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(n),where n is the number of points in the original metric). Furthermore, weprove that �nding best embedding of even a tree metric into a line tominimize average distortion is NP-hard. Hence, we focus on approximat-ing the best possible embedding for given input metric.We give a constant-factor approximation for the problem of embeddinggeneral metrics into the line metric. For the case of the metrics whichcan be represented as trees, we provide improved approximation ratiosin polynomial time as well as a QPTAS (Quasi-Polynomial Time Ap-proximation Scheme).1 IntroductionMetric embeddings have recently attracted much attention in theoretical com-puter science because of their many algorithmic applications. These range fromsimplifying the structure of the input data for approximation and online prob-lems [5, 8, 9, 15, 18, 24], serving as a well-roundable relaxation of important NP-hard problems [7, 11{13,17, 27] or simply by being the object of study [1, 16]arising from applications such as computational biology. Embedding techniqueshave thus become an indispensable addition to the algorithms toolbox, provid-ing powerful and elegant solutions to many algorithmic problems (see, e.g., [29,Chapter 15] and [22]).An embedding of a metric (V; d) into a \simpler" host metric (H; Æ) is amap f : V ! H ; the embedding is a good one if the distances between pointsin d closely resemble those between their images in Æ. An embedding is callednon-contracting if the map does not decrease any distances, i.e., d(x; y) �Æ(f(x); f(y))4 for all x; y 2 V . We restrict ourselves to non-contracting em-beddings in this paper. Perhaps the most popular and useful measure of the? Supported by NSF ITR grants CCR-0085982 and CCR-0122581.?? Supported in part by NSF grant CCR-0105548 and ITR grant CCR-0122581.4 In the sequel, we will abbreviate Æ(f(x); f(y)) to Æ(x; y).



quality of an embedding f is the distortion � = �(f), which is:distortion � = maxx;y2V Æ(x;y)d(x;y) :A closely related measure is that of average distortion, which isaverage distortion �(f) = Px;y2V Æ(x;y)Px;y2V d(x;y) :While many embedding techniques and algorithms are known, the analysesfor these embeddings usually only o�er uniform bounds on the distortion of theembeddings; few results which approximate the distortion of the embeddings tobetter than these uniform bounds. This is best shown by a concrete example:Matou�sek [28] proved that any metric (V; d) can be embedded into the real linewith distortion O(jV j); furthermore, the result is existentially tight, as the n-cycle cannot be embedded into the line with distortion o(jV j) (see, e.g., [31, 21]).However, no algorithm is known which o�ers per-instance guarantees; hence,while it may be possible to embed (X; d) into IR with distortion � = O(1),no algorithms are known which give us embeddings with distortion, say, that iswithin O(jV j1��) times �! No results are known even when we replace distortion �by average distortion � as the measure of goodness5.1.1 Our ResultsIn this paper, we prove results for approximating the average distortion when em-bedding metrics into the line IR (while ensuring that the map is non-contracting). We can think of embeddings into a line as de�ning a tour on the nodes ofthe original metric. Note that for an embedding to be non-contracting, it isnecessary and suÆcient to have the distance between adjacent pair of verticesin the tour to be the same as their distance in the input metric. Our resultsdemonstrate a close relationship between minimizing average distortion and theproblems of �nding short TSP tours [25], minimum latency tours [10, 20, 4], andoptimal k-repairmen solutions[14]. In particular, we prove the following results.{ Hardness for average distortion: We prove that the problem of �ndinga minimum average distortion non-contracting embedding of �nite metricsinto the line is NP-hard, even when the input metric is a tree metric. Thisis proved via a reduction from the Minimum Latency Problem on trees [33].{ Constant-factor approximations:We give an algorithm that embeds anymetric (V; d) into the line with average distortion that is within a constantof the minimum possible over all non-contracting embeddings. In fact, weprove a slightly more general bound on non-contracting embeddings into k-spiders (i.e., homeomorphs of stars with k leaves). This result uses a lower5 One notable exception is the remark of Linial et al. [27] that the optimal embeddingof any �nite metric into (unbounded dimensional) Euclidean spaces to minimizedistortion can be computed as a solution to a semi-de�nite program.



