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Abstract

Consider the following network design problem: given a
networkG = (V, E), source-sink pairs{si, ti} arrive and
desire to send a unit of flow between themselves. The cost of
the routing is this: if edgee carries a total offe flow (from all
the terminal pairs), the cost is given by

∑

e `(fe), where` is
some concave cost function; the goal is to minimize the total
cost incurred. However, we want the routing to beoblivious:
when terminal pair{si, ti} makes its routing decisions, it
does not know the current flow on the edges of the network,
nor the identity of the other pairs in the system. Moreover,
it does not even know the identity of the function`, merely
knowing that̀ is a concave function of the total flow on the
edge. How should it (obliviously) route its one unit of flow?
Can we get competitive algorithms for this problem?

In this paper, we develop a framework to modelobliv-
ious network designproblems (of which the above problem
is a special case), and give algorithms with poly-logarithmic
competitive ratio for problems in this framework (and hence
for this problem). Abstractly, given a problem like the one
above, the solution is a multicommodity flow producing a
“load” on each edge ofLe = `(f1(e), f2(e), . . . , fk(e)),
and the total cost is given by an “aggregation function”
agg(Le1

, . . . , Lem
) of the loads of all edges. Our goal is to

develop oblivious algorithms that approximately minimize
the total cost of the routing, knowing the aggregation func-
tion agg, butmerely knowing that̀ lies in some classC, and
having no other information about the current state of the
network. Hence we want algorithms that are simultaneously
“function-oblivious” as well as “traffic-oblivious”.

The aggregation functions we consider are themax and
∑

objective functions, which correspond to the well-known
measures ofcongestionand total costof a network; in this
paper, we prove the following:

• If the aggregation function is
∑

, we give an oblivious
algorithm with O(log2 n) competitive ratio whenever
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the load functioǹ is in the class ofmonotone sub-
additive functions. (Recall that our algorithm is also
“function-oblivious”; it works whenever each edge has
a load functioǹ in the class.)

• For the case when the aggregation function ismax,
we give an oblivious algorithm withO(log2 n log log n)
competitive ratio, when the load function` is a norm;
we also show that such a competitive ratio is not possi-
ble for general sub-additive functions.

These are the first such general results about oblivious algo-
rithms for network design problems, and we hope the ideas
and techniques will lead to more and improved results in this
area.

1 Introduction

In a general network design problem, we are given a graph
G = (V, E) with |V | = n nodes and a set ofk source-target
pairs(si, ti), for 1 ≤ i ≤ k, called thecommodities: a feasi-
ble solution is to build a network capable of simultaneously
delivering some required flow amountdi from each source
si to its corresponding sinkti. The goal in many of these
problems is to design a network of minimum cost that meets
these requirements.

The notion of cost can be a fairly variable one, with
different cost measures arising in different contexts: e.g.,
one can think of the cost to be the total amount of flow in
the system, or perhaps the average latency, or perhaps the
congestion, or one of several other possibilities. In this paper,
we present an abstract cost model in the following way: we
are given aload function`: for any edge, iffi(e) is the
amount of commodityi sent along the edgee, then

loadL(e) = `(f1(e), f2(e), . . . , fk(e)). (1.1)

(As a minor aside, each edge can have a “weight”we as well,
and then the load can be scaled thus:Le(e) = weL(e);
however, for simplicity, we will assume that allwe = 1.)
The total cost of the entire flow is given by anaggregation
functionagg : R

|E| → R, which takes the load of the various
edges as input, and outputs the “cost” of the entire flowf ;
i.e.,

cost(f) = agg(L(e1), L(e2), . . . , L(em)). (1.2)



By instantiating the load and aggregation functions differ-
ently, we can give rise to many different problems that arise
in traffic routing, and in telephone and computer networks.
For instance, the simplest form of the load function is when
L(e) = `(f1(e), . . . , fk(e)) =

∑

fi(e); simply the total
flow passing through an edgee. Other important variants
are the cases where the load is aconvexfunction of the total
passing flow (in the context of the latency of traffic networks,
e.g., see [35]), or a concavefunction of the total passing
flow (in the context of buy-at-bulk or rent-or-buy network
design, e.g., see [4, 36]), and more generally amonotone
sub-additivefunction of the passing flow.1 Typical aggre-
gation functions we consider are themax and

∑

operators,
which correspond to thecongestionand thetotal costof the
network.

In this paper, we initiate the study ofoblivious algo-
rithms for network design problems. Loosely, we want to
develop algorithms where a demand pair{si, ti} should de-
cide how to send thedi amount of flow knowing only some
information about the edge-load and aggregation functions
on the edges, while having no information about which other
demand pairs are in the system. Ideally, we would like the
algorithms to not even know the precise details of the load
functions, but just some defining characteristics; e.g., ifeach
demand-pair just knew that the load function` is some fixed
but unknown concave function, what could it do? (A non-
oblivious version of this problem was studied by Goel and
Estrin [17] for single-sink network design.) Such algorithms
that base their routing decisions only on local (and partial)
knowledge can naturally be implemented efficiently in dis-
tributed environments.

