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Abstract

Approximation algorithms for clustering points in metric spaces is a flourishing area of re-
search, with much research effort spent on getting a better understanding of the approximation
guarantees possible for many objective functions such as k-median, k-means, and min-sum clus-
tering.

This quest for better approximation algorithms is further fueled by the implicit hope that these
better approximations also give us more accurate clusterings. E.g., for many problems such as
clustering proteins by function, or clustering images by subject, there is some unknown “correct”
target clustering and the implicit hope is that approximately optimizing these objective functions
will in fact produce a clustering that is close (in symmetric difference) to the truth.

In this paper, we show that if we make this implicit assumption explicit—that is, if we assume
that any c-approximation to the given clustering objective F is ǫ-close to the target—then we
can produce clusterings that are O(ǫ)-close to the target, even for values c for which obtaining a
c-approximation is NP-hard. In particular, for k-median and k-means objectives, we show that
we can achieve this guarantee for any constant c > 1, and for min-sum objective we can do this
for any constant c > 2.

Our results also highlight a somewhat surprising conceptual difference between assuming that
the optimal solution to, say, the k-median objective is ǫ-close to the target, and assuming that
any approximately optimal solution is ǫ-close to the target, even for approximation factor say
c = 1.01. In the former case, the problem of finding a solution that is O(ǫ)-close to the target
remains computationally hard, and yet for the latter we have an efficient algorithm.
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1 Introduction
The field of approximation algorithms for clustering points in metric spaces is a very active one, with
a large number of algorithms having been developed for clustering objectives like k-median, k-means,
and min-sum clustering. The k-median problem has a 3 + ǫ-approximation [AGK+04], and it is NP-
hard to approximate to better than 1+2/e [JMS02]. The k-means problem for general metric spaces
has a constant-factor approximation, and admits a PTAS in Euclidean spaces for constant number
of clusters k [KSS04]. The min-sum clustering problem admits an O(log1+δ n)-approximation for
general metric spaces, and admits a PTAS when k is a constant [dlVKKR03]. For most of these
problems, the approximation guarantees do not match the known hardness results, and much effort
is spent on obtaining tighter approximation guarantees.

However, this search for better approximation algorithms is motivated not just by the desire to
pin down the tractability threshold for these objectives: there is the underlying hope that better
approximations will give more meaningful clusterings of the underlying data. Indeed, for many
clustering problems, such as clustering proteins by function, or clustering images by subject, the
real goal is to classify the points correctly, and these objectives are only a proxy. That is, there is
some unknown “correct” target clustering—such as grouping the proteins by their actual functions,
or grouping the images by who is actually in them—and the implicit hope is that approximately
optimizing these objectives will in fact produce a clustering that is close in symmetric difference to
the truth. In other words, implicit in taking the approximation-algorithms approach is the hope
that any c-approximation to our given objective will be pointwise close to the true answer, and our
motivation for improving a c2-approximation to a c1-approximation (for c1 < c2) is that perhaps this
closeness property holds for c1 but not c2.

In this paper, we show that if we make this implicit assumption explicit, and assume that any
c-approximation to the given clustering objective F is ǫ-close1 to the target clustering, then we can
in fact produce a clustering that is O(ǫ)-close to the target, even for values c for which obtaining a
c-approximation is provably NP-hard. In particular, for k-median and k-means objectives, we show
that we can achieve this guarantee for any constant c > 1, and for min-sum objective when the target
clusters are “large” we can do this for any constant c > 2. Moreover, if clusters are sufficiently large
compared to ǫn

c−1 then for k-median we can actually get ǫ-close to the target (rather than O(ǫ)-close).
Thus, we show that we do not need to find a better approximation algorithm in order to get the

properties that such algorithms would imply: we can approximate the target without approximating
the objective (up to a constant factor loss in the misclassification rate ǫ in some cases). Moreover,
the problem of finding a c-approximation to these objectives even with this assumption is as hard as
finding a c-approximation to the objectives without it (see Theorem 17 in Appendix A) so we must
bypass the objective to do so.

Our results also show that there is a perhaps unexpected conceptual difference between assuming
that the optimal solution to, say, the k-median objective is ǫ-close to the target, and assuming that
any approximately optimal solution is ǫ-close to the target, even for approximation factor c = 1.01
(say). In the former case, the problem of finding a solution that is O(ǫ)-close to the target remains
computationally hard (see Section 2.1 and Appendix A), and yet for the latter case we give efficient
algorithms.

1.1 Related Work

Work on approximation algorithms: For k-median, O(1)-approximations were given by [CGTS99,
JV01, CG99] and the best approximation guarantee known is (3 + ǫ) due to [AGK+04]. A reduc-
tion from max-k-coverage shows an easy (1 + 2/e)-hardness of approximation [GK99, JMS02]. The
k-median problem on constant-dimensional Euclidean spaces admits a PTAS [ARR99].

For k-means on general metric spaces, one can derive a constant approximation using ideas from

1
ǫ-close means only an ǫ fraction of the points are misclassified; see Section 2 for a formal definition.
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k-median—the squared distances do not form a metric, but are close enough for the proofs to go
through; an approximation-hardness of 1+8/e follows from the ideas of [GK99, JMS02]. This problem
is very often studied in Euclidean space, where a near-linear time (1 + ǫ)-approximation algorithm
is known for the case of constant k and ǫ [KSS04]. Lloyd’s local search algorithm [Llo82] is often
used in practice, despite having poor worst-case performance [AV06]. Ostrovsky et al. [ORSS06]
study ways of seeding Lloyd’s local search algorithm: they show that on instances satisfying an
ǫ-separation property, this seeding results in solutions with provable approximation guarantees. We
show in Section 2.2 that their assumption can be quite a bit stronger than ours—though, in part, they
need a stronger assumption because their goal is different (they want to approximate the objective
whereas we want to approximate the target).

Min-sum k-clustering on general metric spaces admits a PTAS for the case of constant k by
Fernandez de la Vega et al. [dlVKKR03] (see also [Ind99]). For the case of arbitrary k there is an
O(δ−1 log1+δ n)-approximation algorithm in time nO(1/δ) due to Bartal et al. [BCR01]. The problem
has also been studied in geometric spaces for constant k by Schulman [Sch00] who gave an algorithm
for (Rd, ℓ2

2) that either output a (1 + ǫ)-approximation, or a solution that agreed with the optimum
clustering on (1 − ǫ)-fraction of the points (but could have much larger cost than optimum); the
runtime is O(nlog log n) in the worst case and linear for sublogarithmic dimension d.

Related work that considers a target clustering: There has been significant work in the ma-
chine learning and theoretical computer science communities on clustering or learning with mixture
models [AM05, AK05, DHS01, DGL96, KSV05, VW04, Das99]. That work, like ours, has an ex-
plicit notion of a correct ground-truth clustering of the data points; however, they all make strong
probabilistic assumptions about the data.

In recent work, Balcan et al. [BBV08] investigated the goal of approximating a desired target
clustering without probabilistic assumptions. They analyzed what properties of a pairwise similarity
function are sufficient to produce a tree such that some unknown pruning is close to the target, or a
small list of clusterings such that the target is close to one of them. In relation to implicit assumptions
about approximation algorithms, [BBV08] showed that for k-median, the assumption that any 2-
approximation is ǫ-close to the target implies that most of the data satisfies a certain separation
property, which they then use to construct a hierarchical clustering such that the target clustering
is close to some pruning of the hierarchy. In this paper, we initiate a systematic investigation of the
interplay between such assumptions and approximation algorithms. Additionally, the goals in this
paper are stronger — we want to output a single approximately correct clustering (as opposed to a
list of clusterings or a hierarchy), and moreover, we want to succeed for any c > 1.

