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Abstract

We study the problem of routing in doubling metrics, and
show how to perform hierarchical routing in such metrics
with small stretch and compact routing tables (i.e., with
small amount of routing information stored at each vertex).
We say that a metric(X, d) hasdoubling dimensiondim(X)
at mostα if every set of diameterD can be covered by2α sets
of diameterD/2. (A doubling metricis one whose doubling
dimensiondim(X) is a constant.) We show how to perform
(1 + τ)-stretch routing on metrics for any0 < τ ≤ 1 with
routing tables of size at most(α/τ)O(α) log2 ∆ bits with
only (α/τ)O(α) log ∆ entries, where∆ is the diameter of
the graph; hence the number of routing table entries is just
τ−O(1) log ∆ for doubling metrics. These results extend and
improve on those of Talwar (2004).

We also give better constructions of sparsespannersfor
doubling metrics than those obtained from the routing tables
above; forτ > 0, we give algorithms to construct(1 + τ)-
stretch spanners for a metric(X, d) with maximum degree at
most(2 + 1/τ)O(dim(X)), matching the results of Das et al.
for Euclidean metrics.

1 Introduction

Thedoubling dimensionof a metric space(X, d) is the least
valueα such that each ball of radiusR can be covered by at
most2α balls of radiusR/2 [13]. For anyα ∈ Z, the space
R

α under any of thèp norms has doubling dimensionΘ(α),
and hence this doubling dimension extends the standard
notion of geometric dimension; moreover, it can be seen as a
way to parameterize the inherent “complexity” of metrics.

In this paper, we study the problem of designing routing
algorithms for networks whose structure is parameterized by
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the doubling dimensiondim(X) = α; we show that one
can route along paths with stretch(1 + τ) with small rout-
ing tables—with onlyO((α/τ)O(α) log ∆) entries, where∆
is the diameter of the network. Each entry stores at most
O(log n + log ∆) bits, and hence for doubling metrics—
whereα is a constant—and anyτ ≤ 1, we have(1 + τ)-
stretch routing with onlyO(log2 ∆) bits of routing informa-
tion at each node.

The idea of placing restrictions on the growth rate of net-
works to bound their “intrinsic complexity” is by no means
novel; it has been around for a long time (see, e.g., [18]),
and has recently been used in several contexts in the litera-
ture on object location in peer-to-peer networks [23, 17, 16].
While these papers used definitions and restrictions that dif-
fer slightly from each other, we note that our results hold
in those models as well. Our results extend those of Tal-
war [25], whose routing schemes for metrics withdim(X) =
α require local routing information of≈ O(logα ∆) bits.
Formally, we have the following main result.

THEOREM 1.1. Given any networkG inducing a metric
(X, d) with dim(X) = α and anyτ > 0, there is a routing
scheme onG that achieves(1 + τ)-stretch and where each
node stores only(α

τ )O(α) log2 ∆ bits of routing information.

The proof of the theorem proceeds along familiar lines;
we construct a set of hierarchical decompositions (HDs)
of the metric (X, d), where each HD consists of a set
of successively finer partitions ofX with geometrically
decreasing diameters. Each node inX maintains a table
containing next hops to a small subset of clusters in these
partitions; to route a packet froms to t, we use the routing
table fors to pick some “small cluster”C in s’ table that
containst and send the packet to some nodex in C; a similar
process repeats at nodex ∈ C until the packet reachest. The
idea is to create routing tables which ensure that the distance
from x to t is much smaller than that froms to t, and hence
the detour taken in going froms to t is onlyτd(s, t). (Details
of routing schemes appear in Section 4.)

While this framework is well-known, the standard ways
to construct HDs are top-down methods which iteratively
refine partitions. These methods create long-range depen-
dencies which require us to buildO(log n) HDs in general;
in order to use the locality of the doubling metrics and get
away withÕ(α) HDs, we develop a bottom-up approach that
avoids these dependencies when building HDs. The analy-



sis of this process uses the Lovász Local Lemma (much as
in [19, 13]); details are given in Section 3.

Apart from the above result on low-stretch routing, the
proof of Theorem 1.1 can be used to infer the existence of
linear-sizedspannersfor doubling metrics, i.e., subgraphs
with onlyOτ,α(n) edges that maintain distances to be within
a factor of (1 + τ). We further give simpler and tighter
constructions of spanners, extending similar results of Das
et al. [7] for Euclidean metrics.

THEOREM 1.2. Every metric(X, d) has a(1 + τ)-spanner
H where the degree of each vertex is at most(2 +
1/τ)O(dim(X)); henceH has a linear number of edges for
any constantτ anddim(X).

1.1 Related Work Distributed packet routing protocols
have been widely studied in the theoretical computer science
community; see, e.g., [9, 10, 3, 21, 6, 22], or the survey by
Gavoille [11] on some of the issues and techniques. Note
that these results, however, are usually for general networks,
or for networks with some topological structure. By placing
restrictions on the doubling dimension, we are able to give
results which degrade gracefully as the “complexity” of the
metric increases. For example, it is known that any universal
routing algorithm with stretch less than3 requiressomenode
to store at leastΩ(n) routing information [12]; however,
these graphs generate metrics with largedim(X). Our
results thus allow one to circumvent these lower bounds for
metrics of “lower dimension”.

Packet routing in low dimensional networks has been
previously studied in Talwar [25], that gives algorithms that
require O(α( 6

τα)α(logα+2 ∆)) bits of information to be
stored per node in order to achieve(1 + τ)-stretch routing—
for constant stretchτ and doubling dimensionα. The
resulting dependence ofO(log2+α ∆) should be contrasted
with the dependence ofO(log2 ∆) bits of information in our
schemes. We should point out that his algorithms are based
on graph decomposition ideas with a top-down approach and
do not require the LLL to construct routing tables.

One of the papers that influence this work is that of
Kleinrock and Kamoun [18]. They describe a general hi-
erarchical clustering model on which our routing schemes
are based. They show that routing schemes based on a hier-
archical clustering model do not cause much increase in the
average path lengthfor networks that satisfy the following
two assumptions: (a) the diameter of any clusterS chosen
is bounded above byO(|S|ν) for some constantν ∈ [0, 1],
and (b) the average distance between nodes in the network
is Θ(nν). In contrast, we give bounds on the path stretch on
aper node-pairlevel using slightly different assumptions on
the network geometry.

Other papers on object location in peer-to-peer net-
works [23, 17, 16] have also used restrictions similar to [18]
on the growth rate of metrics; in particular, they consider

metrics where increasing the radius of any ball by a factor
of 2 causes the number of points in it to increase by at most
some constant factor2β. (Plaxton et al. [23] also consider
the lower boundon the growth.) Here the parameterβ can
be considered to be another notion of “dimension” for a met-
ric space. It can be shown thatdim(X) ≤ 4β [13, Prop. 1.2];
hence our results hold for such metrics as well. Our scheme
is also similar in spirit to a data-tracking scheme of Rajara-
man et al. [24], who use approximations by tree distributions
to obtain bounds on the stretch incurred.