As a simple example, if we know that each`(~f(e)) =
∑

e fi(e), and the aggregation function is also the sum, then
each pair choosing a shortestsi-ti path (oblivious of the
other pairs) is the optimal algorithm. Now if we change the
load function to bè (~f(e)) = 1(

P

i
fi(e)>0) while keeping

agg =
∑

, then we get anoblivious Steiner forest problem,
for which algorithms were known only for the Steinertree
case by Jia et al. [28]. (We will give an algorithm with an
improved bound, which also extends for theforestcase.) On
the other hand, if we keepL(e) to be the total flow one, but
instead set the aggregation functionagg = max, we get the
low-congestion oblivious routingproblem; originally studied
by Valiant and Brebner [38], polylogarithmic competitive
algorithms for this problem for general graphs were given
only recently by Räcke [34]. These examples show that as
we alter the load and aggregation functions, the resulting
problems may exhibit very differing behaviors and levels of
hardness.

The focus of the current paper is to develop a general
framework for oblivious routing algorithms for network de-

1The load functioǹ is sub-additive if̀ (~f) + `(~f ′) ≥ `(~f + ~f ′)

sign problems: as mentioned above, we aim to minimize the
total cost, which naturally depends on the load and aggrega-
tion functions. We mainly consider undirected networks, for
the cases when the aggregation functionagg is eithermax or
∑

. Our main results will be for cases when the load func-
tion `(~f(e)) is either a monotone sub-additive function, or
a norm.2 Towards the end of the paper, we mention some
results regarding directed graphs, convex load functions,and
the non-uniform case (where the load function`e differs for
different edges).

1.1 Our Results. In this paper, we present oblivious al-
gorithms for two broad classes of network design problems;
both of these algorithms have poly-logarithmic competitive
ratios.

The “Total-Load” aggregation function. We first consider
the case when the aggregation functionagg is the “sum”
function. For this case, our main result is the following:

THEOREM 1.1. For the case whereagg =
∑

, there is
an oblivious routing algorithm whose competitive ratio is
O(log2 n) when the edge load functioǹ(f1, f2, . . . , fk) is
monotonically increasing and sub-additive. In fact, for any
pair {u, v}, we can ensure that all theu-v flow is sent along
a single path.

Note that this result implies, among other things, an
O(log2 n) competitive algorithm for theoblivious Steiner
network designproblem, where the terminal pairs{si, ti}
arrive online and must be connected using a pre-determined
path. This result can be viewed as an extension of results of
Jia et al. [28] for the so-calledUniversal Steiner Treeprob-
lem, which we discuss at length inSection 1.2. In fact, the
same algorithm also works for all load functions` which are
concave, thus extending the results of Goel and Estrin [17] to
the multicommodity (and traffic-oblivious) case. (Goel and
Estrin considered the single-source concave-cost problem,
for which they gave anO(log n)-approximation algorithm;
their algorithm was not online.)

At a high level, our main proof technique is to use “tree-
covers”: a family ofO(log n) trees such that each pair of
vertices in the graph has a tree in this family that maintains
distances well between them. By itself, this idea does not
work: we have to carefully construct such a “useful” tree-
cover so that we can claim that a high cost on the trees
implies a high cost on the original graph as well; i.e., we
need to preserve lower bounds. To this end, we rely on the
construction of Fakcharoenphol et al. [15], as well as some
ideas used by Chan et al. [10] to create “useful” tree covers
from their randomized constructions.

2The load function is a norm if it is monotone, sub-additive and if
`(α~f) = α`(~f).



The “Congestion” Aggregation function. We then go on
to consider the oblivious network design whenagg = max;
i.e., we are looking at the edge with the highest loadL(e).
For this case, we can prove the following result.

THEOREM 1.2. For the case whereagg = max, there
is an oblivious routing algorithm whose competitive ra-
tio is O(log2 n log log n) whenever the edge load function
`(f1, f2, . . . , fk) is a norm.

Note thatTheorem 1.2generalizes the oblivious routing re-
sult of Räcke [34] to a much broader class of load func-
tions ` than justL(e) =

∑

i fi(e). The main technique
we use to prove this result is to generalize the hierarchi-
cal decomposition tree approach of Räcke [34], which was
subsequently improved by Harrelson et al. [25] to obtain an
O(log2 n log log n) competitive ratio for the case ofL(e) =
∑

i fi(e).
In addition, we show that there is a sub-additive function

for which the competitive ratio is at leastn1/4, implying
that we cannot extendTheorem 1.2to handle arbitrary sub-
additive functions (as inTheorem 1.1).

Other Results.
Finally, we consider the case of convex load functions in

directed/undirected graphs and provide several lower bounds
in this case (though obtaining a polylogarithmic upper bound
remains an open problem).

We end the paper with several interesting open prob-
lems.

1.1.1 A Note on Randomness and Tree Distributions.
A natural question is whether the results for the case of
agg =

∑

(i.e., for the total load objective function) can be
obtained by using standard techniques such as distributions
over trees [6, 15]. The reason why these techniques do not
give our results is twofold. Firstly, to use those results, the
demand pairs need to have some access to a shared source of
randomness so that two different demand pairs can use the
same random tree to make their decisions, whereas we de-
mand that our algorithms be oblivious of the current state of
the system, and have no such shared randomness. Secondly,
note that the oblivious strategy in this case is a single path
that the pair uses to connect between themselves, and once
these paths have been fixed, there is no more randomness
in the system. Hence, even if the adversary were to choose
the load functioǹ and the demand pairsafter looking at the
paths given by our algorithm, he would not be able to obtain
a competitive ratio worse than our guarantees. This is not
so when we use distributions over trees in the standard way.
(Formally, as in Goel and Estrin [17], we give a guarantee
on theEour coinsmaxinstances[competitive ratio] instead of the
usualmaxinstancesEour coins[competitive ratio].)

