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Abstract the load function? is in the class ofmonotone sub-

desire to send a unit of flow between themselves. The cost of @ load functior? in the class.)
the routing is this: if edge carries a total of . flow (from all

the terminal pairs), the cost is given by, ¢(f.), where( is
some concave cost function; the goal is to minimize the total
cost incurred. However, we want the routing todidivious
when terminal paifs;, ¢;} makes its routing decisions, it
does not know the current flow on the edges of the network,
nor the identity of the other pairs in the system. Moreoverhese are the first such general results about oblivious algo
it does not even know the identity of the functibnmerely rithms for network design problems, and we hope the ideas

knowing that/ is a concave function of the total flow on theynd techniques will lead to more and improved results in this
edge. How should it (obliviously) route its one unit of flow3rea.

Can we get competitive algorithms for this problem?
In this paper, we develop a framework to modéliv- 1 |ntroduction

ious network desigproblems (of which the above problen?n a general network design problem, we are given a graph

is a special case), and give algorithms with pon-IogarithmG — (V, E) with |V'| = n nodes and a set dfsource-target
competitive ratio for problems in this framework (and hen eairs(s-7 t,), for1 < i < k, called thecommoditiesa feasi-

for this problem). Abstractly, given a problem like the on le solution is to build a network capable of simultaneously

above, the solution is a multicommodity flow producing aelivering some required flow amoudt from each source

Yload” on each edge oL, = ((fi(e), f2(e), .. -, fi(e)). s; to its corresponding sink. The goal in many of these

and the total cost is given by an *aggregation funCtion. e s is to design a network of minimum cost that meets
agg(Le,,..., L., ) of the loads of all edges. Our goal is t hese requirements

develop oblivious algoriihms that_approximately minimize The notion of cost can be a fairly variable one, with
t.he total cost of the routiiig, knovinng_ the aggregation funai'i‘ferent cost measures arising in different contexts:.,e.g
tion agg, butmerely knowing thatlies in some clas€’, and o -2 think of the cost to be the total amount of flow in

ha;nngknoHother mformattioln ai::ﬁut t:f tcurren_t Stﬁte of t Ie system, or perhaps the average latency, or perhaps the
?e work. Hence W? wan agor‘i ms that are SI:T]U aneouégngestion, or one of several other possibilities. In thisqy,
function-oblivious” as well as “traffic-oblivious”.

. : X we present an abstract cost model in the following way: we
The aggregation functions we consider arerthe: and P g way

o . ) are given aload function?: for any edge, iff;(e) is the
> objective functions, which correspond to the well-know, ount of commodity sent along the edge then

measures ofongestiorandtotal costof a network; in this
paper, we prove the following: load L(e) = £(f1(e), fa(e), ..., fr(e)). (1.2)

o If the aggregation function i§_, we give an oblivious
algorithm with O(log® n) competitive ratio whenever

e For the case when the aggregation functionmisx,

we give an oblivious algorithm witB (log? n log log n)
competitive ratio, when the load functidns anorm

we also show that such a competitive ratio is not possi-
ble for general sub-additive functions.

(As a minor aside, each edge can have a “weightas well,
and then the load can be scaled thus:(¢) = w.L(e);
however, for simplicity, we will assume that all. = 1.)
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By instantiating the load and aggregation functions diffesign problems: as mentioned above, we aim to minimize the
ently, we can give rise to many different problems that arit®al cost, which naturally depends on the load and aggrega-
in traffic routing, and in telephone and computer networkson functions. We mainly consider undirected networks, fo
For instance, the simplest form of the load function is whehe cases when the aggregation functiggis eithermax or
L(e) = e(fi(e),...,fx(e)) = > fi(e); simply the total > . Our main results will be for cases when the load func-
flow passing through an edge Other important variantstion Z(f(e)) is either a monotone sub-additive function, or
are the cases where the load iscavexfunction of the total a norm? Towards the end of the paper, we mention some
passing flow (in the context of the latency of traffic networkeesults regarding directed graphs, convex load functiamd,
e.g., see 39), or a concavefunction of the total passingthe non-uniform case (where the load functigrdiffers for
flow (in the context of buy-at-bulk or rent-or-buy networklifferent edges).
design, e.g., seed] 36]), and more generally aonotone
sub-additivefunction of the passing flow. Typical aggre- 1.1 Our Results. In this paper, we present oblivious al-
gationfunctions we consider are theax and | operators, gorithms for two broad classes of network design problems;
which correspond to theongestiorand thetotal costof the both of these algorithms have poly-logarithmic competitiv
network. ratios.