Finally, sparse spanners have been studied widely,
having found applications in network algorithms (see,
e.g., [22]), since they allow us to store information about the
metric compactly. Our work extends the results of Arya et
al. [2] and Das et al. [7] who have show the existence of
(1 + τ)-spanners forRα with Oτ,α(n) edges. Independent
of our work, Har-Peled and Mendel [14] have also obtained,
among many other results, constructions of sparse spanners
for doubling metrics; they also give linear-time procedures
to find these constructions.

2 Definitions and Notation

Let the input metric be(X, d); this paper deals with finite
metrics with at least 2 points. We use standard terminology
from the theory of metric spaces; many definitions can be
found in [8] and [15]. Givenx ∈ X and r ≥ 0, we let
B(x, r) denote{x′ ∈ X | d(x, x′) ≤ r}, i.e., the ball of
radiusr aroundx. Given a subsetS ⊆ X , the distance of
x ∈ X to the setS is d(x, S) = min{d(x, x′) | x′ ∈ S}.

The doubling constantλX of a metric space(X, d) is
the smallest valueλ such that every ball inX can be covered
by λ balls of half the radius. Thedoubling dimensionof
X is then defined asdim(X) = log2 λX ; we use the letter
α to denotedim(X). A metric is calleddoubling when
its doubling dimension is a constant. A subsetY ⊆ X
is an r-net of X if (1) for every x, y ∈ Y, d(x, y) ≥ r
and (2)X ⊆ ∪y∈Y B(y, r). Such nets always exist for any
r > 0, and can be found using a greedy algorithm.

PROPOSITION2.1. (SEE, E.G.,[13]) If all pairwise dis-
tances in a setY ⊆ X are at leastr (e.g., whenY is an
r-net ofX), then for any pointx ∈ X and radiust, we have

that |B(x, t) ∩ Y | ≤ λ
dlog2

2t
r
e

X .

A cluster C in the metric(X, d) is just a subset of
points of the setX . The diameter of the clusterC is the
largest distance between points of the cluster. Each cluster is
associated with acenterx ∈ X (which may not lie inC) and
the radiusof the clusterC is the smallest valuer such that
the clusterC is contained inB(x, r).

DEFINITION 2.1. Given r > 0, an r-ball partition Π of
(X, d) is a partition ofX into clustersC1, C2, . . ., with each
clusterCi having a radius at mostr.



By scaling, let us assume that the smallest inter-point
distance inX is exactly1. Let ∆ denote the diameter of
the metric(X, d), and hence∆ is also the aspect ratio of the
metric. Defineρ = 256α + 1 andh =

⌈

logρ ∆
⌉

. Let us
defineηi = 1 + ρ + ρ2 + . . . + ρi < ρi+1/(ρ− 1); note that
ηi = ρ ηi−1 + 1. Let us fix aρi/2-net and denote withNi

for the metric(X, d), for every0 ≤ i ≤ h + 1.

2.1 Hierarchical Decompositions (HDs)We now give
a formal definition of ahierarchical decomposition(HD)
which is used throughout this paper and is the basic object
of our study. As noted below, such a decomposition can be
naturally associated with a decomposition tree that is used
for our hierarchical routing schemes.

DEFINITION 2.2. A ρ-hierarchical decompositionΠΠΠ (ρ-
HD) of the metric (X, d) is a sequence of partitions
Π0, . . . , Πh with h =

⌈

logρ ∆
⌉

such that:

1. The partitionΠh has one clusterX , the entire set.

2. (geometrically decreasing diameters)The partition
Πi is an ηi-ball partition. Since inter-point distances
are at least1, it implies thatΠ0 = {{x} : x ∈ X}; in
other words, each cluster inΠ0 is a singleton vertex.

3. (hierarchical) Πi is a refinement ofΠi+1 and each
cluster inΠi is contained within some cluster ofΠi+1.

Given such aρ-HD ΠΠΠ = (Πi)
h
i=0, the partitionΠi is called

the level-i partition ofΠΠΠ and clusters inΠi are thelevel-i
clusters. Note that these clusters have a radiusηi and hence
diameter≤ 2ηi. Furthermore, define thedegreedeg(ΠΠΠ) to
be the maximum number of level-i clusters contained in any
level-(i + 1) cluster inΠi+1, for all 0 ≤ i ≤ h− 1.

2.1.1 Hierarchical Decompositions and HSTsA hierar-
chical decomposition is alaminar familyof sets, where given
any two sets, they are either disjoint or one contains the other.
It is well known that such a familyF of sets overX can be
associated with a natural decomposition tree whose vertices
are sets inF and whose leaves are all the smallest sets in
the family (which are elements ofX , in this case). We can
use this to associate a so-called hierarchically well-separated
tree (also called an HST [4])TΠΠΠ with a hierarchical decom-
positionΠΠΠ; since each edge inTΠΠΠ connects someC ∈ Πi

andC′ ∈ Πi−1 with C′ ⊆ C, we associate alengthηi with
edge(C, C′). Given such a treeTΠΠΠ, we can (and indeed do)
talk about its level-i clusters with no ambiguity; these are
the same level-i clusters in the associatedΠi. Note that the
degree of vertices in this treeTΠΠΠ is bounded bydeg(ΠΠΠ) + 1.

2.2 Padded Probabilistic Ball-Partitions Recall that an
r-ball partitionΠ of (X, d) is a partition ofX into a set of
clustersC ⊆ X , each contained in a ballB(v, r) for some
v ∈ X . B(x, t) is cut in the partitionΠ if there is no cluster

C ∈ Π such thatB(x, t) ⊆ C. In general,B(x, t) is cutby a
setS ⊆ X if both S∩B(x, t) andB(x, t)\S are non-empty.

LetP be a collection of all possible partitions ofX , and
henceΠ ∈ P . Given a partitionΠ ∈ P andx ∈ X , let
CΠ(x) be the cluster ofΠ containingx.

DEFINITION 2.3. ([13]) An (r, ε)-padded probabilistic
ball-partitionof a metric(X, d) is a probability distribution
µ overP satisfying:

1. (bounded radius)EachΠ in the support ofµ is anr-
ball partition.

2. (padding) ∀x ∈ X , Prµ

[

d(x, X \ CΠ(x)) ≥ εr] ≥ 1
2 .