The work of Meila [Mei06] is complementary to ours: it shows sufficient conditions under which
k-means instances satisfy the property that near-optimal solutions are ǫ-close to the optimal k-means
solution.

Other work on clustering: There is a large body of other work which does not assume the existence
of a target clustering. For example there has been working on defining measures of clusterability of
data sets [ABD08] for telling which data sets are more clusterable, on formulating definitions of good
clusterings [GKS06], on axiomatizing clustering (in the sense of postulating what natural axioms
should a “good clustering algorithm” satisfy), both with possibility and impossibility results [Kle02],
on “comparing clusterings” [Mei03, Mei05], or on efficiently testing if a given data set has a clustering
satisfying certain properties [ADPR00]. The main difference between this type of work and our work
is that we have an explicit notion of a correct ground-truth clustering of the data points, and indeed
the results we are trying to prove are quite different. There is also other interesting work addressing
stability of various clustering algorithms with connections to model selection [BDPS07, BDvLP06,
RC06].
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2 Definitions and Preliminaries
The clustering problems in this paper fall into the following general framework: we are given a metric
space M = (X, d) with point set X and a distance function d :

(X
2

)

→ R≥0 satisfying the triangle
inequality—this is the ambient space. We are also given the actual point set S ⊆ X we want to
cluster; we use n to denote the cardinality of S. A k-clustering C is a partition of S into k sets
C1, C2, . . . , Ck. In this paper, we always assume that there is a true or target k-clustering CT for the
point set S.

Commonly used clustering algorithms seek to minimize some objective function or “score”; e.g.,
the k-median clustering objective assigns to each cluster Ci a “median” ci ∈ X and seeks to minimize
Φ1(C) =

∑k
i=1

∑

x∈Ci
d(x, ci), k-means clustering minimizes Φ2(C) =

∑k
i=1

∑

x∈Ci
d(x, ci)

2, and min-

sum clustering minimizes ΦΣ =
∑k

i=1

∑

x,y∈Ci
d(x, y). Given a function Φ and instance (M, S), let

OPTΦ = minC Φ(C), where the minimum is over all k-clusterings of (M, S).
We define the distance dist(C, C′) between two k-clusterings C = {C1, C2, . . . , Ck} and C′ =

{C ′
1, C

′
2, . . . , C

′
k} as the fraction of points on which they disagree under the optimal matching of

clusters in C to clusters in C′; i.e., dist(C, C′) = minσ∈Sk

1
n

∑k
i=1 |Ci − C ′

σ(i)|, where Sk is the set of

bijections σ : [k] → [k]. We say that two clusterings C and C′ are ǫ-close if dist(C, C′) ≤ ǫ and we
say that a clustering has error ǫ if it is ǫ-close to the target. Note that if C and C′ are ǫ-close and all
clusters Ci have size greater than 2ǫn, then the bijection σ minimizing 1

n

∑k
i=1 |Ci−C ′

σ(i)| is unique;

in this case we call this the optimal bijection σ and we say that C and C′ agree on x if x ∈ Ci ∩C ′
σ(i)

for some i.
The following definition is central to our discussion:

Property 1 (The (c, ǫ)-property) Given an objective function Φ (such as k-median, k-means, or
min-sum), we say that instance (M, S) satisfies the (c, ǫ)-property for Φ if all near-optimal clusterings
C—those with Φ(C) ≤ c ·OPTΦ—are ǫ-close to the target clustering CT for (M, S).

The above assumption is often implicitly made when proposing to use a c-approximation for the
objective Φ to solve a clustering problem in which the true goal is to classify data points correctly;
similarly, the motivation for improving a c2 approximation to a c1 < c2 approximation is that perhaps
the data satisfies the (c1, ǫ) property for Φ but not the (c2, ǫ) property.

Note that for any c > 1, the (c, ǫ)-property does not require that the target clustering CT exactly
coincide with the optimal clustering C∗ under objective Φ. However, it does imply the following
simple facts:

Fact 2 Given any instance (M, S) and objective Φ such that (M, S) satisfies the (c, ǫ)-property for Φ
for c ≥ 1, the following facts hold:

(a) The target clustering CT , and the optimal clustering C∗ are ǫ-close.
(b) The distance between k-clusterings is a metric, and hence a (c, ǫ) property with respect to
the target clustering CT implies a (c, 2ǫ) property with respect to the optimal clustering C∗.

Proof: Since all c-approximate solutions are ǫ-close to the target, the optimal clustering C∗ (which
is 1-approximate) is ǫ-close to CT . For the second fact, consider any c-approximate clustering C:
by the (c, ǫ)-property w.r.t. CT , C is ǫ-close to CT , which in turn is ǫ-close to C∗. And hence every
c-approximate solution is 2ǫ-close to C∗, proving the claim.

Thus, in our analysis we can act as if the optimal clustering is indeed the target up to a constant
factor loss in the error rate.

2.1 Two Strawman Solutions, and Why They Fail

Before proceeding to our results, we first consider two “strawman” approaches to achieving our goals,
and indicate why they do not work.
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• First, suppose that the (c, ǫ)-property for some objective Φ implied, say, the (2c, 2ǫ) property.
Then it would be sufficient to simply apply an O(c) approximation in order to have error O(ǫ)
with respect to the target. However, we show in Theorem 16 in the Appendix, for any c1 < c2

and any ǫ, α > 0, for each of the three objectives we consider (k-median, k-means, and min-
sum), there exists a family of metric spaces and target clusterings satisfying the (c1, ǫ) property
for that objective, and yet that do not satisfy even the (c2, 1/2−α) property. Thus, the result
of a direct application of a c2-approximation in this case is nearly as poor as possible.

• Second, perhaps the (c, ǫ) assumption implies that finding a c-approximation is somehow trivial.
However, this is not the case either: for any c > 1, the problem of finding a c-approximation
to any of the three objectives we consider under the (c, ǫ) assumption is as hard as finding a
c-approximation in general (see Appendix, Theorem 17).

It is also interesting to note that results of the form we are aiming for are not possible given only
the (1, ǫ) property. Indeed, because the standard hardness-of-approximation reduction for k-median
produces a metric in which all pairwise distances lie in a bounded range, the reduction also implies
that it is NP-hard, given a data set satisfying the (1, ǫ) property, to find a clustering of error O(ǫ);
see Theorem 18 in the Appendix.

2.2 Relationship to Similar Concepts

Schulman [Sch00] studies the problem of min-sum clustering in ℓ2
2 and other geometric spaces, for

the case of a constant number of clusters k. For any δ > 0, his algorithm either gives a (1 + δ)
approximation to the optimal cost, or else outputs a clustering that is δ-close to the target clustering;
of course, the running time of the algorithm depends on δ. Given a (1 + α, ǫ)-assumption for min-
sum clustering, his algorithm can be used—as can the PTASs for metric min-sum clustering [Ind99,
dlVKKR03]—to output clusterings that are O(ǫ)-close to the target for the case of constant k and
α. Our algorithms are somewhat simpler, and they work for non-constant k as well.