bound on the minimum average distortion of a non-contracting embeddinginto a k-spider in terms of the minimum k-repairmen tour [14] on the metric.We also show a tightened result for the case of 2-spiders using ideas fromconstructing minimum latency tours [20].{ QPTAS on trees: For tree metrics on n nodes, we give an algorithm for�nding a (1 + �)-approximation to the minimum average distortion non-contracting embedding into a line in nO(logn=�2) time. Our algorithm usesa lower bound on the minimum average distortion related to the TSP tourlength and latencies of appropriately chosen segments of an optimal tour.In this way, it extends the ideas of Arora & Karakostas [6] for minimizinglatency on trees to the more general time-dependent TSPs [10] to provide aQPTAS for the latter problem as well.Given a tree metric as input, if the minimum average distortion is measuredonly over the endpoints of the edges of the tree (we call this objective the averagetree-edge distortion), we can prove that an embedding following an Euler tourof the tree is optimal. This tour can be found in polynomial time by dynamicprogramming. We omit the description of this algorithm due to lack of space.1.2 Related WorkThe de�nition of average distortion is by no means new; e.g., Alon et al. [2] studythe question of embedding a metric into a tree with low average distortion. Inrecent work on average distortion that is closer to our work, Rabinovich [30]proves bounds on average distortion of non-expanding embeddings into a lineand shows the close connection between this and the max-ow min-cut ratio forconcurrent multicommodity ow with applications to �nding quotient cuts ingraphs [26].Our problem is similar to that of �nding the Minimum Linear Arrangement(MLA), for which Rao & Richa [32] gave an O(log n) approximation using thenotion of spreading metrics. However, while the MLA problem involves mini-mizing the average stretch of the edges Pfu;vg2E j�(u) � �(v)j under all maps� : V ! [n], the mappings in our problem are f : V ! IR, and must ensure thatjf(u)� f(v)j � d(u; v) 8fu; vg 2 V � V .The problem of �nding Minimum Latency tours (a.k.a. the traveling repair-man problem) is most relevant to our discussion in terms of techniques used.This problem requires a repairman who starts from a depot on a given �nitemetric to visit n customers, one at each node of the metric; his goal is to min-imize the average waiting time or latency of the customers, where the waitingtime of a customer is the sum of the distances of all edges traversed by the re-pairman before visiting this customer. The version of this problem with only onerepairman (also called the Minimum Latency Problem) is known to be NP-hardeven on trees [33] and MAX-SNP hard in general [10]. The �rst constant-factorapproximation for this problem was given by Blum et al.[10], which was subse-quently improved by Goemans and Kleinberg [20] to the currently best-known



bound of 7:18. Recently, Archer, Levin and Williamson [4, 3] gave faster algo-rithms obtaining very similar approximation guarantees. For the special casesof the latency problem on trees, and in IRd for �xed dimension d, Arora andKarakostas [6] gave quasi-polynomial time approximation schemes (QPTAS).The extension of the latency problem to more than one repairmen was recentlystudied in [14] where the authors show a 16.994-approximation for the generalk-repairman case.Finally, a problem that generalizes both the cost of a tour as well as its latencyinto one objective is that of �nding time dependent TSP tours. A constant factorapproximation algorithm is also known for this problem [10].Outline:The rest of the paper is organized as follows. In Section 2, we argue thatthe embedding problem is NP-hard, and give the constant-factor approximationalgorithm for embedding metrics into the line with constant average distortion.Section 3 shows the QPTAS for the case of trees metrics as inputs.2 Embedding arbitrary metrics into the lineIn this section, we show that we can approximate the average distortion intoa line for a given metric to within a constant; to this end, we show that theproblem is closely related to that of �nding the minimum latency tours andits generalizations in a �nite metric space. We omit the proof of the followingtheorem; the reduction is from Minimum Latency on trees.Theorem 1. It is NP-hard to �nd a non-contracting embedding of a given met-ric induced by a tree into a line that minimizes the average distortion.First, we show a simple 