(This is called a padded probabilistic decomposition in [13].)
Each clusterC in every partitionΠ in the support of a
probabilistic ball-partitionµ has radius at mostr; and for
any x ∈ X , a randomr-ball partition Π drawn from the
distributionµ does not cutB(x, εr) (and henceB(x, εr) is
contained in clusterCΠ(x) ∈ Π) with probability≥ 1/2.

3 Padded Probabilistic Hierarchical Decompositions

In this section, we define a(ρ, ε)-padded probabilistic hierar-
chical decomposition (PPHD) of the metric(X, d), on which
the routing algorithm is based. A PPHD is a probability dis-
tribution over HDs that has a “probabilistic padding” prop-
erty similar to that in Definition 2.3. For any pair of nodes
s, t in X and any ball containing boths andt with a diame-
ter of≈ d(s, t), the PPHD ensures that this ball is contained
in a single cluster of radius only slightly (≈ α factor) larger
thand(s, t) at a suitable level with probability≥ 1

2 . Thus the
shortests-t path is contained entirely in this cluster of radius
not much more thand(s, t). This is the general intuition for
PPHDs and the starting point for the routing algorithm.

For our applications, we refine PPHDs so that they
consist of onlym = O(α log α) of HDs. We first give an
existence proof, using the Lovász Local Lemma (LLL), to
show that such decompositions exist in Section 3.1. We then
outline a randomized polynomial-time algorithm to find the
decompositions using Beck’s techniques [5] in Section 3.2.

The existence proof for the PPHDs has the following
outline. We first give a randomized algorithm to form a sin-
gle random hierarchical decompositionΠΠΠ, which proves the
existence of PPHDs, albeit with support over an exponen-
tial number of HDs. To reduce the size to something that
depends only onα, we have to use the locality property of
the metric space and the LLL. One significant complication
in the proof is that we cannot use the standard top-down de-
composition schemes to construct PPHDs, since they have
long-range correlations that preclude the application of the
LLL. Our solution to this problem is to build the decompo-
sition trees in a bottom-up fashion and to make sure that the
coarser partitions respect the cluster boundaries made in the
finer partitions.



3.1 Existence of PPHDsMotivated by the routing appli-
cation, we are interested in finding the following structure,
which we call a(ρ, ε)-padded probabilistic hierarchical de-
composition. This is a probability distributionµ over ρ-
hierarchical decompositions (as defined in Definition 2.2) so
that givenB(x, εr) with r ≈ ρi, if we choose a randomρ-
HD ΠΠΠ from µ and examine the partitionΠi in it, B(x, r) is
cut in this partitionΠi with probability at most12 .

DEFINITION 3.1. (PPHD) A (ρ, ε)-padded probabilistic
hierarchical decomposition(referred to as a(ρ, ε)-PPHD)
is a distributionµ overρ-hierarchical decompositions, such
that for any pointx ∈ X and any valuer s.t.ρi−1 ≤ r ≤ ρi,

PrΠΠΠ∈µ[B(x, εr) is cut inΠi] ≤
1
2 ,

where the randomρ-hierarchical decomposition chosen is
ΠΠΠ = (Πi)

h
i=0. Thedegreeof the PPHDµ is defined to be

deg(µ) = maxΠΠΠ∈µ deg(ΠΠΠ).

Note that the definition of a PPHD extends both the
idea of a padded probabilistic ball-partition and that of
HDs—we ask for a distribution over entire HDs, instead of
over ball-partitions at a certain scaler. However, having
picked a randomρ-HD ΠΠΠ = (Πi)

h
i=0 from this distribution,

we demand that balls of radius≈ ερi be cut with small
probability only in partitionΠi that is “at the correct distance
scale”. Our main theorem of this section is the following:

THEOREM 3.1. Given a metric(X, d), there exists a(ρ, ε)-
PPHD µ for (X, d) with ρ = O(α) andε = O(1/α). The
degreedeg(µ) of the PPHD is at mostαO(α). Furthermore,
there exists a distributionµm whose support is over only
m = O(α log α) HDs.

Since any hierarchical decompositionΠΠΠ can be associ-
ated with a treeTΠΠΠ (as mentioned in Section 2.1), the above
theorem can be viewed as guaranteeing a set ofm trees such
that the level-i clusters in half of these trees do not cut a
given ball of radius≈ ερi. This proves the existence of an
appropriatetree cover.

DEFINITION 3.2. A stretch-k Steiner tree cover for(X, d) is
a set of treesT = {T1, . . . , Tm} (with each treeTi possibly
containing Steiner points6∈ X , and edges having lengths),
where for everyx, x′ ∈ X , there exists a treeTi ∈ T for
(X, d) such that the (unique shortest) path inTi betweenx
andx′ has length at mostk d(x, x′).

LEMMA 3.1. Given a metric(X, d) with dim(X) = α,
there exists a stretch-O(ρ/ε) Steiner tree cover consisting of
O(α log α) trees, where each tree has degree at mostαO(α).

We omit the simple proof of the above lemma and the
description of how the Steiner points can be removed from
the trees without altering distances and degrees. We prove

Theorem 3.1 in the rest of this section. We first prove (in
Section 3.1.1) that one can obtain the result where the PPHD
µ has support over many HDs. We then use the Lovász Local
Lemma (in Section 3.1.2) to show that a PPHD distribution
µm with support over only a small number of HDs exists.

3.1.1 Padded Probabilistic Hierarchical Partitions If
we do not care about the number of HDs in the support of a
PPHD, the existence result of Theorem 3.1 has been proved
earlier [25] with better guarantees; the proof basically fol-
lows from the padded decompositions given in [13]. How-
ever, we now give another proof that introduces ideas that
are ultimately useful in obtaining a PPHD distribution whose
support is over a small number of HDs.

THEOREM 3.2. Given a metric(X, d), there exists a(ρ, ε)-
PPHD µ for (X, d) with ρ = O(α) andε = O(1/α), and
with degreedeg(µ) = αO(α). Furthermore, one can sample
fromµ in polynomial time.

Proof. We define a randomized process that builds a random
hierarchical decomposition tree in a bottom-up fashion, in-
stead of the usual top-down way. To build a HDΠΠΠ, we start
with (Π0 = {{x} : x ∈ X}) and perform an inductive step.
At any step, we are given a partial structure(Πi, . . . , Π0)
where for eachj ≤ i, the clusters inΠj−1 (which is an
ηj−1-ball partition) are contained within the clusters ofΠj .
We then build a new partitionΠi+1, with all clusters ofΠi

being contained within clusters ofΠi+1. We have to ensure
that clusters ofΠi+1 are contained in balls of radius at most
ηi+1 and that any ball of radiusεr for ρi ≤ r ≤ ρi+1 is cut in
Πi+1 with probability at most12 . This way, we end up with
a valid random HDΠΠΠ. The claimed probability distribution
µ is the one naturally generated by this algorithm. To cre-
ate the clusters ofΠi+1, we use a decomposition procedure
whose property is summarized in the following lemma.

