
Approximating Unique Games∗

Anupam Gupta Kunal Talwar

Abstract

The Unique Games problem is the following: we are
given a graph G = (V, E), with each edge e = (u, v)
having a weight we and a permutation πuv on [k]. The
objective is to find a labeling of each vertex u with
a label fu ∈ [k] to minimize the weight of unsatisfied
edges—where an edge (u, v) is satisfied if fv = πuv(fu).

The Unique Games Conjecture of Khot [8] essen-
tially says that for each ε > 0, there is a k such that
it is NP-hard to distinguish instances of Unique games
with (1−ε) satisfiable edges from those with only ε satis-
fiable edges. Several hardness results have recently been
proved based on this assumption, including optimal ones
for Max-Cut, Vertex-Cover and other problems, making
it an important challenge to prove or refute the conjec-
ture.

In this paper, we give an O(log n)-approximation
algorithm for the problem of minimizing the number of
unsatisfied edges in any Unique game. Previous results
of Khot [8] and Trevisan [12] imply that if the optimal
solution has OPT = εm unsatisfied edges, semidefinite
relaxations of the problem could give labelings with
min{k2ε1/5, (ε log n)1/2}m unsatisfied edges. In this
paper we show how to round a LP relaxation to get
an O(log n)-approximation to the problem; i.e., to
find a labeling with only O(εm log n) = O(OPT log n)
unsatisfied edges.

1 Introduction

There has been much recent interest in the Unique
Games conjecture, first proposed by Khot [8]. To
explain this conjecture, and our results, let us define the
Unique Games problem. An instance of this problem
is a graph G = (V, E), with each edge e having a
weight we. We are also given a set of k labels, which
we identify with the set [k] = {1, 2, . . . , k}. Each
edge e = (u, v) in the graph comes equipped with a
permutation πuv : [k] → [k]. The output of the problem
is a labeling f : V → [k] that assigns a label to each
vertex of G; an edge (u, v) is said to be satisfied under

∗This work was partly done while the first author was visiting

Microsoft Research, Redmond; the first author’s research is partly

supported by an NSF CAREER award CCF-0448095, and by an

Alfred P. Sloan Fellowship.

f if f(v) = πuv(f(u)), else it is said to violated or
unsatisfied.

Note that it is possible to define two natural op-
timization problems in this situation: we can seek to
minimize the weight of the unsatisfied edges, as we do
in this paper, or we can try to maximize the weight
of satisfied edges. (These two objectives are equivalent
from the viewpoint of exact optimization, but their ap-
proximability thresholds are quite different.) But before
we talk about these issues, let us state the UGC.

Conjecture 1.1. (Unique Games Conjecture [8])
For every ε > 0, there is a k = k(ε) such that it is
NP-hard to distinguish whether a Unique Game (with k
labels) has a labeling that satisfies (1 − ε) of the edges,
or whether all labelings satisfy only ε fraction of the
edges.

Based on this conjecture, several hardness results
have been proved: Khot and Regev showed that as-
suming the UGC, it is NP-hard to get a (2 − ε)-
approximation algorithm for Vertex Cover [10], and
Khot et al. [9] showed the hardness of getting an
(α + ε)-approximation algorithm for Max-Cut, where
α = 0.87856 . . . is the approximation guarantee of
the SDP-based Max-Cut algorithm of Goemans and
Williamson [6]. Furthermore, Chawla et al. [3], and
independently, Khot and Vishnoi [11] showed that Mul-
tiCut, Sparsest Cut and other cut problems are hard to
approximate within any constant, assuming the Unique
Games Conjecture.

Given the usefulness of the UGC to proving tight
hardness results, it is natural to attempt to prove (or
disprove) the conjecture. Indeed, this has spurred on
some very interesting work. Feige and Reichman [5]
showed that the Unique Games problem was NP-hard:
they show that for every ε > 0, there is a c > 0 such
that it is hard to distinguish whether c-fraction of the
edges are satisfiable, or only ε c-fraction are satisfiable.
(Note that this result does not prove the UGC, since the
value of c is much less than 1− ε.) The result, however,
does show that the problem of maximizing the number

of satisfied edges in a unique game is Ω(2log1−δ n)-hard
for every δ.

Our Results. In this paper, we consider the min-
imization version of the Unique Games problem, which

we call the Min-UniqGame problem. Given a unique
game, we define the cost of a labeling f to be the weight
of edges unsatisfied by f :

cost(f) =
∑

(u,v)∈E:f(v)6=πuv(f(u))

wuv (1.1)

Let OPT denote the cost of the optimal labeling, and
the goal is to get a labeling with cost not much more
than OPT. Our main theorem is the following:

Theorem 1.1. There is an O(log n)-approximation al-
gorithm for the Min-UniqGame problem.