2-approximation for embedding a �nite metric intoa special kind of tree metric, namely a k-spider. (A k-spider is a tree with allvertices except the center having degrees 1 or 2, and hence is a homeomorph ofthe star with k leaves). The case of a n-spider or a complete star is more naturalto argue about, while the 2-spider is a path giving our main result.Embeddings into trees Consider the problem of embedding the given metric dinto a tree metric Æ to minimize average distortion. Let � = Px;y2V d(x; y)denote the sum of all the distances in the metric d, and hence av(d) = �=n2 isthe average distance in d. The median of the metric d is the point v 2 V thatminimizes �v = Pw2V d(v; w), and will be denoted by med. Note that we candecompose � as follows:� =Pu;v2V d(u; v) =Pu2V (Pv2V d(u; v)) =Pu2V �u � n�med (1)since �med � �v for all v 2 V . Consider a shortest-path tree T (which is a starin a general metric d) rooted at med, and let dT denote the metric induced bythis shortest path tree. Then the total distance in this tree T is�T = n2 � av(dT ) =Pu;v2V dT (u; v) �Pu;v2V dT (med; u) + dT (med; v)=Pu;v2V d(med; u) + d(med; v) = 2n�med



where the inequality in the second step is just the triangle inequality. This impliesthat n�med � � � �T � 2n�med, and thus:Lemma 1 (See also [34]). Given any graph, the average distance �T for thetree rooted at the median is at most 2�, and is a 2-approximation for the problemof embedding the graph into trees.Note here that the bound of 2 above is an absolute bound on the worst-caseratio between the average distance in the output tree and the graph, and is in thesame avor as the more traditional results on bounding the maximum distortionof embeddings. We next move toward an approximation approach by restrictingthe class of trees into which we embed.Embeddings into spiders We now generalize the previous result to the caseof embeddings into k-spiders. The vertex of degree k is called the center ofthe spider, and the components obtained by removing the center are called itslegs [23].Let d�k denote the optimal k-spider embedding. We decompose the sum ofdistances in d�k as the sum of k-repairman paths rooted at each vertex. Recallthat, in k-traveling repairman problem, we are given k repairmen starting at acommon depot s. The k repairmen are to visit n customers sitting one per node ofthe input metric space. The goal is to �nd tours on which to send the repairmenso as to minimize the total time customers have to wait for a repairman toarrive [14].Let c be the center of the spider in the optimal k-spider embedding. Toconstruct a k-repairman paths starting from a vertex r, we do the following.We send one repairman away from the center along the leg of the spider whichcontains r. The other k � 1 repairmen travel toward the center c of the spider.From the center, they go o�, one per remaining leg of the spider. The cost ofthis k-repairman tour is ��r =Pj d�k(r; j). Summing over all choices of the rootwe see that this is same as the sum of distances in the embedding d�k.Pv2V ��v = n2 � av(d�k)Hence, n times the cost of the cheapest k-repairman tour over all choices ofthe depots (denoted by �opt), is a lower bound on the sum of all the distances.i.e., Pu;v2V d�k(u; v) � n �minrf�optr g:Consider the cheapest k-repairman tour over all choices of centers. Let itbe centered at a vertex c. This tour de�nes a non-contracting embedding intoa k-spider with c at the center of the spider. Let dc(u) denote the distance ofvertex u from the center c in the tour. We can bound the sum of distances inthis embedding as follows:Pu;v2V dck(u; v) �Pu;v2V dc(u) + dc(v) � 2nPu2V dc(u) � 2Pu;v2V d�k(u; v):Thus, if we could compute the optimal k-repairman tour centered at c exactly,we would obtain a 2-approximation to the problem of embedding the metric



into k-spiders. Although the problem of �nding an optimal k-repairman tour isNP-hard, the argument above proves the following.Theorem 2. Given a -approximation for the minimum k-repairmen problemon a metric d, we can obtain a 2-approximation for embedding the metric dinto a k-spider in a non-contracting fashion to minimize the average distortion.The current best known approximation factor for the k-repairman problem isabout 17 (due to Fakcharoenphol et al. [14]), leading to the following corollary.Corollary 1. There is a 34-approximation for minimizing the average distor-tion of a non-contracting embedding of a given �nite metric into a k-spider.Embeddings into a line: Improved guarantee We