On the Approximability of Some Network Design Problems
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Abstract programming based techniques leading to many constant-

Consider the following classical network design problem:factor approximation algorithms. _ _
set of terminals” = {t;} wants to send traffic to a “root” Despite these successes, several basic network design
r in ann-node graptG = (V, E). Each terminat; sends Problems have eluded the quest for constant-factor ap-
d; units of traffic, and enough bandwidth has to be allocatBfPximations, with the current best approximation guaran-
on the edges to permit this. However, bandwidth on an ed§&s being logarithmic or worse. Moreover, none of the

e can only be allocated iintegral multiples of some basePréviously-known hardness results precludes the poggibil
capacityu, — and hence provisioning x u. bandwidth on ©f constant-factor approximation algorithms for thesebpro
edgee incurs a cost of k] times the cost of that edge. Théems. In this paper, we make progress on this front and show

objective is a minimum-cost feasible solution.

This is one of many network design problems widely.
studied where the bandwidth allocation being governed 9@
side constraints: edges may only allow a subset of cables to
be purchased on them, or certain quality-of-service requir
ments may have to be met.

In this work, we show that the above problem, and in
fact, several basic problems in this general network design
framework, cannot be approximated better tRdiog log n)
unlessNP C DTIME (n©(legloglos™)) - In particular,
we show that this inapproximability threshold holds for
(i) the Priority-Steiner Tree problem [7], (ii) the Cost-
Distance problem [31], and the single-sink version of an
even more fundamental problem, (ifjxed Charge Net-
work Flow [33]. Our results provide a further breakthrough
in the understanding of the level of complexity of network
design problems. These are the first non-constant hardness
results known for all these problems.

1 Introduction

Approximation algorithms have had much success in the
area of network design, with both combinatorial and linear-
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(loglogn)-hardness results for the following problems:

d-Charge Network Flow (FCNF): The FCNF prob-

lem and its many variations has been widely studied
in the Operations Research community [33, 34, 6, 19].
Thesingle sourceversion considered here is a very nat-
ural and basic network design problem. The input is a
graph where each edge hasastc, and acapacityu..
Given a setl" of terminals{t¢;} (each with a demand
d;) and a designateot noder, the goal is to choose

a subset of edges, such that every termipahn route

d; flow units to the root. The edge capacities cannot
be violated, and multiple copies of each edgean be
purchased, each incurring an additional cost.of

FCNF generalizes several important network design

problems and hence itis of great interest to theoreticians
and practitioners alike. We show that our hardness
result holds for theingle sourceversion ofFCNF.

Priority Steiner Tree: Motivated by the heterogeneity in

Quality of Service requirements in multicast (video) ap-
plications [28, 42], thePriority-Steiner Tree problem
was defined by Charikar et al. [7]; special cases of this
problem have also been studied in the Operations Re-
search community [10, 11, 32, 35].

In Priority-Steiner Tree, given a grapiG = (V, E)
with edge costs,, a setl’ of terminals and a root node
r, we want to find a min-cost Steiner tré&e C G
spanningl” U {r}. An additional constraint ot is
that each terminal € T desires a certain Quality of
Service (or priority)Q(¢) € {1,2,...,k} — herelis
the highest and is the lowest QoS. Furthermore, each
edge offers a certain Qa3(e) € {1,2,...,k}, andwe
want the path int from ¢ € 7' to the rootr to consist
only of edges: with QoS at least as good §5t); i.e.,

Q(e) < Q(1).