Our algorithm is based on rounding a linear-
programming relaxation for the problem. We also show
that the relaxation has an integrality gap of Ω(log n),
and hence our rounding is existentially tight.

The question of minimizing the number of violated
edges in a unique games has been considered before: pa-
pers of Khot [8] and Trevisan [12] both give algorithms
for unique games. (Both the algorithms are given for
the unweighted case where we = 1.) In his original
paper [8], Khot gave an SDP-rounding algorithm with
the following guarantee: if the optimal solution has ε m
of the edges unsatisfied, then Khot’s algorithm gives a
labeling that has cost O(ε1/5 k2 m).

In a recent paper [12], Trevisan gave a SDP-
rounding algorithm with a slightly different guarantee,
this time in terms of n. If the optimal labeling violates
ε m edges, then his algorithm violates O((ε log n)1/3)
edges. Note that when ε = Θ(1/ logn), Trevisan’s
algorithm also gives an O(log n) approximation, but
the approximation guarantee gets worse as ε becomes
smaller. (It is not difficult to improve the bound to
O((ε log n)1/2)—see Section 4 for a short discussion—
but we do not see how to obtain an approximation al-
gorithm using his techniques.)

Our Techniques. In this paper, we solve an LP
relaxation for the Min-UniqGame problem: while a
simplistic LP has an arbitrary large integrality gap, we
add some “cycle constraints” that ensure that if a vertex
v gets a color c that, when propagated around some
cycle back to v, results in a color c′ 6= c, then some edge
on the cycle must be violated. This LP gives us lengths
d(e) for the edges in G.

We first approximate the graph distances by dis-
tances in a tree T , such that the average distortion
between the distances in G, and those in T is at
most O(log n), and then give a natural “propagation”
rounding procedure that ensures that the probability of
any edge (u, v) being violated is at most O(d(u, v) +
dT (u, v)); on average, this is at most O(log n)d(u, v),
and hence we get the claimed O(log n) approximation
for Min-UniqGame.

The reader will note that while the previous algo-
rithms were based on rounding a SDP relaxation, our
algorithm merely uses an LP relaxation. However, it is
not clear whether our linear program is indeed weaker,
since it uses these additional “cycle constraints”. Given
that the integrality gap of our LP is Ω(log n), it is an
interesting problem to investigate whether adding these
cycle constraints to the SDP would lead to better ap-
proximation algorithms.

2 Linear Programming Relaxation

Let us write an integer programming formulation for the
problem as follows. For each node u, we introduce a set
of k 0-1 variables {x(u, 1), x(u, 2), . . . , x(u, k)}, where
the variable x(u, l) is set to one if and only if the node
u is labeled with the label l ∈ [k]. Since each node
has a unique label, we can enforce the constraint that∑

l x(u, l) = 1.
Note that if an edge (u, v) is violated, the quantity∑

l |x(u, l) − x(v, πuv(l))| is equal to two, and is zero
otherwise. We introduce variables d(u, v, l), along with
the constraint d(u, v, l) ≥ |x(u, l) − x(v, πuv(l))|. Thus
the objective function of the integer program is to
minimize the total weight of violated edges

∑

(u,v)∈E

wuv

2

∑

l

d(u, v, l) (2.2)

Let us add valid “cycle” constraints to strengthen
this formulation; these will be useful when we take the
linear programming relaxation of the integer program.
Let C be a simple cycle u = v0, v1, . . . , vt = u
in G containing u. Let l0 be a label for v0: for
each value of i ∈ [1, t], inductively define li as li =
πvi−1vi

(li−1). In other words, the li’s are defined so
that l0, l1, . . . , li are labels that satisfy each of the
edges (v0, v1), . . . , (vi−1, vi). Note that this process also
defines another label lt for u = vt which may or may
not agree with the initial label l0: indeed, we say that
the label l0 is bad for u with respect to C if lt 6= l0.
Let Bu,C be the set of labels that are bad for u with
respect to cycle C. Note that for any labeling f , if the
label f(u) = l0 lies in Bu,C , there must be at least one
position i such that the label f(vi) = li and the next
label f(vi+1) 6= li+1; i.e., there must be at least one edge
(vi, vi+1) that is violated. Hence for every such cycle C
and every label l0 ∈ Bu,C , we can write a constraint∑t

i=1 d(vi−i, vi, li−1) ≥ x(u, l0).
This gives us the linear program in Figure 2.1; this

is the LP that we will consider in the rest of the paper.
While this linear program has an exponential number of
constraints, it can be solved in polynomial time using
the ellipsoid method given a polynomial-time separation
oracle [7]. We now show such a separation oracle.

minimize Z∗ =
∑

(u,v)∈E

wuv

2

∑

l

d(u, v, l) (LP)

s.t.
∑

l
x(u, l) = 1 ∀u ∈ V (2.3)

d(u, v, l) ≥ |x(u, l) − x(v, πuv(l))| ∀u, v ∈ V, l ∈ [k] (2.4)
∑t

i=1
d(vi−1, vi, li−1) ≥ x(u, l0) ∀C, ∀u ∈ C, ∀l0 ∈ Bu,C (2.5)

0 ≤ x(u, l) ≤ 1 ∀u ∈ V, ∀l ∈ [k] (2.6)

Figure 2.1: The LP relaxation

Theorem 2.1. Given a proposed solution (x,d) to the
linear program (LP), there is a polynomial time proce-
dure to output a violated constraint, if any.

