri-
mary image. The quantity to be estimated for each pixel is
the difference of its place on the image, and the place of the
corresponding pixel on the other image (called thedisparity).
This disparity is in one-to-one correspondence with the depth
of the corresponding point in the scene from the camera. Small
differences in depth on neighboring pixels can reflect sloping
objects (i.e., an object that starts close to the camera, butex-
tends to some distance), while large differences in depth are
likely to reflect object boundaries. As before, a non-uniform
and robust metric seems natural to use. The possible depths
values are integer multiples of some small shift, and the trun-
cated linear metric is a extremely natural metric to use in this
case.

Previous Results: Traditional local search methods (such
as simulated annealing) with simple local steps (such as re-
labeling one object) have previously been used extensivelyto
solve such classification problems. However, the algorithms
were known to perform poorly in practice, and no bounds were
known for the performance.

Some special cases of the labeling problem are known to be
solvable in polynomial time using max-flow computations. Be-
sag [3] and Greig et al. [15] showed that the case ofl = 2
labels is polynomially solvable as a two-terminal minimum
cut problem. Another special case when the metric labeling
problem reduces to two-terminal minimum cuts was discov-
ered independently by Boykov et al. [4; 21] and Ishikawa and
Geiger [16]. They considered metric labeling with the labelset
beingL = f1; : : : ; lg and the distance between two labelsi
andj beingd(i; j) = ji� jj. However, the linear metric is not
robust and labeling with it can lead to over-smoothing. The
work of Karzanov [18] focussed on some other polynomially
solvable special cases of the labeling problem.

Kleinberg and Tardos [19] provided the first polynomial-time
approximation algorithm for the metric labeling problem. They
gave anO(log l log log l)-approximation algorithm with re-
spect to an arbitrary graph on the set of objects, and an ar-
bitrary metric on the set of labels. For the special case of the
uniform metric, in which all distances are equal to1, they gave
a 2-approximation algorithm. For the general case, they use a
result of Bartal [1; 2] which says that every metric can be ap-
proximated by hierarchically well-separated tree metric.How-
ever, the best approximation of the truncated linear metricwith



a random hierarchically well-separated tree metric has distor-
tion O(logM), and hence for the case of the truncated linear
metric the analysis gives only anO(logM)-approximation.
Furthermore, the approximation algorithm is based on solving
a linear program (that corresponds to a fractional classifica-
tion problem), and rounding its solution. The linear program
involved is quite large, and this causes the method to be too
slow to be practical for images.

The metric labeling problem is an extension of the well-studied
multiway cut problem[8; 9; 10; 13; 17], in which one must
find a partition of a graph intol sets in a way that is consistent
with an initial assignment of certain vertices to these sets, and
which cuts as few edges as possible. Boykov et al. developed
the connection betweenuniform labelings, withl > 2 labels,
and multiway cuts in a graph, showing a direct reduction from
labelings to multiway cuts [4]. However, their reduction re-
quires the use of edges of enormously large weight, and so it
is not approximation-preserving. In [4; 6; 5; 21], they also
developed some flow-based local search heuristics for label-
ing problems using the uniform metric. Their methods can be
thought of as clever extensions of the multiway cutIsolation
Heuristic of Dahlhaus et al. [10]. For one of their heuristics
[6], they prove that any local optimum is a 2-approximation.
In fact, it is possible to adapt their proof to show that the lo-
cal improvement heuristic provides a2 + �-approximation in
polynomial time. In [4; 21], they show that the heuristics also
perform very well in practice. They also consider other met-
rics, and in [5; 21], they show that a similar local improvement
step can be described for any metric, but in general the locally
optimal solution can be arbitrarily far from optimum. In par-
ticular, for the truncated linear metric, this method provides a2M -approximation algorithm [5; 21], whereM is the upper-
bound used in defining the metric.

