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Abstract the doubling dimensiodim(X) = «; we show that one

We study the problem of routing in doubling metrics, arfgn route along paths with stret¢h + 7) with small rout-
show how to perform hierarchical routing in such metrid89 tables—with onhyO((a/7)?*) log A) entries whereA

with small stretch and compact routing tables (i.e., witfi the diameter of the network. Each entry stores at most
small amount of routing information stored at each vertexy1og n + log A) bits, and hence for doubling metrics—
We say that a metritX, d) hasdoubling dimensiodim(X) Wherea is a constant—and any < 1, we have(1 + 7)-

at mostu if every set of diameteP can be covered 3 sets s_tretch routing with onlyD (log” A) bits of routing informa-

of diameterD /2. (A doubling metrids one whose doubling fion at each node. o

dimensiondim(X) is a constant.) We show how to perform ~ Theidea of placing restrictions on the growth rate of net-
(1 + 7)-stretch routing on metrics for arfy < 7 < 1 with works to bound their “intrinsic complexﬁy" is by no means
routing tables of size at mogt/7)°(® log? A bits with novel; it has been around fo_r a long time (see, eg., [;8]),
only (a/7)°(® log A entries whereA is the diameter of and has re_:cently b(_een_used in several contexts in the litera-
the graph; hence the number of routing table entries is j{i4f€ On object location in peer-to-peer networks [23, 17, 16

=0 Jog A for doubling metrics. These results extend a,WhiIe_ these papers used definitions and restrictions tifiat di
improve on those of Talwar (2004). fer slightly from each other, we note that our results hold

We also give better constructions of spaspannerdor in those models as well. Our results extend those of Tal-
doubling metrics than those obtained from the routing gbar [25], whose routing schemes for metrics wifn (.Y ) =
above; forr > 0, we give algorithms to constru¢t + 7)- @ require local routing mfor_matlon_ ok O(log™ A) bits.
stretch spanners for a metfi&, d) with maximum degree at Formally, we have the following main result.

most(2 + 1/7)2(1)), matching the results of Das et alreorem1.1. Given any networkG inducing a metric
for Euclidean metrics. (X, d) with dim(X) = « and anyr > 0, there is a routing

scheme otz that achievegl + 7)-stretch and where each

1 Introduction node stores only2 )@ log? A bits of routing information.

Thedoubling dimensiowf a metric spacé¢X, d) is the least
valuea such that each ball of radiug can be covered by at
most2* balls of radiusR /2 [13]. For anya € Z, the space

The proof of the theorem proceeds along familiar lines;
we construct a set of hierarchical decompositions (HDs)

R® under any of thé, norms has doubling dimensieha), ©f the metric (X, d), where each HD consists of a set

and hence this doubling dimension extends the standfgSuccessively finer partitions ok with geometrically

notion of geometric dimension; moreover, it can be seen a@e&reas_lng diameters. Each nodexnmaintains a t_able

way to parameterize the inherent “complexity” of metrics. containing next hops to a small subset of clusters in these
In this paper, we study the problem of designing routiﬂ:g:\rtltlons; to route a packet fromto ¢, we use the routing

algorithms for networks whose structure is parameterized§P!€ fors to pick some “small clusterC' in s table that
containg and send the packet to some nada C; a similar

process repeats at nodec C until the packet reachesThe
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sis of this process uses the Lovasz Local Lemma (muchnastrics where increasing the radius of any ball by a factor
in [19, 13]); details are given in Section 3. of 2 causes the number of points in it to increase by at most

Apart from the above result on low-stretch routing, th@ome constant fact@®. (Plaxton et al. [23] also consider
proof of Theorem 1.1 can be used to infer the existencetbé lower boundon the growth.) Here the parametgican
linear-sizedspannersfor doubling metrics, i.e., subgraphde considered to be another notion of “dimension” for a met-
with only O (n) edges that maintain distances to be withiric space. It can be shown thiin(X) < 43[13, Prop. 1.2];
a factor of (1 + 7). We further give simpler and tighterhence our results hold for such metrics as well. Our scheme
constructions of spanners, extending similar results of Da also similar in spirit to a data-tracking scheme of Rajara
et al. [7] for Euclidean metrics. man et al. [24], who use approximations by tree distribigion

. to obtain bounds on the stretch incurred.

THEOREM1.2. Every metri( X, d) has a(1 + r)-spanner Finally, sparse spanners have been studied widely,

H where the degree of each vertex is at mdg8t+ havi T . .

O(dim(X))- : aving found applications in network algorithms (see,
1/7) ; henceH has a linear number of edges for : . .
any constant anddim/(X) e.g.,_[22]), since they allow us to store information abbat t

' metric compactly. Our work extends the results of Arya et

1.1 Related Work Distributed packet routing protocolsal' [2] and Das et al. [7] who have show the existence of

have been widely studied in the theoretical computerseier% + 7)-spanners foR® with O-..(n) edges. Independ(_ant
community: see, e.g., [9, 10, 3, 21, 6, 22], o the surveyB our work, Har-Peled and Mendel [14] have also obtained,
Gavoille [1’1] on'sdm.'e o,f thé iésue,s L’;lnd :[echniques N ﬁwng many other results, constructions of sparse spanners
S doubling metrics; they also give linear-time procedure
that these results, however, are usually for general né&syor .. .
; . - to find these constructions.
or for networks with some topological structure. By placing
restrictions on the doubling dimension, we are able to gige Definitions and Notation
results which degrade gracefully as the “complexity” of the . . . o
metric increases. For example, it is known that any univers&t the input metric be X, d); this paper deals with finite
routing algorithm with stretch less thamequiressomenode Metrics with at least 2 points. We use standard terminology
to store at leasf)(n) routing information [12]; however, from the theory of metric spaces; many definitions can be
these graphs generate metrics with lagjen(X). Our found in [8] and /[15]- Givenz € X andr > 0, we let
results thus allow one to circumvent these lower bounds f%,7) denote{z’ € X | d(z,2") < r}, i.e., the ball of
metrics of “lower dimension”. radiusr aroundz. Given a subses C X, the distance of
Packet routing in low dimensional networks has beén< X to the setS is d(z, §) = min{d(z, z') | 2’ € S}.

previously studied in Talwar [25], that gives algorithmatth ~ The doubling constanix of a metric spacéX;, d) is
require O(a(=)*(log®™2 A)) bits of information to be the smallest valug such that every ball itk can be covered

TQ

stored per node in order to achieilet 7)-stretch routing— by .)‘ balls of _half the radius. Theoubling dimensiorof
for constant stretch- and doubling dimensiom. The X IS then defined adim(X) = log, Ax; we use the letter
resulting dependence 6i(log>** A) should be contrasted t0 denotedim(X). A metric is calleddoublingwhen
with the dependence 6¥(log? A) bits of information in our its doubling dimension is a constant. A subsétc X
schemes. We should point out that his algorithms are bale@n 7-netof X if (1) for everyz,y € Y, d(z,y) > r
on graph decomposition ideas with a top-down approach &tfl ()X S UyeyB(y, 7). Such nets always exist for any
do not require the LLL to construct routing tables. r > 0, and can be found using a greedy algorithm.

