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Abstract

In an instance of the prize-collecting Steiner forest

problem (PCSF) we are given an undirected graph
G = (V,E), non-negative edge-costs c(e) for all e ∈
E, terminal pairs R = {(si, ti)}1≤i≤k, and penalties
π1, . . . , πk. A feasible solution (F,Q) consists of a
forest F and a subset Q of terminal pairs such that
for all (si, ti) ∈ R either si, ti are connected by F or
(si, ti) ∈ Q. The objective is to compute a feasible
solution of minimum cost c(F ) + π(Q).

A game-theoretic version of the above problem has
k players, one for each terminal-pair in R. Player i’s
ultimate goal is to connect si and ti, and the player
derives a privately held utility ui ≥ 0 from being
connected. A service provider can connect the terminals
si and ti of player i in two ways: (1) by buying the edges
of an si, ti-path in G, or (2) by buying an alternate
connection between si and ti (maybe from some other
provider) at a cost of πi.

In this paper, we present a simple 3-budget-
balanced and group-strategyproof mechanism for the
above problem. We also show that our mechanism com-
putes client sets whose social cost is at most O(log2 k)
times the minimum social cost of any player set. This
matches a lower-bound that was recently given by
Roughgarden and Sundararajan (STOC ’06).
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1 Introduction

In an instance of the prize-collecting Steiner forest

problem (PCSF) we are given an undirected graph G =
(V,E) with edge costs c : E → R

+, a set of k terminal
pairs R = {(si, ti)}1≤i≤k, and penalties π : R → R

+.
A feasible solution (F,Q) consists of a forest F and a
subset Q of terminal pairs such that for all (si, ti) ∈ R
either si, ti are connected by F or (si, ti) ∈ Q. The
objective is to compute a feasible solution of minimum
cost c(F ) + π(Q).

A game-theoretic version of the above problem has
k players, one for each terminal-pair in R. We use U to
denote the set of all players. Player i’s ultimate goal is
to connect si and ti, and the player derives a privately
held utility ui ≥ 0 from being connected. A service
provider can connect the terminals si and ti of player i
in two ways: (1) by buying the edges of an si, ti-path
in G, or (2) by buying an alternate connection between
si and ti (maybe from some other provider) at a cost of
πi.

Formally, we are interested in finding a cost-sharing

mechanism that first solicits bids {bi}i∈U from all
players. The mechanism then determines a set S ⊆ U
of players to service and computes a prize-collecting
Steiner forest for the terminal set of these players.
Finally, the mechanism needs to determine a payment
xi(S) ≤ bi for each of the players in S.

There are several desirable properties of a cost-
sharing mechanism: a mechanism is called strategyproof,
if bidding truthfully (i.e., announcing bi = ui) is a
dominant strategy for all players. If this is true even
if players are permitted to collude, then we call a
mechanism group-strategyproof. A mechanism is budget

balanced if the total cost C(S) of servicing the players
in S is at most the sum of the costs charged to the
players in S, and it is competitive if the sum of all costs
charged to the players in S does not exceed the cost of
an optimal PCSF solution for S. A mechanism is called
efficient if it selects a set S of players that maximizes
u(S) − C(S).

Classical results in economics [12, 24] state that
budget balance and efficiency cannot be simultaneously
achieved by any mechanism. Moreover, Feigenbaum et



al. [10] recently showed that there is no strategyproof
mechanism that always recovers a constant fraction of
the maximum efficiency and a constant fraction of the
incurred cost even for the simple fixed-tree multicast
problem.

In light of these hardness results, most of the
previous work on mechanism design concentrated on
proper subsets of the above design goals. One notable
class of such mechanisms are based on a framework
due to Moulin and Shenker [22]. The authors showed
that, given a budget balanced and cross-monotonic cost

sharing method for the underlying problem, the well
known Moulin mechanism [21] satisfies budget balance
and group-strategyproofness. Moulin and Shenker’s
framework has recently been applied to game-theoretic
variants of classical optimization problems such as fixed-
tree multicast [2, 9, 10], submodular cost-sharing [22],
Steiner trees [16, 17], facility location, single-source
rent-or-buy network design [23, 20, 13] and Steiner
forests [18]. Lower bounds on the budget balance factor
that is achievable by a cross-monotonic cost sharing
mechanism are given in [15, 19].

Very recently, Roughgarden and Sundararajan [25]
introduced an alternative measure of efficiency that
circumvents the intractability results in [10, 12, 24] at
least partially. Let U be a universe of players and
let C be a cost function on U that assigns to each
subset S ⊆ U a non-negative service cost C(S). The
authors define the social cost Π(S) of a set S ⊆ U as
Π(S) = u(U \ S) + C(S). A mechanism is said to be
α-approximate if the set it outputs has social cost at
most α times the minimum over all sets S ⊆ U . The
intuition for this definition loosely comes from the fact
that u(U)−Π(S) = u(S)−C(S), which is the traditional
definition of efficiency; since u(U) is a constant, a set S
has minimum social cost iff it has maximum efficiency.

Roughgarden and Sundararajan then developed
a framework to quantify the extent to which a
Moulin mechanism minimizes the social cost, and ap-
ply this framework to show that the Shapley mech-
anism is O(log k)-approximate for submodular func-
tions, and that the Steiner tree cost-shares of Jain
and Vazirani [16] give a mechanism that is O(log2 k)-
approximate.