Our Results: In this paper we consider the metric labeling
problem with thetruncated linear metric, which is the simplest
and arguably the most natural non-uniform and robust metric.
We assume that the metric distance between labelsi andj is
given by the truncated linear normd(i; j) = minfM; ji�jjg.
Our first observation is that the truncated linear metric canbe
approximated by a random tree metric with expected stretch
at most 3 (See figure 2.1). The trees used by this approxima-
tion are not hierarchically well-separated, and hence cannot be
used directly in the algorithm of [19]. However, it is possible
to combine the ideas of the linear programming and round-
ing with the flow algorithm for the (untruncated) linear metric,
to obtain a constant factor approximation algorithm. Unfor-
tunately, this constant is quite large, and furthermore, solving
the large LP still remains practically infeasible. We will not
describe the details of this linear programming and rounding
method here as our main result is a simpler and better approx-
imation algorithm.

Our main result is a flow based local improvement algorithm
that gives a factor 4-approximation to the optimum. A key
insight this algorithm comes from the above tree embedding.
Any tree in the distribution consists of roughlyl=M equal
length edges leaving the root, and there is a linear segment of
length at mostM attached to each of them. (See figure 2.1.)
Thus the tree metrics in the embedding can be thought of as a
combination of the uniform metric and a set of (untruncated)
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Figure 2.1: The embedding for the truncated linear metric

linear metrics. Now recall that the metric labeling problem
on the (untruncated) linear metric can be solved optimally us-
ing flows and cuts, and further that the uniform metric can be
approximated well using a flow based local search. Our algo-
rithm is a local search method for the truncated linear metric
that is obtained by a clever combination of these two tech-
niques which gives us the claimed approximation guarantee.

2. TREE METRICS AND RANDOM
PARTITIONING

Consider a path of lengthl, where the vertices are the labelsL = f1; 2; : : : ; lg and edgesfi; i + 1g are of unit length.
To this, we add edges of lengthM between all pairs of labelsfi; jg with ji � jj > M . The geodesic metric generated by
this graph is exactly the truncated linear metricL = (L; d).
To embed this into a random tree, consider picking a random
offset r 2 f1; 2; : : : ;Mg, and for each position1 � k � l
which is equal tor (mod M), deleting all edges that connect
a pair of labelsi � k and j > k. This results in a set of
intervals, each of length at mostM . Let us call this set of
intervalsSr, thepartition associated withr. Now we add the
lowest numbered vertex of each interval inSr to a newroot
vertex with an edge of lengthM=2 to get a tree. (See figure 2.1
for an example.)

Theorem 2.1. For any pair of labelsi; j 2 L, the distance
between them in any of the (random) trees is at leastd(i; j),
and the expected distance between them is at most3d(i; j).
We shall not use this tree embedding directly; however, it will
influence the structure of both the algorithm and the analysis
we develop in the following section. We will need the fol-
lowing easy fact about the probability that two labels lie in
different intervals of a partitionSr.

Lemma 2.2. For any pair of labelsi; j 2 L, the probabil-
ity that i and j lie in different intervals of the partitionSr is
exactlyd(i; j)=M .

3. THE LOCAL SEARCH ALGORITHM

The local search algorithm starts with an arbitrary labeling f
of the vertices of the graphG. It then makes a simple “local”
move whose goal is to decrease the cost of the labeling. If
making the move causes it to reach a new labeling whose cost
is lower than the cost of the current labeling, it moves to the
new labeling and continues.



Boykov et al. [6] use the following local improvement step.
Consider a labeli. In a single “local” improvement step they
allow relabeling any subset of the vertices with the labeli, and
they call this local move ani-expansion move. They prove that
if the distance function on the labels is a metric, then the besti-expansion move can be found via a single min-cut compu-
tation in an appropriately constructed graph [6; 5]. Further,
they prove that in the case of the uniform metric, any local
optimum is a 2-approximation to the global optimum [6; 21].
For metrics other than the uniform metric, however, a locally
optimal solution can be arbitrarily far from optimum. In par-
ticular, for the truncated linear metric, their methods give a2M -approximation algorithm [5; 21], whereM is the param-
eter used in defining the truncated metric.