can get a better ap-proximation factor for embeddings into the line by employing a slightly di�erentstrategy. Instead of using the result of Fakcharoenphol et al.as a black box, weinstead give an algorithm to �nd a 1-repairman tour (i.e., a minimum latencytour) that is within a factor of 14:36 of the optimum 2-repairmen tour in thegiven metric. Since a 1-repairman tour is also a 2-repairmen tour (with the sec-ond repairman doing nothing), we can then apply Theorem 2 to bring down theoverall approximation ratio to 28:72.The idea behind the algorithm is the same as in scaled search, due to Blumet al. [10]; here is an outline. To �nd a 1-repairman solution centered at r:for j = 0; 1; 2; 3; : : : ; doTj  tree rooted at r spanning the most vertices among thosewith cost � 2j+2.Concatenate Euler tours of the trees Tj (in increasing order of j), to forma 1-repairman path.Lemma 2. The cost of the 1-repairman tour produced by the preceding algorithmis within a factor 32 of the cheapest 2-repairman tour.Proof. Let vertex v be the ith closest vertex to root r in the optimal 2-repairmantour. Let the distance of v from the root r in the tour be between [2j ; 2j+1) in theoptimal solution. Consider the tree Tj of cost 2j+2 constructed by our algorithm.We claim that Tj spans at least i vertices. Thus cost of ith vertex in our tourhas latency at mostPji=0(cost of ith tour) �Pji=0 2 � 2i+2 � 2j+4Hence, the distance of the ith vertex in our 1-repairman tour is at most 16 timesits counterpart in the optimal 2-repairmen tour.Although the problem of �nding the largest tree with cost at most 2j+2 isNP-hard, we can �nd a tree having as many vertices as the this optimal treeinstead (but with cost at most 2 � 2j+2 using Garg's [19] algorithm for i-MST.This increases the overall approximation factor to 16 � 2 = 32.



Lemma 3. We can �nd a 1-repairman tour with cost � 14:36 times the cost ofthe cheapest 2-repairman tour.Proof. (Sketch) Let b be a real number greater than 1 to be chosen later. Letc = bU , where U is a real number chosen uniformly at random from the interval[0; 1]. Instead of �nding the trees of cost 2; 4; 8; : : : which cover the most vertices,we will �nd the trees of cost at most 2c; 2cb; 2cb2; : : : which cover the mostvertices. Using the methods of Goemans and Kleinberg, we can show that theapproximation ratio of the previous proof can be improved to 14:36.Note that this improves on the result of Fakcharoenphol et al. [14] for thespecial case of the 2-repairman problem. An application of Theorem 2 now givesus the following:Theorem 3. There exists a 28:72-approximation algorithm to embed a given(weighted) metric it into a line in a non-contracting fashion to minimize theaverage distortion.As a consequence of the analysis in Lemma 2, we also get the following result:Lemma 4. For l � k, we can �nd an l-repairman tour with cost at most 17 (k=l)times that of the optimal k-repairman tour.We note that the factor kl in the above Lemma is necessary as demonstratedby the metric induced by an unweighted star graph. Compare the above resultto that of Fakcharoenphol et al. [14] which outputs a k-repairmen tour of costO(kl ) times the minimum l-repairmen tour for k � l (where the factor kl is notnecessary since the algorithm delivers a solution with more repairmen than theoptimal compared against).3 Approximation Schemes for treesIn this section, we restrict our attention to the special case of tree metrics. Wegive a quasi-polynomial time approximation scheme for minimizing the averagedistortion for embeddings into the line metric. Our algorithm is based on theQPTAS given by Arora and Karakostas for the minimum latency problem [6].They proved that a near-optimal latency tour can be constructed by concate-nating O(log jV j=�) optimal TSP subtours, and the best such solution can befound by dynamic programming.For an embedding f : V ! IR into the line, let the span of the embedding bede�ned as maxx;y jf(x) � f(y)j, the maximum distance between two points onthe line. We note that an embedding with the shortest span is just the optimalTSP tour. While embedding a given metric into the line metric, minimizing thespan of the embedding could result in very high average distortion. However,we show that it suÆces to minimize the span locally to �nd near optimal em-bedding. In particular, our solution within (1 + �) of optimal minimum averagedistortion is to �nd an embedding that is the union of O(log jV j=�2) TSP tourswith geometrically decreasing number of vertices.