1.1 Prize-Collecting Steiner Problems. Com-
puting minimum-cost prize-collecting Steiner trees or
forests is APX-complete [3, 5], and hence neither of
the two problems admits a PTAS unless P = NP.
The first constant-factor approximation for the prize-
collecting Steiner tree problem was a LP-rounding based
3-approximation by Bienstock et al. [6], and this was im-
proved to 2−1/k by Goemans and Williamson [11] using

the primal-dual schema. One can easily modify the al-
gorithm of Bienstock et al. to give a 3-approximation
for the PCSF problem as well; in [14], Hajiaghayi
and Jain refine Bienstock’s LP rounding idea and ob-
tain an LP-based 2.54 approximation for the problem.
The authors also present a primal-dual combinatorial
3-approximation for the problem. This algorithm sub-
stantially deviates from the classical framework of Goe-
mans and Williamson, requiring crucial use of Farkas’
Lemma, wherein the dual variables are both increased
and decreased along the execution of the algorithm.

1.2 Our Results and Techniques. The first con-
tribution of this paper is the following:

Theorem 1.1. There is an efficiently computable

cross-monotonic cost sharing method ξGKLRS for the

prize-collecting Steiner forest problem that is 3-budget

balanced.

Our algorithm GKLRS is a natural extension of the
primal-dual algorithm of Goemans and Williamson [11]
for prize-collecting Steiner trees and the cross-
monotonic cost sharing method KLS for Steiner forests
presented in [18]. Despite its simplicity, our algorithm
achieves the same approximation guarantee as [14].

Our second result bounds the social cost of the
mechanism associated with the cost-sharing method.

Theorem 1.2. The Moulin mechanism M(ξGKLRS)
driven by the cross-monotonic cost sharing method

ξGKLRS is Θ(log2 k)-approximate.

This result is achieved in two steps. The first step
is to show that if the Moulin mechanism M(ξKLS) is
α-approximate then the mechanism M(ξGKLRS) given
by our cross-monotonic cost-sharing method ξGKLRS is
3(1+α)-approximate for the prize-collecting Steiner for-
est game. As the second step, we show that the KLS

mechanism is O(log3 k)-approximate for the Steiner For-
est game. This is achieved by adding a novel method-
ological contribution to the framework proposed in [25]:
we show that such a result can also be proved by embed-
ding the graph distances into random HSTs [4, 8] rather
than using the construction proposed by Roughgar-
den and Sundararajan. Independently, Chawla, Rough-
garden and Sundararajan [7] have recently shown (us-
ing a more involved analysis) that KLS is O(log2 k)-
approximate. We are optimistic that the general idea
of reductions between cost-sharing mechanisms that we
use in our proof will extend to the prize-collecting ver-
sions of other optimization problems.

1.3 Organization of the Paper. In Section 2 we
introduce some notations used in the paper. In Section



3 we present the linear programming formulation for
PCSF. Section 4 presents the cross-monotonic cost-
sharing scheme GKLRS for PCSF. In Section 5 we prove
the bound on the social cost for the GKLRS mechanism,
whereas in Section 6 we prove the bound on the social
cost for the Steiner forest mechanism KLS.

2 Preliminaries

Let U be a universe of players and let C be a cost
function on U that assigns to each subset S ⊆ U a
non-negative cost C(S). We assume that C is non-
decreasing, i.e., for all S ⊆ T , C(S) ≤ C(T ), and
C(∅) = 0.

2.1 Moulin Mechanisms. A cost sharing method ξ
is an algorithm that, given any subset S ⊆ U of players,
computes a solution to service S and for each i ∈ S
determines a non-negative cost share ξi(S). We say that
ξ is β-budget balance if for every subset S ⊆ U ,

1

β
· C(S) ≤

∑

i∈S

ξi(S) ≤ C(S).

A cost sharing method ξ is cross-monotonic if for any
two sets S and T such that S ⊆ T and any player i ∈ S
we have ξi(S) ≥ ξi(T ).

Moulin and Shenker [22] showed that, given a bud-
get balanced and cross-monotonic cost sharing method
ξ for the underlying problem, the following cost sharing
mechanism M(ξ) satisfies budget-balance and group-
strategyproofness: Initially, let S = U . If for each player
i ∈ S the cost share ξi(S) is at most her bid bi, we stop.
Otherwise, remove from S all players whose cost shares
are larger than their bids, and repeat. Eventually, let
ξi(S) be the costs that are charged to players in the final
set S.

2.2 Approximating Social Cost. Roughgarden
and Sundararajan [25] recently introduced an alterna-
tive notion of efficiency for cost sharing mechanisms:
Every player i ∈ U has a private utility ui. For a set
S ⊆ U , define u(S) =

∑

i∈S ui. Define the social cost

Π(S) of a set S ⊆ U as

Π(S) = u(U \ S) + C(S).

Definition 2.1. Suppose SM is the final set of players

computed by the Moulin mechanism M(ξ) on U . Then

M(ξ) is said to be α-approximate if

Π(SM ) ≤ α · Π(S) ∀S ⊆ U.

Roughgarden and Sundararajan [25] proved that
the Moulin mechanism M(ξ) is (α + β)-approximate

and β-budget balanced if ξ is α-summable and β-budget
balanced. The summability of a cost sharing method is
defined as follows: Assume we are given an arbitrary
permutation σ on the players in U and a subset S ⊆ U
of players. We assume that the players in S are ordered
according to σ, i.e., S = {i1, . . . , i|S|} where ij ≺σ ik if
and only if 1 ≤ j < k ≤ |S|. We define Sj ⊆ S as the
(ordered) set of the first j players of S according to the
order σ.