Ostrovsky et al. [ORSS06] study k-means in Euclidean space; they call a k-means instance ǫ-
separated if the optimal k-means cost is at most ǫ2 times the cost of optimally opening k− 1 means;
under this assumption on the input, they show how to seed Lloyd’s method to obtain a 1 + O(ǫ2)
approximation in d-dimensional Euclidean space in time O(nkd+k3d), and a (1+δ)-PTAS with run-

time nd2k(1+ǫ2)/δ . In Theorem 5.1 of their paper, they show that their ǫ-separatedness assumption
implies that any near-optimal solution to k-means is O(ǫ2)-close to the optimal clustering. However,
the converse is not true, since an instance could satisfy our property without being ǫ-separated: here
is an example2. Consider the case k = 2 where target cluster C1 has (1 − α)n points and target
cluster C2 has αn points. Any two points inside the same cluster have distance 1 and any two points
inside different clusters have distance 1 + 1/ǫ. For any α ∈ (ǫ, 1− ǫ), this satisfies the (2, ǫ) property
for k-median (and the (2, ǫ2) property for k-means for any α ∈ (ǫ2, 1 − ǫ2)). However, it does not
necessarily satisfy the ǫ-separation property. E.g., for α = 2ǫ, the optimal 2-median solution has cost
n− 1, but the optimal 1-median has cost < 3n. Likewise for α = 2ǫ2, the optimal 2-means solution
has cost n− 1, but the optimal 1-means has cost < (3 + 4ǫ)n. Thus, the ratio of costs for k = 1 and
k = 2 is not so large.

3 The k-Median Problem

We first study k-median clustering under the (c, ǫ)-property. Our main results are that for any
constant c > 1, (1) if all clusters are “large”, then this property allows us to efficiently find a
clustering that is ǫ-close to the target clustering, and (2) for any cluster sizes, we can efficiently

2The paper [ORSS06] also shows an implication in the other direction (Theorem 5.2 of their paper shows that
their separatedness condition implies a certain closeness property); however, the notion of closeness used there is much
stronger.
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find a clustering that is O(ǫ)-close to the target. Note that we can do this without obtaining a
c-approximation algorithm for the k-median problem. (Recall that obtaining a c-approximation for
c < 1 + 2/e is not even possible unless P=NP.) To prove these results, we first investigate the
implications of the (c, ǫ)-property in Section 3.1. We then give our algorithm for the case that all
clusters are large in Section 3.2, and our algorithm for arbitrary cluster sizes in Section 3.3.

3.1 Implications of the (c, ǫ)-Property

Given an instance of k-median specified by a metric space M = (X, d) and a set of points S ⊆ X,
fix an optimal k-median clustering C∗ = {C∗

1 , . . . , C∗
k}, and let c∗i be the center point for C∗

i . Let
w(x) = mini d(x, c∗i ) be the contribution of x to the k-median objective in C∗ (i.e., x’s “weight”),
and let w2(x) be x’s distance to the second-closest center point among {c∗1, c

∗
2, . . . , c

∗
k}. Also, let

w = 1
n

∑n
i=1 w(x) = OPT

n be the average weight of the points. Finally, let ǫ∗ = dist(CT , C∗); so, by
our assumption we have ǫ∗ ≤ ǫ.

Lemma 3 If the k-median instance (M, S) satisfies the (1 + α, ǫ)-property with respect to CT , and
each cluster in CT has size greater than 2ǫn, then

(a) at most (ǫ− ǫ∗)n points x ∈ S on which CT and C∗ agree have w2(x)− w(x) < αw
ǫ , and

(b) at most 5ǫn/α points x ∈ S have w(x) ≥ αw
5ǫ .

For the case of general cluster sizes in CT we replace (a) and (b) with:
(a’) at most 6ǫn points x ∈ S have w2(x)−w(x) < αw

2ǫ .
(b’) at most 10ǫn/α points x ∈ S have w(x) ≥ αw

10ǫ .

Proof: To prove Property (a), assume to the contrary. Then one could take C∗ and move more
than (ǫ − ǫ∗)n points x on which CT and C∗ agree to their second-closest clusters, increasing the
objective by at most αOPT. Moreover, this new clustering C′ = {C ′

1, . . . , C
′
k} has distance greater

than ǫ from CT , because we begin at distance ǫ∗ from CT and each move increases this distance by 1
n

(here we use the fact that because each cluster in CT has size greater than 2ǫn, the optimal bijection
between CT and C′ remains the same as the optimal bijection between CT and C∗). Hence we have
a clustering that is not ǫ-close to CT with cost only (1 + α)OPT, a contradiction. Property (b)
follows from the definition of the average weight w, and Markov’s inequality. For Property (a’), we
use Lemma 19 in the Appendix which addresses the case of small clusters. Specifically, assuming
for contradiction that more than 6ǫn points satisfy the condition (a’), Lemma 19 states that we can
find a subset of more than 2ǫn of them such that starting from C∗, for each one that we move to its
second-closest cluster, the distance from C∗ increases by 1

n . Therefore, by increasing the objective
by at most αOPT we can create a clustering C′ that is more than distance 2ǫ from C∗, and so is not
ǫ-close to CT . Property (b’) again follows from Markov’s inequality.

For the case that each cluster in CT has size greater than 2ǫn, define the critical distance dcrit =
αw
5ǫ , else define dcrit = αw

10ǫ ; i.e., these are the values in properties (b) and (b’) respectively of Lemma
3. We call point x good if both w(x) < dcrit and w2(x) − w(x) ≥ 5dcrit, else x is called bad ; by
Lemma 3 and the definition of ǫ∗, if all clusters in the target have size greater than 2ǫn then at most
a (1 + 5/α)ǫ fraction of points are bad, and in general at most a (6 + 10/α)ǫ fraction of points are
bad. Let Xi be the good points in the optimal cluster C∗

i , and let B = S \ ∪Xi be the bad points.
Let b = |B|.

Lemma 4 (Threshold Graph) Define the τ -threshold graph Gτ = (S,Eτ ) by connecting all pairs
{x, y} ∈

(

S
2

)

with d(x, y) ≤ τ . For an instance satisfying the (1 + α, ǫ)-property and τ = 2dcrit, the
threshold graph Gτ has the following properties:

(i) For all x, y in the same Xi, the edge {x, y} ∈ E(Gτ ).
(ii) For x ∈ Xi and y ∈ Xj 6=i, {x, y} 6∈ E(Gτ ). Moreover, such points x, y do not share any
neighbors in Gτ .
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Proof: For part (i), since x, y are both good, they are at distance less than dcrit to their cluster
center, by Lemma 3 (b or b’). By the triangle inequality, the distance d(x, y) ≤ d(x, c∗i ) + d(c∗i , y) ≤
2× dcrit = τ . For part (ii), the distance from x to y’s cluster center c∗j is at least 5dcrit, by Lemma
3 (a or a’). Again by the triangle inequality, d(x, y) ≥ d(x, c∗j )− d(y, c∗j ) > 5dcrit − dcrit = 2τ . Since
each edge in Gτ is between points at distance at most τ , the points x, y cannot share any common
neighbors.

Hence, the graph Gτ for the above value of τ is fairly simple to describe: each Xi forms a clique, and
the neighborhood NGτ (Xi) of Xi lies entirely in the bad bucket B with no edges going between Xi

and Xj 6=i, or between Xi and NGτ (Xj 6=i). We now show how we can use this to find a clustering of
error at most ǫ if the size of each Xi is large (Section 3.2) and how we can get error O(ǫ) for general
cluster sizes (Section 3.3).

3.2 An algorithm for large clusters

We begin with the following lemma. Recall that b = |B|.

Lemma 5 Given a graph G = (S,E) satisfying properties (i), (ii) of Lemma 4 and where each
|Xi| ≥ b + 2, there is an efficient algorithm that outputs a k-clustering with each Xi contained in a
distinct cluster.