1.2 Related Work. Network design problems with con-
vex, concave, monotone sub-additive and more general edge
load functions often arise in practice, and have been consid-
ered extensively in the past literature. There have been nu-
merous approximation algorithms results dealing withcon-
caveload functions on the edges, trying to modeleconomies
of scale, a phenomena that has come to be known asbuy-at-
bulk: a partial list includes [4, 7, 36, 29, 18, 19, 33, 37, 30,
22, 21, 16, 11]; some recent hardness results have appeared
in [2, 13]. While most of these papers consider off-line prob-
lems with centralized control, and the aim of this work is to
be online and distributed, there are some other conceptual re-
lations between our work. Karger and Minkoff [29] consider
the problem where each vertex obliviously chooses a fixed
path to the root; however, they look at approximating the ex-
pected cost incurred, and not the competitive ratio. (These
results are related to the recently growing body ofstochastic
network design[27, 23, 14] as well, but all these results re-
strict their attention to the expected costs as well.) The work
of Goel and Estrin [17] gave an algorithm for off-line single-
sink network design that was function-oblivious for the class
of concave-cost functions; our results extend their results to
online problems (where the adversary can choose both the
demand set and the function).

Our work closely follows the recent work of Jia, Lin,
Noubir, Rajaraman, and Sundaram [28] on universal approx-
imation. Their paper gives algorithms for the Universal TSP
and Universal Steiner tree problems; loosely, a universal so-
lution is a tour (or Steiner tree) such that the subtour (or sub-
tree) induced by the actual demands is a good solution to
the actual demands themselves. Our model is cosmetically
different, since we do not require oblivious actions to be “in-
duced” by some global solution (and hence we use a different
name for our model); however, our results are very close in
spirit to theirs.

As mentioned above, our work is related to the substan-
tial work on approximating metrics by distributions over tree
metrics [6, 7, 15]. While our results do not follow directly
from these results (see the discussion inSection 1.1), they
form an important component of our solution. Indeed, the
approach of Fakcharoenphol et al., and its use by Chan et
al. [10] provide a central inspiration to the techniques of this
paper.

Congestion. The notion of “congestion” as the total cost
of the system has also been well-studied. Special cases of
networks are parallel links between two nodes, which cor-
respond to scheduling problems, and the notion of conges-
tion on these instances corresponds to themakespanof the
job assignment. The idea of selecting routing pathsobliv-
ious to the traffic in the network was initially intensively
studied for special network topologies: Valiant and Brebner
[38] initiated this study, with oblivious routing algorithms
on the hypercube. Räcke [34] showed there is an oblivi-



ous routing algorithm with polylogarithmic competitive ra-
tio (w.r.t. edge-congestion) for any undirected graph. Subse-
quent work [5, 3, 9, 25] improved on these results, showing
that these routings can be found in polynomial time, and that
the competitive ratio can be improved toO(log2 n log log n).
These results, as well as the hierarchical tree construction
used to prove many of these results, have proved useful in
many other contexts; see, e.g. [1, 12, 32]).

1.3 Basic Definitions.We represent the network as an
unweighted and (unless otherwise stated) undirected graph
G = (V, E). We restrict the attention in this writeup to un-
weighted graphs in order to present our results as clearly
and simple as possible; all the results still hold if edges
carry a (polynomially bounded) weight, which could be in-
terpreted either as theedge lengthor as theedge capac-
ity, depending on the problem. (In fact, most of our re-
sults hold for arbitrary positive edge-weights, not only those
which are polynomially-bounded; however, in this case, the
construction of the oblivious routing scheme in the scenario
agg = max may not be polynomial time any more.)

For the networkG we are given a set ofk source-target
pairs (si, ti), 1 ≤ i ≤ k. An oblivious routing scheme
for G specifies, for each pair(si, ti), a unit flow fromsi

to ti. This flow determines how the demand fromsi to ti
is routed in the network. For an oblivious algorithmOBL
and an optimum algorithmOPT we useOBLagg(`, D) and
OPTagg(`, D), respectively, to denote the cost produced by
the algorithm for aggregation functionagg, load-function`
and demand-vectorD. For a given classC of load functions
`, the quantity

max
`∈C

max
D

{

OBLagg(`, D)

OPTagg(`, D)

}

is the competitive ratioof the oblivious routing algorithm
with respect to load-functions fromC. Note that the term
“oblivious” signifies that the routing path chosen by the
algorithm is independent both of the the load function`, and
also of the set of demandsD. Recall thatagg will be either
the sum (denoted by

∑

), or the maximum (denoted bymax);
we will drop the subscriptagg if it is clear from the context.

Finally, for a demand vectorD and a setI of commodi-
ties, we use the notationD|I to denote the demand vector
in which all entries representing commodites not inI have
been set to0.

2 Network Design to Minimize Total Load

In this section we analyze oblivious routing algorithms for
the case that the aggregation functionagg is the sum of the
link loads, and the load functioǹis a sub-additive function.
(For some cases, we can obtain better results when` is
a norm.) The main result of this section is the following
theorem.