One of the papers that influence this work is that ?_;ROPOSITIONZ.l. SEE E.G.,[13]) If all pairwise dis-

Kleinrock and Kamoun [18]. They describe a general h['émces inasel’ C X are at leastr (e.g., wher’ is an

erarchical clustering model on _vvh|ch our routing sc:hemg__snet ofX), then for any point: € X and radiust, we have
are based. They show that routing schemes based on a hijer- nY| < 3\ [og: 2t]
— X .

archical clustering model do not cause much increase in {He”B(% t)
average path_ lengtifor netw_orks that satisfy the following A cluster C in the metric(X,d) is just a subset of
two assumptions: (a) the diameter of any clusiethosen 5ints of the setX. The diameter of the clustef is the
is bounded above b§(|:5|") for some constant € [0, 1], |argest distance between points of the cluster. Each clisste
and (b) the average distance between nodes in the net"‘é‘&,rgociated with aenterz € X (which may not lie inC’) and

is ©(n”). In contrast, we give bounds on the path stretch @fk, raius of the clusterC is the smallest value such that
aper node-paitevel using slightly different assumptions oRy,q c|uster is contained iB(z, 7).

the network geometry.

Other papers on object location in peer-to-peer n&£FINITION 2.1. Givenr > 0, an r-ball partition II of
works [23, 17, 16] have also used restrictions similar td [18X, d) is a partition of X into clustersC;, Cs, . . ., with each
on the growth rate of metrics; in particular, they considetusterC; having a radius at most.



By scaling, let us assume that the smallest inter-poifite II such thaB(z,¢) C C. In generalB(z, t) is cutby a
distance inX is exactlyl. Let A denote the diameter ofsetS C X if both SNB(z,t) andB(z,t)\ S are non-empty.
the metric(X, d), and hence\ is also the aspect ratio of the  LetP be a collection of all possible partitions &f, and
metric. Definep = 256a + 1 andh = [logp A]. Let us hencell € P. Given a partitionll € P andz € X, let
definen; = 1+ p+p*+ ...+ p' < p*1/(p—1); note that Cr(x) be the cluster ofl containing.
ni = pni—1 + 1. Let us fix ap’/2-net and denote withV; o
for the metric(X, d), for everyd < i < h + 1. DEFINITION 2.3. ([13]) An (r,¢)-padded  probabilistic

ball-partitionof a metric(X, d) is a probability distribution
2.1 Hierarchical Decompositions (HDs)We now give # OverP satisfying:
a formal definition of ahierarchical decompositioifHD) 1. (bounded radius) EachlII in the support of: is anr-
which is used throughout this paper and is the basic object ball partition.
of our study. A§ noted_below, such a d.e.‘composition.can bg (padding) vz € X, Pr,, [d(:c,X \ Cr(z)) > er] >
naturally associated with a decomposition tree that is used
for our hierarchical routing schemes. (Thisis called a padded probabilistic decomposition i J13
Each clusterC' in every partitionIl in the support of a
. : M probabilistic ball-partitionu has radius at most;, and for
HD) of the _metnc (X,d) Is a sequence of part|t|onsanyx € X, a randomr-ball partitionII drawn from the
Mo, ..., Iy with b = [log, A] such that: distribution: does not cuB(z, er) (and hencd(z, er) is

1. The partitionl];, has one clusteX, the entire set. contained in clustef'(x) € II) with probability > 1/2.

2. (geometrically decreasing diameters)The partition
I1; is an n;-ball partition. Since inter-point distances3 Padded Probabilistic Hierarchical Decompositions
are at leastl, it implies thatlly = {{z} : # € X}, in Inthis section, we define(@, ¢)-padded probabilistic hierar-
other words, each cluster ifi, is a singleton vertex.  chical decomposition (PPHD) of the met(i&, d), on which

3. (hierarchical) II; is a refinement ofI;,; and each therouting algorithm is based. A PPHD is a probability dis-

cluster inII; is contained within some cluster B ,. ~ tribution over HDs that has a “probabilistic padding” prop-
erty similar to that in Definition 2.3. For any pair of nodes

Given such g-HD II = (1), the partitionl]; is called s,tin X and any ball containing bothandt with a diame-
the level4 partition of Il and clusters idl; are thelevels ter of d(s,t), the PPHD ensures that this ball is contained
clusters. Note that these clusters have a ragiwsd hence in a single cluster of radius only slightly(« factor) larger
diameter< 2p,. Furthermore, define theegreedeg(II) to thand(s, t) at a suitable level with probability 1. Thus the
be the maximum number of levéklusters contained in anyshortesk-¢ path is contained entirely in this cluster of radius
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DEFINITION 2.2. A p-hierarchical decompositiodl (p-

level-(i + 1) cluster inIl;4q, forall0 <i < h — 1. not much more thar(s, t). This is the general intuition for
PPHDs and the starting point for the routing algorithm.
2.1.1 Hierarchical Decompositions and HSTSA hierar- For our applications, we refine PPHDs so that they

chical decomposition islaminar familyof sets, where given consist of onlym = O(alog «) of HDs. We first give an
any two sets, they are either disjoint or one contains therottexistence proof, using the Lovasz Local Lemma (LLL), to
It is well known that such a familyF of sets overX can be show that such decompositions exist in Section 3.1. We then
associated with a natural decomposition tree whose vsrtioatline a randomized polynomial-time algorithm to find the
are sets inF and whose leaves are all the smallest setsdecompositions using Beck’s techniques [5] in Section 3.2.
the family (which are elements of, in this case). We can The existence proof for the PPHDs has the following
use this to associate a so-called hierarchically well+sgpd outline. We first give a randomized algorithm to form a sin-
tree (also called an HST [4]) with a hierarchical decom- gle random hierarchical decompositiln which proves the
positionII; since each edge ifi; connects som€' € II; existence of PPHDs, albeit with support over an exponen-
andC’ € II;_; with ¢’ C C, we associate Eengthr; with tial number of HDs. To reduce the size to something that
edge(C, C"). Given such a tregyy, we can (and indeed do)depends only om, we have to use the locality property of
talk about its level clusters with no ambiguity; these ar¢he metric space and the LLL. One significant complication
the same level-clusters in the associatéfi. Note that the in the proof is that we cannot use the standard top-down de-
degree of vertices in this trég; is bounded byleg(IT) + 1. composition schemes to construct PPHDs, since they have