Proof: Construct a graph H = (S,E′) where we place an edge {x, y} ∈ E′ if x and y have at least b
common neighbors in G. By property (i) each Xi is a clique of size ≥ b+2 in G, so each pair x, y ∈ Xi

has at least b common neighbors in G and hence {x, y} ∈ E′. Now consider x ∈ Xi ∪NG(Xi), and
y 6∈ Xi ∪ NG(Xi): we claim {x, y} 6∈ E′. Indeed, by property (ii), x and y cannot share neighbors
that lie in Xi (since y 6∈ Xi ∪ NG(Xi)), nor in some Xj 6=i (since x 6∈ Xj ∪ NG(Xj)). Hence the
common neighbors of x, y all lie in B, which has size b. Moreover, at least one of x and y must
itself belong to B, else they would have no common neighbors by property (ii); hence, the number
of distinct common neighbors is at most b− 1, which implies that {x, y} 6∈ E′.

Thus each Xi is contained within a distinct component of the graph H; the remaining components
of H contain vertices from the “bad bucket” B. Since the Xi’s are larger than B, we can obtain the
claimed clustering by taking the largest k components in H, adding the vertices of all other smaller
components to any of these, and using this as the k-clustering.

We now show how we can use Lemma 5 to find a clustering that is ǫ-close to CT . For simplicity, we
begin by assuming that we are given the value of w = OPT

n , and then we show how this assumption
can be removed.

Theorem 6 (The “known w” Case) If the k-median instance satisfies the (1+α, ǫ)-property and
each cluster in the target clustering has size at least (3+10/α)ǫn+2, then given w we can efficiently
find a clustering that is ǫ-close to the target.

Proof: Since each cluster in the target clustering has at least (3 + 10/α)ǫn + 2 points, and the
optimal k-median clustering C∗ differs from the target clustering by ǫ∗n ≤ ǫn points, each cluster in
C∗ must have at least (2 + 10/α)ǫn + 2 points. Moreover, by Lemma 3, the bad points B constitute
at most (1 + 5/α)ǫn points, and hence each |Xi| = |C

∗
i \B| ≥ (1 + 5/α)ǫn + 2 = b + 2.

Now, given w, we can construct the graph Gτ with τ = 2dcrit (which we can compute from the
given value of w), and apply Lemma 5 to find a k-clustering C′ where each Xi is contained within a
distinct cluster. Note that this clustering C′ differs from the optimal clustering C∗ only in the bad
points which constitute an O(ǫ/α) fraction of the total. Hence, it is at distance O(ǫ/α + ǫ) from the
target. However, our goal is to get ǫ-close to the target, which we do as follows.

Call a point x “red” if it satisfies condition (a) in Lemma 3 (i.e., w2(x)−w(x) < 5dcrit), “yellow”
if it is not red but satisfies condition (b) in Lemma 3 (i.e., w(x) ≥ dcrit), and “green” otherwise. So,
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the green points are those in the sets Xi, and we have partitioned the bad set B into red points and
yellow points. Let C′ = {C ′

1, . . . , C
′
k} and recall that C′ agrees with C∗ on the green points, so without

loss of generality we may assume Xi ⊆ C ′
i. We now construct a new clustering C′′ that agrees with

C∗ on both the green and yellow points. Specifically, for each point x and each cluster C ′
j, compute

the median distance dmed(x, j) between x and all points in C ′
j ; then insert x into the cluster C ′′

i for
i = argminjdmed(x, j). Since each non-red point x satisfies w2(x)−w(x) ≥ 5dcrit, and all green points
g satisfy w(g) < dcrit, this means that any non-red point x must satisfy the following two conditions:
(1) for a green point g1 in the same cluster as x in C∗ we have d(x, g1) ≤ w(x) + dcrit, and (2) for
a green point g2 in a different cluster than x in C∗ we have d(x, g2) ≥ w2(x)− dcrit ≥ w(x) + 4dcrit.
Therefore, d(x, g1) < d(x, g2). Since each cluster in C′ has a strict majority of green points (even
with point x removed) all of which are clustered as in C∗, this means that for a non-red point x, the
median distance to points in its correct cluster with respect to C∗ is less than the median distance
to points in any incorrect cluster. Thus, C′′ agrees with C∗ on all non-red points. Finally, since
there are at most (ǫ − ǫ∗)n red points on which CT and C∗ agree by Lemma 3, this implies that
dist(C′′, CT ) ≤ (ǫ− ǫ∗) + ǫ∗ = ǫ as desired.

We now extend the above argument to the case where we are not given the value of w.

Theorem 7 (The “unknown w” Case) If the k-median instance satisfies the (1 + α, ǫ)-property
and each cluster in the target clustering has size at least (4 + 15/α)ǫn + 2, then we can efficiently
find a clustering that is ǫ-close to the target.

Proof: If we are not given the value w, we instead run the algorithm of Lemma 5 repeatedly for
different values of w, starting with w = 0 (so the graph Gτ is empty) and at each step increasing w to
the next value such that Gτ contains at least one new edge (so we have at most n2 different guesses
to try). If some guess for w causes the k largest components of H to miss more than b = (2+10/α)ǫn
points, or if any of these components have size ≤ b, then we reject, and increase w. Otherwise, we
define C′ to be the k largest components in H (so up to b points may be unclustered) and continue
to the second phase of the algorithm for the known-w case constructing clustering C′′.

Note that we still might have too small a guess for w, but this just means that the resulting graphs
Gτ and H can only have fewer edges than the corresponding graphs for the correct w. Hence, some
of the Xi’s might not have fully formed into connected components in H. However, if the k largest
components have size greater than b, then we never misclassify the good points lying in these largest
components. We might misclassify all the bad points (at most b of these), and might fail to cluster
at most b of the points in the actual Xi’s (i.e., those not lying in the largest k components), but this
nonetheless guarantees that each cluster C′i contains at least |Xi|− b ≥ b+2 correctly clustered green
points (with respect to C∗) and at most b misclassified points. Therefore, as shown in the proof of
Theorem 7, the resulting clustering C′′ will correctly cluster all non-red points as in C∗ and so is at
distance at most (ǫ− ǫ∗) + ǫ∗ = ǫ from CT .

3.3 An Algorithm for the General Case

The algorithm in the previous section required the minimum cluster size in the target to be large
(of size Ω(ǫn)). In this section, we show how this requirement can be removed using a different
algorithm that finds a clustering that is O(ǫ/α)-close to the target; while the algorithm is just as
simple, we need to be a bit more careful in the analysis. (Again, we will assume we know w = OPT

n ,
and discharge this assumption later.)

Theorem 8 (k-Median: General Case) If the k-median instance satisfies the (1 + α, ǫ)-property
and we are given the value of w, the above algorithm produces a clustering which is O(ǫ/α)-close to
the target.
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Algorithm 1 k-median Algorithm: General Case

Input: w, ǫ ≤ 1, α > 0, k.
Step 1: Construct the τ -threshold graph Gτ with τ = 2dcrit = 1

5
αw
ǫ .

Step 2: For j = 1 to k do:
Pick the vertex vj of highest degree in Gτ .
Remove vj and its neighborhood from Gτ and call this cluster C(vj).

Step 3: Output the k clusters C(v1), . . . , C(vk−1), S − ∪
k−1
i=1 C(vi).