In this paper, we initiate the study @blivious algo- 3 , . . ) .
rithms for network design problems. Loosely, we want t he "Total-Load aggregatlon.functlon.. We.f|rst qus'd?r
develop algorithms where a demand piir, ¢;} should de- the case When_ the aggregatpn functn.:g‘g is the sum
cide how to send thé; amount of flow knowing only some function. For this case, our main result is the following:

information about the edge-load and aggregation functio1c1|§“EOREM1 1. For the case wheragg = 3, there is

on the edges, while having no information aboutwhich othg jivious routing algorithm whose competitive ratio is
og”n) when the edge load functidifi, fa, ..., fx) is

demand pairs are in the system. Ideally, we would like t?@@l
algorithms to not even know the precise details of the lo notonically increasing and sub-additive. In fact, folyan
pair {u, v}, we can ensure that all the-v flow is sent along

functions, but just some defining characteristics; e.gath

demand-pair just knew that 'Fhe load functb@ some fixed a single path.
but unknown concave function, what could it do? (A non-
oblivious version of this problem was studied by Goel and Note that this result implies, among other things, an

Estrin [17] for single-sink network design.) Such algorithmg)(1og? ) competitive algorithm for theblivious Steiner

that base their routing decisions only on local (and partigletwork desigrproblem, where the terminal paifs;, t;}

knowledge can naturally be implemented efficiently in digrrive online and must be connected using a pre-determined

tributed environments. B path. This result can be viewed as an extension of results of
As a simple example, if we know that eafy(e)) = Jia et al. pg] for the so-calledUniversal Steiner Tregrob-

>_. fi(e), and the aggregation function is also the sum, thsin, which we discuss at length Section 1.2 In fact, the

each pair choosing a shortest; path (oblivious of the same algorithm also works for all load functiofwhich are

other pairs) is the optimal algorithm. Now if we change theyncave, thus extending the results of Goel and Estifhtp

load function to be/(f(e)) = 1(s, 1, (e)>0) While keeping the multicommodity (and traffic-oblivious) case. (Goel and

agg = >_, then we get amblivious Steiner forest problem Estrin considered the single-source concave-cost prgblem

for which algorithms were known only for the Steineee for which they gave am(log n)-approximation algorithm;
case by Jia et al2g]. (We will give an algorithm with an their algorithm was not online.)

improved bound, which also extends for flogestcase.) On At a high level, our main proof technique is to use “tree-

the other hand, if we keep(e) to be the total flow om, but covers™: a family ofO(logn) trees such that each pair of
instead set the aggregation functigy = max, we getthe vertices in the graph has a tree in this family that maintains
low-congestion oblivious routingroblem; originally studied distances well between them. By itself, this idea does not
by Valiant and Brebner3g], polylogarithmic competitive work: we have to carefully construct such a “useful” tree-
algorithms for this problem for general graphs were givedver so that we can claim that a high cost on the trees
only recently by Racke34]. These examples show that agmplies a high cost on the original graph as well; i.e., we
we alter the load and aggregation functions, the resultifged to preserve lower bounds. To this end, we rely on the
problems may exhibit very differing behaviors and levels @bnstruction of Fakcharoenphol et &l5], as well as some
hardness. ideas used by Chan et alL(] to create “useful” tree covers

The focus of the current paper is to develop a genef@m their randomized constructions.
framework for oblivious routing algorithms for network de-

2The load function is a norm if it is monotone, sub-additived ah

1The load functior? is sub-additive i(f) + ¢(f") > ¢(f + ) oaf) = al(f).



The “Congestion” Aggregation function. We then go on 1.2 Related Work. Network design problems with con-

to consider the oblivious network design whegg = max; vex, concave, monotone sub-additive and more general edge

i.e., we are looking at the edge with the highest Iddd). load functions often arise in practice, and have been censid

For this case, we can prove the following result. ered extensively in the past literature. There have been nu-
merous approximation algorithms results dealing veibim-

THEOREM1.2. For the case wheregg = max, there ., e10ad functions on the edges, trying to modebnomies

is an oblivious routing algorithm whose competitive ras; scale a phenomena that has come to be knowhugsat-

tio is O(log® nlog logn) whenever the edge load functiop - 4 partial list includes4, 7, 36, 29, 18, 19, 33, 37, 30,

t(fr, f2;- .-, fis) s @norm. 22,21, 16, 11]; some recent hardness results have appeared
in[2, 13]. While most of these papers consider off-line prob-

Note thatTheorem 1.2yeneralizes the oblivious routing retems with centralized control, and the aim of this work is to

sult of Racke B4 to a much broader class of load funche online and distributed, there are some other concegtual r

tions £ than justL(e) = >_, fi(e). The main technique |ations between our work. Karger and Minko®q] consider

we use to prove this result is to generalize the hierarcfie problem where each vertex obliviously chooses a fixed

cal decomposition tree approach of RacBd|[ which was path to the root; however, they look at approximating the ex-

subsequently improved by Harrelson et &b][to obtain an pected cost incurred, and not the competitive ratio. (These

O(log” nloglog n) competitive ratio for the case df(e) = results are related to the recently growing bodgtoichastic

> fie). network design27, 23, 14] as well, but all these results re-

In addition, we show that there is a sub-additive functiajirict their attention to the expected costs as well.) Thekwo
for which the competitive ratio is at least/*, implying of Goel and Estrin7] gave an algorithm for off-line single-
that we cannot extentiheorem 1.2o0 handle arbitrary sub- sink network design that was function-oblivious for thessla
additive functions (as iTheorem 1.1 of concave-cost functions; our results extend their regolt
Other Results. online problems (where the adversary can choose both the