Definition 2.2. A cost sharing method ξ is α-
summable if for every ordering σ and every subset

S ⊆ U

(2.1)

|S|
∑

j=1

ξij
(Sj) ≤ α · C(S).

where Sj is the set of the first j players, and ij is the

jth player according to the ordering σ.

3 LP Formulation

Subsequently, we slightly abuse notation by using R to
refer to the set of terminal pairs and the set of terminals.
For a terminal u ∈ R, let ū be the mate of u, i.e.,
(u, ū) ∈ R. For a terminal pair (u, ū) ∈ R, define the
death time as d(u, ū) = 1

2dG(u, ū), where dG(u, ū) is the
cost of a shortest u, ū-path (with respect to c) in G.

Consider a cut S ⊆ V . We say S separates a
terminal pair (u, ū) ∈ R iff |{u, ū} ∩ S| = 1. We also
write (u, ū)⊙S iff (u, ū) is separated by S. A cut S that
separates at least one terminal pair is called a Steiner

cut. Let S denote the set of all Steiner cuts. For a
cut S ⊆ V , we use δ(S) to refer to the set of all edges
(u, v) ∈ E that cross S, i.e., δ(S) = {(u, v) ∈ E :
|{u, v} ∩ S| = 1}.

A natural integer programming formulation for
PCSF has a 0/1-variable xe for all edges e ∈ E and
a 0/1-variable xuū for all terminal pairs (u, ū) ∈ R.
Variable xe = 1 iff e ∈ F and xuū = 1 iff (u, ū) ∈ Q.
The following is an integer programming formulation for
PCSF:

min
∑

e∈E

c(e) · xe +
∑

(u,ū)∈R

π(u, ū) · xuū(ILP)

s.t.
∑

e∈δ(S)

xe + xuū ≥ 1 ∀S ∈ S, ∀(u, ū) ⊙ S(3.2)

xe, xuū ∈ {0, 1} ∀e ∈ E, ∀(u, ū) ∈ R.

We use OPTR to refer to the cost of an optimal solution
to this LP. Constraint (3.2) ensures that each Steiner
cut S ∈ S is either crossed by an edge of F , or all
separated terminal pairs (u, ū) ⊙ S are part of Q.

The dual of the linear programming relaxation (LP)
of (ILP) is as follows. We have a non-negative dual



variable ξS,uū for all Steiner cuts S ∈ S and all pairs
(u, ū) ∈ R such that (u, ū) ⊙ S:

max
∑

S∈S

∑

(u,ū)⊙S

ξS,uū(D)

s.t.
∑

S∈S:e∈δ(S)

∑

(u,ū)⊙S

ξS,uū ≤ c(e) ∀e ∈ E(3.3)

∑

S∈S:S⊙(u,ū)

ξS,uū ≤ π(u, ū) ∀(u, ū) ∈ R(3.4)

ξS,uū ≥ 0 ∀S ∈ S, (u, ū) ⊙ S.

It is convenient to associate a dual solution
{ξS,uū}S∈S,(u,ū)⊙S with a set of dual values {yS}S∈S

for all Steiner cuts S ∈ S. To this aim, we define the
dual yS of a Steiner cut S ∈ S simply as the total cost
share of all its separated terminal pairs:

yS =
∑

(u,ū)⊙S

ξS,uū.

We can think of ξS,uū, (u, ū) ⊙ S, as a cost share that
terminal pair (u, ū) receives from dual yS of S. Define
the total cost share of (u, ū) as

ξuū =
∑

S∈S:S⊙(u,ū)

ξS,uū.

Clearly, with these definitions

∑

S∈S

yS =
∑

(u,ū)∈R

ξuū.

Constraint (3.3) of LP (D) requires that for every
edge e ∈ E, the total dual of all Steiner cuts S ∈ S that
cross e is at most the cost c(e) of this edge. Constraint
(3.4) states that the total cost share ξuū of terminal pair
(u, ū) is at most its penalty π(u, ū).

4 A Cross-Monotonic Algorithm for the PCSF

Problem

Our algorithm GKLRS for the prize-collecting Steiner
forest problem is a primal-dual algorithm, that is, it
maintains a primal solution {xe, xuū}e∈E,(u,ū)∈R to-
gether with a set of dual values {yS}S∈U (the defini-
tion of the set U is given below). The primal solu-
tion is a 0/1-solution that is infeasible for (LP) initially.
Throughout the execution of GKLRS, the degree of in-
feasibility of this solution is decreased successively until
eventually, we obtain a feasible solution for (LP).

A subtle point of our algorithm is that it does not
produce a set of dual values {yS}S∈U that corresponds
to a feasible solution for (D). There are two reasons for
this. First, we also raise dual values yS of cuts S that do

not correspond to Steiner cuts. We use U to refer to the
set of all cuts that are raised throughout the execution
of GKLRS. As a consequence, a terminal pair (u, ū) may
receive cost share ξS,uū from a non-Steiner cut S ∈ U\S.
Second, a terminal pair (u, ū) may also receive cost
share ξS,uū from a cut S that does not separate (u, ū).
However, GKLRS maintains the invariant that a terminal
pair (u, ū) only receives cost share from cuts S ∈ U that
either separate or entirely contain (u, ū), i.e., (u, ū)⊙ S
or {u, ū} ⊆ S.

We can view the execution of GKLRS as a process
over time. Initially, at time τ = 0, xτ

e = 0 for all e ∈ E,
xτ

uū = 0 for all (u, ū) ∈ R and yτ
S = 0 for all S ∈ U .