Proof. The constraints (2.3), (2.4) and (2.6) can be
directly verified, since they are only polynomially many.
It remains to check if one of the cycle constraints (2.5)
is violated. Towards this goal, we create an auxiliary
graph G′ as follows. The nodes of G′ are node-label
pairs (u, l) for each u ∈ V, l ∈ [k]. We add an edge from
(u, l) to (v, l′) if (u, v) ∈ E and l′ = πuv(l) and assign
it an edge-length of d((u, l), (v, l′)) = d(u, v, l). Let P
be a simple path in G′ starting at a node (u, l). We
say that the path P is a conflict path if it is a path
from (u, l) to (u, l′) for l 6= l′. We say that such a path

P is elementary if it does not contain (v, l̂) and (v, l̂′)

as internal nodes, for any node v 6= u and labels l̂ 6= l̂′.
Finally, we say that P is short if the sum of edge lengths
on P is strictly smaller than x(u, l).

We claim that there is a short elementary conflict
path in G′ if and only if there is violated cycle constraint
in the LP. Indeed, any elementary conflict path P from
(u, l) to (u, l′) in G′ naturally corresponds to a cycle
C containing u such that l ∈ Bu,C ; moreover, this
path being short corresponds precisely to the cycle
constraint (2.5) for l ∈ Bu,C being violated. Conversely,
if there is a violated constraint of the form (2.5), then
consider the path P in G′ that corresponds to starting
from (u, l0), following the vertices of the cycle until
we see (u, lt). This path would be a conflict path;
furthermore, the constraint being violated implies that
it would be short as well. Finally, the conflict path
corresponding to a simple cycle is always elementary.

Thus it suffices to check for each (u, l), whether G′

has a short elementary conflict path starting at (u, l). It
is easy to find a short conflict path in G′ using a shortest
path algorithm: however, this short (u, l)-(u, l′) path
may not be elementary, and it seems difficult to find
such an elementary cycle. However, the lemma below
shows that if we find a short conflict path, we can find

some short elementary conflict path, and hence find a
cycle constraint that is violated.

Lemma 2.1. If G′ has a short conflict path, then it
contains a short elementary conflict path.

Proof of Lemma 2.1. Let p be a short path from
(u, lu) to (u, l′u). If p is elementary, we are done. If not,
it contains an elementary conflict subpath p′ from (v, lv)
to (v, l′v) for some v, some lv 6= l′v. We now argue that
p′ must be short as well, i.e. d(p′) ≤ x(v, lv), where d(p)
denotes the length of a path in G′ under the distance
function d.

Since p was short, d(p) ≤ x(u, lu). Let p′′ be the
subpath of p from (u, lu) to (v, lv). Clearly d(p′) ≤
d(p) − d(p′′). From constraints (2.4) and the triangle
inequality, it follows that d(p′′) ≥ |x(u, lu) − x(v, lv)|.
Thus x(v, lv) ≥ x(u, lu) − d(p′′) and so it follows that
d(p′) ≤ x(v, lv). This completes the proof of the lemma.

This gives us the claimed separation oracle.

3 Rounding the Linear Program

In this section, we will show how to round a given
solution to the LP, and to construct a labeling f :
V → [k] such that E[cost(f)] ≤ O(log n) × Z∗. The
main idea of the rounding will be to interpret the
fractional cost of an edge as the “length” of an edge.
Let x(u, l) be a solution to the above linear program.
We now use it to get a length function d : E → R

on the edges: for an edge (u, v) ∈ E, let us define
d(u, v) =

∑
l d(u, v, l). Using this notion of distance,

we can rewrite the objective function value of the LP
solution as Z∗ = 1

2

∑
(u,v)∈E wuvd(u, v).

Remark 3.1. Note that the distance function d may
not be a metric; i.e., the triangle inequality may be
violated. E.g., consider an instance where G is a
triangle K3, and the label set is {0, 1}. When each edge
of the triangle has a not-equal constraint (i.e., πe = (12)

for each edge e) and all edges have weight 1, the optimal
integer solution Lu = Lw = 0, Lv = 1 assigns length
zero to the satisfied edges (u, v), (v, w) and length one
to the unsatisfied edge (u, w), thus violating the triangle
inequality.