In the sequel, we use n to denote jV j, the number of vertices. For our algo-rithm, we assume that all the edge lengths are in the range [1; n2=�]. Indeed, ifD is the diameter of the metric space and u and v are two vertices such thatd(u; v) = D, then Px;y2V d(x; y) �Px2V d(x; u) + d(x; v) � nD. We can thenmerge all pairs of nodes with inter-node distance at most �D=n2, which a�ectsthe sum of distance by at most �nD. Hence the ratio of maximum to minimumnonzero distance in the metric can be assumed to be n2=�.Relation to TDTSPs We �rst show that the Arora-Karakostas QPTAS worksalso for the case of Time Dependent Traveling Salesman Problem (TDTSP)de�ned by Blum et al.. In the TDTSP, the objective is to minimize a positivelinear combination of the TSP tour value and the total latency of the tour. Theintuition behind this is that adding a component of TSP in the objective valuepreserves the property that the tour composed of TSP tours continues to remainnear-optimal.We now describe how to break up an optimal tour into locally optimal seg-ments. Let T denote the optimal tour for the objective function �TSP +�LATwhere TSP and LAT denote the span and latency objective values of the tourrespectively. We break this tour into k segments (k depends on the input pa-rameter �). In segment i we visit ni nodes, whereni = d(1 + �)k�1�ie for i = 1; : : : ; k � 1; nk = d1=�eNote that these ni's are chosen in such a way that ni � �Pj>i nj . DenotePj>i nj by ri. Replace the optimal tour in each segment, except the last one, bythe minimum-distance traveling salesman tour for that segment. The new tournow consists of the concatenation of O(log n=�) locally optimal TSP tours. Thisgives us the following lemma.Lemma 5. There is a tour that is a concatenation of O(log n=�) TSP tours thathas �TSP + �LAT objective value at most (1 + �) times the minimum.We now use the Lemma 5 to show the following theorem for average distance.Theorem 4. Any �nite metric has a non-contracting embedding into a line thatis composed of O(log n=�2) minimum TSP tour segments with average distortionno more that (1 + �) times the minimum possible over all such embeddings.Proof. Our strategy is same as in Lemma 5. Consider the optimal embedding ofthe input tree into a line. We break this embedding up into O(log n=�) segments.Let ni be the size of ith segment de�ned as before. We now divide the objectivefunction value according to the segments, so that only the share Ci of segmenti changes, if we replace the embedding of segment i with a di�erent embedding.Let Ti be the length of the embedding of segment i. If i0 is the left-mostnode in the embedding of the segment i, then let Li =Pj2ni l(i0; j) be the sumof the distances of all nodes in segment i from node v. Note that Li is the total



latency of vertices in segment i with i0 as root. And let Di =Pu;v2ni l(u; v) bethe sum of all the pairwise distances in segment i.Let qi =Pj<i nj and ri =Pj>i nj be the number of total nodes to the leftand right of segment i respectively.The contribution of the segment i to the objective comes from the followingdistinct terms.1. If a vertex u is to the left of the segment i and a vertex v is to the right,then the segment i adds Ti to the distance between them.2. If a vertex u is to the left and w is in the segment i, then the contributionis l(i0; w) = the distance from the left most vertex i0 of the segment i to w.3. If a vertex v is to the right and w is in the segment i, then the contributionis Ti � l(i0; w).4. If both the vertices w and w0 are in the segment i, then the contribution isl(w;w0).These contributions, when summed up over all pairs of vertices, give:Ci = qiriTi + qiLi + ri(niTi � Li) +Di (2)Note that Di � n2iTi. For i = 2; : : : ; k, we know that ni � qi and ni � � � ri.Hence, comparing Di with the �rst term in (2), we get(1 + �)(qiriTi + qiLi + ri(niTi � Li)) � Ci � qiriTi + qiLi + ri(niTi � Li) (3)To prove the statement in Theorem 4, it suÆces to �nd a tour that is within(1+ �) of the lower bound in the RHS of the above inequality 3. The expressionfor the lower bound on the