LEMMA 3.2. Given a metric(X, d) with a Γ-ball partition
Π′ of X into clusters lying in balls of radius at mostΓ ≥ 1,
and a valueΛ ≥ 8Γ, there is a randomized algorithm to
create a(Λ + Γ)-ball partition Π′′ of X , where each cluster
of Π′ is contained in some cluster ofΠ′′, and for anyx ∈ X
and radius0 ≤ r ≤ Λ,

Pr[B(x, r) is cut inΠ′′] ≤
O(r + Γ)

Λ
α.

Proof. Note that we can assume thatΓ < Λ/cα andΛ ≥
α, since otherwise the lemma is trivially true. Using the
algorithmCUT-CLUSTERSgiven in Figure 3.1, we create a
partition ofY (and hence ofX); all distances are measured
according to the original distance functiond in X .

Let us defineBx = B(x, r). Note that ifBx is cut inΠ′′

due to some value ofL from v ∈ N (for the first time), then
L falls into the interval[d(v, x) − r − Γ, d(v, x) + r + Γ].



0. LetY ← X , p← cαΓ
Λ for constantc to be fixed later,

N be aΛ/2-net ofX .
1. Pick an arbitrary “root” vertexv ∈ N not picked before
2. Set the initial value of the “radius”L← Λ/2
3. Flip a coin with biasp
4. If the coin comes up heads, goto Step 11
5. If the coin comes up tails, incrementL by Γ
6. If L > Λ(1− 1/4α)

7. choose a valuêL from [0, Λ/(4α)] u.a.r.
8. round down̂L to the nearest multiple ofΓ
9. setL← Λ(1− 1/4α) + L̂
10. Else goto Step 3
11. Form a new clusterC′ in Π′′ containing all

clusters inΠ′ ∩ Y with centers lie inB(v, L)
12. Remove the vertices inC′ from Y
13. (Remark:C′ has radius at mostΛ + Γ)
14. If Y 6= ∅ goto Step 1
15. End

Figure 3.1:Algorithm CUT-CLUSTERS

Indeed, ifBx is cut in Π′′, there are at least two clusters
C′

1, C
′
2 ∈ Π′ such that they both cutBx, and B(v, L)

contains one of their centers but not both. Since both clusters
intersectBx, their centersc′1 andc′2 are at distance at most
r + Γ from x. If L < d(v, x)− r−Γ, the triangle inequality
implies thatB(v, L) cannot contain either center. Similarly,
if L > d(v, x)+r+Γ, B(v, L) contains both of them. Hence
the value ofL must fall into the interval indicated above.

If a cut in Step 11-12 is made due to the appearance of a
heads in Step 4, we call such a cut anormal cut; else we call
it a forced cut. We now bound the probability that the ball
Bx = B(x, r) is cut due to either type.
Normal cuts. Consider the first instant in time when the
parameterL for some rootv ∈ N reaches a value such that
the cut obtained by taking allΠ′ ∩ Y clusters with centers in
B(v, L) would cutBx. (If there is no such time, thenBx is
never cut by a normal cut.) In this case,L must also be in
the ranged(v, x) ± (r + Γ), and increases with time. Now
either (i) we make a normal cut beforeL goes outside this
range; or (ii) we make a forced cut; or (iii)L goes outside
the range and we make no cut in this range. In any case, the
fate ofBx is decided;Bx is either cut or contained in a new
cluster with centerv. We now upper-bound the probability
that event (i) happens. There are at most2(r+Γ)/Γ coin flips
made (with biasp) when the value ofL is in the correct range
of width at most2(r + Γ) and one of these flips must come
up heads for the cut to be made. The trivial union bound now
shows this probability to be at most2(r+Γ)

Γ p = 2c(r+Γ)
Λ α.

Forced cuts.Let us look at some rootv ∈ N and bound the
probability that a forced cut is made with cutting radiusL
from v in some rangeRx = d(v, x)± (r + Γ). Since the cut

is forced and the value ofL is greater thanΛ(1 − 1/4α) ≥
3Λ/4, we must have flipped a sequence of at leastΛ/4Γ
successive tails; the probability of this event is at most

(1− p)(Λ/4Γ) ≤ e−pΛ/4Γ = e−
c
4

α.(3.1)

Now, we choosêL to be a multiple ofΓ uniformly in
a range of width at mostΛ/4α, and hence the probability
that L falls into a range of length2(r + Γ) is at most
2(r + Γ)/(Λ/4α). Multiplying this by (3.1), we obtain a
bound ofe−

c
4

α × 8(r+Γ)
Λ α on the probability that a forced

cut is made aroundv with L in the rangeRx such that the
clusterC′ with centerv in Π′′ may cutBx. Finally, for any
x ∈ X ,Bx can only be cut by clusters from rootsv ∈ N that
are at distance at most(r+Γ)+Λ ≤ 3Λ fromx; by Prop. 2.1,
there are at most|B(x, 3Λ)∩N | = ( 6Λ

Λ/2 )α ≤ (12)α of such
roots. Now we choosec to be large enough; the probability
of Bx being cut by a forced due to any such root is at most
12α × e−

c
4
α × 8(r+Γ)

Λ α ≤ O(r+Γ)
Λ α by the union bound.

We now use the above lemma to prove Theorem 3.2. Using
Π′ = Πi, Γ = ηi < ρi(ρ/(ρ−1)), andΛ = ηi+1−Γ = ρi+1,
and usingN = Ni+1 (which is aρi+1/2 = Λ/2 net), we
create a(Γ + Λ = ηi+1)-ball partition such that for allx and
all r ≤ ρi+1 andε = O(1/α), we have

Pr[B(x, εr) cut] ≤ O(εr+Γ)
Λ α ≤ O(ρi)

ρi+1 α ≤ 1
10 < 1

2 ,(3.2)

for ρ/α andc being large enough constants. The probability
distributionµ over all decompositionsΠΠΠ thus generated sat-
isfy the requirements of a PPHD as given in Definition 3.1.
Finally, we bound the degreedeg(µ) of the PPHDµ; note
that each level-i cluster is centered at somev ∈ Ni, hence
the number of level-i clusters contained in some level-(i+1)
cluster is(2ηi+1/(ρi/2))O(α) = αO(α) by Prop. 2.1.