long-range correlations that preclude the applicatiorhef t
2.2 Padded Probabilistic Ball-Partitions Recall that an LLL. Our solution to this problem is to build the decompo-
r-ball partitionII of (X, d) is a partition ofX into a set of sition trees in a bottom-up fashion and to make sure that the
clustersC C X, each contained in a bdB(v,r) for some coarser partitions respect the cluster boundaries madein t
v € X. B(z,t) is cutin the partitionII if there is no cluster finer partitions.



3.1 Existence of PPHDsMotivated by the routing appli- Theorem 3.1 in the rest of this section. We first prove (in
cation, we are interested in finding the following structur&ection 3.1.1) that one can obtain the result where the PPHD
which we call a(p, £)-padded probabilistic hierarchical de- . has support over many HDs. We then use the Lovasz Local
composition This is a probability distribution: over p- Lemma (in Section 3.1.2) to show that a PPHD distribution
hierarchical decompositions (as defined in Definition 2a?) g,,, with support over only a small number of HDs exists.
that givenB(z, er) with r ~ p¢, if we choose a random

HD II from p and examine the partitioH; in it, B(z,r) is 3.1.1 Padded Probabilistic Hierarchical Partitions If

cut in this partitionlI; with probability at mos%. we do not care about the number of HDs in the support of a
PPHD, the existence result of Theorem 3.1 has been proved
earlier [25] with better guarantees; the proof basically fo
lows from the padded decompositions given in [13]. How-
r‘bver, we now give another proof that introduces ideas that
are ultimately useful in obtaining a PPHD distribution waos
Priic,[B(x, er) is cutinIl,] < %7 support is over a small number of HDs.

DEerINITION 3.1. (PPHD) A (p,e)-padded probabilistic
hierarchical decompositiofreferred to as a(p, ¢)-PPHD)
is a distributiony, over p-hierarchical decompositions, suc
that for any pointz € X and any value s.t.p'~! < r < p?,

where the randomp-hierarchical decomposition chosen isr HEOREM3.2. Given a metrid X, d), there exists dp, )-
I = (II;)"_,. Thedegreeof the PPHDy is defined to be PPHD 1 for (X, d) with p = O(a) ande = O(1/a), and
deg () = maxyre,, deg(IT). with degreedeg(y) = qo(“). Furthermore, one can sample
from p in polynomial time.
Note that the definition of a PPHD extends both the

idea of a padded probabilistic ball-partition and that ®froof. We define a randomized process that builds a random
HDs—we ask for a distribution over entire HDs, instead éiierarchical decomposition tree in a bottom-up fashion, in
over ball-partitions at a certain scate However, having stead of the usual top-down way. To build a HIDwe start
picked a random-HD II = (I1;)}-_, from this distribution, with (II, = {{z} : 2 € X'}) and perform an inductive step.
we demand that balls of radius ¢p’ be cut with small At any step, we are given a partial structyié;, . .., IIy)
probability only in partitionl1; that is “at the correct distancewhere for eachj < i, the clusters inll;_; (which is an
scale”. Our main theorem of this section is the following: 7;_,-ball partition) are contained within the clustersIof.

) ) ] We then build a new partitiofl, 1, with all clusters offI;
THEOREM3.1. Given a metriq X, d), there exists dp, ¢)-  peing contained within clusters f;,;. We have to ensure
PPHD . for (X, d) with p = O() a”dof = O(1/a). The nat clusters ofI;;; are contained in balls of radius at most
degreedeg(2) of the PPHD is at most (@), Furthermore, . and that any ball of radius: for ' < r < pi+ is cutin
there exists a distribution.,, whose support is over onIyHi+1 with probability at most%. This way, we end up with
m = O(aloga) HDs. a valid random HOI. The claimed probability distribution
1 is the one naturally generated by this algorithm. To cre-

Since any hierarchical decompositiincan be associ- te the clusters dii. q i q
ated with a tred; (as mentioned in Section 2.1), the abo@° e clusters alli,1, we use a decomposition procedure

theorem can be viewed as guaranteeing a set t€es such whose property is summarized in the following lemma.
that the leveli clusters in half of these trees do not cut
given ball of radiusv ep’. This proves the existence of a
appropriatdree cover

PEmMMA 3.2. Given a metriq( X, d) with aT'-ball partition
% of X into clusters lying in balls of radius at mobkt> 1,
and a valueA > 8T, there is a randomized algorithm to

DEFINITION 3.2. A stretchk Steiner tree cover fofX, d)is ~ Create a(A + I')-ball partition I1” of X', where each cluster
asetoftreed = {T1,...,T,,} (with each tre€l; possibly of IT' is contained in some cluster Bf’, and for anyz € X
containing Steiner pointg X, and edges having lengths)@nd radius) < < A,

where for everyr, 2’ € X there exists a tre€; € T for Pr[B(z,r) is cutinll’] < O(r + F)a

(X, d) such that the (unique shortest) pathZih between: A

/ /
anda” has length at most d(z, «"). Proof. Note that we can assume tHat< A/ca andA >

LEMMA 3.1. Given a metric(X,d) with dim(X) = «, @ Since otherwise the lemma is trivially true. Using the

there exists a stretch¥(p/c) Steiner tree cover consisting oflgorithmQT-CLUSTERSgiven in Figure 3.1, we create a

O(alog o) trees, where each tree has degree at nagdt). partition ofY” (and hence of); all distances are measured
according to the original distance functidin X .

We omit the simple proof of the above lemma and the Letus define3, = B(x,r). Note that if3, is cut inII”
description of how the Steiner points can be removed fradoe to some value df fromv € N (for the first time), then
the trees without altering distances and degrees. We prévfalls into the intervald(v, z) — r — T',d(v,z) + r + T.



is forced and the value df is greater tham\ (1 — 1/4a) >

cal’ 5
0. LetYN<—bX,p — ©4 for constant: to be fixed later, 3A/4, we must have flipped a sequence of at leastl’
e aA/2-netofX. . ol o : .