Let F τ be the forest that corresponds to {xτ
e}e∈E , i.e.,

F τ = {e ∈ E : xτ
e = 1}. Similarly, let Qτ be the set of

all terminal pairs (u, ū) ∈ R such that xτ
uū = 1.

We define F̄ τ as the set of all edges that are tight
at time τ , i.e.,

F̄ τ = {e ∈ E :
∑

S∈U

yτ
S = c(e)}.

We use the term moat to refer to a connected component
Mτ in F̄ τ . A moat Mτ defines a cut S which is simply
the set of vertices spanned by Mτ . At time τ , we
increase the duals of all cuts defined by moats Mτ ∈ F̄ τ

that are active at time τ . The notion of activity
will be defined shortly. These duals are increased
simultaneously and by the same amount. Subsequently,
we also say that we grow all active moats in F̄ τ at time
τ . Moreover, it is convenient to regard the growing of
moats as being identical to increasing the duals.

4.1 Activity Notion. We call a terminal pair
(u, ū) ∈ R active at time τ if

(4.5) ξτ
uū < π(u, ū) and τ < d(u, ū).

If the above conditions do not hold, we say that (u, ū)
is inactive at time τ . Let τuū be the first time when
(u, ū) becomes inactive. Observe that by definition
(4.5), a terminal pair (u, ū) remains inactive at all times
τ > τuū. A terminal u ∈ R is active at time τ if its pair
(u, ū) is active at this time. Let Aτ be the set of all
terminals that are active at time τ .

We say that a moat Mτ ∈ F̄ τ is active at time τ if it
contains at least one active terminal, i.e., Mτ ∩Aτ 6= ∅.
The growth of an active moat Mτ is shared evenly
among all active terminals in Mτ . Let Mτ (u) denote
the moat in F̄ τ that contains terminal u ∈ R. More
formally, we define the cost share ξτ ′

u of a terminal u ∈ R
at time τ ′ ≤ τuū as follows:

(4.6) ξτ ′

u =

∫ τ ′

0

1

|Mτ (u) ∩ Aτ |
dτ.



Let ξτ ′

u = ξτuū
u for all τ ′ > τuū. Moreover, we define

ξτ
uū = ξτ

u + ξτ
ū.

Observe that the total contribution to the cost share
of a terminal pair (u, ū) within ǫ time units is at most
2ǫ. Also, note that (u, ū) may receive cost share from a
moat Mτ that contains u and ū.

The following fact follows immediately from defini-
tions (4.5) and (4.6).

Fact 4.1. For all terminal pairs (u, ū) ∈ R, ξuū ≤
min{π(u, ū), 2d(u, ū)}.

Since at any point of time, the growth of all active
moats is shared among active terminals, the following
must hold true.

Fact 4.2. For every time τ ≥ 0,
∑

S∈U

yτ
S =

∑

(u,ū)∈R

ξτ
uū.

We say that two active moats M1 and M2 collide

at time τ if their vertices are contained in the same
connected component of F̄ τ ′

iff τ ′ ≥ τ . In this case,
we add a cheapest collection of edges to F τ s.t. all
active vertices of M1 and M2 are in the same connected
component of F τ ′

for all τ ′ ≥ τ .
Suppose a terminal pair (u, ū) ∈ R becomes inactive

at time τ = τuū because it reaches its penalty, i.e.,
ξτ
uū = π(u, ū). We then add (u, ū) to Qτ . Since (u, ū)

remains inactive after time τuū, the following fact holds
true.

Fact 4.3. Let Q be the final set of terminal pairs

computed by GKLRS. Then
∑

(u,ū)∈Q

π(u, ū) =
∑

(u,ū)∈Q

ξuū

Suppose a terminal pair (u, ū) becomes inactive at
time d(u, ū). The next fact shows that (u, ū) must then
be connected in F .

Fact 4.4. Let terminal pair (u, ū) become inactive just

after time d(u, ū). Then u and ū are connected in F .

Proof. Let Puū be a shortest u, ū-path in G. Path Puū

becomes tight at time τ ≤ d(u, ū) and both u and ū
are active at this time. Thus either u and ū are already
connected in F τ or Puū is added to F τ .

Observe that the last fact also establishes correct-
ness of GKLRS: The final solution (F,Q) computed by
GKLRS is a feasible solution for the given prize-collecting
Steiner forest instance.

Subsequently, we use ξGKLRS(S) to refer to final
cost shares computed by GKLRS when run on terminal
set S ⊆ R. We also identify the player set U with the
terminal-pair set R.

4.2 Cross-Monotonicity. We compare the execu-
tion of GKLRS on terminal set R with the one on ter-
minal set R−st = R \ {(s, t)} for any (s, t) ∈ R. We use
G−st (G = GKLRS, F , F̄ , M , etc.) to refer to G in the
run of GKLRS on R−st. For notational convenience, let
ξ−st(u, ū) refer to the cost share of (u, ū) in the run of
GKLRS on R−st and let ξ(u, ū) refer to the respective
cost share in GKLRS on R.

Lemma 4.1. Consider the execution of GKLRS on R
and R−st, respectively. The following holds for every

time τ ≥ 0:

1. F̄ τ
−st is a refinement of F̄ τ , i.e., F̄ τ

−st ⊆ F̄ τ .

2. For all (u, ū) ∈ R−st, ξτ
−st(u, ū) ≥ ξτ (u, ū).

Proof. We prove the lemma by induction over time τ .
Clearly, the lemma holds at time τ = 0. Suppose the
lemma holds at time τ .