Few Hierarchical Decompositions. The above proof im-
mediately gives us a PPHDµM with a support on only
M = O(log n + log log ∆) HDs. By sampling from the
distributionµ for M times, we get the HDsΠΠΠ(1), . . . ,ΠΠΠ(M),
and let the PPHDµM be the uniform distribution on these
HDs. By (3.2), for eachj ∈ [1 . . .M ], point x ∈ X and
radiusr ≤ ρi, B(x, εr) is not cut in the partitionΠ(j)

i with
probability1/10; hence a Chernoff bound implies that this
ball is cut in the level-i partitions of more thanM/2 of the
HDs with probability less than1/(n log∆)O(1). Now taking
the trivial union bound over all possible values of the center
x ∈ X , and all thelog ∆ values ofr which are powers of2
shows that theµM is a(ρ, ε/2)-PPHDwhp.

3.1.2 Even Fewer Hierarchical DecompositionsWhile
the proof of Theorem 3.2 and the discussion above do not
produce a PPHD with small support (of sizeO(α log α)),
we have seen all the essential ideas required to prove the
existence of such a distributionµm and hence to complete



the proof of Theorem 3.1. To prove this result, we use the
locality of the construction, in conjunction with the Lovász
Local Lemma (LLL). This locality property is the very
reason why we built the hierarchical decomposition bottom-
up; it ensures that if any particular ball is not cut at some low
level i (the “local decisions”), it is not cut at levels higher
thani (i.e., the “non-local decisions”). Also, we choose the
decomposition procedure of Theorem 3.2 in preference to
others (e.g., those in [13] and [25]) since they choose a single
random radius for all clusters in one particular partitionΠ of
X , which causes correlations across the entire metric space.
(The LLL has been used in similar contexts in [13, 19].)
Proof of Theorem 3.1: To show that there is a distribution
µm over onlym = O(α log α) trees, we use an idea similar
to that in the previous section, augmented with some ideas
from [13]. Instead of building one hierarchical decomposi-
tion ΠΠΠ bottom-up, we buildm hierarchical decompositions
ΠΠΠ(1), . . . ,ΠΠΠ(m) simultaneously (also from the bottom up).

As before, the proof proceeds inductively; we assume
that we are given level-i partitionsΠ

(1)
i , . . . , Π

(m)
i , where

Π
(j)
i is the level-i partition belonging toΠΠΠ(j). We then show

that we can build level-(i + 1) partitionsΠ
(1)
i+1, . . . , Π

(m)
i+1

where eachΠ(j)
i is a refinement of the correspondingΠ

(j)
i+1,

and any given ballB(x, εr) with ρi ≤ r ≤ ρi+1 is cut in
at mostm/2 of these level-(i + 1) partitions. We start off

this process with eachΠ(j)
0 = {{x} : x ∈ X} being the

partition consisting of all singleton points inX . Let J =

{1, . . . , m}. Givenm level-i partitions(Π(j)
i )j∈J , we create

m level-(i + 1) partitions(Π(j)
i+1)j∈J using the procedure in

Lemma 3.2 independently on each of them decompositions;
parameters are set as in the proof of Theorem 3.2, with
Λ = ρi+1, Γ = ηi, andε = 1/O(α). This extends them
hierarchical decompositions to the(i + 1)st level; it remains
to show that the probability of balls being cut is small.

To describe the events of interest, let us takeβ = ερi+1

and defineZ to be aβ-net ofX . For eachz ∈ Z, defineBz

to beB(z, 2β), andE i+1
z to be event thatBz is cut in more

thanm/2 of the partitions(Π(j)
i+1)

m
j=1, which we refer to as a

“bad” event (used in Section 3.2). We prove the claim using
the Lovász Local Lemma.

CLAIM 3.3. Given any(Π(j)
i )m

j=1, Pr[
∧

z∈Z E
i+1
z ] > 0.

LEMMA 3.3. (Lovász Local Lemma) Given a set of events
{E i+1

z }z∈Z , suppose that each event is mutually independent
of all but at mostB other events. Further suppose that, for
each eventE i+1

z , Pr[E i+1
z ] ≤ p. Then ifep(B + 1) < 1,

Pr[
∧

z∈Z E
i+1
z ] > 0.

Proof of Claim 3.3: First, let us calculate the probability
of E i+1

z : by changing the constant inε, we can make the
probability that a ballBz is cut in one level-(i + 1) partition
to be at most1/8. Let us denote byAj

z the event thatBz

is cut in partitionΠ
(j)
i+1. The expected number of partitions

in which the ball is cut is at mostm/8. Since the partitions
are constructed independently, the probability for the event
E i+1

z thatBz is cut inm/2 partitions (which is at least four
times the expectation) is at mostexp(−9m/40); this can be
established using a standard Chernoff bound. This, in turn,
is at most(0.8)m, which we define to bep.

Next we show that an eventE i+1
z is mutually indepen-

dent of all eventsE i+1
z′ such thatd(z, z′) > 4ηi+1. For

each partitionΠ(j)
i+1, each rootv ∈ Ni+1 determines its ra-

dius by conducting a random experiment independent of any
other roots’ experiments. These random experiments, and
only these, determine whether events such asAj

z occur. In
turn, whether eventE i+1

z occurs is determined only by events
A1

z, . . . , A
m
z . For a particularj, for eachz, all of the cuts that

could affectBz in the algorithm CUT-CLUSTERSare made
from rootsv ∈ Ni+1 at distance at most2β + Γ + Λ =
2β + ηi+1 < 2ηi+1 from z. Whether eventAj

z occurs is
determined by the experiments corresponding to these roots
alone. If d(z, z′) > 4ηi+1, then there is no intersection
between the experiments forz and the experiments forz′.
SinceE i+1

z is determined byA1
z , . . . , A

m
z , E i+1

z is mutually
independent of the set of allE i+1

z′ such thatd(z, z′) > 4ηi+1.
We apply the LLL now. Note that the number ofz′ ∈

Z within distance4ηi+1 of E i+1
z for z ∈ Z is at most

|B(z, 4ηi+1) ∩ Z| ≤
( 8ηi+1

β

)α
≤ O(α)α. We define this

quantity to beB; ep(B +1) is at most1 for m = O(α log α)
and Claim 3.3 follows.

Having proved the claim, let us now show that with
nonzero probability, eachB(x, r) for x ∈ X andρi ≤ r ≤
ρi+1 is not cut in at leastm/2 of the level-(i + 1) partitions
(Π

(j)
i+1)j∈J . Let us call this eventSCi+1. The claim shows

that with nonzero probability, each ballBz with z ∈ Z is
not cut in at leastm/2 of the partitions(Π(j)

i+1)j∈J . Since
eachx ∈ X is at distance at mostβ to somezx ∈ Z, the
triangle inequality implies thatB(x, εr) ⊆ B(x, β) is not
cut if B(zx, 2β) is not cut, which holds in at least half of the
partitions. HenceSCi+1 also holds with nonzero probability.