1. Pick an arbitrary “root” vertex € N not picked before successive tails; the probability of this ev?nt is at most
2. Set the initial value of the “radius’ «— A /2 (3.1) (1—p)AT) < emPA/AN — g7,
3. Flip a coin with biagp Now, we choosé. to be a multiple off" uniformly in
4. Ifthe coin comes up heads, goto Step 11 a range of width at mosA /4«, and hence the probability
5. Ifthe coin comes up tails, incremehtby I' that L falls into a range of lengtl(r + T') is at most
6. IfL>A(l—-1/40) 2(r + T')/(A/4a). Multiplying this by (3.1), we obtain a
7. choose a valué from [0, A/(4a)] u.ar. bound ofe~ T x M « on the probability that a forced
8. round downl, to the nearest multiple df cut is made around with L in the rangeR, such that the
9. setl «— A(1—1/4a)+ L clusterC’ with centerv in II” may cutB,. Finally, for any
10. Else goto Step 3 x € X, B, can only be cut by clusters from roatss N that
11. Form a new clustet” in II” containing all are at distance at mogt+TI")+A < 3A fromz; by Prop. 2.1,

clusters inll’ N Y with centers lie inB (v, L) there are at mo$B(z, 3A) N N| = (£75)* < (12)* of such
12. Remove the vertices @i’ from Y’ roots. Now we chooseto be large enough; the probability
13. (RemarkC” has radius at most + I') of B, being cut by a forced due to any such root is at most
14. If Y # 0 goto Step 1 12% x =5 x 8D < OCHD) by the union bounda
15. End AT

We now use the above lemma to prove Theorem 3.2. Using
I =11, T = n; < p'(p/(p—1)),andA = 5y —T = p'*1,

and usingN = N, (which is ap’™t/2 = A/2 net), we
create gI" + A = n,11)-ball partition such that for alt and

Al r < pit! ande = O(1/a), we have

Figure 3.1:Algorithm CuT-CLUSTERS

Indeed, if B, is cut inII”, there are at least two cluster
C1,C% € TI' such that they both cuB,, and B(v, L) ,
contains one of their centers but not both. Since both aisist€3.2) Pr[B(z, er) cuf < O(ETF) a< Opgﬁ? a< 1—10
intersect,, their centers; andc, are at distance at most
r+Tfromz. If L < d(v,z)—r—T, the triangle inequality for p/a andc being large enough constants. The probability
implies thatB (v, L) cannot contain either center. Similarlydistribution. over all decompositionH thus generated sat-
if L > d(v,z)+r+T, B(v, L) contains both of them. Henceisfy the requirements of a PPHD as given in Definition 3.1.
the value ofZ must fall into the interval indicated above. Finally, we bound the degret:g(u) of the PPHDg; note

If a cutin Step 11-12 is made due to the appearance dhat each level-cluster is centered at somee N;, hence
heads in Step 4, we call such a cut@mal cut else we call the number of level-clusters contained in some levgh-1)
it a forced cut We now bound the probability that the baltluster is(27;41/(p?/2))°(® = a®(®) by Prop.2.1. =
B, = B(z,r) is cut due to either type.
Normal cuts. Consider the first instant in time when théew Hierarchical Decompositions. The above proof im-
parametel. for some root € N reaches a value such thafnediately gives us a PPHR,, with a support on only
the cut obtained by taking all’ N Y clusters with centersin M = O(logn + loglog A) HDs. By sampling from the
B(v, L) would cutB,. (If there is no such time, theBi, is distributiony for M times, we get the HDH", ... TI*),
never cut by a normal cut.) In this casemust also be in and let the PPHD:;, be the uniform distribution on these
the rangel(v, z) & (r + I'), and increases with time. NowHDs. By (3.2), for eacly € [1...M], pointz € X and
either (i) we make a normal cut befofegoes outside this radiusr < pi, B(x,er) is not cut in the partitiodI"?) with
range; or (i) we make a forced cut; or (iif) goes outside probability 1/10; hence a Chernoff bound implies that this
the range and we make no cut in this range. In any case, [§a# is cut in the level partitions of more thad//2 of the
fate of B, is decided 3, is either cut or contained in a newHDs with probability less thai/(n log A)O(l)_ Now taking
cluster with centep. We now upper-bound the probabilitythe trivial union bound over all possible values of the cente
thatevent (i) happens. There are at mitst+I") /T coinflips 2 € X, and all thelog A values ofr which are powers o?
made (with biag) when the value of. is in the correct range shows that theu, is a(p, £/2)-PPHDwhp.
of width at most2(r + I') and one of these flips must come
up heads for the cut to be made. The trivial union boundn@M.2 Even Fewer Hierarchical Decompositiond/\hile
shows this probability to be at mo%gt";—r) p= w(x. the proof of Theorem 3.2 and the discussion above do not
Forced cuts.Let us look at some roat € N and bound the produce a PPHD with small support (of sizf« log «)),
probability that a forced cut is made with cutting radius we have seen all the essential ideas required to prove the
fromv in some rang®,, = d(v,x) &+ (r +T'). Since the cut existence of such a distributign,, and hence to complete

1
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the proof of Theorem 3.1. To prove this result, we use tigecut in partitionHEQl. The expected number of partitions
locality of the construction, in conjunction with the Lasz in which the ball is cut is at most/8. Since the partitions
Local Lemma (LLL). This locality property is the veryare constructed independently, the probability for theneve
reason why we built the hierarchical decomposition bottorfii*! that B, is cut inm/2 partitions (which is at least four
up; it ensures that if any particular ball is not cut at sonve Itimes the expectation) is at mastp(—9m/40); this can be
level i (the “local decisions”), it is not cut at levels higheestablished using a standard Chernoff bound. This, in turn,
than: (i.e., the “non-local decisions”). Also, we choose thig at most(0.8)™, which we define to be.

decomposition procedure of Theorem 3.2 in preference to Next we show that an evest*! is mutually indepen-
others (e.g., those in [13] and [25]) since they choose desindent of all events€’* such thatd(z, z') > 4n;1. For

random radius for all cIusFers in one particulqr parti@of each partitiorﬂl(-fl, each root € N;,; determines its ra-
X, which causes correlations across the entire metric Spagiis by conducting a random experiment independent of any
(The LLL has been used in similar contexts in [13, 19].)  other roots’ experiments. These random experiments, and
Proof of Theorem 3.1: To show that there is a distributiongny these, determine whether events suchiamceur. In
pm OVer onlym = O(alog a) trees, we use an idea similagyrm, whether everfti*! occurs is determined only by events
to that in the previous section, augmented with some |dg@§ ..., A™. For a particulay, for eachz, all of the cuts that
from [13]. Instead of building one hierarchical decomposipyld affects, in the algorithm @T-CLUSTERSare made
tion II bottom-up, we buildn hierarchical decompositionsfrom rootsv € N,,; at distance at most3 + T' + A =
n®, ..., m"™ simultaneously (also from the bottom up). 23 + 1,1 < 27,41 from z. Whether event? occurs is

As before, the proof proceeds inductively; we assur@etermined by the experiments corresponding to these roots
that we are given Ieve]-partitionsHEl), . .,n§m>, where alone. Ifd(z,2') > 4n;11, then there is no intersection
11 is the levels partition belonging tdI'). We then show between the experiments ferand the experiments for'.