THEOREM 2.1. Let the aggregation functionagg : R
|E| →

R be the sum. Then the following results hold.

• there is an integral oblivious routing scheme that for
any sub-additive load functioǹ, and for any demand-
matrix D, incurs a cost that is only a factorO(log2 n)
times the optimum.

• There is a fractional oblivious routing scheme that
achieves a competitive ratio ofO(log n) for any de-
mand matrixD provided the load-functioǹ is a norm.

A natural approach to obtain these results would be to try and
use the well-known techniques for approximating metrics by
distributions over tree metrics [6, 15]; while these techniques
do not directly give us the results (as noted inSection 1.1.1),
our oblivious routing algorithms are obtained by natural
but subtle extensions of those tesults. In particular, we
extensively use the scheme of Fakcharoenphol, Rao and
Talwar [15] (which we call the FRT-scheme in the rest of
our discussions).

2.1 Definitions and Preliminaries. Let us introduce some
notation about hierarchical decompositions, and give a brief
overview over the FRT-scheme, and its properties that are
relavant to our routing algorithms.

2.1.1 Decompositions and Padding.

DEFINITION 2.1. (∆-partition) Given ∆ > 0, a ∆-
partition P of a graphG = (V, E) is a partition of the
vertex setV into clustersV1, V2, . . . such that each induced
sub-graphG[V1] has diameter at most∆.

DEFINITION 2.2. (Hierarchical Decomposition) A hi-
erarchical decompositionP of the graphG = (V, E)
is a sequence of partitionsP0, . . . , Ph (with h =
dlog2(diam(G))e) such that

1. The partitionPh has one clusterV , which is the entire
node set ofG.

2. The partitionPi is a 2i-partition, i.e., a partition in
which each cluster has diameter at most2i.

3. Pi is a refinementof Pi+1, i.e., each cluster inPi is
completely contained in some cluster ofPi+1.

The following definition will be crucial for our analysis:

DEFINITION 2.3. (α-padded nodes)Given a hierarchical
decompositionP = (Pi)

h
i=0, a nodev ∈ V is α-padded

in P if for all i ∈ [0, h], the ballB(v, α · 2i) is contained in
some cluster ofPi.

Note that the standard definitions of padding (e.g., in [20])
usually refer to padding with respect to a single partition:



indeed, a node is defined to be padded if it is far away from
the boundary of its cluster in the partition. In contrast, here
we require that a nodev is far from the boundary of its
cluster ateverylevel of the decomposition (i.e., forΘ(log n)
partitions), which is a much stronger requirement.

DEFINITION 2.4. An α-padded probabilistic hierarchical
decompositionis a probability distribution over hierarchical
decompositions such that for any nodev ∈ V

Pr[v is α-padded inP ] ≥ 3

4
,

whereP denotes the randomly chosen hierarchical decom-
position.

Note that the precise value3/4 of the fraction is in no way
significant: any constant value greater than1/2 would serve
for our purposes.

2.1.2 The FRT Cutting Scheme.The FRT scheme [15] is
a randomized algorithm that outputs a (random) hierarchical
decomposition of an input graphG, i.e., it gives a probability
distribution over hierarchical decompositions. The algorithm
works as follows: suppose we are given a graphG = (V, E)
with unit minimum distance, and diameterdiam(G). We
pick a random permutationπ on the vertices ofG, and also
choose a random valueβ uniformly from the interval[12 , 1).
For eachi, we define the “radius”γi = β × 2i−1, and hence
γi is chosen uniformly from the interval[2i−2, 2i−1].

Given the random choices of the permutationπ and
scaling parameterβ, the construction of the hierarchical
decomposition is inductively defined. We define the partition
Ph to contain all the verticesV . To obtain the partitionPi

from Pi+1, consider the vertexu, and letCu be the cluster
containingu in Pi+1. Now, the nodeu is said to beassigned
to the first vertexv (according to permutationπ) that lies in
the setCu∩B(u, γi). Finally, for each vertex inV , the set of
vertices that are assigned to it in the above set form a cluster
of Pi.

Let us note that this indeed defines a hierarchical decom-
position, as inDefinition 2.2: by construction, each cluster
of Pi lies completely within some cluster inPi+1. Further-
more, if nodesx andy lie in some cluster inPi, they are
assigned to the same nodev, and hence are at distance at
mostγi ≤ 2i−1 from v; by the triangle inequality, they are
at distance at most2γi = 2i from each other.

LEMMA 2.1. Given any graphG, the FRT-scheme defines
an α-padded probabilistic hierarchical decomposition with
α = Ω( 1

log n ).

Proof. Since the FRT scheme outputs a random hierarchi-
cal decomposition, it suffices to show that each node is
Ω(1/ logn)-padded with probability3/4. Hence, let us an-
alyze the probability that the random level-i partition of the

FRT scheme cuts a ballB(v, α · 2i) with radiusα · 2i around
some nodev ∈ V . The analysis is very similar to that in [15],
and is given here for completeness. We introduce the fol-
lowing notation: we call a nodeu a protecting nodefor ball
B(v, α2i) and (random) radiusγi if γi ≥ d(u, v)+α2i. Sim-
ilarly, we callu a cutting nodefor ball B(v, α2i) and radius
γi if

d(u, v) − α2i < γi < d(u, v) + α2i .