In this section we develop an analogous, but much more gen-
eral local improvement method. In a single local step we con-
sider an intervalI of labels of length at mostM , and allow
any subset of vertices to be relabeled by any of the labels inI.
Given a labelingf , we call another labelingf 0 a local relabel-
ing if it can be obtained fromf by such a local move, i.e., if
for all objectsf(p) 6= f 0(p) implies thatf 0(p) 2 I. Unfortu-
nately, we will not be able to find the best possible such local
move. However, we will later show that if the current label-
ing has cost sufficiently far above the minimum possible cost,
then our method will find a move that significantly decreases
the cost of the labeling.

In the algorithm, we repeatedly pick a random intervalI (of
length at mostM ) and try to relabel some subset of objects to
the labels inI to decrease the cost of our labeling. After this
local step, each object will either have its label unchanged, or
will have a label in the intervalI. To perform this relabeling,
we will create a flow network and find a minimums � t cut
in this network. This minimum cut can be associated with a
new labelingf 0, and if this new labelingf 0 has a lower cost
than the cost of the original labelingf , we move to the new
labeling. In summary, the algorithm is the following:

Algorithm Local-Search:
repeat

pick a random intervalI
build the flow networkNI associated withI
if labeling given by the minimum cut

onNI has lower cost
then move to new labeling.

until some stopping rule.

More formally, we will pick the random intervalsI in the fol-
lowing manner: we pick a random integer�M < r < l, and
setI to be the part of the interval of lengthM starting from
offsetr that lies inL. I.e.,I = fr + 1; r + 2; : : : ; r +Mg \f1; 2; : : : ; lg. We had claimed that this algorithm was moti-
vated by the tree-metrics of Section 2. To see this, note thatthe
probability of any fixed intervalJ being picked is almost the
same as by the following alternative procedure: first choosea
random tree from the tree embedding of the previous section,
and then randomly pick one of the intervals in it.

In the next subsection, we will describe how to build the flow
network associated an intervalI to which the labels can be
changed. We then analyze this algorithm in subsection 3.2,
showing, for instance, that running the algorithm until we reach
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Figure 3.2: The chain for vertexp
a local optimum (i.e., a state where none of the intervals leads
to an improvement) implies that we are close to the optimal
value.

3.1 The flow network

Let us consider an intervalI of labels. Assume that the labels
in the intervalI arefi + 1; i + 2; : : : ; jg, where(j � i), the
number of labels inI, is at mostM . (In fact, any interval we
consider will have length exactlyM except when it is some
initial or final portion of the line.) In this move, each vertex inG will either retain its label or move to a label inI. We now
describe a flow networkNI = (V;A) associated withI: it
will be a directed graph with a sources and a sinkt, and with
capacities on the edges. We describe the construction in two
steps.

For each vertexp of the original graphG, we add(j�i) nodesfpi+1; : : : ; pjg to NI . (Figure 3.2 shows this construction.)
We add directed edges(pk; pk+1) and(pk+1; pk) for all k =i+1; : : : j�1. We then attachpi+1 to s andpj to t by directed
edges in both directions. For the following discussion, it will
be convenient to think of the vertexs as beingpi, and also oft as beingpj+1.
Now we shall assign the capacities. Fori + 1 � k � j, each
edge(pk; pk+1) is assigned a capacity equal to the assignment
costc(p; k), while the edge(pk+1; pk) is assigned an infinite
capacity. Finally, the edge(pi+1; s) is assigned an infinite
capacity, while(s; pi+1) is assigned a capacityD(p) which is
defined as follows: iff(p) 2 I, then we setD(p) = 1, elseD(p) = c(p; f(p)).
To see the rationale for this construction, consider any mini-
mums � t cut inNI : the infinite capacity edges ensure that
this cut will include exactly one edge from the chain corre-
sponding to each vertexp. We interpret the edge(pk; pk+1)
being cut to mean that the vertexp is assigned the labelk (ifk 6= i); if the edge(s; pi+1) is cut andf(p) 62 I, then we
retain the original labelf(p) for the vertexp. It is clear to see
that the assignment cost is exactly the capacity of the edge in
the cut, and thus the chain for vertexp captures the assignment
costs.