! » m i i+l ; 1 m eitl

that we can build levefs + 1) parUUonsHﬂfl, co £+1) Since&;™ " is determined bY%’ oo A7, £ is mutually
) : i fth o) independent of the set of &ll,”" such thati(z, 2") > 4n;41.
where eaclil;"” is a refinement of the correspon 'Héi%’ We apply the LLL now. Note that the number of
and any given balB(z, er) with p* < 7 < p™ " is cutin - \isnin distancedr; ., of £ for = € Z is at most
at_mostm/2 of.these Iezlﬁl(dz + 1) partitions. We §tart off IB(z,4n:41) N Z| < (877%)& < O(a)®. We define this
this process with eacll;” = {{z} : « € X} being the qaniity to beB; ep(B +1) is at mostl for m = O(alog @)
partition consisting of all singleton points iK. LetJ = 5.4 claim 3.3 follows. -
{1,...,m}. Givenm level partitions(Hl(-J))jeJ, we create Having proved the claim, let us now show that with
m level(i 4+ 1) partitions(Hl(i)l)jeJ using the procedure innonzero probability, eacB(x,r) for x € X andp’ < r <
Lemma 3.2 independently on each of thedlecompositions; p*! is not cut in at least:/2 of the level{i + 1) partitions

parameters are set as in the proof of_ Theorem 3.2, sz(‘i)l).jeJ- Let us call this even§C;1. The claim shows
A = p, T =, ande = 1/0(a). This extends then  that with nonzero probability, each baf. with z € Z is

hierarchical decomposit.i(_)ns to the+ 1)St Ievell; itremains ot cut in at leastn/2 of the partitions(Hz(.fl)je;. Since
to show that the probability of balls being cut is small. eachz € X is at distance at most to somez, € Z, the

To Qescnbe the events of interest, let us take _‘c‘pH‘l triangle inequality implies thaB(z,er) C B(z, 3) is not
and defineZ to be aj-net of X. For each: € Z, defineB. ¢yt if B(2,,28) is not cut, which holds in at least half of the
to beB(z,2), and£X*! to be event thaB. is cut in more partitions. Hencé& C,, 1 also holds with nonzero probability.
thanm,/2 of the partitiongT1{7), )™ |, whichwe refertoasa  Finally, we prove that we can choose a random set
“bad” event (used in Section 3.2). We prove the claim usigg HD’s (H(j))jeJ such thatSC;,; occurs for each <
the Lovasz Local Lemma. i+ 1 < h simultaneouslyith nonzero probability. The key
CLAIM 3.3. Given aanZ(j));n:I' Pr[\ F} > 0. to the proofis that we have assumed an arbitrary (worstycase
set of partitions,(l'[f.”);-":1 at leveli in proving a nonzero
LE.MMA 3.3. (LOVéSZ Local Lemma) Given a set of eVentS|ower bound OnPI‘[SO»L'+1]. Hence, we can ignore any
{EH+1) ¢ 7, suppose that each event is mutuallyindepend@étpendence among the evestS, . for 1 < i +1 < h,
of all but at mostB other events. Further suppose that, fosnd simply multiply their nonzero probabilities together t
each event ™', Pr(€"!'] < p. Thenifep(B +1) < 1, obtain a nonzero lower bound on the probability that they all
Pr[A,c, €1 > 0. occur simultaneously. u

z2€EZ

Proof of Claim 3.3: First, let us calculate the probability;
of £iT1: by changing the constant in we can make the
probability that a balB, is cut in one level< + 1) partition
to be at mosti /8. Let us denote byd/ the event thaB3,

2 An Algorithm for Finding the Decompositions The
above procedure can be made algorithmic using an approach
based on Beck’s algorithmic version of the LLL (see, e.g., [1



5]). The decomposition satisfies all properties of the oaeth ~ We consider routing schemes in two models. In a basic
is shown to exist using LLL in Theorem 3.1, although witimodel, we assume that there is no underlying routing fabric
some changes in constant parameter values. As in the pioad each node can only send packets to its direct neighbors.
of Theorem 3.1, we buildn = O(aloga) HDs level by In a second model, we can build an overlay hierarchical
level in a bottom-up fashion. routing scheme upon an underlying routing fabric like IP
On any particular level + 1, we begin by choosing: that can send packets to any specific node in the network.
partitions at random. After making the random choices, Wee specify the routing algorithm in the basic model, but
examine the partitions and identify all of the bad events tralso indicate how one can circumvent certain steps of this
have occurred. We then group together bad events that ralgorithm when an underlying routing mechanism is given.
depend on each other, as well as “good” events that may Let us recall some of the notation defined earlier. Let
depend on the bad events. Each group forms a conne(ﬁﬁﬂ));’;l be them hierarchical decompositions on which
component in the LLL dependency graph. We show that,, has positive support, and the leviglartition correspond-

with high probability, all connected components have sizgy toIll”) be calledI"’’. Recall that we can associate each

O(log v), wherev = | Z| is the size of thep'*!-netof X.  pjerarchical decompositia”) with a treeT; (as outlined
Once the groups have been identified, we need to eligection 2.1). Note that each of these trees hésséyin, )
inate the bad events. Hence, for each group, we “undg,nded byn®(®) and a height of at most = Mog, A
LA

all of the random choices concerning that group, while nRkcall that each internal vertex of the trEgat leveli cor-

modﬁymg any choices that do not affect the group. Nev(\ésponds to a cluster 577 and leaves of;,Vj € J, cor-
choices must be made for each group so that no bad event oc- . !