We say a nodefirst cutsthe ball if it is a cutting node and
all other cutting nodes and protecting nodes appear afteru in
the permutation.

Note that the definition of cutting nodes is somewhat
pessimistic, in the sense that a cutting node for radiusγi

may not actually end up cutting the ballB(v, α2i) in the
FRT scheme; indeed, the ballsB(u, γi) andB(v, α2i) may
turn out to be disjoint, orB(v, α2i) may be contained in
B(u, γi). However, if the ballB(v, α2i) is indeed cut, then
there must exist a nodeu that first cuts according to the above
definition. In this case, two events must happen: (a) the
radiusγi ∈ [d(u, v) − α2i, d(u, v) + α2i], and (b) all nodes
that are closer tov than u (which would all either cut or
protect the ball) appear afteru in the permutationπ. The
first event happens with probability(2α2i)/2i−2 = 8α since
γi is chosen uniformly from the interval[2i−2, 2i−1] which
has length2i−2. The second event occurs with probability1

s
if u is thesth-closest node tov.

Furthermore, a nodeu whose distance fromv is greater
than2i−1 + α2i = (1 + 2α)2i−1, or whose distance fromv
is less than2i−2 − α2i = (1 − 4α)2i−2 cannot cut the ball
at all. This gives the following bound on the probability that
the ballB(v, α2i) aroundv is cut on leveli.

Pr
[

B(v,α2i) is cut on leveli
]

≤ Pr[∃ a nodeu that first cuts the ball]

≤
∑

u
Pr[u cuts the ball first]

≤ 8α

|B(v,(1+2α)2i−1)|
∑

s=|B(v,(1−4α)2i−2)|

1

s

Now, we can estimate the probability that any of the(α2i)-
balls aroundv is cut in the respective level.

Pr
[

∃ i such thatB(v, α2i) is cut at leveli
]

≤ 8α
∑

i

|B(v,(1+2α)2i−1)|
∑

s=|B(v,(1−4α)2i−2)|

1

s

(2.3)

We say a nodeu contributes to the above sum for leveli
if (1 − 4α)2i−2 ≤ d(u, v) < (1 + 2α)2i−1; in this case,
its contribution is 1

s , if u is the s-closest node tox. We
show that a node only contributes to a constant number of
levels; this will imply that the probability in (2.3) is at most



O(α log n), which will prove the result. Indeed, supposeu
contributes to the sum for levelsi andi′ with i > i′. Then
(1 − 4α)2i−2 ≤ d(u, v) ≤ (1 + 2α)2i′−1, and ifα < 1/4,
then i < i′ + 1 + log 1+2α

1−4α . Now, choosingα ≤ 1
8 gives

i < i′ + 3, and hence the nodeu can only contribute to at
most3 different levels; this implies that

Pr
[

∃ i such thatB(v, α2i) is cut at leveli
]

≤ 24α ·
n

∑

s=1

1

s
≤ O(α log n) .

We can chooseα = Ω( 1
log n ) such that the above probability

is less than 1/4. This finishes the proof of the lemma. �

Before we end, note that each hierarchical decompo-
sition P can be associated with adecomposition treeTP ,
whose vertices correspond to the clusters in the various de-
compositions ofP , and whose edges connect clustersC ∈
Pi andC′ ∈ Pi−1 iff C′ ⊂ C. (As an aside, if we assign
a length of2i to such edges, we get back the same HSTs
that were given in [15].) Given this correspondence, we will
move between hierarchical decompositions and their decom-
position trees in the rest of the discussion.

2.2 The Well-Padded Tree Cover.We construct atree
cover of the graph in the following way: we takeM =
O(log n) samples from the distribution ofLemma 2.1, and
let T denote the decomposition trees in this sample. With
high probability, the setT is a goodtree-coverof G: i.e., for
any pair of verticesx, y ∈ V , there is a treeTi ∈ T with
dTi

(x, y) ≤ O(log n) d(x, y). By itself, this does not suffice
for our purposes; we need the following stronger property:

Given a parameterz ∈ {1, logn}, for every pair
of verticess, t ∈ V , there must exist at leastz
decomposition trees inT such that boths and
t areα-padded in the corresponding hierarchical
decomposition.

We will call this family T to be awell-padded tree cover.
The proof of the following theorem is standard, and is de-
ferred to the full version of the paper.

THEOREM 2.2. A set of O(log n) independent samples
drawn from the distribution ofLemma 2.1satisfies the prop-
erty above with high probability.

Moreover, the above randomized tree cover construc-
tion can be made deterministic by using standard de-
randomization techniques. A detailed description is deferred
to a full version of the paper.

2.3 The Routing Algorithm. Given a well-padded tree
coverT constructed in the previous section, note that each
treeT ∈ T gives us a routing scheme forG in the following

way: for every tree nodevt ∈ T , we choose a graph node
v ∈ Cvt

, whereCvt
denotes the cluster corresponding tovt.

We call the nodev ∈ V thenode that simulatesvt. For every
edge(ut, vt) in T we connect the graph nodes simulatingut

andvt via some shortest path inG. Now, given any pair of
nodesx, y ∈ V and a treeT ∈ T , the routing-pathPT (x, y)
between them is obtained by first determining all tree edges
on the path from{x} to {y} in T (recall that the clusters{x}
and{y} are leaf nodes inT ) and then concatenating the paths
that correspond to these edges. We call this pathPT (x, y) the
x-y path for treeT .