We also need to model the separation costs; for this we will
add edges between the chains. Consider an edgee = fp; qg
in the original graph. There will be different cases depend-
ing on the original labels ofp andq. One of the cases, when
neitherp nor q have their original label inI is shown on Fig-
ure 3.3. For each of the corresponding nodespk andqk, where(i + 1) < k � j, we add a pair of oppositely directed edges
between them, each with capacitywe. If both p andq are la-
beled with vertices inI, then we do nothing more. Iff(p) 62 I
butf(q) 2 I, then we add an edge(pi+1; qi+1) with capacity
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Figure 3.3: Construction for the edgefp; qgwe d(f(p); i+1). Finally, if both the labels do not lie inI, then
we add a new vertexvpq . We then add two oppositely directed
edges betweenpi+1 andvpq having capacitieswe d(f(p); i+1), and opposite edges betweenvpq andqi+1 having capaci-
tieswe d(f(q); i+1). To complete the construction, we attach
an edge(s; vpq) with capacitywe d(f(p); f(q)). (A view of
this third case is given in Figure 3.3, where we have dropped
some of the infinite capacity edges, and used undirected edges
to indicate a pair of oppositely directed edges with identical
costs.)

To see that this captures the separation costs, letf 0 be the la-
beling corresponding to a cut, and let us focus on the edgee = fp; qg. If both the vertices retain their original labels, then
the cut will minimized when it passes through(s; vpq), and
incurs a cost ofwe d(f(p); f(q)), which is exactly the separa-
tion cost in this case. In case both the vertices are labeled with
labels inI, then the cut value will be exactlywejf 0(p)�f 0(q)j,
which is again the right separation cost.

However, if the cut indicates that one of the vertices (sayp)
retains its labelf(p) 62 I, andq is labeled with some elementf 0(q) = k 2 I, then the cut will incur a separation cost ofwe[d(f(p); i+1)+(k�(i+1))]. Note that this value possibly
overestimates the actual separation cost in the new labeling.

Before we formalize the relation between cuts and labeling inNI , let us consider two simpler special cases. The first case is
when the intervalI consists of all the labels. In this case, the
construction is the same as the one discovered independently
by Boykov et al. [4] and Ishikawa and Geiger [16] for finding
the optimal labeling for the line metric.

Theorem 3.1 (Boykov et al. [4], Ishikawa and Geiger [16]).
The minimum cut of the flow network associated with an inter-
val I consisting of all the labels gives the optimal labeling for
the line metric onI.

The other special case is when the interval consists of a single
label I = fi + 1g. In this case, the construction above is
the same as the one by Boykov et al. [6] for finding the best

(i+1)-expansion move, i.e., relabeling where labels can only
change to the label(i+ 1).
Theorem 3.2 (Boykov et al. [6; 5]).The minimum cut of the
flow networkNI associated with an intervalI = fi + 1g
consisting of a single label is the optimal(i + 1)-expansion
move.

We now summarize the important properties of the labeling
obtained by the minimum cut in the flow network for the gen-
eral case, when intervalI has more than a single node, but
does not contain all labels inL.

A minimum cut inNI can contain at most one of the edges
between the pairs of nodespi+1 andvpq , or betweenqi+1 andvpq, or the edge(s; vpq) for any edgee = fp; qg in the graphG. To see this, note that only one edge in any pair of opposite
edges can be in the cut. Further, in any set of up to three per-
missible edges, the cost of any two edges is more than the cost
of the third one, sinced(�; �) satisfies the triangle inequality.
We call a cutsimple if it has finite capacity, and it does not
cut more than one of the above five edges associated with any
edgee 2 E.