Proof: Recall the notation from Section 3.1: the graph Gτ satisfies properties (i),(ii) of Lemma 4.
We show that the greedy method of Step 2 above correctly captures most of the cliques X1,X2, . . . ,Xk

in Gτ—in particular, we show there is a bijection σ : [k] → [k] such that
∑

i |Xσ(i) \ C(vi)| = O(b).

Since the b bad points (i.e., those in B = S \ ∪k
i=1Xi) may potentially all be misclassified, this gives

an additional error of b.
Let us think of each clique Xi as initially “unmarked”, and then “marking” it the first time

we choose a cluster C(vj) that intersects it. We now consider two cases. If the jth cluster C(vj)
intersects some unmarked clique Xi, we will assign σ(j) = i. (Note that it is not possible for C(vj) to
intersect two cliques Xi and Xj 6=i, since by Lemma 4(ii) these cliques have no common neighbors.)
If C(vj) misses ri points from Xi, then since the vertex vj defining this cluster had maximum degree
and Xi is a clique, we must have picked at least ri elements from B in C(vj). Therefore the total
sum of these ri can be at most b = |B|, and hence

∑

j |Xσ(j) \ C(vj)| ≤ b, where the sum is over j’s
that correspond to the first case.

The other case is if C(j) intersects a previously marked clique Xi. In this case we assign σ(j) to
any arbitrary clique Xi′ that is not marked by the end of the process. Note that the total number
of points in such C(j)’s must be at most the number of points remaining in the marked cliques (i.e.,
∑

j rj), and possibly the bad points (at most b of them). Since the cliques Xi′ were unmarked at
the end, their sizes must be bounded by the size of the C(j)’s, and hence by |B|+

∑

i ri ≤ 2b. This
shows that the sum over such j’s,

∑

j |Xσ(j) \C(vj)| ≤ 2b. Therefore, overall, the total error over all
C(vj) with respect to the k-median optimal is the two sums above, plus potentially the bad points,
which gives us at most 4b points. Adding in the extra ǫn to account for the distance between the
k-median optimum and the target clustering yields the claimed 4b+ ǫn = O(ǫ/α)n result for the case
that we are given the value of w.

Not Knowing the Value of w. If we do not know the value of w (and hence of τ), unfortunately
the method used in the proof of Theorem 7 may not work, because we might split some large cluster
causing substantial error, and not be able to recognize our mistake (because we only miss small
clusters which do not result in very many points being left over). However, we can instead run an
off-the-shelf k-median approximation algorithm to produce an estimate for w that is off by only a
constant factor, and use this estimate instead. In particular, if we have a β-approximation w̃ (i.e.,
say w ≤ w̃ ≤ βw̃, an analog of Lemma 4 holds for the threshold graph Gτ ′ with the altered threshold
τ ′ = 1

5
αw̃
ǫβ , with the number of bad points now bounded by b′ = (6 + 10β/α)ǫ. The rest of the proof

follows unchanged with all bs replaced by b′s, to give us a final bound of O(βǫ/α) on the number of
misclassified points.

4 The k-Means Problem
The algorithm in Section 3.3 for the k-median problem can be easily altered to work for the k-
means problem as well. Indeed, if we can prove the existence of a structure like that promised by
Lemma 3 and Lemma 4 (albeit with different parameters), the same algorithm and proof would
give a good clustering for any objective function. Given some optimal solution for k-means define
w(x) = mini d(x, ci) to be the distance of x to its center, which is the square root of x’s contribution
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to the k-means objective function; hence OPT =
∑

x w(x)2. Again, let w2(x) = minj 6=i d(x, cj) be
the distance to the second-closest center, and let ǫ∗ = dist(CT , C∗).

Lemma 9 If the k-means instance (M, S) satisfies the (1 + α, ǫ)-property and each cluster in the
target has size greater than 2ǫn, then

(a) at most (ǫ− ǫ∗)n points x ∈ S on which CT and C∗ agree have w2(x) < (αOPT
ǫn )1/2, and

(b) at most 25ǫn/α points x ∈ S have w(x) > 1
5 (αOPT

ǫn )1/2.
For the case of general cluster sizes we replace (a) and (b) with:

(a’) at most 6ǫn points x ∈ S have w2(x) < (αOPT
2ǫn )1/2.

(b’) at most 50ǫn/α points x ∈ S have w(x) > 1
5 (αOPT

2ǫn )1/2.

Proof: The proof is the same as for Lemma 3. For part (a), beginning with C∗ and moving more
than (ǫ − ǫ∗)n points x on which CT and C∗ agree would create a clustering C′ at distance more
than ǫ from the target (because we begin at distance ǫ∗ and the optimal bijection doesn’t change,
since each cluster in CT has size greater than 2ǫn). Hence, at most (ǫ − ǫ∗)n points on which CT
and C∗ agree can have w2(x)2 − w(x)2 < αOPT

ǫn , and even fewer points can have w2(x)2 < αOPT
ǫn or

w2(x) < (αOPT
ǫn )1/2. To prove part (b), recall that

∑

x w(x)2 = OPT, and hence Markov’s inequality

implies that the number of x with w(x)2 > αOPT
25ǫn is at most 25ǫn/α. Part (b’) follows similarity.

Finally, for part (a’) we again use Lemma 19 as in the proof of part (a’) of Lemma 3 to show that
if the condition is violated we can find a subset of more than 2ǫn points we can move from C∗ while
maintaining cost at most (1 + α)OPT.

Note that the threshold for w2(x) in part (a) above is again 5 times the threshold for w(x) in part (b),
and similarly for (a’) and (b’). We can thus define the critical distance dcrit as the value in (b) or
(b’) respectively, and define the b = (1 + 25/α)ǫn points that satisfy either (a) or (b) above (in
the large-cluster case) or the b = (6 + 50/α)ǫn points satisfying (a’) or (b’) (in the general case) as
bad. The rest of the proof for achieving an O(ǫ/α)-close clustering for k-medians now goes through
unchanged in the k-means case as well. Note that k-means also has a constant-factor approximation,
so the results for the case of unknown w go through similarly, with different constants. Unfortunately,
the argument for exact ǫ-closeness breaks down because property (a) in Lemma 9 is weaker than
property (a) in Lemma 3. We therefore have the following theorem.

Theorem 10 If the instance satisfies the (1 + α, ǫ)-property for the k-means objective, we can effi-
ciently produce a clustering which is O(ǫ/α)-close to the target.

5 The Min-sum Clustering Problem

Recall that the min-sum k-clustering problem asks to find a k-clustering C = {C1, C2, . . . , Ck} to
minimize the objective function

Φ(C) =

j
∑

i=1

∑

x,y∈Ci

d(x, y).

In this section, we show how assuming a (2 + α, ǫ)-property for the min-sum clustering problem,
and assuming that all the clusters in the target are “large”, allows us to find a clustering that is
O(ǫ)-close to the target clustering. The general idea is reduce to a problem known as “balanced
k-median” (which is related to min-sum clustering to within a multiplicative factor of 2); and extend
the techniques from the previous sections to handle the balanced-k-median problem.
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5.1 Properties of Min-Sum Clustering

The balanced k-median clustering objective assigns to each cluster Ci a “median” ci ∈ X and seeks
to minimize Ψ(C) =

∑k
i=1 |Ci|

∑

x∈Ci
d(x, ci). We begin with a useful lemma, which shows that the

two objective functions Φ (for min-sum clustering) and Ψ (for balanced-k-median) are related to
within a factor of 2.

Lemma 11 ([BCR01]) Let Ψ be the balanced k-median objective and let Φ be the min-sum objec-
tive. For any k-clustering C of S we have:

Ψ(C)/2 ≤ Φ(C) ≤ Ψ(C).