The only moats that may potentially violate the
claim F̄ τ+ǫ

−st ⊆ F̄ τ+ǫ at time τ + ǫ for some ǫ > 0,
are those that are active at time τ in GKLRS−st. Let
M−st ∈ F̄ τ

−st be a moat that is active at time τ . By the
induction hypothesis, there exists a moat M ∈ F̄ τ such
that M−st ⊆ M . We argue that M must be active at
time τ in GKLRS.

Since M−st is active at time τ , there must exist a
terminal u ∈ M−st such that π(u, ū) − ξτ

−st(u, ū) > 0
and τ < d(u, ū). By our induction hypothesis,

π(u, ū) − ξτ (u, ū) ≥ π(u, ū) − ξτ
−st(u, ū) > 0.

Therefore, M must be active at time τ too. This proves
the first part of the lemma.

It remains to be shown that ξτ+ǫ
−st (u, ū) ≥ ξτ+ǫ(u, ū)

for all (u, ū) ∈ R−st. Observe that all terminal pairs
that are inactive at time τ do not receive any further
cost share. Consider a terminal pair (u, ū) ∈ R−st that
is active at time τ in GKLRS−st and let Mτ

−st(u) be
the moat of u at time τ . From the discussion above,
we know that every terminal pair (v, v̄) ∈ R−st that is
active at time τ in GKLRS−st must be active at time τ in
GKLRS, i.e., Aτ

−st ⊆ Aτ . By our induction hypothesis,
moat Mτ

−st(u) is contained in the moat Mτ (u) ∈ F̄ τ of u
in GKLRS. Therefore, |Mτ

−st(u)∩Aτ
−st| ≤ |Mτ (u)∩Aτ |.

Thus, the additional cost share that (u, ū) receives in
the time interval (τ, τ + ǫ] in GKLRS−st is at least as
large as the one it receives in GKLRS.

4.3 Competitiveness. We next show that the total
cost share of all terminal pairs is at most the cost of an
optimal solution to the prize-collecting Steiner forest
instance. The following proof is similar to the one
presented in [18].



Lemma 4.2. Let (F ∗, Q∗) be an optimal solution to

the prize-collecting Steiner forest instance with terminal

pair set R. The cost shares ξ computed by GKLRS for R
satisfy

∑

(u,ū)∈R

ξuū ≤ c(F ∗) + π(Q∗).

Proof. Consider a separated terminal pair (u, ū) ∈ Q∗.
By Fact 4.1, we have

∑

(u,ū)∈Q∗

ξuū ≤ π(Q∗).

It remains to be shown that the total cost share of all
terminal pairs (u, ū) ∈ R \ Q∗ is bounded by c(F ∗).

Consider a connected component T ∈ F ∗ and let
R(T ) be the set of terminal pairs that are connected by
T . We prove that

(4.7)
∑

(u,ū)∈R(T )

ξuū ≤ c(T ).

The lemma follows by summing over all connected
components T ∈ F ∗.

We define Mτ (T ) ⊆ F̄ τ as the set of moats at time
τ that contain at least one active terminal of R(T ), i.e.,

Mτ (T ) = {Mτ (u) : u ∈ R(T ) ∩ Aτ}.

Among all terminal pairs in R(T ), let (w, w̄) be a pair
that is active longest. By our definition of activity in
(4.5), all terminal pairs in R(T ) are inactive after time
d(w, w̄). We show that the total growth of Mτ (T ) for
all τ ∈ [0, d(w, w̄)] is at most c(T ). This implies (4.7).

At any time τ , the moats in Mτ (T ) are disjoint.
Moreover, T connects all terminals in R(T ). Thus, if
there exists a moat Mτ ∈ Mτ (T ) that intersects an
edge of T then each moat in Mτ (T ) must intersect an
edge of T ; we say that the moats in Mτ (T ) load T .
Moreover, each moat Mτ loads a different part of T .
Thus, the total growth of moats in Mτ (T ) for all τ at
which Mτ (T ) loads T is at most c(T ).

Let τ0 ≤ d(w, w̄) be the first time such that Mτ0(T )
does not load T . If Mτ0(T ) = ∅, we are done.
Otherwise, we must have that Mτ0(T ) = {Mτ0} and
T ⊆ Mτ0 . The additional growth of Mτ for all times
τ ∈ [τ0, d(w, w̄)] is at most d(w, w̄)− τ0. Since w and w̄
are connected by T , this additional growth is at most
d(w, w̄) ≤ c(T )/2. This gives an upper bound of 3

2c(T )
on the total cost shares of pairs in R(T ).

The following refined argument proves (4.7). Let
Pww̄ be the unique w, w̄-path in T . Define Mτ

ww̄ ⊆
Mτ (T ) as the set of active moats different from Mτ (w)
and Mτ (w̄) that load Pww̄ at time τ < τ0, i.e.,

Mτ
ww̄ = {Mτ ∈ Mτ (T ) \ {Mτ (w),Mτ (w̄)} :

δ(Mτ ) ∩ Pww̄ 6= ∅}.

Define the degree dg(Mτ ) of a moat Mτ ∈ Mτ
ww̄ as

dg(Mτ ) = |δ(Mτ ) ∩ Pww̄|.

Proposition 4.1. Consider a time τ < τ0 and a moat

Mτ ∈ Mτ
ww̄. Then dg(Mτ ) ≥ 2.

Proof. Both Mτ (w) and Mτ (w̄) are active at time
τ < τ0 and thus {Mτ (w),Mτ (w̄)} ⊆ Mτ (T ) (possibly
Mτ (w) = Mτ (w̄)). By definition of Mτ

ww̄, Mτ ∈
Mτ (T ) and Mτ /∈ {Mτ (w),Mτ (w̄)}. Furthermore, Mτ

is disjoint from all other moats in Mτ (T ). Suppose
|Mτ ∩ Pww̄| = 1. But then, moat Mτ must contain
w or w̄. This contradicts the disjointness of Mτ and
{Mτ (w),Mτ (w̄)}.