Theorem 3.3. The simple cuts in the flow networkNI are in
one-to-one correspondence with local relabelingsf 0. The cost
of the relabelingQ(f 0) is no more than the cost of the associ-
ated cut, and the cost of the cut overestimates the cost of thela-
beling by replacing the separation costwed(f 0(p); f 0(q)) for
edgese = fp; qg where exactly one end receives a label inI
by a possibly larger termwe[d(f 0(p); i+1)+d(i+1; f 0(q))].
Further, we have thatd(f 0(p); f 0(q)) � d(f 0(p); i+ 1) + d(i+ 1; f 0(q))� 2M: (3.1)

3.2 The analysis

In this subsection, we show that when the algorithm reaches a
local minimum, then the cost of the labeling is no more than 4
times the minimal cost of any labeling. Further, we also show
that the algorithm converges to a such solution in polynomial
time.

Let us fix an optimal labelingf�, and let the algorithm’s cur-
rent labeling bef . For any subsetX � P , let A�(X) andA(X) be the assignment cost that the optimum and the cur-
rent labeling pay respectively for the vertices inX, and for a
set of edgesY � E, let S�(Y ) andS(Y ) be the separation
cost for those edges paid by the optimum and the current so-
lution respectively. Clearly,Q(f) = A(P ) + S(E) and the
optimumQ(f�) = A�(P ) + S�(E).
Consider the case when the algorithm chooses an intervalI.
Let PI be the set of vertices ofG to whichf� assigns labels
from the intervalI. LetEI be the set of edges inE(G) such
that thef�-labels of both endpoints lie inI. Let @�I � EI
be the set of edges such that exactly one end of the edge hasf�-label inI, the end with higherf�-label, and@+I be the set
of edges that only the end with lowerf�-label has anf�-label
in I.



In the proof we will consider a random partitionSr of the
labels, as defined in Section 2. Clearly,P = [I2SrPI and[I2Sr@�I = [I2Sr@+I . We will use@r to denote this union
of the boundary edgesin the partition. Also note thatE =@r [ ([I2SrEI). The edges in@r will play a special role in
the analysis. The following lemma will be useful later.

Lemma 3.4. For a random partitionSr, the expected value
ofMPe2@r we is S�(E).
Proof. The probability that edgee = fp; qg will be part of@r
is exactlyd(f�(p); f�(q))=M , hence the edgee contributeswed(f�(p); f�(q)) to the expectation of the sum. This is ex-
actly the same as its contribution toS�(E).
Consider the situation when the algorithm picks the interval I.
One possible local move is changing the labels of vertices in
the regionPI to their labels in the optimum labelingf�. We
will use this move to bound the improvement obtained in our
algorithm.

Lemma 3.5. For a labelingf , and an intervalI, the local
relabeling move that corresponds to the minimum cut inNI
decreases the cost of the solution by at least�A(PI) + S(EI [ @�I [ @+I )���(A�(PI)+S�(EI[@�I )+M Xe2@�I we+2M Xe2@+I we�:

(3.2)

Proof. The algorithm selects the minimum cut inNI . The
labeling corresponding to this cut has cost at most the capac-
ity of the cut inNI . To prove the bound we have to show a
cut with small capacity. Consider the cut that corresponds to
the local move of relabeling all nodes inPI to theirf�-label.
The capacity corresponding to the assignment cost for nodes
in PI will be exactlyA�(PI), and the capacity corresponding
to separation cost for the edges inEI will be S�(EI). For
nodes and edges that do not change their label in this move,
the capacity corresponding to their assignment and separation
cost will be unchanged.

Consider the edges in@�I [@+I . These are the edges that possi-
bly change the label of exactly one of their ends. We estimate
the capacity corresponding to the separation cost of such an
edgee = fp; qg, assumingp is the end inPI bywe[d(f�(p); i+ 1) + d(i+ 1; f(q))]
using Theorem 3.3. Ife 2 @+I , we use (3.1) to get a bound of2Mwe. If e 2 @�I we have thatf�(q) � i, and sod(f�(p); i+1) � d(f�(p); f�(q)). Boundingd(i+1; f(q)) byM , we get
that the capacity corresponding to the separation of edgee is at
mostwe[d(f�(p); f�(q)) +M ]. Summing this over all edges
in @�I [ @+I , we get exactly the claimed bound.