Lemma 12 If the instance (M, S) satisfies the (2(1+α), ǫ)-property for the min-sum objective with
respect to the target clustering, then (M, S) satisfies the (1+α, ǫ)-property for the balanced k-median
objective with respect to the target clustering.

Proof: Let OPTΦ be an optimal clustering for the min-sum objective Φ, and let OPTΨ be an
optimal clustering for the balanced-k-median objective Ψ. Lemma 11 implies that Ψ(OPTΦ) ≤
2Φ(OPTΦ), which further implies that Ψ(OPTΨ) ≤ 2Φ(OPTΦ). So, any clustering C such that
Ψ(C) ≤ (1 + α)Ψ(OPTΨ) satisfies Ψ(C) ≤ 2(1 + α)Φ(OPTΦ) which further implies that Φ(C) ≤
2(1 + α)Φ(OPTΦ). Since (M, S) satisfies the (2(1 + α), ǫ)-property for the Φ objective with respect
to the target clustering, we get that C is ǫ-close to the target, as desired.

Henceforth, we will work with the balanced k-median objective function. Let the balanced k-
median optimal clustering be C∗ = {C∗

1 , . . . , C∗
k} with objective function value OPT = Ψ(C∗). For

each cluster C∗
i , let c∗i be the median point in the cluster. For x ∈ C∗

i , define w(x) = |C∗
i |d(x, c∗i )

and let w = avgxw(x) = OPT
n . Define w2(x) = minj 6=i d(x, c∗j )|C

∗
j |. Let dC∗

i
=

∑

x∈Ci
d(x, c∗i ), and

hence OPT =
∑

i |C
∗
i |dC∗

i
.

Lemma 13 If the balanced k-median instance (M, S) satisfies the (1+α, ǫ)-property with respect to
the target clustering, then as long as the minimum cluster size is at least max(6, 6/α) · ǫn we have:

(a) at most 2ǫ-fraction of points x ∈ S have w2(x) < αw
4ǫ , and

(b) at most 60ǫ/α-fraction of x ∈ S have w(x) > αw
60ǫ .

Proof: To prove Property (a), assume to the contrary. Then one could move more than a 2ǫ
fraction of points from their clusters in the optimal clustering C∗ to the clusters that define their w2

value. This may increase the sizes of the clusters; let the new clustering be C′ = (C ′
1, . . . , C

′
k), where

|C ′
i \C∗

i | = δin, so that
∑

i δi = 2ǫ. If a point x moves to cluster C ′
i from some other cluster, then it

now contributes w2(x) ·
|C′

i|
|Ci|

. Summing over all the points, we get that the cost Ψ(C′) is at most

Ψ(C′) ≤
∑k

i=1

(

(|C∗
i |+ δin)dCi

+ δin ·
αw
4ǫ ·

|C∗
i |+δin
|C∗

i |

)

(5.1)

However, δin ≤
∑

i δin ≤ 2ǫn ≤ min(1,α)
3 |C∗

i | (since each cluster size is at least max(6, 6/α) · ǫn).
Hence, we have

Ψ(C′) ≤
∑k

i=1

(

1 + α
3

)

|C∗
i |dC∗

i
+ 4

3

∑k
i=1

δi α OPT
4ǫ ≤ (1 + α)OPT. (5.2)

This would give a clustering with cost at most (1 + α)OPT that is not 2ǫ-close to the optimal
clustering C∗, which is impossible by Fact 2(b). Property (b) above follows from the definition of the
average weight w, and Markov’s inequality.

We call point x good if it both w(x) ≤ αw
60ǫ and w2(x) ≥ αw

4ǫ , else x is called bad ; let Xi be the
good points in the optimal cluster Ci, and let B = S \ ∪Xi be the bad points.
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Lemma 14 (Structure of the Balanced-k-median optimum) If the balanced-k-median instance
(M, S) satisfies the (1 + α, ǫ)-property with respect to the target clustering, then as long as the min-
imum cluster size is at least max(6, 6/α) · ǫn we have:

(i) For all x, y in the same Xi, we have d(x, y) < α
30

1
ǫ

w
|C∗

i |

(ii) For x ∈ Xi and y ∈ Xj 6=i, d(x, y) > α
5

1
ǫ

w
min(|C∗

i
|,|C∗

j
|)

(iii) The number of bad points |B| = |S \ ∪Xi| is at most b := (2 + 60/α)ǫn.

Proof: For part (i), since x, y ∈ Xi ⊆ C∗
i are both good, they are at distance less than α

60
1
ǫ

w
|C∗

i |

to their cluster center (Lemma 13(a)), and hence at distance at most α
30

1
ǫ

w
|C∗

i |
to each other. For

part (ii) assume without loss of generality that |C∗
i | ≥ |C

∗
j |; using both parts of Lemma 13 and the

fact that both x ∈ C∗
i , y ∈ C∗

j are good, we have d(y, cj) ≤
α
60

1
ǫ

w
|C∗

j |
, and d(x, cj) ≥ w2(x) > α

4
1
ǫ

w
|C∗

j |
,

so

d(x, y) ≥ αw ·
(

1
4 −

1
60

)

1
ǫ

w
|C∗

j |
> α

5
1
ǫ

w
min(|C∗

i |,|C
∗
j |)

(5.3)

where we use that |C∗
j | = min(|C∗

i |, |C
∗
j |). Part (iii) follows from Lemma 13 and the trivial union

bound.

While Lemma 14 is similar in spirit to Lemma 4, there is a crucial difference: the distance
between the good points in Xi and Xj is no longer lower bounded by some absolute value τ , but
rather the bound depends on the sizes of Xi and Xj . However, a redeeming feature is that the
separation between them is large compared to the diameters of both Xi and Xj ; we will use this
feature crucially in our algorithm.

5.2 The Algorithm for Min-Sum/Balanced-k-Median Clustering

For the algorithm below, define critical thresholds τ0, τ1, τ2, . . . as: τ0 = 0 and τi is the ith smallest
distinct distance d(x, y) for x, y ∈ S. Thus, Gτ0 , Gτ1 , . . . are the only distinct threshold graphs
possible.

Theorem 15 If the balanced k-median instance satisfies the (1 + α, ǫ)-property and we are given
the value of w, then so long as the smallest correct cluster has size greater than (6 + 120/α)ǫn,
Algorithm 2 produces a clustering that is O(ǫ/α)-close to the target. If we are not given w, then we
can use Algorithm 2 as a subroutine to produce a clustering that is O(ǫ/α)-close to the target.

Algorithm 2 Balanced k-median Algorithm

Input: (M, S), w, ǫ ≤ 1, α > 0, k, b := (2 + 60/α)ǫn.
Let the initial threshold τ = τ0.

Step 1: If k = 0 or S = ∅, stop.
Step 2: Construct the τ -threshold graph Gτ on the current set S of points.
Step 3: Create a new graph H by connecting two points by in S an edge if they share

at least b neighbors in common in Gτ .
Step 4: Let C be largest connected component in H. If |C| ≥ 1

20
αw
ǫτ ,

then output C as a cluster, set k ← k − 1, S ← S \ C, and go to Step 1,
else increase τ to the next critical threshold and go to Step 1.