Finally, we prove that we can choose a random set
of HD’s (ΠΠΠ(j))j∈J such thatSCi+1 occurs for each1 ≤
i + 1 ≤ h simultaneouslywith nonzero probability. The key
to the proof is that we have assumed an arbitrary (worst-case)
set of partitions(Π(j)

i )m
j=1 at level i in proving a nonzero

lower bound onPr[SCi+1]. Hence, we can ignore any
dependence among the eventsSCi+1 for 1 ≤ i + 1 ≤ h,
and simply multiply their nonzero probabilities together to
obtain a nonzero lower bound on the probability that they all
occur simultaneously.

3.2 An Algorithm for Finding the Decompositions The
above procedure can be made algorithmic using an approach
based on Beck’s algorithmic version of the LLL (see, e.g., [1,



5]). The decomposition satisfies all properties of the one that
is shown to exist using LLL in Theorem 3.1, although with
some changes in constant parameter values. As in the proof
of Theorem 3.1, we buildm = O(α log α) HDs level by
level in a bottom-up fashion.

On any particular leveli + 1, we begin by choosingm
partitions at random. After making the random choices, we
examine the partitions and identify all of the bad events that
have occurred. We then group together bad events that may
depend on each other, as well as “good” events that may
depend on the bad events. Each group forms a connected
component in the LLL dependency graph. We show that,
with high probability, all connected components have size
O(log ν), whereν = |Z| is the size of theερi+1-net ofX .

Once the groups have been identified, we need to elim-
inate the bad events. Hence, for each group, we “undo”
all of the random choices concerning that group, while not
modifying any choices that do not affect the group. New
choices must be made for each group so that no bad event oc-
curs. Because the group size is small (the number of centers
v ∈ Ni+1 concerning the group that we choose random ra-
dius for is alsoO(log ν)), we can find new settings for these
choices using exhaustive search in polynomial time.

One interesting complication in this proof is that the
set of clusters containing a group have different shapes in
the m different partitions. In each partition, we cut out a
“hole”, and redo the choices within the hole. The boundary
of the hole is formed from the boundaries of the clusters that
may influence the bad events (and the good events) in the
group. In forming the boundary, additional good events may
be added to the hole. As a consequence, it is possible that a
good event inside a hole in one partition may appear inside a
different hole in another partition. Hence, when we perform
exhaustive search, these holes must be considered together.
However, our method of bounding the size of each connected
component already takes into account any merging of holes
on account of shared good events, so that we never have to
redo the choices for a group of size more thanO(log ν).

Another issue is that the subset of centers in a hole that
belong toNi+1, theρi+1/2-net that covers the entire metric,
may not by themselves cover the hole. (Portions of the hole
may be covered by centers outside the hole.) So for each of
the m partitions, we may have to add additional net points
inside the hole to obtain a complete cover for it. We show
that the size of net points in the hole increases by only a
constant factor and remainsO(log ν), and the degree of the
hierarchical decomposition trees is at mostαO(α) as before.

4 The (1 + τ)-Stretch Routing Schemes

Given a (ρ, ε)-PPHD µm with a support onm HDs, we
can now define, for every0 < τ ≤ 1, a (1 + τ)-stretch
routing scheme which uses routing tables of size at most
m(α/τ)O(α) log2 ∆ bits at every node.

We consider routing schemes in two models. In a basic
model, we assume that there is no underlying routing fabric
and each node can only send packets to its direct neighbors.
In a second model, we can build an overlay hierarchical
routing scheme upon an underlying routing fabric like IP
that can send packets to any specific node in the network.
We specify the routing algorithm in the basic model, but
also indicate how one can circumvent certain steps of this
algorithm when an underlying routing mechanism is given.

Let us recall some of the notation defined earlier. Let
(ΠΠΠ(j))m

j=1 be them hierarchical decompositions on which
µm has positive support, and the level-i partition correspond-
ing toΠΠΠ(j) be calledΠ(j)

i . Recall that we can associate each
hierarchical decompositionΠΠΠ(j) with a treeTj (as outlined
in Section 2.1). Note that each of these trees has adeg(µm)
bounded byαO(α) and a height of at mosth =

⌈

logρ ∆
⌉

.
Recall that each internal vertex of the treeTj at leveli cor-

responds to a cluster ofΠ(j)
i and leaves ofTj , ∀j ∈ J , cor-

respond to vertices inX , whereJ = {1, . . . , m}. Let each
internal vertexv of each treeTj label its children by num-
bers between1 anddeg(µm); v does not label anything with
the number0, but uses it to refer to its parent. Note that this
allows us to represent any path in a treeTj by a sequence of
at most2h = O(logρ ∆) labels.

Lemma 3.1 already shows that them trees thus created
form a smallO(ρ/ε) = O(α2)-stretch Steiner tree cover,
which can be used for routing purposes (as in Section 4.3).
However, since such a large stretch is not always acceptable,
we improve on this scheme in the following subsections to
get better routing bounds.

4.1 The Addressing SchemeGiven a treeTj and a vertex
x ∈ X , we assignx a local addressaddrj(x), which consists
of h =

⌈

logρ ∆
⌉

blocks, one for each level of the treeTj .
Each block has a fixed length. Theith blockof theaddrj(x)

corresponds to partitionΠ(j)
i and contains the label assigned

to the clusterCx containingx in Π
(j)
i by Cx’s parent in

Tj. Since any such label is just a number between1 and
deg(µm), wheredeg(µm) = αO(α), we needO(α log α)
bits per block. In fact, one can extend this addressing scheme
to any clusterC in Tj . If C is a level-i cluster, thekth-block
of addrj(C) contains∗’s for k < i; addrj(X) for the root
cluster ofTj contains all∗’s matching all vertices inX .

Theglobal addressaddr(x) of pointx ∈ X is the con-
catenation〈addr1(x), · · · , addrm(x)〉 of its local addresses
addrj(x) for j ∈ J . Since each clusterC belongs to only
one treeTj , we defineaddrj′ (C) to be a sequence of#’s
of the correct length (where# are dummy symbols match-
ing nothing), and hence define a global address ofC as well.
(This is only for simplicity; in actual implementations, clus-
ter addresses forTj can be given by the tuple〈addrj(C), j〉.)

Since there areO(α log α) bits per block,h blocks per



local address, andm local addresses per global address, sub-
stitution of the appropriate values gives the address length
A to be at mostm × h × dlog(deg(µm))e = O(α log α) ×
⌈

logρ ∆
⌉

×O(α log α) = O(α2 log α log ∆) bits.

4.2 The Routing Table For each pointx ∈ X , we main-
tain a routing tableRoutex that contains the following infor-
mation for eachTj, 1 ≤ j ≤ m:

1. For each ancestor ofx in Tj that corresponds to a cluster
C containingx, we maintain a table entry forC.

2. Moreover, for each suchC, we maintain an entry for
each descendant ofC in Tj reachable withiǹ hops in
treeTj . Here ` = Θ(logρ 1/ετ), with the constants
chosen such thatηi−` ≤

ετ
4 ρi−1.