By our choice of (w, w̄) ∈ R(T ) as the terminal pair
with largest activity time and by our assumption that
Mτ0(T ) 6= ∅ it follows that both, Mτ (w) and Mτ (w̄)
are active for all 0 ≤ τ ≤ τ0. We define lww̄ as the total
dual growth of the moats containing w and w̄ up to time
τ0. Formally, let

δτ
ww̄ =

{

2 : Mτ (w) 6= Mτ (w̄)
1 : otherwise

and

lww̄ =

∫ τ0

0

δτ
ww̄dτ.

It follows that the cost of path Pww̄ is at least

lww̄ +

∫ τ0

0

∑

Mτ∈Mτ
ww̄

dg(Mτ )dτ.

We let slww̄ be the difference between c(Pww̄) and the
above term and obtain

(4.8) c(Pww̄) = lww̄ +slww̄ +

∫ τ0

0

∑

Mτ∈Mτ
ww̄

dg(Mτ )dτ.

We define the total growth yτ0(T ) produced by
terminal pairs in R(T ) until time τ0 as follows:

yτ0(T ) =

∫ τ0

0

|Mτ (T )|dτ.

At all times τ ≤ τ0, each moat in Mτ (T ) loads at least
one distinct edge of T ; those in Mτ

ww̄ load at least two
edges of T . Thus, we have

c(T ) ≥ yτ0(T ) + slww̄ +

∫ τ0

0

∑

Mτ∈Mτ
ww̄

(dg(Mτ ) − 1)dτ.

(4.9)



The additional growth between time τ0 and d(w, w̄)
is at most d(w, w̄) − τ0. Using (4.8), we obtain

d(w, w̄) − τ0 ≤
lww̄

2
− τ0 +

slww̄

2

+

∫ τ0

0

∑

Mτ∈Mτ
ww̄

dg(Mτ )

2
dτ

≤
slww̄

2
+

∫ τ0

0

∑

Mτ∈Mτ
ww̄

(dg(Mτ ) − 1)dτ,

where we exploit that dg(Mτ ) ≥ 2 for all Mτ ∈ Mτ
ww̄

and the fact that lww̄ ≤ 2τ0. The last inequality
together with (4.9) proves that the total growth is at
most c(T ).

4.4 Cost Recovery

Lemma 4.3. Let (F,Q) be the solution and ξ be the

cost shares computed by GKLRS on terminal pair set R,

respectively. Then

c(F ) + π(Q) ≤ 3
∑

(u,ū)∈R

ξuū.

Proof. Following the proof of Agrawal, Klein and Ravi
[1], the cost of the constructed forest F satisfies

c(F ) ≤ 2
∑

(u,ū)∈R

ξuū.

Moreover, by Fact 4.3

π(Q) =
∑

(u,ū)∈Q

ξuū

and hence c(F ) + π(Q) ≤ 3
∑

(u,ū)∈R ξuū.

5 Efficiency of GKLRS

In a very recent work, Chawla et al. [7] showed that
the cost shares computed by KLS are also O(log2 k)-
approximate. (A simple proof that they are O(log3 k)-
approximate is given in Section 6.) In this paper, we
extend this result to the prize-collecting Steiner forest
(PCSF) game. We show that the approximability of
GKLRS can be reduced to the one of KLS.

Theorem 5.1. If the mechanism M(ξKLS) is α-

approximate then the mechanism M(ξGKLRS) is 3(1 +
α)-approximate.

We will prove this theorem in the rest of this section.
The following fact will be useful, and is easily proved.

Fact 5.1. Given a cross-monotonic cost-sharing

method ξ, the final set of players output by the Moulin

mechanism M(ξ) is independent of the order of

eviction.

The following lemma will allow us to partition the
universe of players into two groups and to argue about
each of them separately; due to space restrictions, we
omit its proof.

Lemma 5.1. Consider a universe U of players, along

with a non-decreasing cost function C and a β-budget

balanced and cross-monotonic cost-sharing method ξ.
Given a partition of U into two parts U1 and U2,

if the Moulin mechanism on sub-universe Ui is αi-

approximate for all i ∈ {1, 2} with respect to the induced

cost-sharing method ξ|Ui
and the cost function C|Ui

,

then the Moulin mechanism is (α1 + α2)β-approximate

for the entire set U with respect to ξ and C.

Armed with the above lemma, let us consider the
universe of players U for the GKLRS instance, and divide
them into two parts thus:

• The “high-utility” set U1 are those players i ∈ U
with utility ui ≥ πi.

• The “low-utility” set U2 are the remaining players
i ∈ U with ui < πi.

We now show that ξGKLRS on the sub-universes
U1 and U2 is 1-approximate and α-approximate, respec-
tively. This together with Lemma 5.1 and the fact that
GKLRS is 3-budget balanced (Lemma 4.3) proves that
GKLRS is 3(1 + α)-approximate.

We first prove the following High-Utility-Lemma:

Lemma 5.2. The mechanism M(ξGKLRS) is 1-
approximate when restricted to the players in the

high-utility set U1.