Proof: Since each cluster in the target clustering has more than a (6 + 120/α)ǫ fraction of the
points by the assumption, the optimal balanced-k-median clustering C∗ must differ from the target
clustering by fewer than ǫn points, and hence each cluster in C∗ must have at least (5 + 120/α)ǫn
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points. Moreover, by Lemma 13, the bad points B constitute at most (2 + 60/α)ǫ fraction of points,
and hence each |Xi| = |C

∗
i \B| > (3 + 60/α)ǫn ≥ (2 + 60/α)ǫn + 2 = b + 2.

Assume we know w. Consider what happens in the execution of the algorithm: as we increase
τ , the sizes of the H-components increase (since we are adding more edges in Gτ ). This happens
until the largest H-component is “large enough” (i.e., the condition in Step 4 gets satisfied) and we
output a component whose size is large enough; and then we go back to raising τ .

We claim that every time we output a cluster in Step 4, this cluster completely contains some Xi

and includes no points in any Xj 6=i. More specifically, we show that as we increase τ , the condition
in Step 4 will be satisfied after all the good points in the some cluster have been fully connected,
but before any edges appear between good points in different clusters. It suffices to show that the
first cluster output by the algorithm contains some Xi entirely; the claim for the subsequent output
clusters is the same. Assume that |C∗

1 | ≥ |C
∗
2 | ≥ . . . ≥ |C∗

k |, and let ni = |C∗
i |. Define di = α

30
w
ǫ

1
|C∗

i
|

and recall that minx,y∈Xi
d(x, y) ≤ di.

We first claim that as long as τ ≤ 3 d1, no two points belonging to different Xi’s can lie in the
same H-component. Since the distance between points in any Xi and Xj 6=i is strictly greater than
α
5

1
ǫ

w
min(|C∗

i |,|C
∗
j |)
≥ 2τ for any τ ≤ 3 d1, every x ∈ Xi and y ∈ Xj share no common neighbors, and

hence, by an argument identical to that in Lemma 5, the nodes x, y belong to different components
of H.

Next, we claim that for values of τ < min{di, 3d1}, the H-component containing Xi cannot be
output by Step 4. Indeed, since τ < 3d1, no Xi and Xj belong to the same H-component by the
above claim, and hence any H-component containing points from Xi has size at most |C∗

i |+|B| <
3ni

2 ;

however, the minimum size bound 1
20

αw
ǫτ > 3ni

2 for values of τ < di, and hence the condition of Step 4
is not satisfied. Note that when τ ≥ di, all the points of Xi lie in the same H-component.

Finally, we show that the condition in Step 4 becomes true for some H-component fully containing
some Xi for some value τ = [d1, 3d1]. (By the argument in the previous paragraph, τ ≥ di, and
hence the output component will fully contain Xi.) For the sake of contradiction, suppose not. But
note at time τ = 3d1, at least the H-component containing X1 has size at least |C∗

1 | − |B| > n1/2
and will satisfy the condition (which at time τ = 3d1 requires a cluster of size 1

20
αw
ǫ

30ǫni

3αw = n1/2),
giving the contradiction.

To recap, we showed that by time 3d1 none of the clusters have merged together, and the Step 4
condition was satisfied for at least the component containing X1 (and hence for the largest compo-
nent) at some time prior to that. Moreover, this largest component must fully contain some set Xi

and no points in Xj 6=i. Finally, we can iterate the same argument on the set S \Xi to complete the
proof for the case when we know w.

The case when we do not know w. In this case, we do not want to use a β-approximation
algorithm for balanced k-median to obtain a clustering that is O(βǫ/α)-close to the target, because
the balanced-k-median (and minsum clustering) problems only have a logarithmic approximation for
arbitrary k, and hence our error would blow up by a logarithmic factor. Instead, we use the idea of
trying increasing values of w: we then stop the first time when we output k clusters that cover at
least n− b = (1−O(ǫ/α))n of the points in S. Clearly, if we reached the correct value of w we would
succeed in covering all the good n − b points using our k clusters; we now argue that we will never
mistakenly output a high-error clustering.

The argument is as follows. Let us say we mark Xi the first time we output a cluster containing
at least one point from it. There are three possible sources of mistakes: (a) we may output a cluster
prematurely, it may contain some but not all points from Xi, (b) we may output a cluster which
contains points from one or more previously marked sets Xj (but no unmarked Xi), or (c) we may
output a cluster with points from an unmarked Xi and one or more previously marked Xj . In
case (a), if we end up with all but O(ǫ/α)-fraction of the points, we did not miss too many points
from the Xi’s, so our error is O(ǫ/α). In case (b), we use up too many clusters and would end
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with missing some Xi completely, which would result in more than b unclustered points, and we
would try a larger guess for w. The dangerous case is case (c), but we claim case (c) in fact cannot
happen. Indeed, the value of τ at which we would form connected components containing points
from both Xi and Xj is a constant times larger than the value τ< at which all of Xi would be in a
single H-component. Moreover, since our guess for w is too small, this H-component would certainly
satisfy the condition of Step 4 and be output as a cluster instead.

6 Conclusions and Open Questions
A concrete open question is designing an efficient algorithm for the min-sum property which works in
the presence of small target clusters. Another natural direction for investigation is designing faster
algorithms for all the properties analyzed in this paper. The case of large clusters can be handled
by using standard sampling ideas [MOP01, CS04, BD07], however these techniques do not seem to
immediately apply in the case where the target clusters are small.

More broadly, it would be interesting to further explore and analyze in our framework other
natural classes of commonly used clustering objective functions.
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A Appendix
Theorem 16 For any 1 ≤ c1 < c2, any ǫ, α > 0, there exists a family of metric spaces G and
target clusterings that satisfy the (c1, ǫ) property for the k-median objective (likewise, k-means and
min-sum) and yet do not satisfy even the (c2, 1/2− α) property for that objective.

Proof: We focus first on the k-median objective. Consider a set of n points such that the target
clustering consists of one cluster C1 with n(1 − 2α) points all at the same location (d(u, v) = 0 for
all u, v,∈ C1) and k − 1 clusters C2, . . . , Ck each consisting of 2αn

k−1 points, all at distance 1. The
distance between points in any two distinct clusters Ci, Cj for i, j ≥ 2 is D, where D > 1 will be
defined below. Points in C1 are at distance greater than c2n from any of the other clusters.

In this construction, the target clustering is the optimal k-median solution, and has a total k-
median cost of 2αn− (k− 1). We now define D so that there (just barely) exists a c2 approximation
that has error 1/2−α with respect to the target clustering. In particular, consider the solution that
merges C2 and C3 into a single cluster (C4, . . . , Ck will each be their own cluster) and uses 2 clusters
to evenly split C1. This clearly has error at least 1/2 − α, and furthermore this solution has a cost
of 2αn

k−1D + (2αn − 2αn
k−1 − (k − 2)), and we define D to set this equal to c2(2αn − (k − 1)) = c2OPT.

We now claim that any c1 approximation, however, must be ǫ-close to the target for k > 1+α/ǫ.
In particular, say that a point in any given solution is a “high-cost” point if its contribution to
the k-median objective is D, and is a “low-cost” point if its contribution is 0 or 1. (There cannot
be any points of cost > D in a c1-approximation in this construction.) By definition of D, since
c1 < c2, any c1-approximation can have at most αn

k−1 − 1 high-cost points. This means that in any
c1-approximation, each of the clusters C2, . . . , Ck must have at least one low-cost point and therefore
must have at least one of the medians. Since we must have at least one median in cluster C1, this
implies that each cluster Ci has exactly one median, and so the overall error of the clustering is at
most the fraction of high-cost points, which is at most ǫ by definition of k.

The same construction, with D defined appropriately, applies to k-means and min-sum objectives
as well.