Finally, we consider the case of convex load functionsfifmand set and the function).

directed/undirected graphs and provide several lowertioun ~ Qur work closely follows the recent work of Jia, Lin,
in this case (though obtaining a polylogarithmic upper bufNoubir, Rajaraman, and Sundarazg[on universal approx-

remains an open problem). imation Their paper gives algorithms for the Universal TSP
We end the paper with several interesting open prd'H]d Universal Steiner tree problems; loosely, a universal s
lems. lution is a tour (or Steiner tree) such that the subtour (br su

tree) induced by the actual demands is a good solution to
111 A Note on Randomness and Tree Distributions. the actual demands themselves. Our model is cosmetically
A natural question is whether the results for the case Qﬁfere}:‘t’ since we do not require oblivious actions to e “i
agg = 3" (i.e., for the total load objective function) can p&uced” by some global solution (and hence we use adn‘fere_nt
obtained by using standard techniques such as distritmtigame for our model); however, our results are very close in

over trees §, 15). The reason why these techniques do n8Pirit to theirs. .
give our results is twofold. Firstly, to use those resulig, t ~ AS mentioned above, our work is related to the substan-

demand pairs need to have some access to a shared souré@ ¥fork on approximating metrics by distributions ovesdr
randomness so that two different demand pairs can use Hrics B, 7, 15. While our results do not follow directly
same random tree to make their decisions, whereas we [§n these results (see the discussiorection 1.}, they
mand that our algorithms be oblivious of the current state {8fM an important component of our solution. Indeed, the
the system, and have no such shared randomness. SecofBRfoach of Fakcharoenphol et al., and its use by Chan et
note that the oblivious strategy in this case is a single p&th[10l provide a central inspiration to the techniques of this

that the pair uses to connect between themselves, and diffee"

these paths have been fixed, there is no more randommesggestion. The notion of “congestion” as the total cost

in the system. Hence, even if the adversary were to cho@$ehe system has also been well-studied. Special cases of

the load functiorf and the demand paiester looking at the networks are parallel links between two nodes, which cor-

paths given by our algorithm, he would not be able to obt&i@spond to scheduling problems, and the notion of conges-

a competitive ratio worse than our guarantees. This is Righ on these instances corresponds torttakesparof the

so when we use distributions over trees in the standard W@k assignment. The idea of selecting routing pathbv-

(Formally, as in Goel and EstrirL]], we give a guaranteejoys to the traffic in the network was initially intensively

on the Eour coinsaxinstancelCOMpetitive ratid instead of the studied for special network topologies: Valiant and Brebne

usualmaxinstancestour coindCOMPpetitive rati.) [38] initiated this study, with oblivious routing algorithms
on the hypercube. Rack&4] showed there is an oblivi-



ous routing algorithm with polylogarithmic competitive-raTHEOREM2.1. Let the aggregation functiomgg : RIZl —

tio (w.r.t. edge-congestion) for any undirected graph.seubR be the sum. Then the following results hold.

quent work b, 3, 9, 25] improved on these results, showing ) ) o )

that these routings can be found in polynomial time, and thaf® there is an integral oblivious routing scheme that for
the competitive ratio can be improved@glog? n loglog n). any sub-additive load functiof) and for any dergand-
These results, as well as the hierarchical tree constructio Matrix D, incurs a cost that is only a factap(log™ n)
used to prove many of these results, have proved useful in times the optimum.

many other contexts; see, e.@, 12, 32)). e There is a fractional oblivious routing scheme that

) o achieves a competitive ratio @(logn) for any de-
1.3 Basic Definitions.We represent the network as an  and matrixD provided the load-functiofiis a norm.

unweighted and (unless otherwise stated) undirected graph

G = (V, E). We restrict the attention in this writeup to unA natural approach to obtain these results would be to try and
weighted graphs in order to present our results as cleare the well-known techniques for approximating metrics by
and simple as possible; all the results still hold if edgédsstributions over tree metric§[15]; while these techniques
carry a (polynomially bounded) weight, which could be irdo not directly give us the results (as notedection 1.1.},
terpreted either as thedge lengthor as theedge capac- our oblivious routing algorithms are obtained by natural
ity, depending on the problem. (In fact, most of our rdut subtle extensions of those tesults. In particular, we
sults hold for arbitrary positive edge-weights, not onlgga extensively use the scheme of Fakcharoenphol, Rao and
which are polynomially-bounded; however, in this case, tAalwar [15] (which we call the FRT-scheme in the rest of
construction of the oblivious routing scheme in the scenanur discussions).

agg = max may not be polynomial time any more.)

For the networkG we are given a set df source-target 2.1  Definitions and Preliminaries. Let us introduce some
pairs (s;,t;), 1 < i < k. An oblivious routing schemenotation about hierarchical decompositions, and give &f bri
for G specifies, for each paits;,t;), a unit flow froms; overview over the FRT-scheme, and its properties that are
to t;. This flow determines how the demand fromto ¢; relavant to our routing algorithms.
is routed in the network. For an oblivious algorithpBL
and an optimum algorithfOPT we useOBL,g (¢, D) and 2.1.1 Decompositions and Padding.