In the routing tableRoutex for x, each of the above entries
thus corresponds to some level-i′ cluster C′ in Tj. Let
closex(C′) be the closest point inC′ to x. (We assume,
w.l.o.g., that ties are broken in some consistent way, so
that any nodey on a shortest path fromx to closex(C′)
has the valueclosey(C′) = closex(C′); in fact, this
consistency is the only property we use.) For thisC′,
Routex stores(a) the global addressaddr(C′) by which the
table is indexed,(b) the identity of a “next hop” neighbor
y of x that stays on a shortest path fromx to the closest
pointclosex(C′) in C′, and(c) an extra bitValidPathx(C′):
if the cluster` levels aboveC′ in Tj is the clusterC, then
ValidPathx(C′) is set to betrue if B(x, ερi′+`) is entirely
contained within clusterC andd(x, closex(C′)) ≤ ερi′+`,
and is set to befalse otherwise. Of course, if we reach the
root ofTj while trying to go up̀ levels, then the bit is set to
betrue. Note that if there is an underlying routing fabric
like IP, we can store the IP-address of some node inC′ (say,
the closest one) instead of(b) and(c) above.

LEMMA 4.1. The number of entries in the routing table
Routex of anyx ∈ X is at mostlog ∆× (α/τ)O(α).

Proof. Let us estimate the number of entries inRoutex for
any x ∈ X . There arem trees. For each treeTj, for all
j ∈ J , there areh =

⌈

logρ ∆
⌉

ancestors ofx and the degree
of the tree is bounded bydeg(µm) = αO(α). Recall that
ρ and 1/ε are bothO(α), and hencè = O(log(α/τ)).
Plugging these values in, we get that the number of entries
for x acrossm trees is at mostm × h × (deg(µm))` =
O(α log α) × O(logα ∆) × αO(α`) = log ∆ × (α/τ)O(α).
Each entry is indexed by one global address (of at most
A = O(α2 log α log ∆) bits), and contains the identity of
the next hop (which usesO(log degree-of-x) = O(log n)
bits) and one additionalValidPath bit.

The forwarding algorithm makes use of two functions,
NextHopx and PrefMatchx. For a pointx and a level-i′

clusterC′ in Tj, the functionNextHopx(addr(C′)) returns

the next hop on the path fromx to closex(C′) provided that
the next hop does not leave the clusterC at leveli′ + ` that
containsC′, and null otherwise. (As we shall see, the packet
forwarding algorithm is guaranteed never to encounter a
null next hop.) Given pointsx and t in X , the function
PrefMatchx(t) returns anaddr(C′) in Routex such that in
someTj, t belongs to the level-i clusterC′, ValidPathx(C′)
istrue, and the valuei is the smallestacross all trees. Note
that both of these functions can be computed efficiently by
nodex. Furthermore, it is possible to support the functions
with data structures of size comparable to that ofRoutex.

Note that once the points inX have been assigned
addresses (for which we have described only an off-line
algorithm), the routing tables can be built up in a completely
distributed fashion. In particular, a distributed breadth-first-
search algorithm can be applied to determine whether a ball
of a certain radius is cut in a particular decomposition, and
a distributed implementation of the Bellman-Ford algorithm
can be used to establish the next-hop entries for destinations
for which the shortest paths lie within a certain cluster.

4.3 The Forwarding Algorithm The idea behind the for-
warding algorithm is to start a packet off from its origins
towards anintermediateclusterC containing its destination
t; the packet header thus consists of two pieces of informa-
tion 〈addr(t), addr(C)〉, wheret is the destination node for
the packet andC is theintermediatecluster containingt. Ini-
tially, the cluster can be chosen (degenerately) to be the root
cluster of (say) treeT1.

Upon reaching a nodex in the intermediate clusterC, a
new and smaller intermediate clusterC′, also containingt,
must be chosen, possibly from a different tree; the packet
header must be updated withaddr(C′) that remains the
same until reachingC′. Suppose that the new clusterC′

containingt is at leveli′. After selecting this cluster, the
packet is sent off towardsC′ with the new header, following
a shortest path that stays within the clusterĈ at leveli′ + `
that contains bothx andC′. This process is repeated until
ultimately the packet reaches the cluster containing only the
destinationt. The algorithm is presented in Figure 4.2.

THEOREM 4.1. The forwarding algorithm has a stretch of
at most(1 + τ), whereτ ≤ 1.

Proof. We first show that the algorithm is indeed valid;
each of the steps can be executed and the packet eventually
reachest. Suppose that the packet has just reached a node
x in an intermediate clusterC containingt (with addr(C)
in its header); thusx needs to execute Step 3 to find a new
clusterC′ containingt. Clearly,PrefMatchx(t) can return
the root clusterCroot of anyTj , since it containst. We show,
however, that the clusterC′ returned byPrefMatchx(t) has
a small diameter and nodes along a valid shortest path from
x to C′ will forward the packet correctly until it reachesC′.



1. Let packet header be〈addr(t), addr(C)〉.
2. If C containsx, the current node, then
3. findaddr(C′)← PrefMatchx(t)
4. lety ← NextHopx(addr(C′))
5. forward packet with new header
6. 〈addr(t), addr(C′)〉 to y.
7. Else (nowx 6∈ C)
8. lety ← NextHopx(addr(C))
9. forward packet with unchanged header
10. 〈addr(t), addr(C)〉 to y.
11. End

Figure 4.2: The Forwarding Algorithm at Nodex

LEMMA 4.2. If the packet is at nodex with distance to
the targett beingd(x, t) ≤ ερi, Step 3 must return some
addr(C′) such that clusterC′ 3 t is at level at most(i − `)
in someTj′ with ValidPathx(C′) beingtrue. Furthermore,
all vertexv on all shortest paths fromx to closex(C′) =
closev(C

′) has a non-nullNextHopv(addr(C′)).