Theorem 17 For k-median, k-means, and min-sum objectives, the problem of finding a c-approximation
can be reduced to the problem of finding a c-approximation under the (c, ǫ) assumption. Therefore,
the problem of finding a c-approximation under the (c, ǫ) assumption is as hard as the problem of
finding a c-approximation in general.

Proof: Given a metric G with n nodes and a value k (a generic instance of the clustering problem)
we construct a new instance satisfying the (c, ǫ) assumption. In particular we create a new graph G′

by adding an extra n/ǫ nodes that are all very far away from each other and from the nodes in G
(call this distance D). We now let k′ = k + n/ǫ and define the target clustering to be the optimal
(k-median, k-means, or min-sum) solution on G, together with each of the points in G′ \ G in its
own singleton cluster.

We first claim that G′ satisfies the (c, ǫ) property. This is because any solution that does not put
each of the new nodes into its own singleton cluster will incur a high cost. So a c-approx can only
differ from the target on G (which has only an eps fraction of the nodes). Secondly, a c-approx in G′

yields a c-approx in G. This is because the c-approx must have each node of G′ in its own cluster.
which is what we wanted.

The following result shows that obtaining an O(ǫ)-close clustering is unlikely under the (1, ǫ)-
property, even though it is possible if we assume the (1.01, ǫ)-property, as we have shown.

Theorem 18 For any contant ǫ < 1/e, it is NP-hard to find a clustering of error O(ǫ) for the
k-median and k-means problem under the (1, ǫ)-property.
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Proof: We start from the hard instances of k-median instances arising from from max-k-coverage
(using edges of cost 1 and 3): the reduction implies that it is hard to distinguish cases when there
are k medians that cover all the points at distance 1 (the “yes” case), from the instance where any
set of k medians covers at least (1/e− δ)-fraction of the points at distance 3 (the “no” case) for any
constant δ > 0. Let us add a small amount of noise to make a unique optimal solution and call this
the target; the uniqueness of the optimal solution ensures that we satisfy the (1, ǫ) assumption.

Now, in the “yes” case, any clustering with error cǫ will have cost at most n[(1 − cǫ) + 3cǫ].
This would be less than the cost of the optimal solution in the “no” case (which is still at least
n[(1− 1/e + δ) + 3(1/e− δ)]) as long as ǫ ≤ 1/e− δ, and would allow us to distingush the “yes” and
“no” instances. This completes the proof for the k-median case; this proof can be altered slightly to
work for the k-means problem.

Lemma 19 Let C = {C1, . . . , Ck} be a k-clustering in which each cluster is nonempty, and let
R = {(x1, j1), (x2, j2), . . . , (xt, jt)} be a set of t reassignments of points to clusters (assume that
xi 6∈ Cji

for all i). Then there must exist a set R′ ⊆ R of size at least t/3 such that for any R′′ ⊆ R′,
the clustering C′′ produced by reassigning points in R′′ has distance at least |R′′| from C.

Before proving the lemma, note that we cannot necessarily just choose R′ = R because, for instance,
it could be that R reassigns all points in C1 to C2 and all points in C2 to C1: in this case, performing
all reassignments in R produces the exact same clustering as we started with (just with different
indices). Instead, we need to ensure that each reassignment in R′ has an associated certificate
ensuring that if implemented, it will increase the resulting distance from C. Note also that if C
consists of 3 singleton clusters: C1 = {x}, C2 = {y}, C3 = {z}, and if R = {(x, 2), (y, 3), (z, 1)}, then
any subset of reassignments in R will produce a clustering that differs in at most one element from
C; thus, the factor of 3 is tight.

Proof: The proof is based on the following lower-bounding technique. Given two clusterings C and
C′, suppose we can produce a list L of disjoint subsets S1, S2, . . ., such that for each i, all points in
Si are in the same cluster in one of C or C′ and they are all in different clusters in the other. Then
C and C′ must have pointwise distance at least

∑

i(|Si| − 1). In particular, any bijection σ on the
indices can have agreement between C and C′ on at most one point from each Si.

We begin as follows. While there exists a reassignment (x, j) ∈ R such that x is in a cluster C(x)
with at least 3 points: choose an arbitrary point y ∈ C(x) and add {x, y} to L, add (x, j) to R′,
and remove (x, j) from R as well as any reassignment involving y if one exists. In addition, remove
x and y from the point set S. This process guarantees that all pairs added to L are disjoint, and we
remove at most twice as many reassignments from R as we add to R′. (So, if R becomes empty, we
will have achieved our desired result with |R′| = t/2). Moreover, because we only perform this step
if |C(x)| ≥ 3, this process does not produce any empty clusters.

We now have that for all reassignments (x, j) ∈ R, x is in a singleton or doubleton cluster.
Let Rsingle be the set of reassignments (x, j) ∈ R such that x is in a singleton cluster. Viewing
these reassignments as directed edges, Rsingle forms a graph on the clusters Ci where each node has
outdegree ≤ 1. Therefore, each component of this graph must be an arborescence with possibly one
additional edge from the root. We now proceed as follows. While Rsingle contains a source (a node
of outdegree 1 and indegree 0), choose an edge (x, j) such that (a) x is a source and (b) for all other
edges (y, j), y is either a source or part of a cycle. We then consider two cases:

1. Node j is not a sink in Rsingle: that is, there exists an edge (z, jz) ∈ Rsingle for z ∈ Cj . In this
case, we add to R′ the edge (x, j) and all other edges (y, j) such that y is a source, and we
remove from R (and from Rsingle) the edges (z, jz), (x, j), and all edges (y, j) (including the at
most one edge (y, j) such that y is part of a cycle). We then add to L the set {x} ∪ {z} ∪ {y :
(y, j) was just added to R′} and remove these points from S. Note that the number of edges
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removed from R is at most the number of edges added to R′ plus 2, giving a factor of 3 in the
worst case. Note also that we maintain the invariant that no edges in Rsingle point to empty
clusters, since we deleted all edges into Cj , and the points x and y added to L were sources in
Rsingle.

2. Otherwise, node j is a sink in Rsingle. In this case, we add to R′ the edge (x, j) along with all
other edges (y, j) ∈ Rsingle (removing those edges from R and Rsingle). We choose an arbitrary
point z ∈ Cj and add to L the set {x}∪{z}∪{y : (y, j) was just added to R′}, removing those
points from S. In addition, we remove from R all (at most two) edges exiting from Cj (we are
forced to remove any edge exiting from z since z was added to L, and there might be up to
one more edge if Cj is a doubleton). Again, the number of edges removed from R is at most
the number of edges added to R′ plus 2, giving a factor of 3 in the worst case.

At this point, if Rsingle is nonempty, its induced graph must be a collection of disjoint cycles. For
each such cycle, we choose every other edge (half the edges in an even-length cycle, at least 1/3 of
the edges in an odd cycle), and for each edge (x, j) selected, we add (x, j) to R′, remove (x, j) and
(z, jz) for z ∈ Cj from R and Rsingle, and add the pair {x, z} to L.

Finally, Rsingle is empty and we finish off any remaining doubleton clusters using the same
procedure as in the first part of the argument. Namely, while there exists a reassignment (x, j) ∈ R,
choose an arbitrary point y ∈ C(x) and add {x, y} to L, add (x, j) to R′, and remove (x, j) from R
as well as any reassignment involving y if one exists.

By construction, the set R′ has size at least |R|/3, and the set L ensures that each reassignment
in R′ increases the resulting distance from C as desired.
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