RHS of inequality 3 is a linear combination of TSPand Latency values of the tour in segment i. We can apply Lemma 5 to obtaina tour composed of O(log ni=�) TSP tours. This tour is within (1 + �) factor ofthe lower bound on Ci.A technical detail in this argument is that the coeÆcient of Li could benegative. Lemma 5 does not handle this case. But note that niTi � Li is thetotal \reverse" latency in segment i with the rightmost endpoint being the root.Thus we can rewrite the lower bound as a linear combination of Ti and niTi�Liwith positive coeÆcients.We can thus replace each segment i, with a concatenation of O(log ni=�) TSPtours, without increasing the cost by more than a factor of (1 + �). Since thereare O(log n=�) segments in all, it follows that there is an embedding consistingof O(log2 n=�2) shortest TSP tours.Finally, we show how to reduce this number down to O(log n=�2). Let usrewrite the lower bound in (3) as (qi�ri)Li+(qi+ni)riTi. Note that Li � niTi.This gives us that the term (qi � ri)Li is at most � � (qi + ni)riTi, wheneverqi � ri is positive. Hence, if we replace the segment i with a shortest TSP touron those vertices, the cost will be within (1 + �) of the lower bound in (3). It iseasy to check that, for i � 1=�, we have qi � ri. Hence for i = 1; : : : ; 1=�, usingLemma 5, we replace each segment by a concatenation of O(log n=�) tours each.



Then for the segments i and above, we use only one minimum TSP tour. Overallthis results in a concatenation of O(log n=�2) tours with near-optimal averagedistortion.Note that, an optimal TSP tour of the tree is an Euler tour. In other words,each edge is crossed exactly twice, once in each direction. As a consequence, wehave the following.Theorem 5. There exists a non-contracting embedding of a tree metric into aline with average distortion at most (1 + �) times the minimum possible that,when viewed as a walk, crosses every tree edge O(log n=�2) times.Now using dynamic programing using these structural results proves thefollowing theorem.Theorem 6. For any given � > 0, there is an algorithm that runs in timenO(logn=�2) and computes a non-contracting embedding of a given input tree met-ric into a line with average distortion at most (1 + �)-times the minimum.Proof. (Sketch)We now describe the quasi-polynomial-time approximation scheme based ondynamic programming. Theorem 5 can be restated in terms of crossings of ver-tices. Consider a separator vertex for the tree. We will denote the partition ofthe tree at the centroid as the left and right parts. There exists a near optimalembedding that, when viewed as a tour, crosses the separator node from left halfto right half O(log n=�2) times.We develop a dynamic program based on the above observation. Given theinput tree, we try each vertex as the starting point of our tour. In order tocompute the tour, we �rst �nd a separator node in the tree. For the dynamicprogram, we maintain the following state space. Consider the sub-tours formedbetween successive places where we cross the separator node. We guess the num-ber of nodes and the length for each of these sub-tours. Note that since thereare only O(log n=�2) crossings, there are only nO(logn=�2) choices for the numberof nodes. Moreover, the length of each tour can take at most O(log n=�) di�er-ent values. Thus the number of choices for the length are bounded by aboutO((logn)log n). Thus the total size of state space is nO(log n=�2). Finding the besttour given the lengths of sub-tours can be done by recursing on the left and rightparts independently. For each of these sub-tours, we want to visit all the verticeswhile staying on one side throughout. The total running time of this procedureis nO(logn=�2).4 Open Problems and DiscussionIt is important to note that a non-contracting embedding can be converted toa non-expanding embedding by scaling down all the distances. However, theconverse is not true, since in non-expanding embeddings, the host metric couldbe a semi-metric. In other words, mapping two points in the guest metric to
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