Let us first assume that we have reached a local optimum, i.e.,
a local move with any interval does not decrease the cost of
the labeling.

Theorem 3.6. If the labelingf is a local optimum, its costQ(f) is at most 4 times the optimal costQ(f�).
Proof. The fact thatf is a local optimum implies the improve-
ment indicated by the expression (3.2) is non-positive for any
intervalI, i.e., for allIA(PI) + S(EI [ @�I [ @+I )� A�(PI ) + S�(EI [ @�I )+M Xe2@�I we + 2M Xe2@+I we: (3.3)

Now consider a partitionSr and sum these inequalities for
each intervalI 2 Sr. On the left hand side we getA(P ) +S(E)+S(@r) as edges in@r occur in the boundary of two in-
tervals. This is at leastQ(f), the cost of the labelingf . Sum-
ming the right hand side, we get exactlyA�(P ) + S�(E) +3MPe2@r we. So we have thatQ(f) � A�(P ) + S�(E) + 3M Xe2@r we
for any partitionSr. Now we can take expectations. The left
side is a constant, and by lemma 3.4, the expected value of
the right hand side is at mostA�(P ) + 4S�(E). Thus we getQ(f) � A�(P ) + 4S�(E) � 4Q(f�), as claimed.

In fact, we can also bound the number of steps we have to run
the algorithm to reach a near-optimal solution. LetQ0 be the
cost of the initial labeling.

Theorem 3.7. If the main loop of the algorithm is repeatedO((l=M)(logQ0 + log ��1)) times, then the expected cost of
the resulting labeling is at most(4 + �)Q(f�).
Proof. To estimate the expected decrease of the labeling cost
in one iteration, consider the following alternate processfor
selecting a random interval. First select a partitionSr at ran-
dom, and then select an intervalI 2 Sr. This process selects
each interval with roughly the same probability as the one our
algorithm used. The difference is that some partitions have
one more interval than others, and intervals in such partitions
have a slightly smaller chance of being selected.

Consider a labelingf and a partitionSr. We use Lemma 3.5
to estimate the improvement obtained if intervalI is used. As
in the previous proof, we will sum the estimates over the set of
intervals in the partition. There are at mostdl=Me+1 intervals
in Sr, hence the expected decrease in the labeling cost when a
random interval is selected fromSr is at least1dl=Me+ 1�Q(f)�Q(f�)� 3M Xe2@r we�:
But, by Lemma 3.4, for a randomly chosen partitionSr, the
expected value of this decrease is at least
�Ml (Q(f)� 4Q(f�))� ;
so in O(l=M) iterations the differenceQ(f) � 4Q(f�) is
expected to decrease by a constant factor. This implies the
claimed bound on the running time.



It is easy to see that the algorithm can be trivially derandom-
ized at a cost of a factor(l+M) increase in the running time.
This can be done by considering all possible(l+M) intervals
and making the moves corresponding to the best possible in-
terval, or making local moves for each of the(l+M) intervals
in turn in a round robin fashion.

We note that in the special case of the uniform metric, our
algorithm becomes the 2-approximation algorithm of Boykov
et al. [6]. Since the uniform metric can be thought of as a
truncated linear metric withM = 1, the flow construction
finds the optimal(i + 1)-expansion move (see Theorem 3.2).
Using this instead of Theorem 3.3 in the proof of Theorem 3.6,
we get the result of [6] that any local optimal solution is a 2-
approximation. Further, we also get an analog of Theorem 3.7,
saying that the expected cost of the labeling afterO(logQ0 +log ��1) repetitions of the main loop of the algorithm have
been performed is at most(2 + �)Q(f�).
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