g ond to vertices X, whereJ = {1,...,m}. Let each
curs. Because the group size is small (the number of cente , .
intérnal vertexv of each tre€l’; label its children by num-

v € Niyy concerning the group that we choose random 'Bers between anddeg(u., ); v does not label anything with

dius for is alsa(log 1)), we can find new settings for thes?he numben, but uses it to refer to its parent. Note that this

choices using exhaustive search in polynomial time. .
; . S : . allows us to represent any path in a tf&eby a sequence of
One interesting complication in this proof is that thSt most2h — O(log, A) labels
= , }

set of clusters containing a group have different shapes in Lemma 3.1 already shows that thetrees thus created

o bton: e L 4 fym a small ) — O(c) stetch Steer e cover,
' ' ich can be used for routing purposes (as in Section 4.3).

of the hole is formed from the boundaries of the clusters that . .
. . However, since such a large stretch is not always acceptable
may influence the bad events (and the good events) in the. . . . :
. o we improve on this scheme in the following subsections to
group. In forming the boundary, additional good events m

a%t better routing bounds
be added to the hole. As a consequence, it is possible thg a 9 '

gpod event in§ide aholein one partition may appear insidg& The Addressing SchemeGiven a treel’; and a vertex
different hole in another partition. Hence, when we performe X, we assign: alocal addressddr, (), which consists

exhaustive search, these holes must be considered tage jlr _ [10g,, M blocks, one for each level of the trée.

However, our method of bounding the size of each connec ) )
component already takes into account any merging of ho %Ch block has a fixed length. THe blockof theaddr; (x)

on account of shared good events, so that we never havégesponds to partitioi;’’ and contains the label assigned
redo the choices for a group of size more tliafog v/). to the clusterC, containingz in HE” by C.’s parent in
Another issue is that the subset of centers in a hole tHat Since any such label is just a number betwéeand
belong toN; 1, thepi*! /2-net that covers the entire metricdeg(s,), wheredeg(u,,) = a©(®), we needO(aloga)
may not by themselves cover the hole. (Portions of the hbigs per block. In fact, one can extend this addressing sehem
may be covered by centers outside the hole.) So for eactiaény clusteC in T;. If C is a leveli cluster, thek!*-block
the m partitions, we may have to add additional net poine$ addr;(C') containss’s for k < ¢; addr;(X) for the root
inside the hole to obtain a complete cover for it. We shavluster ofT; contains alk’s matching all vertices ik .
that the size of net points in the hole increases by only a Theglobal addressddr(z) of pointz € X is the con-
constant factor and remai¥log ), and the degree of thecatenationaddr, (z), - - - ,addr,,(z)) of its local addresses
hierarchical decomposition trees is at maSt®) as before. addr;(x) for j € J. Since each clustef’ belongs to only
one treel;, we defineaddr; (C') to be a sequence @f's
4 The (1 4 7)-Stretch Routing Schemes of the correct length (wherg are dummy symbols match-
Given a(p,e)-PPHD p,,, with a support onm HDs, we ing _no_thing), and_henpg de]‘ineaglo_bal address _afs well.
can now define, for everg < = < 1, a (1 + r)-stretch (This is only for simplicity; in actual implementationspusk

routing scheme which uses routing tables of size at m&faddresses faf; can be given by the tupladdr; (C), 5).)
m(a/7)°) log? A bits at every node. Since there ar®(«a log «) bits per block/ blocks per



local address, andh local addresses per global address, sutre next hop on the path fromto close,. (C’) provided that

stitution of the appropriate values gives the address kengie next hop does not leave the clusteat level:’ + ¢ that

A to be at mosin x h x [log(deg(um))] = O(aloga) x  containg”’, and null otherwise. (As we shall see, the packet

[logp A] x O(aloga) = O(a?log alog A) bits. forwarding algorithm is guaranteed never to encounter a
null next hop.) Given pointg: andt in X, the function

4.2 The Routing Table For each point: € X, we main- PrefMatch,(¢) returns araddr(C’) in Route, such that in

tain a routing tabl&oute,, that contains the following infor- someT};, ¢ belongs to the levelclusterC’, ValidPath, (C")

mation for eacli;, 1 < j < m: ist r ue, and the valué is the smallesacross all trees. Note
1. Foreach ancestor ofin T that corresponds to a clustefhat both of these functions can be computed efficiently by
C containingr, we maintain a table entry faf. nodex. Furthermore, it is possible to support the functions

with data structures of size comparable to thaRofite,..
Note that once the points iX have been assigned
treeT;. Here! = O(log, 1/7), with the constants addre_sses (for Wh?Ch we have described (_)nly an off-line
Ll algorithm), the routing tables can be built up in a completel
chosen such thag—, < 5o distributed fashion. In particular, a distributed breafiitst-
In the routing tableRoute,, for z, each of the above entriessearch algorithm can be applied to determine whether a ball
thus corresponds to some levéleluster C* in T;. Let of a certain radius is cut in a particular decomposition, and
close,(C’) be the closest point it to x. (We assume, a distributed implementation of the Bellman-Ford algarith
w.l.o.g., that ties are broken in some consistent way, &n be used to establish the next-hop entries for destirstio
that any nodey on a shortest path from to close.(C”) for which the shortest paths lie within a certain cluster.
has the valueclose,(C’) = close,(C’); in fact, this
consistency is the only property we use.) For thi§ 4.3 The Forwarding Algorithm The idea behind the for-
Route, storeg(a) the global addresaddr(C”) by which the warding algorithm is to start a packet off from its origin
table is indexed(b) the identity of a “next hop” neighbortowards arintermediateclusterC' containing its destination
y of z that stays on a shortest path framto the closest ¢; the packet header thus consists of two pieces of informa-
pointclose, (C”) in ¢, and(c) an extra bitvalidPath, (C'):  tion (addr(t), addr(C)), wheret is the destination node for
if the cluster¢ levels aboveC” in Tj is the clusterC, then the packet and’ is theintermediatecluster containing. Ini-
ValidPath,.(C") is set to bt r ue if B(z,cp’ t¢) is entirely tially, the cluster can be chosen (degenerately) to be tbie ro
contained within cluste€ andd(z, close, (C")) < ep” +*, cluster of (say) tred?.
and is set to béal se otherwise. Of course, if we reachthe  Upon reaching a nodein the intermediate cluster, a
root of T; while trying to go up¥ levels, then the bit is set tonew and smaller intermediate clustéf, also containing,
bet rue. Note that if there is an underlying routing fabrienust be chosen, possibly from a different tree; the packet
like IP, we can store the IP-address of some nod&'i(say, header must be updated witiddr(C’) that remains the
the closest one) instead (if) and(c) above. same until reachin@’. Suppose that the new clustéeY
o ) containingt is at leveli’. After selecting this cluster, the
LEMMA 4.1. The number of entries in the routing tablgyacket is sent off towards’ with the new header, following
Route, of anyx € X is at mostiog A x (a/7)°t). a shortest path that stays within the clusteat leveli’ + ¢
that contains botlx andC’. This process is repeated until
ultimately the packet reaches the cluster containing dray t
destinatiort. The algorithm is presented in Figure 4.2.