OPT.g (¢, D), respectively, to denote the cost produced bB/ " )
the algorithm for aggregation functiagg, load-function? EFINITION 2.1. (A-partition) Given A > 0, a A-

and demand-vectdp. For a given clas§’ of load functions partition P Qf agraphG = (V.E)is a partition_of the
¢, the quantity vertex sefl” into clustersVy, Vs, . .. such that each induced

sub-graphG[V;] has diameter at mogk.
OBL.g (¢, D) }

max max {7OPTagg (g’ D)

oo h DEFINITION 2.2. Hierarchical Decomposition) A hi-

erarchical decompositio® of the graphG = (V,E)
is the competitive ratioof the oblivious routing algorithmis a sequence of partitionsPy,..., P, (with h =

with respect to load-functions frot. Note that the term [log, (diam(G))]) such that

“oblivious” signifies that the routing path chosen by the

algorithm is independent both of the the load functipand 1. The partitionP, has one clustel’, which is the entire

also of the set of demands. Recall thatagg will be either node set ol

the sum (denoted by"), or the maximum (denoted byax);

we will drop the subscripdgg if it is clear from the context.
Finally, for a demand vectadd and a sef of commodi-

ties, we use the notatioP|; to denote the demand vector 3. P, is a refinementof P;,1, i.e., each cluster inP; is

in which all entries representing commodites not/ihave completely contained in some clusterrf ;.

been set td.

2. The partitionP; is a 2‘-partition, i.e., a partition in
which each cluster has diameter at mst

The following definition will be crucial for our analysis:

2 Network Design to Minimize Total Load : . .
DEFINITION 2.3. (x-padded nodes)Given a hierarchical

In this section we analyze oblivious routing algorithms checompositiorP — (P)",, anodev € V is a-padded

the case that the aggregation functigg is the sum of the i, pif for all 4 € [0, k), the ball B(v, a - 21) is contained in
link loads, and the load functiohis a sub-additive function. ’ ’

(For some cases, we can obtain better results whéen
a norm.) The main result of this section is the followinijlote that the standard definitions of padding (e.g.,2@)
theorem. usually refer to padding with respect to a single partition:

some cluster oP;.



indeed, a node is defined to be padded if it is far away frdRRT scheme cuts a bali (v, « - 2%) with radiusa - 2 around

the boundary of its cluster in the partition. In contrastehesome node € V. The analysis is very similar to that i,

we require that a node is far from the boundary of its and is given here for completeness. We introduce the fol-
cluster aeverylevel of the decomposition (i.e., fé@(logn) lowing notation: we call a node a protecting nodédor ball
partitions), which is a much stronger requirement. B(v, a2%) and (random) radiug; if v; > d(u,v)+a2. Sim-

. _larly, we callu acutting nodefor ball B(v, «2%) and radius
DEFINITION 2.4. An a-padded probabilistic hierarchical, ¢

decompos?tion’s a probability distribution over hierarchical d(u,v) — a2l < v < d(u,v) + a2 .
decompositions such that for any nade V'
We say a nodédirst cutsthe ball if it is a cutting node and
Pr[v is a-padded inP] > 3 , all other cutting nodes and protecting nodes appear aifter
the permutation.
whereP denotes the randomly chosen hierarchical decom- Note that the definition of cutting nodes is somewhat
position. pessimistic, in the sense that a cutting node for radius
] o may not actually end up cutting the bal(v, a2) in the
N_otg _that the precise valuy4 of the fraction is in no way prT scheme; indeed, the bal&(u, ;) and B(v, a2¢) may
significant: any constant value greater tha@ would serve ,n out to be disjoint, ofB(v, a2?) may be contained in
for our purposes. B(u,v;). However, if the ballB(v, a2?) is indeed cut, then

) ~ there must exist a nodethat first cuts according to the above
2.1.2 The FRT Cutting Scheme.The FRT schemelly]is  gefinition. In this case, two events must happen: (a) the
a randomized algorithm that outputs a (random) h|erard:h|1:§diu5% € [d(u,v) — a2i,d(u,v) + 2], and (b) all nodes
decomposition of an input gragh, i.e., itgives a probability that are closer ta thanu (which would all either cut or
distribution over hierarchical decomposmons. The ailtpon protect the ball) appear afterin the permutationr. The
works as follows: suppose we are given a grépk (V, E)  first event happens with probabiliga27) /2i~2 = 8a since
with unit minimum distance, and diametéram(G). We ~; is chosen uniformly from the intervé2i—2, 2:~1] which

pick a random permutatiom on the vertices ots, and also 54 lengti2i~2. The second event occurs with probability
choose a random valyguniformly from the_interva[%, D). if uis thest"-closest node to. 3
For eachy, we define the “radius; = [ x 2!, and hence Furthermore, a node whose distance from is greater
~i is chosen uniformly from the intervégi =2, 2¢-1]. than2i~! + a2f = (1 + 20211, or whose distance from