Finally, we can define our oblivious routing algorithm.
Given any source-target pair(s, t) ∈ V × V , we mark all
treesT ∈ T such thats andt are bothα-padded inT ; by
the above property, there are at leastz such trees inT . We
now selectz of these trees arbitrarily, and route a flow of
1/z along thes-t path for each treeT among thesez chosen
selected trees, thus giving us a unit flow betweens and t.
Note for the casez = 1, this flow is integral—i.e., we have
a single path betweens andt. In the next section, we show
that the oblivious strategy (with the parameterz set to be1,
or to log n respectively) gives the performances claimed in
the two parts ofTheorem 2.1.

2.4 Analysis of the Oblivious Scheme.We first give an
upper bound on the cost of the oblivious routing algorithm on
a fixed treeT ∈ T . We can view this cost as being incurred
by the paths that simulate the edges of the tree. Let for a
fixed treeT ∈ T , vt denote a level-l node of this tree, and let
pt denote the parent ofvt. Moreover, letv andp denote the
graph nodes inG that simulatevt andpt, respectively. We
first analyze the costcost(vt) for sending flow fromv to p in
the graph. Letf i

obl(vt) denote the commodityi flow sent by
the oblivious routing algorithm along this tree edge(vt, pt)
(and hence along the path simulating it). LetIt denote the
set of commoditiesi for which f i

obl(vt) > 0. (In this case,
f i
obl(vt) is equal to zero ifi /∈ It, and equal to1z Di if i ∈ It,

since a1
z -fraction of the total flow is sent along any path).

We also have that

costobl(vt) = `(f1
obl(vt), . . . , f

k
obl(vt)) · 2l+1 ,

since thev-p path emulating the edge(vt, pt) has length at
most2l+1.

The total costOBLT (`, D) of the oblivious algorithm
for treeT can be calculated by summing the above term first
over all levell nodes, and then over all levels in the tree.
This gives

OBLT (`, D) ≤
∑

l

∑

nodesvt

on levell

`(f1
obl(vt), . . . , f

k
obl(vt)) · 2l+1

=
∑

l

∑

nodesvt

on levell

`(1/z · D|It
) · 2l+1 .

(2.4)



We now give a similar lower bound on the cost of an opti-
mum solution.

CONDITION 2.1.

OPT(`, D) ≥ α

4
·
∑

l

∑

nodesvt

on levell

`(D|It
) · 2l

Proof. Fix a tree T . We partition the edges ofG into
O(log n) nearly disjointclasses, i.e. an edge will belong
to at most two classes and there will be one class for each
level of the tree. Then we show that an optimum algorithm
induces cost at least

α

2
·

∑

nodesvt
on levell

`(D|It
) · 2l (2.5)

on edges in classl. This then will yield the desired bound by
summing over all levels.

The assignment of edges to classes is as follows. We say
an edge is in class̀(meaning that it counts to thel-th level)
if its distance to the nearest well-padded node falls into the
interval [bα2l−1c, bα2lc].3 Note that by this definition each
graph edge belongs to at most two different classes

Now, fix a level l. The hierarchical decomposition
corresponding toT , partitions the nodes ofG into different
clusters on this level and these clusters correspond to the
level l nodesvt. By the definition of levell edges it follows
that for such an edge both endpoints must be contained in
some clusterCvt

, which means that the clusters partition the
level l edges into disjoint sets.

Fix one of the levell nodesvt. Recall thatIt is the
set of demands for which the oblivious routing algorithm
sends traffic between nodevt and its parentpt in the tree.
For a commodityi this only happens if the clusterCvt

that
corresponds to tree nodevt separates source and target of
this commodity, and moreover, the terminal node insideCvt

must be at distance at leastα2` from the boundary ofCvt

(this is because we only send flow along the trees in which
the commodity isα-padded). We now show that the cost of
the optimum solution on levell edges insideCvt

is large.
Let Ed denote the set of edges such that their distance

from the closest terminal insideCvt
is some fixed value

d ∈ [bα2l−1c, bα2lc] (Note that all these edges lie within
Cvt

and are in classl). These edges form a cut that separates
all commodities inIt. Let for i ∈ It ande ∈ Ed, f i

opt(e)
denote the flow along edgee for commodityi in the optimum
solution. The optimum cost for edges inEd is

∑

e∈Ed

`(f1
opt(e), . . . , f

k
opt(e))

≥ `(
∑

e∈Ed
f1
opt(e), . . . ,

∑

e∈Ed
fk
opt(e)) ,

(2.6)

3The distance of a graph edge(x, y) from a nodev is the distance from
v to the farther ofx andy.

because of sub-additivity. Since the edges inEd form a
cut separating the terminals for any commodityi ∈ It, the
optimum solution must send a corresponding flow ofDi

across the cutEd; hence, for eachd ∈ [bα2l−1c, bα2lc],
∑

e∈Ed
f i
opt(e) ≥ Di. UsingInequality 2.6, we get
∑

e∈Ed

`(f1
opt(e), . . . , f

k
opt(e)) ≥ `(D|It

) .