Let d̂ be the metric completion of d; i.e., the
shortest-path distances between vertices in V according
to the edge-lengths d. We can now use results of
Fakcharoenphol et al. [4] to find a tree T = (V, ET)

which approximates d̂ in the following sense:

dT (u, v) ≥ d̂(u, v) ∀u, v ∈ V (3.7)

dT (u, v) = d(u, v) ∀ (u, v) ∈ ET (3.8)
∑

(u,v)∈E wuv dT (u, v) ≤
O(log n)

∑
(u,v)∈E wuv d(u, v) (3.9)

We will now show how to randomly round the LP
solution guided by this tree such that the expected
weight of the violated edges (i.e., the expected cost)
is no more than of

∑
(u,v)∈E wuv3(dT (u, v) + d(u, v)).

Now using (3.9), this expected cost is at most O(log n)×∑
(u,v)∈E wuv d(u, v) = O(log n)×Z∗, and hence we will

get an O(log n)-approximation.

3.1 Propagation Rounding: The Subtree Case
The algorithm uses propagation rounding: we set the
label for some nodes, and then “propagate” the results
of this labeling out to the rest of the nodes. For
simplicity of exposition, and to illustrate the ideas and
intuition, let us first give an algorithm for the case when
the tree T = (V, ET) is a subgraph of G = (V, E); i.e.,
the edge set ET ⊆ E.

The Algorithm. The propagation rounding
scheme works as follows: we first pick an arbitrary
vertex u ∈ V , and assign it a random label Lu according
to the probability distribution defined by x(u, l); i.e.,
Pr[Lu = l] = x(u, l). If v is a neighbor of u in T , we
assign it a label Lv correlated to our choice for Lu so
that the following properties hold:

1. The marginal probability Pr[Lv = l] = x(v, l).

2. The probability of (u, v) being violated is
Pr[Lv 6= πuv(Lu)] ≤ d(u, v).

Such a correlated rounding can be done as follows:
let y(u, l, v, l′) be a minimum cost transportation from
the distribution x(u, ·) to x(v, ·), where the cost culvl′ of
transporting one unit of flow from (u, l) to (v, l′) is zero
if l′ = πuv(l), and is one otherwise. Note that the cost

of this transportation is

∑
l,l′ culvl′ y(u, l, v, l′) =

∑
l,l′ 6=πuv(l) y(u, l, v, l′)

≤ ∑
l|x(u, l) − x(v, πuv(l))|

≤ ∑
l d(u, v, l) = d(u, v). (3.10)

If u gets the label Lu, we now pick a label Lv for v ac-
cording to the probability distribution Pr[Lv = l′] =
y(u,Lu,v,l′)

x(u,Lu) . And once v is labeled, all its unlabeled

neighbors can be labeled similarly, allowing us to ex-
tend the rounding to the whole tree. We note that this
rounding process is symmetric, i.e. the resulting distri-
butions on the labelings of the nodes is independent of
the starting node u.

The following lemma will allow us to bound the cost
of the resulting random labeling.

Lemma 3.1. The probability that the graph edge
(u, v) ∈ E is violated is

Pr[Lv 6= πuv(Lu)] ≤ d(u, v) + 2 dT (u, v) (3.11)

Proof. For a tree edge (u, v) ∈ ET , the probability that
the edge is violated is precisely

∑
l′ 6=πuv(l) Pr[Lu = l]Pr[Lv = l′ | Lu = l]

=
∑

l′ 6=πuv(l)

x(u, l)
y(u, l, v, l′)

x(u, l)
≤ d(u, v) (3.12)

using the calculations in (3.10). Now let (u, v) be a non-
tree edge, and let C be the cycle formed on adding (u, v)
in T . The probability of the edge (u, v) being violated
can be written as

Pr[(u, v) violated]

=
∑

l Pr[Lu = l]Pr[(u, v) violated | Lu = l]

=
∑

l x(u, l) Pr[(u, v) violated | Lu = l]

=
∑

l6∈Bu,C
x(u, l) Pr[(u, v) violated | Lu = l]

+
∑

l∈Bu,C
x(u, l) Pr[(u, v) violated | Lu = l]

We bound each of the two sums separately. Let the tree
path from u to v be 〈u = v0, v1, . . . , vt = v〉. When
the label l is not in the bad set Bu,C , the edge (u, v) is
satisfied if each of the edges (vi−1, vi) for i = 1, . . . , t is
satisfied. And hence Pr[(u, v) is violated | Lu 6∈ Bu,C]
is at most the probability that one of the edges (vi−1, vi)
being violated, which by (3.12) and a trivial union
bound is at most

∑t
i=1 d(vi−1, vi) ≤ dT (u, v).