Given the random choices of the permutatiorand g |ess thari-2 — a2 — (1 — 4)2/~2 cannot cut the ball
scaling parametep, the construction of the hierarchicaly 51 This gives the following bound on the probabilitytha
decomposition is inductively defined. We define the partitiq,¢ ball B(v, a21) aroundv is cut on level.
Py, to contain all the vertice®. To obtain the partitiorP;
from P;.1, consider the vertex, and letC, be the cluster Pr [B(U,Oz?i) is cut on Ieveli}
containingu in P;,1. Now, the node: is said to beassigned < Pr[3 a nodeu that first cuts the ball
to the first vertexv (according to permutation) that lies in -
the setC,, N B(u, ;). Finally, for each vertex i, the set of < Zu Pr[u cuts the ball first
vertices that are assigned to it in the above set form a cluste |B(o,(1420)20 )|
of F. < 8« Z l

Let us note that this indeed defines a hierarchical decom- - , s
position, as inDefinition 2.2 by construction, each cluster s=IB(v,(1-4a)272)]
of P; lies completely within some cluster i;;,. Further- Now, we can estimate the probability that any of tae?)-
more, if nodesr andy lie in some cluster in?;, they are ,.1s around is cut in the respective level.
assigned to the same nodeand hence are at distance at
mosty; < 2~ from v; by the triangle inequality, they are Pr[3 i such thatB(v, a2') is cut at level]
at distance at mogy; = 2' from each other.

|B(v,(14+2a)2" 1) 1 (2.3)
LEmMMA 2.1. Given any graphz, the FRT-scheme defines < 8042 Z S
an a-padded probabilistic hierarchical decomposition with i s=|B(v,(1—4a)2i-2)|
o=0(z).
ogn

We say a node: contributes to the above sum for leviel
Proof. Since the FRT scheme outputs a random hierarchii{1 — 4)2i=2 < d(u,v) < (1 + 2a)2'~1; in this case,

cal decomposition, it suffices to show that each nodeits contribution is%, if u is the s-closest node ta:. We
Q(1/1ogn)-padded with probabilityy/4. Hence, let us an- show that a node only contributes to a constant number of
alyze the probability that the random levigbartition of the levels; this will imply that the probability in2.3) is at most



O(a logn), which will prove the result. Indeed, suppose way: for every tree node; € T, we choose a graph node
contributes to the sum for levelsandi’ with « > i’. Then v € C,,, whereC,, denotes the cluster corresponding;to
(1 —40)2°72 < d(u,v) < (14 20)2° "1, andifa < 1/4, We call the node € V thenode that simulates,. For every
theni < i’ + 1 + log 7222, Now, choosingx < 1 gives edge(us,v;) in T'we connect the graph nodes simulating

i <i +3,and hence1 tﬁg node can only contribute to at andv; via some shortest path . Now, given any pair of
most3 different levels; this implies that nodest,y € V and atred’ € 7, the routing-pattPr(z, y)
_ between them is obtained by first determining all tree edges
Pr[34 such thatB (v, a2") is cut at level] on the path fron{z} to {y} in T (recall that the clustersr}
"1 and{y} are leaf nodes iff’) and then concatenating the paths
<24a- ) 5 < Olalogn) . that correspond to these edges. We call this pathe, y) the
s=1 x-y path for treeT.

We can choosa — Q(%) such that the above probability . Finally, we can define our oblivious routing algorithm.
o8 Given any source-target pais,t) € V x V, we mark all

is less than 1/4. This finishes the proof of the lemma. OJ .
treesT' € 7 such thats andt are botha-padded inT’; by

Before we end, note that each hierarchical decomgbe above property, there are at leastuch trees irf7”. We
sition P can be associated with decomposition tred’», Nnow selectz of these trees arbitrarily, and route a flow of
whose vertices correspond to the clusters in the various d¢= along thes-¢ path for each tre& among these chosen
compositions ofP, and whose edges connect clustérs= selected trees, thus giving us a unit flow betwaesnd?.
P;andC’ € P_, iff ¢’  C. (As an aside, if we assignNote for the case = 1, this flow is integral—i.e., we have
a length of2’ to such edges, we get back the same HSsingle path betweenandt. In the next section, we show
that were given in]5].) Given this correspondence, we wilthat the oblivious strategy (with the parameteset to bel,
move between hierarchical decompositions and their decdm1o log n respectively) gives the performances claimed in
position trees in the rest of the discussion. the two parts ofTheorem 2.1