There arebα2lc−bα2l−1c+1 ≥ α2l−1 different choices for
d which gives a cost of at leastα2l−1·`(D|It

) on levell edges
insideCvt

. Summing over all nodesvt givesEquation 2.5
and summing over all edge-classesl gives the claim, because
an edge is contained in at most two classes. �

To finish the proof ofTheorem 2.1we have to compare
the upper bound on the oblivious cost (Equation 2.4) to the
lower bound on the optimum cost (Claim 2.1). First suppose
that z = 1, i.e., we have an integral routing scheme. Then
we get

OBLT (`, D) ≤
∑

l

∑

nodesvt

on levell

`(1/z · D|It
) · 2l+1

≤
∑

l

∑

nodesvt
on levell

`(D|It
) · 2l+1

≤ 8

α
OPT(`, D) .

Now the total cost of the oblivious algorithm is obtained
by summing the above expression over all treesT ∈ T . This
gives

OBL(`, D) ≤ |T | · 8

α
· OPT(`, D)

≤ O(log2 n) · OPT(`, D) ,

which proves the first part of the theorem. For the special
case when the load function is a norm, we can get an im-
provement of a factor ofz in Inequality 2.4thus:

OBLT (`, D) ≤
∑

l

∑

nodesvt
on levell

`(1/z · D|It
) · 2l+1

=
∑

l

∑

nodesvt

on levell

1/z · `(D|It
) · 2l+1

≤ 8

zα
OPT(`, D) .

For z = Θ(log n) and |T | = Θ(log n) this gives
OBL(`, D) ≤ O(log n) · OPT(`, D), which gives the sec-
ond statement of the theorem.

Note that theO(log2 n) guarantee for general sub-
additive functions comes from two different logarithmic
losses: there areO(log n) trees, and we are only guaranteed
a padding ofΩ(1/ logn). We do not know a lower bound of
worse thanΩ(log n) on the problem, and hence it would be
interesting to remove some of these factors.



3 Network design to minimize congestion

In this section we analyze oblivious routing algorithms for
the case that the aggregation functionagg is the maximum of
the link loads. The oblivious routing algorithms developed
in [34] and [25] for congestion minimization consider the
special case when the load function` is the sum, i.e., the load
of an edge is the total flow going through the edge. This also
gives a polylogarithmic competitive ratio if the load-function
is a concave function of the total flow along an edge:

OBSERVATION 3.1. There is an O(log2 n log log n)-
competitive oblivious routing algorithm when the ag-
gregation functionagg = max, and the load function
`(f1(e), . . . , fk(e)) = g(

∑

i fi(e)) whereg is some concave
function.

Note that such a load functioǹwhich is a concave func-
tion of the total flow through the edge has been widely used
in the network-design literature, since it models the effects
of “economies of scale”, where the marginal cost of using
bandwidth decreases as the utilization of the bandwidth in-
creases. In order to obtain an algorithm that works for more
general load functions, we have to revisit details from the
proof of the oblivious routing schemes of [34] and [25]. The
main result of this section is the following.

THEOREM 3.1. Let the aggregation functionagg : R
|E| →

R be the maximum load on any edge. Then there is an
oblivious routing algorithm which has a competitive ratio of
O(log2 n log log n) whenever the load functioǹis a norm.

Proof. The oblivious routing scheme of [34] and [25] are
based on a hierarchical decomposition tree (seeSection 2
for the definition of a hierarchical decomposition of a graph
and the corresponding tree). For every clusterC in the
hierarchy there is a distribution functionρC : C → [0, 1],
∑

v∈C ρC(v) = 1 over nodes ofC. An edge between a
level i clusterCi and a leveli + 1 cluster is simulated by
redistributing a flow that is distributed according to function
ρCi

into a distribution according toρCi+1
(or vice versa).

(Note that doing this redistribution along a path between leaf
nodes{x} and{y} generates a flow betweenx andy in the
graphG)

In [25] it was shown that it is possible to find a hierarchi-
cal decomposition and a distribution functionρCi

for every
cluster such that all edges(Ci, Ci+1) in the decomposition
tree can simultaneously send a flow of|ECi

| in the above
manner so that a graph edge only has to carry a total flow of
O(log2 n log log n) (ECi

denotes the set of edges that leave
clusterCi). We will call this the flow-solution of the hier-
archical decomposition in the following. We conclude the
theorem from the above property of the flow-solution. First
we give a lower bound on the cost of the optimum solution.

CONDITION 3.1. Let for a clusterC, IC denote the set of
commodities that are separated byC. Then

OPT(`, D) ≥ `(D|IC
)

|EC |
,

whereOPT(`, D) denotes the cost of the optimum solution.

Proof. Let ~fopt(e) denote the flow-vector along edgee in the
optimum solution. By definition of the aggregation function
we have

OPT(`, D) = max
e

{`(~fopt(e))}

≥ 1

|EC |
∑

e∈EC

`(~fopt(e)) ≥
1

|EC |`
(

∑

e∈EC

~fopt(e)
)

≥ 1

|EC |
`
(

(
∑

e∈EC

~fopt(e))|IC

)

≥ 1

|EC |
`(D|IC

) ,

where the last step follows since a commodity inIC is cut by
clusterC. �

Now, we give an upper bound on the cost generated
by the oblivious routing scheme of [25]. Let for an edge
e and a clusterC, αC(e) denote the flow along edgee in the
flow-solution for distributing flow fromρC to ρC′ , whereC′

denotes the parent ofC in the decomposition tree. The cost
of the oblivious algorithm on edgee is

costobl(e) ≤ `

(

αC(e)

|EC |
· D|IC

)