We can bound the second term by
∑

l∈Bu,C
x(u, l),

and want to show that this is at most the length of
the cycle C. Indeed, let the cycle C have vertices
u = v0, v1, . . . , vt = v, vt+1 = u. Given a label ls0 for

u, define lsi so that each of the edges (vj−1, vj) for j ≤ i
is satisfied; i.e. lsj = πvj−1vj

(lsj−1). Note that for each i,
the map from ls0 to lsi is a permutation.

Now for any label ls0 ∈ Bu,C , the correspond-
ing cycle constraint (2.5) implies that x(u, ls0) ≤∑t+1

i=1 d(vi−1, vi, l
s
i−1). Hence summing over all labels

in Bu,C , we get

∑
l∈Bu,C

x(u, l) (3.13)

≤
∑

ls
0
∈Bu,C

∑t+1
i=1 d(vi−1, vi, l

s
i−1)

≤ ∑
ls
0
∈[k]

∑t+1
i=1 d(vi−1, vi, l

s
i−1)

(Summing over all ls0)

=
∑t+1

i=1

∑
ls
0
∈[k] d(vi−1, vi, l

s
i−1)

(Changing order of summation)

=
∑t+1

i=1

∑
lsi−1

∈[k] d(vi−1, vi, l
s
i−1)

(Map ls0 → lsi−1 is permutation)

=

t+1∑

i=1

d(vi−1, vi) = dT (u, v) + d(u, v) (3.14)

Summing the two expressions gives us the desired
bound (3.11).

3.2 Propagation Rounding: The Non-Subtree
Case We now extend the above argument to the case
when the tree T = (V, ET) is not necessarily a subtree
of G, and there may be edges (u, v) ∈ ET which do
not belong to E: we call these fake edges. For each
fake edge (u, v) in T , let Puv be a shortest u-v path
〈u = v0, v1, . . . , vs = v〉 in the graph G equipped with
the distance function d. (For each real edge (u, v) ∈ E,
we define Puv = (u, v) itself.) We define a permutation
πuv for this fake edge in the natural way by composing
the permutations along this path Puv . Hence, this
defines a permutation for each edge of T , and we now
use the propagation rounding algorithm of the previous
section using this set of permutations on T .

We now have to prove a result similar to Lemma 3.1,
but now it is for the case of non-subtrees.

Lemma 3.2. The probability that the graph edge
(u, v) ∈ E is violated using the above algorithm is

Pr[Lv 6= πuv(Lu)] ≤ 3 d(u, v) + 2 dT (u, v) (3.15)

Proof. Consider any tree edge (u, v) ∈ ET ∩ E:
the same analysis as in Lemma 3.1 shows that the
probability that the edge is violated is at most d(u, v).
However, for a non tree edge (u, v) ∈ E \ ET , the
problem is that the cycle C formed by adding (u, v)
to T may not exist in G, since some of the edges in the
cycle C may be fake. In turn, this implies that we do

not have a constraint in the LP corresponding to C, and
we cannot use the same analysis as before. Before we
start on the new analysis, it is useful to recall that the
permutations on the fake edges are defined based on the
LP solution and the tree.

Let EC ⊆ E be the multiset of graph edges obtained
by taking the union of all paths Ppq corresponding to
edges (p, q) in the cycle C. Since the length of the edges
in the path Ppq is precisely dT (p, q) = d(p, q), we get
that

∑
e∈EC

d(e) = dT (u, v) + d(u, v). Consider the set
EC : either it contains a u-v path P ′ which forms a
cycle C ′ with (u, v) in the original graph, or the edge
(u, v) is a cut-edge of EC . For the latter case, we can
imagine throwing in the “reverse” edge (v, u) into EC ,
with πvu = π−1

uv : note that no labels are bad for this
2-cycle, and hence the LP does not change, but the rest
of the argument will now be the same for the two cases.

Let this cycle C ′ be u = v0, v1, . . . , vt = v, vt+1 = u;
remember that there is a cycle constraint (2.5) in the
LP for each label l ∈ Bu,C′ . Intuitively, these labels
in Bu,C′ can be charged to d(C ′) as before. The labels
that induce a good labeling on the fake cycle C are paid
for by dT (u, v). However, this may leave a third set of
labels which need to be paid for by other cycles, not
necessarily involving u. We formalize this below.

Case I: Labels in Bu,C′. As before, for any label ls0
assigned to u, let lsi be the induced labels on C ′; i.e.,
lsi = πvi−1,vi

(lsi−1). For ls0 ∈ Bu,C′ , the analysis of (3.14)
still works and one can infer that

∑
ls
0
∈Bu,C′

x(u, ls0) is at

most d(P ′) + d(u, v). Since the edges in P ′ are a subset
of edges in EC , this is bounded by dT (u, v) + d(u, v).