Proof. By Fact 4.1, ξGKLRS
i (S) ≤ πi for every set

S ⊆ U and every i ∈ S. Since ui ≥ πi ≥ ξGKLRS
i (S)

for any S ⊆ U1 and i ∈ S, the players in U1 will never
be rejected by the mechanism M(ξGKLRS) when run on
U1. Moreover, the set achieving the optimal social cost
is also U1, and hence the Moulin mechanism gives the
social optimum on the high-utility set.

We show that for low-utility players S ⊆ U2 the
two runs of GKLRS(S) and KLS(S) are identical up to a
certain point of time.

Lemma 5.3. Let S ⊆ U2. Define τ0 as the first point

of time τ at which ξτ,GKLRS

i (S) = πi for some player

i ∈ S; let τ0 = ∞ if no such time exists. Then for

all τ ∈ [0, τ0) and every player j ∈ S it holds that j is

active at time τ in GKLRS(S) iff j is active at time τ in

KLS(S); in particular, this implies

ξτ,GKLRS

j (S) = ξτ,KLS

j (S) ∀τ ∈ [0, τ0), ∀j ∈ S.



Proof. A necessary condition for j being active at time
τ in GKLRS(S) is that τ ≤ d(sj , tj). Thus, j is active at
time τ in KLS(S) if j is active at this time in GKLRS(S).
Next, suppose j is active at time τ in KLS(S) and thus

τ ≤ d(sj , tj). Since τ < τ0, we have ξτ,GKLRS

i (S) < πi

for all i ∈ S; in particular this also holds for player j.
Thus, j is active at time τ in GKLRS(S).

Suppose we compare the runs of the Moulin mech-
anism corresponding to the two different cost-sharing
mechanisms ξGKLRS and ξKLS with the same set of low-
utility players S ⊆ U2. An immediate consequence of
Lemma 5.3 is that as long as some player is eliminated
in either of the runs of the Moulin mechanisms, there
must be a player that the mechanisms could eliminate
in both the runs.

Corollary 5.1. Fix some S ⊆ U2. Suppose there is a

player j ∈ S with ξGKLRS
j (S) > uj or ξKLS

j (S) > uj.

Then there is a player i such that ξGKLRS
i (S) > ui and

ξKLS
i (S) > ui.

Proof. Let τ0 be as defined in Lemma 5.3. The claim
clearly holds if τ0 = ∞ as all cost shares in GKLRS(S)
and KLS(S) are the same. Otherwise, there exists some

player i ∈ S and some τ0 = τ such that ξτ,GKLRS

i (S) =

πi. Lemma 5.3 then implies that ξτ,GKLRS

i (S) =

ξτ,KLS

i (S) = πi > ui.

The next lemma essentially shows that the prizes πi

play no role for the low-utility players U2.

Lemma 5.4. When starting with a set of low-utility

players U2, the final output SM,GKLRS ⊆ U2 of the

Moulin mechanism M(ξGKLRS) is identical to the out-

put SM,KLS ⊆ U2 of the Moulin mechanism M(ξKLS).

Proof. Corollary 5.1 states that we can always iden-
tify a player i ∈ S that we may evict in both runs
of M(ξGKLRS) and M(ξKLS) as long as some player
is eliminated in either of the runs of the Moulin mech-
anism. We can then eliminate player i in both the runs
and use induction to show that both runs end with the
same players if we make the right choices. However,
Fact 5.1 implies that any choices would lead to the same
outputs, as we claim.

We can now prove the following Low-Utility
Lemma:

Lemma 5.5. Restricting our attention to the low-utility

set U2, the mechanism M(ξGKLRS) is α-approximate if

the mechanism M(ξKLS) is α-approximate.

Proof. On the low-utility players, the solution with the
optimal social cost for PCSF would never service a
player i by paying her penalty πi, since it would be
better to reject the player and pay ui < πi. This
implies that the optimal social cost Π∗

PCSF for PCSF
and and the optimal social cost Π∗

SF for SF are the same
on U2. Also note that for every player set S the cost
OPTPCSF (S) of an optimal PCSF solution for S is at
most the cost OPTSF (S) of an optimal SF solution. Let
ΠPCSF and ΠSF denote the social cost with respect to
PCSF and SF, respectively. Given these facts together
with the fact that M(ξGKLRS) and M(ξKLS) output the
same set SM on the low-utility instances, we conclude
that

ΠPCSF (SM ) = u(U2 \ SM ) + OPTPCSF (SM )

≤ u(U2 \ SM ) + OPTSF (SM )

= ΠSF (SM ) ≤ α · Π∗
SF = α · Π∗

PCSF .

6 Efficiency of KLS

As mentioned earlier, Chawla et al. [7] recently proved
that the cost shares of KLS are O(log2 k)-approximate.
Here we give a weaker result (but with a simple proof).

Theorem 6.1. The cost shares ξKLS computed by KLS

are O(log3 k)-summable.

Due to space restrictions, we sketch the ideas here
only; details are given in the full version of the paper.
Subsequently, we drop the superscript KLS. Recall that
for every ordering σ and every subset S ⊆ U of terminal
pairs, we need to prove that

(6.10)

|S|
∑

i=1

ξi(Si) = O(log3 k · OPT(S)),

where OPT(S) is the minimum Steiner forest cost for
terminal set S. As before, Si is the set of the first i
terminal pairs in S and ξi(Si) refers to the cost share of
(si, ti) computed by KLS when run on terminal pair set
Si.

We partition terminal pairs according to their death
times into classes. A terminal pair (si, ti) ∈ S is of
class r ≥ 0 iff d(si, ti) ∈ (2r−1, 2r]. Suppose there
are at most O(log k) non-empty classes; we show in
the full version of the paper how to circumvent this
assumption. Exploiting the cross-monotonicity of ξ, one
can easily verify that ξ is O(log3 k)-summable for S if
ξ is O(log2 k)-summable for each class. The following
Rounding Lemma states that we may even assume that
the death times of all terminal pairs are equal.