,

since αC(e)/|EC | is the fraction of the flow that leaves
clusterC and goes throughe. By the properties of a norm
we get

OBL(`, D) ≤ max
e

{

`
(

∑

C
αC(e)
|EC | · D|IC

)}

≤ max
e

{

∑

C
αC(e)
|EC | · `(D|IC

)
}

≤ max
e

{

∑

C αC(e) · OPT(`, D)
}

≤ O(log2 n log log n) · OPT(`, D) ,

where the last step follows since
∑

C αC(e) is the to-
tal flow along e in the flow-solution which is less than
O(log2 n log log n). �

3.1 Lower Bounds for General Load Functions.Our re-
sults suggest the following natural question: can we extend
the results ofTheorem 3.1to the case of sub-additive func-
tions, perhaps with an additional polylogarithmic loss in the
competitive ratio (as we did inSection 2)? The following
lemma shows that such a result is not possible: indeed, there
is a sub-additive function for which any oblivious routing al-
gorithm obtains a bad competitive ratioeven on the complete
graph.



LEMMA 3.1. For the caseagg = max, let the load-function
` be defined as̀ (f1(e), . . . , fk(e)) :=

∑k
i=1

√

fi(e).
Then any oblivious routing algorithm has competitive ratio
Ω( 4

√
n), even on the complete graph.

Intuitively, the reason for this bad competitive ratio is
that themax aggregation function favors solutions that split
flow between many different routing paths (especially in
the case when only a single commodity is active), whereas
the load functioǹ defined above favors aggregating flow
(especially if many commodities are active). The complete
proof is deferred to the full version.

4 Further Results

In this section we give an overview of further results in
our oblivious network design model and describe further
appliations. The proofs of these results will appear in the
full version of the paper.

4.1 Network design for convex load functions.Till now,
we have been considering situtations where the load func-
tions` on edges have been concave functions, norms, or most
generally, subadditive functions of the flows using the edge.
We now direct our attention to the oblivious network design
problem when the load functioǹis convexin the total flow
going throughe. We show that the competitive ratio in such
situations may be large even when the aggregation function
agg is the sum of the edge loads; however, these results are
for the case when the load-functions arenot uniform, i.e.,
different edges may have different load-functions.

LEMMA 4.1. If the aggregation-functionagg is the sum and
the load-functions are allowed to be non-uniform, there is a
network with load-functions̀e being polynomials of degree
at most2 for which any oblivious algorithm has a competi-
tive ratio ofΩ(n).

For the more restrictive case of directed graphs, one can
achieve a lower bound ofΩ(

√
n) even withuniform load-

functions` (i.e., the same load function for each edgee).

LEMMA 4.2. There are directed graphs with the same
quadratic load-function on each edge, for which the com-
petitive ratio of any oblivious routing scheme isΩ(

√
n).

Finally, there is also a lower bound for a quadratic load
function in undirected networks.

LEMMA 4.3. For a quadratic load-function there exist undi-
rected graphs in which the competitive ratio of any oblivious
routing algorithm isΩ(log3/2 n).

The proof of this lemma is contained in the final version of
this paper.

4.2 Improved bounds for small doubling dimension. If
the metric on the underlying graph has a small or even
constant doubling dimension (see [20] for a definition) we
can improve our results for the case that the aggregation
functionagg is the sum of the link-loads.

THEOREM 4.1. Let the aggregation-functionagg be the
sum. Given a graph in which the distance-metric between
node-pairs has doubling constantλ, there is an oblivious
routing algorithm with competitive ratioO(λO(1) · log n) for
the case of monotone, sub-additive load-functions. This al-
gorithm is integral.

4.3 Improved results for universal TSP. Jia et al. [28]
introduced the universal TSP-problem that asks for a per-
mutationπV over the vertex-setV of a graph such that for
any sub-setX ⊂ V the permutationπX induced onX by
πV is close to an optimum traveling salesman tour forX .
Jia et al. [28] gave algorithms with perfomance guarantee
O(log4 n) for this problem (i.e., the tour given onX by πV

is at most anO(log4 n) factor larger than an optimal tour for
X .)

Based on our well-padded tree cover we can prove the
following theorem.

THEOREM 4.2. There is anO(log2 n)-competitive algo-
rithm for the universal TSP-problem.

The above theorem improves on the result of Hajiaghayi
et al. [24] who show anO(log2 n) factor for planar networks.
The result has been obtained after the original sub-missionto
the SODA-conference.

5 Open problems

An obvious open problem is, of course, whether the com-
petitive ratios of our algorithms can be improved. For both
scenarios the best lower bounds on the competitive ratio are
Ω(log n). For the total load scenario this follows from a
lower bound on online Steiner tree by Imase and Waxman
[26], and for the congestion scenario the bound was inde-
pendently proved in [31] and [8].

Another interesting direction for further research is
the problem of designing oblivious algorithms for other
aggregation-functions and other load-functions than the ones
we discussed in this paper. Of particular interest is e.g. the
model that is obtained by choosing the aggregation-function
to be the sum and the load-function to be the square of the
total flow going along an edge. This cost-model corresponds
to minimizing average latency in a network where the links
have linear latency-functions. In [35] this cost-model was
considered in a game-theoretic setting and it is a challenging
task to also find oblivious algorithms for it.
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