Case II: Labels not in Bu,C′. Let us now consider
labels ls0 6∈ Bu,C′ . Recall that EC consisted of all
the edges on the paths Ppq corresponding to edges
(p, q) ∈ C. Let VC be the set of vertices spanned by
these edges EC , and let TC be a spanning tree of this
subgraph (VC , EC) such that TC contains all of the path
P ′. Recall that since we started off with labeling u
with ls0 6∈ Bu,C′ , we have a consistent labeling for the
cycle C ′ (and hence for the path P ′ as well). We try
to extend this labeling lsi of P ′ to all the vertices in VC

in the following fashion. We perform a breadth first
traversal of the tree TC : if we reach an unlabeled node
q in VC \ P ′ from its labeled parent p (which has label
lsp), we assign lsq = πpq(l

s
p). If this labeling violates a

back-edge eb = (q, r) ∈ EC \ TC , we stop and add ls0 to
a new set A. If there are no violations, we terminate
with a consistent labeling for all of VC ; in this case we
add ls0 to a set A′. Note that A ∪ A′ = [k] \ Bu,C′ ; we
will consider the two cases separately. In both cases, let
lsp be the (possibly) partial labeling obtained when we
start with ls0.

Figure 3.2: (a) Graph G. (b) Tree T on V . (c) The
subgraph (VC , EC) for edge (u, v). (d) The tree TC and
cycle C.(e) Edge eb and cycle Cb. (f) Subgraph (VC , EC)
for edge (v, w). In this case, (v, w) is a cut edge for
(VC , EC).

1. Suppose ls0 ∈ A, and we stop when some back-
edge eb = (q, r) ∈ EC \ TC is violated. Let Cb be
the cycle obtained by adding the edge eb to the
spanning tree TC , and let ub be the first node on
Cb to get labeled. Clearly, the label lsub

∈ Bub,Cb
,

else there would not be a violation on this cycle.
Hence, by the cycle constraints in the LP,

x(ub, l
s
ub

) ≤ ∑
(p,q)∈Cb

d(p, q, lsp). (3.16)

Moreover, if Pb is the path in the tree TC from u
to this first node ub, then by constraints (2.4) and
the triangle inequality,

x(u, ls0) ≤ x(ub, l
s
ub

) +
∑

(p,q)∈Pb
d(p, q, lsp). (3.17)

Since the path Pb is disjoint from the cycle Cb,
and their union is contained within EC , we can
sum up (3.16) and (3.17) to get

x(u, ls0) ≤
∑

(p,q)∈EC
d(p, q, lsp). (3.18)

Now we can sum up (3.18) for the labels ls0 ∈ A to
get

∑
ls
0
∈A x(u, ls0)

≤ ∑
lsp∈[k]

∑
(p,q)∈EC

d(p, q, lsp)

=
∑

(p,q)∈EC
d(p, q) ≤ d(u, v) + dT (u, v).

2. Suppose ls0 ∈ A′, and we terminate with a consis-
tent extension of the labeling ls0 to all the vertices
in VC so that none of the edges in EC are violated.
Since ls0 was not a bad label for u with respect to

C ′, and this labeling induced by ls0 can be extended
to all of EC , the label ls0 is not bad with respect
to the fake cycle C either. Thus for (u, v) to be
violated, at least one of the fake edges on the tree
path must be violated. But by the properties of
the propagation rounding, each fake edge (p, q) is
violated with probability at most d(p, q); using the
union bound, the chance that (u, v) is violated is
now at most

∑
(p,q)∈C\{(u,v)} d(p, q) = dT (u, v).

Hence the total probability that the edge (u, v) is
violated is at most 3d(u, v) + 2dT (u, v), hence proving
the lemma.

3.3 The Integrality Gap of the LP Relaxation
In this section we show that the integrality gap of the
LP relaxation is Ω(log n). This shows that the algorithm
we give is existentially tight, and we would have to use
other techniques to obtain better results.

Let G = (V, E) ∼ G(n, d
n) be a random graph where

each edge is present with probability d/n. The following
result is a well-known application of the probabilistic
method; see, e.g., [2, pp. 38–39].

Lemma 3.3. There is a universal constant cd = cd(d),
such that with probability (1 − o(1)), G has at most n
cycles of length less than cd log n.

Moreover, we show that with high probability, G is
far from being bipartite.

Lemma 3.4. With probability (1− o(1)), 2n edges need
to be deleted from G to make it bipartite, for d ≥ 50.

Proof. Let V1, V2 be a potential bipartition of V , and
let us call such a bipartition (V1, V2) easy if there are
at most 2n non-cut edges in G (i.e., Vi-Vi edges for
some i ∈ {1, 2}). It suffices to show that with high
probability, there are no easy bipartitions.