2. Moreover, for each sucti, we maintain an entry for
each descendant ¢f in T;; reachable withir? hops in

Proof. Let us estimate the number of entriesRoute,, for
anyx € X. There arem trees. For each tre€;, for all
j € J, there areh = [log, A| ancestors of and the degree
of the tree is bounded byeg(,,) = a©(®). Recall that THEOREM4.1. The forwarding algorithm has a stretch of
p and 1/e are bothO(«), and hence = O(log(a/7)). atmost(1l + 7), wherer < 1.

Plugging these values in, we get that the number of entries
for 2 acrossm trees is at mostn x h x (deg(um))? = Proof. We first show that the algorithm is indeed valid;

O(aloga) x O(log, A) x a2 = log A x (a/7)0(»), each of the steps can be executed and the packet eventually

Each entry is indexed by one global address (of at m&&@ches. Suppose that the packet has just reached a node
A = O(a?logalog A) bits), and contains the identity ofz in an intermediate clustef' containingt (with addr(C)

the next hop (which use®(log degree-ofr) = O(logn) N its header); thus: needs to execute Step 3 to find a new
bits) and one additionalalidPath bit. m ClusterC’ containingt. Clearly, PrefMatch, (¢) can return

the root cluste€’,.,,; of anyT}, since it containg. We show,
The forwarding algorithm makes use of two functionfiowever, that the clust&r’ returned byPrefMatch, (¢) has
NextHop, and PrefMatch,. For a pointz and a level¥ a small diameter and nodes along a valid shortest path from
clusterC’ in T}, the functionNextHop, (addr(C")) returns « to C’ will forward the packet correctly until it reach€s.



H 7—1
Let packet header Haddr(t), addr(C)). C" is at most2n;—¢, d(v,t) < 2ni—¢ < ep'™" < d(s, ).

; If C containse, the current node, then (The last inequality holds becausesjfi—! > d(s,t), then

3 findaddr(C") — PrefMatch, (1) ;rae:ll\gﬁ;hgfév”oEldLhave returned a cluster at a level |IOV\rI18r
4 lety — NextHop, (addr(C")) . . y _emmg 4.2.) Hence, we can apply the
5 forward packet with new header induction hypothesis to find a path fromto ¢ of length at

6. (addr(t), addr(C")) to . most(1 + 7)d(v,t) < (1 + 7)2n;—¢. The path froms to ¢

7. Else (nows ¢ C) as derived fronRoute; is of length at mosti(s, v) + (1 +

8 lety — NextHop, (addr(C)) T)d(v, z_t) < d(s,t) + (1 + 7)2n;—¢. The stretch of the path
9 forward packet with unchanged header fromsistis thgnl + (1 +7)2n;—¢/d(s,t). This quantity is
10. (addr(t), addr(C)) to y. at mostl + 7 sincer < 1 and we have chosen constants so
11. End thatn,_, < 7ep'~1/4. [

Section 4.4 of the proceedings version of this paper

Figure 4.2: The Forwarding Algorithm at Node outlined an method to ostensibly reduce the table size to
O,,-(log A) bits: while this can indeed be achieved in the

LEMMA 4.2. If the packet is at node: with distance to presence of an underlying routing fabric (like IP), we do not

the targett beingd(x,t) < ep’, Step 3 must return someknow how to obtain this result in the basic model where we

addr(C’) such that cluste€’ > t is at level at mosti — ¢) can only forward packets to adjacent vertices.

in someT;, with ValidPath,, (C”) beingt r ue. Furthermore,

all vertexv on all shortest paths fron to close.(C’) = 5 Constant-Degree Spanners for Doubling Metrics

close, (C”) has a non-nulNextHop, (addr(C”)). Given a metrig(V, d) with doubling dimensiony and~ >

Proof. The (p,¢)-PPHD ensures that there exists at Iea@'fhthIS section sh(()jws h°".V tg cor;jst(rjuci(ht z)(-as)pagner
one treeT; such thatB(z,ep’) is not cut in the level- whose maximum degree is bounded (@y+ 7) - Our

. ). A ) . . construction consists of two phases. In thTe first phase, we
partition IL;"7; 1€t Ceone _ € II;” be the Ieveb cluster in construct a spannéi/, E') from a nested sequence of nets
T; that containsB(z,zp). Let C; € 111", be the level- {Y;}; we include an edge if the end points are from the same
(i — £) cluster inT; containingt. The ValidPath,(Ct) netand “reasonably close” to each other. We then show that
bit must bet r ue since B(x,ep’) C Cont IN HEJ) and the edges in this spanner can be directed such that the out-
d(z,close,(Cy)) < d(z,t) < ep’; thusPrefMatch, can degree of each vertex is bounded, and hence the spanner is
(and may indeed) just returaddr(C;) given no “better” sparse. We then have a second phase, in which we modify
choices. HoweveRrefMatch, always finds a clustef’ in these edges i to obtain another spanner, but now with
someT;, at thelowestlevel across all trees, such thiat C’, bounded degree. Our main theorem, whose proof we sketch
andValidPath,(C’) ist r ue in Route,. Let the level ofC” in Section 5.1, is the following:

bed’; the valuei’ is at most(i — £). Now LetC € II7), be  THEOREMS5.1. Given a metriqV, d) with doubling dimen-
the cluster levels above” € 115 in T}, that contains both Siona, there exists &1 + )-spanner such that the degree of

z andC’. (SuchC' must exist at level’ + ¢ for addr(C’) ©Very vertexis at mose + 7o,

to be inRoute,.) We know thatB(z,ep? t¢) C € and _ _

d(z, close, (C")) < 5pz"+é sinceValidPath, (C”) is t r ue 5.1. Constructing gsparse(l + 7)-spanner We fII’S.t de-

in Route,. Thus all shortest paths fromto close, (C") are SCribe the construction of a Spa'gi‘* T)—Spalnner. Without
entirely contained irC'. Hence, theNextHop, (addr(C)) 0SS of generality, we assumes. ;. For7 > 3, we still run