2.2 The Well-Padded Tree CoverWe construct aree 2.4 Analysis of the Oblivious SchemeWe first give an
cover of the graph in the following way: we tak&/ = upperbound on the cost of the oblivious routing algorithm on
O(logn) samples from the distribution dfemma 2.1 and a fixed tree€l’ € 7. We can view this cost as being incurred
let 7 denote the decomposition trees in this sample. Wigly the paths that simulate the edges of the tree. Let for a
high probability, the sef” is a goodree-covernf G: i.e., for fixedtreel’ € 7, v; denote a level-node of this tree, and let
any pair of vertices:,y € V, there is a tred; € 7 with p: denote the parent af,. Moreover, letv andp denote the
dr, (x,y) < O(logn)d(z,y). By itself, this does not suffice graph nodes itz that simulatev; andp;, respectively. We
for our purposes; we need the following stronger propertyfirst analyze the cosbst(v; ) for sending flow from to p in

the graph. Letf?,,(v:) denote the commodityflow sent by

Given a parameter € {1,logn}, for every pair the oblivious routing algorithm along this tree edge, p;)

of verticess, € V, there must exist at least (and hence along the path simulating it). lletdenote the

decomposition trees if” such that boths and set of commodities for which f¢, (v;) > 0. (In this case,

t are a-padqled in the corresponding hierarchical fi,,(vy) is equal to zero if ¢ I, and equal tC%Di ifi eI,

decomposition. since al-fraction of the total flow is sent along any path).
We will call this family 7 to be awell-padded tree cover e also have that

The proof of the following theorem is standard, and is de-  costop (v) = £(f1 (ve), - - -, £5y(0r)) - 2417
ferred to the full version of the paper.

)

since thev-p path emulating the edge, p;) has length at
THEOREM2.2. A set of O(logn) independent samplesmost2!+1!.

drawn from the distribution ofemma 2.katisfies the prop- The total costOBL7 (¢, D) of the oblivious algorithm
erty above with high probability. for treeT can be calculated by summing the above term first
over all levell nodes, and then over all levels in the tree.

Moreover, the above randomized tree cover construgc-
tion can be made deterministic by using standard de-

randomization techniques. A detailed description is deter OBL,(¢, D) < Z Z O(fh )y R () - 28
to a full version of the paper. B

is gives

nodesuv ¢
on levell

2.3 The Routing Algorithm. Given a well-padded tree = Z Z 0(1/z-D|,) 2"
cover?7 constructed in the previous section, note that each I nodesu

on levell

treeT € 7 gives us arouting scheme f6rin the following (2.4)



We now give a similar lower bound on the cost of an optdecause of sub-additivity. Since the edgesEin form a
mum solution. cut separating the terminals for any commoditg I, the
optimum solution must send a corresponding flow/f

CONDITION 2.1. across the cufZ; hence, for eacld € [[a2/7!], |a2']],

OPT(¢, D) > % . Z Z «Dy,) - 2" > ecr, fipi(e) > D;. Usinglnequality 2.6 we get
| nodesvy
et D Ufapele)s- s faele)) = €(D,) -
Proof. Fix a treeT. We partition the edges of/ into e€Eqy

O(logn) nearly disjointclasses, i.e. an edge will belonq-here arda2'| — [a2!"1| +1 > 2!~ different choices for

to at most two classes and there will be one class for eaghhich gives a cost of atlease!~"-¢(D)|;, ) on levell edges
t

!e\éel of the ttref[el. Thten we show that an optimum algorlthmsidecvt. Summing over all nodes, givesEquation 2.5
induces cost atleas and summing over all edge-classeggves the claim, because

a . N
3 Z oD);,) - 2 (2.5) anedgeis contained in at most two classes. a

el To finish the proof ofTheorem 2..ve have to compare
. . T . the upper bound on the oblivious cofguation 2.4to the
on edges in clags This then will yield the desired bound bylower bound on the optimum cosEtaim 2.1. First suppose

summing ov_erall levels. . thatz = 1, i.e., we have an integral routing scheme. Then
The assignment of edges to classes is as follows. We sa get

an edge is in clas&(meaning that it counts to theth level)
if its distance to the nearest well-padded node falls in& th OBL7(¢, D) < Z Z ((1/z-D|y,) - ol+1

interval [|a2'~1], |a2'|].2 Note that by this definition each [ nooean
. on levell
graph edge belongs to at most two different classes
. . . L <> > uD|y,) -2t
Now, fix a levell. The hierarchical decomposition : ¢
corresponding td’, partitions the nodes af into different L onleet

clusters on this level and these clusters correspond to the
levell nodesv;. By the definition of level edges it follows
that for such an edge both endpoints must be contained in Now the total cost of the oblivious algorithm is obtained
some cluste€’,,, which means that the clusters partition thgy summing the above expression over all tr€es 7. This

< Soprw, D) .
«

levell edges into disjoint sets. gives
Fix one of the level nodesv;. Recall thatl; is the 3
set of demands for which the oblivious routing algorithm OBL(¢,D) < |T|-—-OPT(, D)
sends traffic between node and its parenp; in the tree. O;
< O(log“n) - OPT(¢, D) ,

For a commodityi this only happens if the cluster,, that
corresponds to tree node separates source and target @fhich proves the first part of the theorem. For the special
this commodity, and moreover, the terminal node ingitle case when the load function is a norm, we can get an im-
must be at distance at leasg’ from the boundary of”,, provement of a factor of in Inequality 2.4thus:

(this is because we only send flow along the trees in which

the commodity isy-padded). We now show that the cost of OBLy(£,D) <> Y 4(1/z-D|;,) - 2"

the optimum solution on levéledges insid€”,, is large. b oot
Let E,; denote the set of edges such that their distance _ ) Col+1
from the closest terminal insid€’,, is some fixed value - zl: dz: 1/z-UDlr) -2
d € [[a2'71],|a2!]] (Note that all these edges lie within on vel
C,, and are in clasy. These edges form a cut that separates < 8 OPT(¢, D) .
all commodities in/;. Letfori € I, ande € Ey, f;,(e) e
denote the flow along edgdor commodity: in the optimum For = = ©(logn) and |7| = ©(logn) this gives
solution. The optimum cost for edgesisy is OBL(¢, D) < O(logn) - OPT(¢, D), which gives the sec-
. . ond statement of the theorem.
> Ufile) o fhi(e) Note that theO(log?n) guarantee for general sub-
e€lq (2.6) additive functions comes from two different logarithmic
>l cer, (}pt(e), D e, fpt(e)) , losses: there ar@(log n) trees, and we are only guaranteed

a padding of2(1/logn). We do not know a lower bound of
3The distance of a graph edge, ) from a nodev is the distance from Worse tharf2(log n) on the problem, and hence it would be
v to the farther ofc andy. interesting to remove some of these factors.




3 Network design to minimize congestion ConNDITION 3.1. Let for a clusterC, I denote the set of

In this section we analyze oblivious routing algorithms fé&@mmodities that are separated 6y Then
the case that the aggregation functigg is the maximum of /D
. . . . ( |Ic)
the link loads. The oblivious routing algorithms developed OPT(¢,D) > TBo|
in [34] and [25] for congestion minimization consider the @
special case when the load functiois the sum, i.e., the loadwhereOPT (¢, D) denotes the cost of the optimum solution.
of an edge is the total flow going through the edge. This also . )
gives a polylogarithmic competitive ratio if the load-fuion  Proof. Let fop¢(e) denote the flow-vector along edgén the

is a concave function of the total flow along an edge: ~ OPtimum solution. By definition of the aggregation function
we have

OBSERVATION 3.1. There is an O(log® nloglogn)- -
competitive oblivious routing algorithm when the agOPT(Z’D):meax{é(fopt(e))}

gregation functionagg = max, and the load function 1 - 1 -
U(fie), ..., fu(e)) = g(>, fi(e)) whereg is some concave = |Ec| Z U fopt(€)) = IEc_Ié (ZeeEc fopt(e))
function. . e€Bc .
> — 7 >
Note that such a load functidrwhich is a concave func- - |Ec|é((ZeeEC f"pt(e))hc) - |EC|€(D|IC) ’

tion of the total flow through the edge has been widely use% he foll . ditvini b
in the network-design literature, since it models the atfed’ g{grge ast step follows since a commoditydnis cut Dy

of “economies of scale”, where the marginal cost of usirft
bandwidth decreases as the utilization of the bandwidth in- oW we give an upper bound on the cost generated

creases. In order to obtain an algorithm that works for MG the oblivious routing scheme o2%. Let for an edge
general load functions, we have to revisit details from thé;q a clustee ac(e) denote the flow along edgein the
proof of the oblivious routing schemes &4 and [23]. The  fiow-solution for distributing flow fronpc to pcr, whereC”
main result of this section is the following. denotes the parent @ in the decomposition tree. The cost

THEOREM3.1. Let the aggregation functiosgg : RIZ! — of the oblivious algorithm on edgeis

R be the maximum load on any edge. Then there is an ac(e)
oblivious routing algorithm which has a competitive ratib o costobi(€) < ¢ Ec| Dlic )
O(log? nloglog n) whenever the load functiahis a norm.

since ac(e)/|Ec| is the fraction of the flow that leaves
Proof. The oblivious routing scheme o84] and [25] are clusterC and goes through. By the properties of a norm
based on a hierarchical decomposition tree Seetion 2 we get
for the definition of a hierarchical decomposition of a graph
and the corresponding tree). For every clustein the OBL(¢, D) < max {5 (Zc CTESR 'D|Ic)}
hierarchy there is a distribution functign- : ¢ — [0,1], o (e)
> wec pc(v) = 1 over nodes ofC. An edge between a X{Zc [Ec] 'E(D|Ic)}

IN
=
5

level i clusterC; and a leveli + 1 cluster is simulated by - OPT(¢. D
redistributing a flow that is distributed according to fuinnt = max {ZC ac(e) - (€, )}
pc, into a distribution according tpc,., (or vice versa). < O(log? nloglogn) - OPT(¢, D) ,

(Note that doing this redistribution along a path betweai le

nodes{x} and{y} generates a flow betweenandy in the where the last step follows sincg . ac(e) is the to-

graphG) tal flow alonge in the flow-solution which is less than
In [25] it was shown that it is possible to find a hierarchio(log® n log log n). O

cal decomposition and a distribution functipp, for every

cluster such that all edgés’;, C;1) in the decomposition 3.1 Lower Bounds for General Load Functions. Our re-

tree can simultaneously send a flow |, | in the above sults suggest the following natural question: can we extend

manner so that a graph edge only has to carry a total flowtls¢ results ofTheorem 3.%o the case of sub-additive func-