Proof. The (ρ, ε)-PPHD ensures that there exists at least
one treeTj such thatB(x, ερi) is not cut in the level-i

partition Π
(j)
i ; let Ĉcont ∈ Π

(j)
i be the level-i cluster in

Tj that containsB(x, ερi). Let Ct ∈ Π
(j)
i−` be the level-

(i − `) cluster in Tj containingt. The ValidPathx(Ct)

bit must betrue sinceB(x, ερi) ⊆ Ĉcont in Π
(j)
i and

d(x, closex(Ct)) ≤ d(x, t) ≤ ερi; thusPrefMatchx can
(and may indeed) just returnaddr(Ct) given no “better”
choices. However,PrefMatchx always finds a clusterC′ in
someTj′ , at thelowestlevel across all trees, such thatt ∈ C′,
andValidPathx(C′) is true in Routex. Let the level ofC′

bei′; the valuei′ is at most(i− `). Now Let Ĉ ∈ Π
(j′)
i′+` be

the cluster̀ levels aboveC′ ∈ Π
(j′)
i′ in Tj′ that contains both

x andC′. (SuchĈ must exist at leveli′ + ` for addr(C′)
to be in Routex.) We know thatB(x, ερi′+`) ⊆ Ĉ and
d(x, closex(C′)) ≤ ερi′+` sinceValidPathx(C′) is true
in Routex. Thus all shortest paths fromx to closex(C′) are
entirely contained inĈ. Hence, theNextHopv(addr(C′))
pointer at any nodev on one of these paths must be non-null
since all shortest paths fromv to closev(C

′) = closex(C′)
are all contained in̂C, the cluster̀ levels aboveC′ in T ′

j .

It remains to bound the path stretch. Consider the case when
a packet is sent froms to t. Let C′ be a cluster at leveli− `
returned by Step 3 of the forwarding algorithm. Note that
if the level i ≤ `, thenC′ = {t} and we send the packet
directly to t with τ = 0. Using these short distances as the
base case, we now do induction on the distance froms to t.

If C′ is a non-trivial cluster containingt, then we go on
a shortest path froms to some vertexv = closes(C

′) ∈ C′.
Sincet ∈ C′, d(s, v) ≤ d(s, t). Because the diameter of

C′ is at most2ηi−`, d(v, t) ≤ 2ηi−` < ερi−1 < d(s, t).
(The last inequality holds because ifερi−1 ≥ d(s, t), then
PrefMatchs would have returned a cluster at a level lower
than that ofC′ by Lemma 4.2.) Hence, we can apply the
induction hypothesis to find a path fromv to t of length at
most(1 + τ)d(v, t) ≤ (1 + τ)2ηi−`. The path froms to t
as derived fromRoutes is of length at mostd(s, v) + (1 +
τ)d(v, t) < d(s, t) + (1 + τ)2ηi−`. The stretch of the path
from s is t is then1 + (1 + τ)2ηi−`/d(s, t). This quantity is
at most1 + τ sinceτ ≤ 1 and we have chosen constants so
thatηi−` ≤ τερi−1/4.

Section 4.4 of the proceedings version of this paper
outlined an method to ostensibly reduce the table size to
Oα,τ (log ∆) bits: while this can indeed be achieved in the
presence of an underlying routing fabric (like IP), we do not
know how to obtain this result in the basic model where we
can only forward packets to adjacent vertices.

5 Constant-Degree Spanners for Doubling Metrics

Given a metric(V, d) with doubling dimensionα andτ >
0, this section shows how to construct a(1 + τ)-spanner
whose maximum degree is bounded by(2 + 1

τ )O(α). Our
construction consists of two phases. In the first phase, we
construct a spanner(V, Ê) from a nested sequence of nets
{Yi}; we include an edge if the end points are from the same
net and “reasonably close” to each other. We then show that
the edges in this spanner can be directed such that the out-
degree of each vertex is bounded, and hence the spanner is
sparse. We then have a second phase, in which we modify
these edges in̂E to obtain another spanner, but now with
bounded degree. Our main theorem, whose proof we sketch
in Section 5.1, is the following:

THEOREM 5.1. Given a metric(V, d) with doubling dimen-
sionα, there exists a(1+ τ)-spanner such that the degree of
every vertex is at most(2 + 1

τ )O(α).

5.1 Constructing a sparse(1 + τ)-spanner We first de-
scribe the construction of a sparse(1 + τ)-spanner. Without
loss of generality, we assumeτ ≤ 1

2 . Forτ > 1
2 , we still run

the whole procedure withτ ′ = 1
2 . All the bounds would still

hold because4O(α) = (2 + 1
τ )O(α). Without loss of gener-

ality, we assume that the distance between any two distinct
vertices is at least 1. Otherwise, we can re-scale the metric.
Givenτ > 0, let γ := 4 + 32

τ andp := dlog2 γe.
Our construction requires a hierarchical sequence of

nets, which is defined as follows. DefineY−p := V . For
i > −p, let Yi be a2i-net of Yi−1. (Note that since the
inter-vertex distance is at least 1,Yi = V for −p ≤ i < 0.)
For each netYi in the sequence, we include the edges whose
end points are in the net and are close together. In particular,
define fori ≥ −p, Ei = {(u, v) ∈ Yi × Yi | γ · 2i−1 <
d(u, v) ≤ γ · 2i}. Let Ê = ∪iEi, and(V, Ê) is the spanner



obtained from the construction. The following lemma shows
that(V, Ê) preserves distances in the metric and is sparse:

LEMMA 5.1. The graph(V, Ê) is a (1 + τ)-spanner for
(V, d). Furthermore, the edges of̂E can be directed such
that each vertex has out-degree bounded by(2 + 1

τ )O(α).

While we omit the proof, let us indicate how to direct the
edges. For eachv ∈ V , definei∗(v) := max{i | v ∈ Yi}.
For each edge(u, v) ∈ Ê, direct it fromu to v if i∗(u) <
i∗(v); if i∗(u) = i∗(v), direct the edge arbitrarily.

Bounded-degree spanners:We now modifyÊ to get an-
other spanner(G, Ẽ) with the same number of edges, but
with bounded degree in the following way. Letl be the small-
est positive integer such that12l−1 ≤ τ . Thenl = O(log 1

τ ).
For each vertexu ∈ V , and for−p ≤ i ≤ i∗(u), define
Mi(u) to be the set of verticesw such thatw ∈ Ni(u) and
(w, u) is directed intou. DefineI = {i | ∃v ∈ Mi(u)}.
Suppose the elements ofI are listed in increasing order
i1 < i2 < · · · ; for brevity, we writeMu

j := Mij
(u).

We now keep all the arcs directedout ofu. Moreover,
for 1 ≤ j ≤ l, we keep the arcs directed fromMu

j into u.
Forj > l, we pick an arbitrary vertexw ∈Mu

j−l and replace
every arc fromMu

j into u by an arc fromMu
j into w. Let

(V, Ẽ) be the resulting undirected graph. Since every edge
in Ê is either kept or replaced by another edge (which might
be already inÊ), |Ẽ| ≤ |Ê|. The following lemma, whose
proof is omitted, gives the claimed result:

LEMMA 5.2. Every vertex in(V, Ẽ) has degree bounded by
(2 + 1

τ )O(α). Furthermore, ifd̃ is the metric induced by

(V, Ẽ), thend̃ ≤ (1 + 4τ)d̂.
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