pointer at any node on one of these paths must be non-ndff€ Whole procedure with’ = 5. All the bounds would still

since all shortest paths fromto close, (C") = close, (C") hold becausé®(®) = (2 4 7)°(®). Without loss of gener-
are all contained i, the cluster levels above”’ in 7/. m ality, we assume that the distance between any two distinct

vertices is at least 1. Otherwise, we can re-scale the metric

It remains to bound the path stretch. Consider the case wi@wenr > 0, lety := 4 + % andp := [log, v]-
a packet is sent fromto t. LetC’ be a cluster at level— ¢ Our construction requires a hierarchical sequence of
returned by Step 3 of the forwarding algorithm. Note thaets, which is defined as follows. Define, := V. For
if the leveli < ¢, thenC’ = {t} and we send the packet > —p, letY; be a2‘-net of Y;_;. (Note that since the
directly tot with = = 0. Using these short distances as thiater-vertex distance is at least¥;, = V for —p < i < 0.)
base case, we now do induction on the distance fsrdo¥.  For each neY; in the sequence, we include the edges whose

If C' is a non-trivial cluster containing then we go on end points are in the net and are close together. In pantjcula
a shortest path fromto some vertex = close;(C’) € C’. define fori > —p, E; = {(u,v) € Y; x Vi |y 27! <
Sincet € C’, d(s,v) < d(s,t). Because the diameter ofi(u,v) < v -2}. Let £ = U, E;, and(V, E) is the spanner



obtained from the construction. The following lemma shovi&0] G. N. Frederickson and R. Janardan. Efficient message
that(V, ') preserves distances in the metric and is sparse:  routing in planar networksSICOMP, 18(4):843-857, 1989.

. [11] Cyril Gavoille. Routing in distributed networks: Owéew
LEMMA 5.1. The graph(V, E) is a (1 + 7)-spanner for and open problemsACM SIGACT News32(1):36-52, 2001.
(V.d). Furthermore, the edges df can be dlrected such[12] C. Gavoille and M. Gengler. Space-efficiency for rogtin
that each vertex has out-degree boundecj?:)y 1)0(e), schemes of stretch factor thre#?DC, 61(5):679-687, 2001.
ElS] Anupam Gupta, Robert Krauthgamer, and James R. Lee.

While we omit the proof, let us indicate how to direct th Bounded geometries, fractals, and low—distortion embepdi

edges. For each € V, definei*(v) := max{i|v € Y;}. In FOCS pp. 534-543, 2003.
For each edgeu, v) € E, direct it fromu to v if i*(u) < [14] S.Har-Peled and M. Mendel. Fast constructions of meltsi
i*(v); if i*(u) = i*(v), direct the edge arbitrarily. dimensional metrics, and their applications. manusc2ipd4.

[15] J. Heinonen. Lectures on analysis on metric spaces
Springer-Verlag, New York, 2001.

K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao.
Distributed object location in a dynamic network. $iPAA

Bounded-degree spanners\We now modify £ to get an-
other spanne(G, E) with the same number of edges, bu[l'16]
with bounded degree in the following way. Liéte the small-

est positive integer such thgi;# < 7. Thenl = O(log 1). pp. 41-52, 2002.
For each vertex. € V, and for—p < i < i*(u), define [17] David R. Karger and Matthias Ruhl. Finding nearest heig
M;(u) to be the set of vertices such thatw € N;(u) and bors in growth-restricted metrics. BTOG pp. 63—66, 2002.

(w,u) is directed intou. Definel = {i|Jv € M;(u)}. [18] Leonard Kleinrock and Farouk Kamoun. Hierarchicaltiog
Suppose the elements d@f are listed in increasing order  for large networks. Performance evaluation and optimorati

1 < ig < - : for brevr[y, we Wr|teMU — sz (u) Comput. Networksl (3):155-174, 1976/77.
We now keep all the arcs dlrectmlt ofu. Moreover, [19] Robert Krauthgamer and James R. Lee. The intrinsic gdime
for 1 < j < I, we keep the arcs directed frohd* into . sionality of graphs. IrSTOC pp. 438447, 2003.

. . . u : [20] M. Molloy and B. Reed Graph colouring and the probabilis-
Forj > [, we pick an arbitrary vertew € M}, and replace tic method Springer-Verlag, Berlin, 2002.

every arc fromM“ into « by an arc from]\/[“ into w. Let [21] D. Peleg and E. Upfal. A trade-off between space and
(v E) be the resultmg undirected graph. S|nce every edge efficiency for routing tablesJACM, 36(3):510-530, 1989.
in E is either kept or replaced by another edge (which migiae] D. Peleg.Distributed computingSIAM, Phila., PA, 2000.
be already ink), |E| < |E|. The following lemma, whose[23] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
proof is omitted, gives the claimed result: nearby copies of replicated objects in a distributed emviro
ment. Theory Comput. SysB2(3):241-280, 1999.
LEMMA 5.2. Every vertexin(V, E) has degree bounded by{24] R. Rajaraman, A. W. Richa, B. Vicking, and G. VuppuluAi
(2 + 1)9@). Furthermore, ifd is the metric induced by  data tracking scheme for general networksSRAA pp. 247—
(v, E), thend < (1 + 47)d. 254, 2001.
[25] Kunal Talwar. Bypassing the embedding: Algorithms for
low-dimensional metrics. ISTOG pp. 281-290, 2004.
References

[1] Noga Alon and Joel Spencer.The Probabilistic Method
Wiley Interscience, New York, 1992.

[2] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M.
Smid. Euclidean spanners: short, thin, and lani§TOC
pp. 489-498, 1995.

[3] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space trade-off. SIAM J. Discrete Math.
5(2):151-162, 1992.

[4] Y. Bartal. Probabilistic approximations of metric spacand
its algorithmic applications. IFOCS pp. 184—-193, 1996.

[5] J. Beck. An algorithmic approach to the Lovasz local hea
I. Random Struct. Alg2(4):343-365, 1991.

[6] L. J. Cowen. Compact routing with minimum stretchl.
Algorithms 38(1):170-183, 2001.

[7] G. Das, G. Narasimhan, and J. Salowe. A new way to weigh
malnourished Euclidean graphs. 3©DA pp. 215-222, 1995.

[8] M. M. Deza and M. Laurent.Geometry of cuts and metrics
Springer-Verlag, Berlin, 1997.

[9] G.N. Frederickson and R. Janardan. Designing netwoits w
compact routing tablesAlgorithmica 3:171-190, 1988.