For a given bipartition, the number of potential
non-cut edges is at least

(
n
2

)
− n2/4 = n(n − 2)/4 ≥

n2/5. Since each edge is present with probability
≥ 50/n, the expected number of non-cut edges is at
least 10n. Thus by a Chernoff bound, the probability
that there are at most 2n = (1 − 4

5)10n non-cut edges
in G (and hence that the bipartition is easy) is at

most exp{− (4/5)2·(10n)
(2+(4/5)) } ≤ exp(−n). Finally, since

the number of potential bipartitions is at most 2n, a
trivial union bound implies the probability of an easy
bipartition existing is at most (2/e)n = exp(−cn),
which proves the lemma.

Consider a graph G that satisfies the conditions
specified in both Lemma 3.3 and Lemma 3.4. Since
G has at most n short cycles (i.e., cycles of length less

than g
def
= cd log n), we now delete one edge from each

short cycle to obtain a graph G′ with girth g. In the
process, we have deleted at most n edges, and hence G′

still must be n edges far from being bipartite. Moreover,
with probability 1 − o(1), G′ has at most 50n edges.

We construct our Min-UniqGame instance on G′

as follows. The label set is just the set {1, 2}. Each
edge (u, v) of G′ has a constraint Lu 6= Lv with weight 1.
(Hence this is an instance of the Min-UnCut problem.)
Let us first show that the LP solution has a small value.

Lemma 3.5. There exists a fractional solution to the
linear program (LP) on the above instance G′ with
Z∗ = O(n/g).

Proof. For each node v, let us pick the value of x(u, 1)
to be one of the two values { 1

2 + 3c
g , 1

2 − 3c
g } uniformly

at random; here c is a constant to be fixed later. Set
d(u, v, l) to be exactly |x(u, l) − x(v, πuv(l))|. We show
that this solution is feasible with high probability.

Consider a pair of nodes (u, v) at graph distance
g/3 and let puv be the shortest path between them.
The random choice of values ensures that each edge has
expected length 3c

g , and hence the expected length of

the path puv is c. Thus, with probability 1− exp(−(c−
1)2g/(2c − 1)), the LP solution assigns a distance of at
least 1 to the path puv . Taking c to be large enough, this
probability is at least (1− 1

n3). Since there are at most
n2 such pairs, with probability (1− 1

n), every such path
puv has at least unit length. The graph G has girth g,
and hence each cycle in G′ contains at least three such
paths, making its LP length at least three. It follows
that all cycle constraints are satisfied and hence this
solution is feasible. Finally, since the number of edges
is linear and each edge has length O(1

g), the cost of the

LP is O(n/g), as claimed.

Next we show that optimal solution must violate a
constant fraction of the constraints.

Lemma 3.6. The optimal solution for the above in-
stance has cost at least n.

Proof. For each i ∈ {1, 2}, let Vi be the set of nodes
labeled i in the optimal solution. Then since every Vi-Vi

edge is violated, the cost of the optimal solution is at
least n.

The integrality gap of Ω(g) follows from Lemma 3.5 and
Lemma 3.6 above.

4 A Brief Sketch of Trevisan’s Construction

In a recent paper [12], Trevisan essentially studied
the problem of finding good algorithms for Min-
UniqGame. In a comment to the above paper, he gives

an SDP-based algorithm for Min-UniqGame where all
edges have unit weights. His result can be paraphrased
as follows:

Theorem 4.1. There is an algorithm which, given an
instance of Min-UniqGame on which the optimum
labeling violates at most O(ε3/ logn) m edges, outputs
a labeling with at most ε m violated edges.

In the following, we sketch (a minor modification of)
his analysis, in which we show that if OPT violates
δ m = O(ε2/ logn) m edges, we can find a labeling with
at most ε m violated edges.

SDP Relaxation. Trevisan’s algorithm first solves an
SDP relaxation of the problem that has vectors ul for
each vertex u ∈ V and label l such that

∑
l ‖ul‖2 = 1.

The SDP also enforces the triangle inequality between
all the vectors ul (and the zero vector). Again, we think
of this as defining a length d(u, v) =

∑
l ‖ul − vπuv(l)‖2

for each edge (u, v) in V . The objective function of the
SDP is Y ∗ =

∑
u∼v d(u, v), which by our assumption

on the optimal value is at most δ m.

The Rounding and Analysis. To get the claimed
bound, we can delete all “long” edges with length
d(u, v) > ε/4. Note that this causes us to violate at
most (4/ε)Y ∗ ≤ (4/ε)δm = O(ε m/ log n) edges. We
use a by-now-standard region growing technique (see,
e.g., [13]) which guarantees the following:

Theorem 4.2. Given a graph G = (V, E) with edge
lengths de (such that

∑
e de ≥ Y ∗), and a parameter

∆, it is possible to decompose the graph into clusters
C1, C2, . . . , Ct such that

• Each cluster Ci has a center vertex ri, such that
the shortest-path distance of every vertex in Ci

(according to the edge lengths) is at most ∆, and

• the total number of edges cut is at most O(log n)×Y ∗

∆ .