O(log® nloglogn) (Ec, denotes the set of edges that leav®ns, perhaps with an additional polylogarithmic losstie t

clusterC;). We will call this the flow-solution of the hier- competitive ratio (as we did iSection 2? The following

archical decomposition in the following. We conclude themma shows that such a result is not possible: indeed, there

theorem from the above property of the flow-solution. Firis a sub-additive function for which any oblivious routirlg a

we give a lower bound on the cost of the optimum solutiorgorithm obtains a bad competitive ragwen on the complete

graph




LEMMA 3.1. For the caseagg = max, let the load-function 4.2 Improved bounds for small doubling dimension. If

¢ be defined ast(fi(e),..., fx(e)) := Zle \/fi(e). the metric on the underlying graph has a small or even
Then any oblivious routing algorithm has competitive raticonstant doubling dimension (se2( for a definition) we
Q(+/n), even on the complete graph. can improve our results for the case that the aggregation

functionagg is the sum of the link-loads.

Intuitively, the reason for this bad competitive ratio is,corem4.1. Let the aggregation-functiongg be the
that themax aggregation function favors solutions that splif,, Given a graph in which the distance-metric between
flow between many different routing paths (especially {fyqe_pairs has doubling constant there is an oblivious
the case when only a single commodity is active), Wher%ﬁting algorithm with competitive rati®(A°() - log n) for

the load function’ defined above favors aggregating flowhe case of monotone, sub-additive load-functions. This al
(especially if many commodities are active). The Compleé%rithm is integral.

proof is deferred to the full version.

4.3 Improved results for universal TSP. Jia et al. p§]
4 Further Results introduced the universal TSP-problem that asks for a per-
In this section we give an overview of further results imutationzy, over the vertex-set” of a graph such that for
our oblivious network design model and describe furthgny sub-setX C V the permutationryx induced onX by
appliations. The proofs of these results will appear in thg- is close to an optimum traveling salesman tour for
full version of the paper. Jia et al. 8| gave algorithms with perfomance guarantee
O(log4 n) for this problem (i.e., the tour given ok by 7y
4.1 Network design for convex load functions.Till now, is at most aro(10g4 n) factor larger than an optimal tour for
we have been considering situtations where the load furic;)
tions/ on edges have been concave functions, norms, or most Based on our well-padded tree cover we can prove the
generally, subadditive functions of the flows using the edgellowing theorem.
We now direct our attention to the oblivious network desigPHEOREN|4 2 There is anO
problem when the load functiohis convexin the total flow -
going throughe. We show that the competitive ratio in suc
situations may be large even when the aggregation function The above theorem improves on the result of Hajiaghayi
agg is the sum of the edge loads; however, these results @ral. 24] who show arO(log® n) factor for planar networks.
for the case when the load-functions aret uniform i.e., The result has been obtained after the original sub-migsion
different edges may have different load-functions. the SODA-conference.

(log? n)-competitive algo-
rr]ithm for the universal TSP-problem.

LEMMA 4.1. If the aggregation-functioagg is the sumand 5 Open problems

the load-functions are allowed to be non-uniform, there isg obvious open problem is, of course, whether the com-
network with load-functioné. being polynomials of degreepetitive ratios of our algorithms can be improved. For both
at most2 for which any oblivious algorithm has a competiscenarios the best lower bounds on the competitive ratio are
tive ratio of(2(n). Q(logn). For the total load scenario this follows from a
lower bound on online Steiner tree by Imase and Waxman
For the more restrictive case of directed graphs, one qa@), and for the congestion scenario the bound was inde-
achieve a lower bound d2(y/n) even withuniformload- pendently proved in31] and [8].
functions (i.e., the same load function for each edge Another interesting direction for further research is
i ) the problem of designing oblivious algorithms for other
LEMMA 4.2. There are directed graphs with the samg g oqation-functions and other load-functions than theso
qua}(jratm I_oad—funct|or_1 on each_edge, for which the COMe discussed in this paper. Of particular interest is eg. th
petitive ratio of any oblivious routing schemeti¢\/n). model that is obtained by choosing the aggregation-functio
Finally, there is also a lower bound for a quadratic lod8 be the sum and the Ioad-functl_on to be the square of the
function in undirected networks. total _fl(.)wlglomg along an edge. .ThIS cost-model corresp_onds
to minimizing average latency in a network where the links

LEMMA 4.3. For a quadratic load-function there exist undihave linear latency-functions. [r8§ this cost-model was

rected graphs in which the competitive ratio of any obligo$onsidered in a game-theoretic setting and it is a chalfengi
routing algorithm iSQ(10g3/2 n). task to also find oblivious algorithms for it.

The proof of this lemma is contained in the final version &cknowledgments We would like to thank Daniel Golovin,
this paper. Robert Kleinberg, and Tom Leighton for fruitful discussson
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