Lemma 6.1. Suppose ξKLS is α-summable if all death

times are equal to 2r for some r ≥ 0. Then ξKLS



is O(α)-summable if all death times are in the range

(2r−1, 2r].

Subsequently, we assume that every terminal pair
in S has death time D = 2r. Consider an optimal
Steiner forest F ∗ for S. The forest F ∗ naturally induces
a partition of S. Let S(T ) be the set of terminal pairs
that are connected by tree T ∈ F ∗. For a terminal pair
(si, ti) ∈ S that is part of tree T ∈ F ∗, define Si(T ) as
the set of terminal pairs that are also contained in T
and precede (si, ti), i.e., Si(T ) = Si ∩ S(T ). We show
for each tree T ∈ F ∗ separately that

(6.11)
∑

(si,ti)∈S(T )

ξi(Si(T )) = O(log2 k · c(T )).

Summing over all trees and exploiting cross-
monotonicity of ξ, then shows O(log2 k)-summability
of ξ on S.

Fix a tree T ∈ F ∗. We construct a rooted tree T ′ =
(V ′, E′) and a non-negative length function ℓ : E′ → R

+

on the edges of T ′ satisfying the following properties:

1. The leaves of T ′ are the terminals in S(T ).

2. For every two terminals that are contained in the
subtree T ′(e) for some e ∈ E′, their distance in
G is at most ℓ(e), i.e., dG(u, v) ≤ ℓ(e) for all
u, v ∈ S(T ) ∩ T ′(e).

3. For every path Pur = (e1, . . . , em) from terminal
u ∈ S(T ) to the root r of T ′, we have

(a) ℓ(e1) = 1,

(b) ℓ(ej) = 2ℓ(ej−1) for all 1 < j ≤ m, and

(c) ℓ(em) ≥ D.

4. The total length of T ′ is at most O(log |S(T )|) times
the total cost of T , i.e., ℓ(T ′) = O(log(|S(T )|) ·
c(T )).

For example, hierarchically well separated trees (see
[4, 8]) satisfy Properties 1–3 and Property 4 on expec-
tation.

We use tree T ′ to define a Shapley cost share for
each terminal pair in S(T ). Let T ′[Si(T )] be the induced
subtree of T ′ on terminals pair set Si(T ). For a terminal
pair (si, ti) ∈ S(T ), we define ξ′i(Si(T )) to be the sum of
the respective Shapley cost shares of terminals si and ti
in T ′[Si(T )]. The following lemma follows immediately
from the definition of Shapley cost shares.

Lemma 6.2. Let ξ′ be the Shapley cost shares of termi-

nal pairs in S(T ). Then

∑

(si,ti)∈S(T )

ξ′i(Si(T )) ≤ Hk · ℓ(T ′).

We next show that the cost share ξi(Si(T )) of ter-
minal pair (si, ti) is upper bounded by its corresponding
Shapley cost share ξ′i(Si(T )) in T ′[Si(T )]. This together
with the above lemma and Property 4 shows O(log2 k)-
summability of ξ for identical death times.

Lemma 6.3. The cost share ξi(Si(T )) of terminal pair

(si, ti) ∈ S(T ) is at most its Shapley cost share

ξ′i(Si(T )).

Proof. All terminals in S(T ) are active until time D.
The cost share ξu(Si(T )) of a terminal u ∈ {si, ti} in
KLS is then defined as

ξu(Si(T )) =

∫ D

τ=0

dτ

aτ
i (u)

where aτ
i (u) is the number of active terminals in u’s

moat at time τ in the run of KLS(Si(T )). We bound
the cost share that u = si receives in KLS(Si(T )) by its
Shapley cost share. An analogous argument holds for
u = ti.

Consider the induced subtree T ′
i = T ′[Si(T )] on

Si(T ). Let Pur = (e1, . . . , em) be the unique u, r-path
in T ′

i . Consider an edge ej , 1 < j ≤ m and let T ′
i (ej) be

the subtree of T ′
i below edge ej . We use mi(ej) to refer

to the number of terminals in T ′
i (ej); define mi(e1) = 1.

The Shapley cost share that u received for edge ej is
ℓ(ej)/mi(ej). Thus,

ξ′u(Si(T )) =

m
∑

j=1

ℓ(ej)

mi(ej)
.

Let x be any terminal in T ′
i (ej). By Property 2, we have

dG(u, x) ≤ ℓ(ej). Since both x and u are active until
time D, their respective moats in KLS(Si(T )) must have
met by time at most dG(u, x)/2 ≤ ℓ(ej)/2 = ℓ(ej−1).
Thus, aτ

i (u) ≥ mi(ej) for all τ ≥ ℓ(ej−1) for all
1 < j ≤ m.

Note that the cost share that u receives up to time
1 is at most 1. As ℓ(e1) = 1 and ℓ(em) ≥ D, we can
write

ξu(Si(T )) =

∫ D

τ=0

dτ

aτ
i (u)

≤ 1 +

m
∑

j=2

∫ ℓ(ej)

τ=ℓ(ej−1)

dτ

aτ
i (u)

≤ 1 +

m
∑

j=2

∫ ℓ(ej)

τ=ℓ(ej−1)

dτ

mi(ej)

= 1 +
m

∑

j=2

ℓ(ej−1)

mi(ej)
≤ ξ′u(Si(T )).
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