Setting ∆ = ε/4, we get that the number of edges cut
is at most Y ∗ × O(log n)/(ε/4) ≤ ε m.

Finally, for each cluster C with center r, Trevisan’s
algorithm assigns the label l to the center r with
probability ‖rl‖2, and for each other vertex v in C,
assigns it the label l′ such that vl′ is the closest of v’s
vectors to that rl. Note that, given any edge (u, v) in
cluster C, there is a path of length ε/2 from r to both
the vertices (namely the shortest-path Pu from r to u,
and this path Pu concatenated with the edge (u, v) to
v). The simple and elegant analysis in that paper shows
that the probability that either of these two paths are
inconsistent is at most their lengths (and thus at most
ε/2). Finally applying a union bound gives us that the

edge (u, v) is consistent with probability 1 − ε, thus
giving at most ε m violated edges in this final rounding
too. This completes the proof that at most O(ε m) edges
are violated during the run of the algorithm.

4.1 Conclusions and Future Directions In this
paper, we gave an O(log n) approximation to the Min-
UniqGame problem; we also showed that the LP
relaxation has an Ω(log n) integrality gap. It remains
to be seen if the SDP relaxation (possibly with the
cycle constraints that we added) can indeed give us a
better guarantee. (Indeed, note that for the case k = 2,
the Min-UniqGame problem is just the Min-UnCut
problem, for which there is an O(

√
log n) approximation

due to Agarwal et al. [1], and it remains open to extend
this to the case of general k.)

Acknowledgments We would like to think Shuchi
Chawla, Kedar Dhamdhere, and Uri Feige for very
helpful discussions, and to Moses Charikar for bringing
Trevisan’s paper [12] to our notice.

References

[1] A. Agarwal, M. Charikar, K. Makarychev, and
Y. Makarychev, o(

√

logn) approximation algorithms

for min uncut, min 2cnf deletion, and directed cut

problems, in Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, New York,
NY, USA, 2005, ACM Press, pp. 573–581.

[2] N. Alon and J. Spencer, The Probabilistic Method,
Wiley Interscience, New York, 1992.

[3] S. Chawla, R. Krauthgamer, R. Kumar, Y. Ra-
bani, and D. Sivakumar, On the hardness of approx-

imating multicut and sparsest-cut, in Proceedings of
the 20th IEEE Annual Conference on Computational
Complexity, 2005.

[4] J. Fakcharoenphol, S. Rao, and K. Talwar,
A tight bound on approximating arbitrary metrics by

tree metrics, in Proceedings of the thirty-fifth ACM
symposium on Theory of computing, ACM Press, 2003,
pp. 448–455.

[5] U. Feige and D. Reichman, On systems of linear

equations with two variables per equation, in Proceed-
ings of the 7th APPROX, vol. 3122 of Lecture Notes
in Computer Science, 2004, pp. 117–127.

[6] M. X. Goemans and D. P. Williamson, Improved

approximation algorithms for maximum cut and sat-

isfiability problems using semidefinite programming, J.
Assoc. Comput. Mach., 42 (1995), pp. 1115–1145.

[7] M. Grötschel, L. Lovász, and A. Schrijver,
Geometric algorithms and combinatorial optimization,
Springer-Verlag, Berlin, 1988.

[8] S. Khot, On the power of unique 2-prover 1-round

games, in 34th Annual ACM Symposium on the Theory
of Computing, July 2002, pp. 767–775.

[9] S. Khot, G. Kindler, E. Mossel, and
R. O’Donnell, Optimal inapproximability results

for max-cut and other 2-variable csps?, in Proceedings
of the 45th Symposium on the Foundations of
Computer Science (FOCS), 2004, pp. 146–154.

[10] S. Khot and O. Regev, Vertex cover might be hard

to approximate to within 2 − ε, in Proceedings of
the 18th IEEE Annual Conference on Computational
Complexity, 2003, pp. 379–.

[11] S. Khot and N. Vishnoi, The unique games conjec-

ture, integrality gap for cut problems and embeddability

of negative type metrics into `1, in Proceedings of the
46th Symposium on the Foundations of Computer Sci-
ence (FOCS), 2005, p. to appear.

[12] L. Trevisan, Approximation algorithms for unique

games, Tech. Report TR05-034, ECCC, April 2005.
See also the attached comment, May 13, 2005.

[13] V. V. Vazirani, Approximation algorithms, Springer-
Verlag, Berlin, 2001.