A min{21n |¢|,1.55 k}-approximation for thériority- An inapproximability threshold ofgg% for the basic
Steiner Tree problem was given by Charikar et al. [7]Jundirected Steiner tree problem was shown in [9], which
they also showed that the problem is NP-hard evenmediately implies the same threshold to all the problems
whent = V. However, no(1) approximation we consider. A 1.46 inapproximability threshold [16] for
hardness was previously known for the problem. facility location extends taCost-Distance, as shown in
) ) ) [31]. To the best of our knowledge, these were the only
Cost-Distance: This problem was mtroduped_ by Meyerso{happroximability results known for any of the problems
et al. [31]_’ as a common general!;atlon O,f SEVEIJe consider. Hence, our work represents a substantial leap
problemg In netv_vork design and facility location. Thﬁ showing that several basic network design problems are
problem is identical td-CNF, except that there are nq, iy to admit constant-factor approximations.
edge capacities, and each edgkas alength/.; the Note that two of the three problems ha¥élog 1) ap-
costs and Iengths_ of e(_jges may be unrelated FO eﬁ?@ximations ([7] forPriority-Steiner Tree and [31] for
other. The go_a! IS to find a_Ste_lner tr@e_spannmg Cost-Distance). Therefore, our results show the existence
T'U {r} that minimizes the objective function of an intermediate class of network design problems which
are neither constant-approximable nor polylogarithmic-i
approximable. On one extreme, we have the undirected
Zce + Zdi x(ti,r); single-source network design problems with homogenous
e€T €T cost functions on edges such as single-source buy-at-bulk,
hich admit constant factor approximations. On the other
Qtreme, incorporating further complexity to the problems
leads, as one would expect, to greater degrees of inap-
Building on the basic framework of Marathe et al. [27broximability: the current inapproximability thresholdrf
Meyerson et al. [31] gave a@(log|T’|) randomized directed Steiner tree i€)(log> n) [22] and for multi-
approximation algorithm for the problem. This algoqommodity buy-at-bulk network designﬁk(log%* n) [1].
rithm was subsequently derandomized by Chekuri et our problems therefore occupy a middle ground with
al. [8], and anO(log" n)-competitive online algorithm |ogarithmic approximations (to date), but super-consiant
was given by Meyerson [30]. The best hardness igyproximability. Indeed, thBriority-Steiner Tree problem
sult previously known for this problem was &H(1)-  generalizes the undirected Steiner tree problem, but can be

i.e., the sum of edge costs of the tree together with t
weighted distances from the terminals to the root.

hardness via facility location. implemented as a special case of the directed Steiner tree
problem.
1.1 Our Results and Related Work Network Design: There has been much research in the

We show that it is hard to approximate the above profrea of approximation algorithms for network design, with
lems to better than a factor ﬁ_lf(log logn). _In particular, the many new techniques being developed and problem areas
technical heart of the paper is the following theorem: being explored. A partial list includes [5, 2, 12, 23, 15, 39,

- _ _ . 14,17,18, 21, 20, 25, 27, 29, 31, 24, 36, 37, 39, 40, 41]: see
The_orem 1.11ltis |meSS|bIe to apprquate theriority- e many references therein for more pointers.
Steiner Tree problem in polynomial time to better thana 14 place our results in a better context, we focus on
factor of cloglogn (for some constant) unlessNP C  concave-cost network design, where the cost of using an
DTIME (nOUogleslos ™)) This is true even for instances OBdge is a concave function of the flow on the edge. If
Priority-Steiner Tree where all edges have unit cost. the cost function is the same per unit length in all edges

We then give approximation-preserving reductions froffif uniform), then the problem is constant-approximable in
the Priority-Steiner Tree problem to theFCNF and the (he single-sink case [18, 41] artélog n)-approximable in
Cost-Distance problems, which imply similar hardnesghe multi-commodity case [5, 13], with aft(log?™ “ n)-
results for these problems as well. inapproximability threshold shown by Andrews [1] for the

As mentioned above, these are the first non-constantfiulti-commodity case. Constant approximations exist for
approximability thresholds for these network design prodpecial cases of multi-commodity concave cost network
lems. In fact, all these problems aiagle-sinkproblems on design, such as the rent-or-buy cost function [25, ZHjst-
undirectedgraphs; non-constant hardness results that wétistance and=CNF are special cases of single-sink concave
known previously made crucial use of either (actual or sirfiost network design witmon-uniformcosts on edges; for
ulated) directedness, such as the recent work on polyloese problems, ou(log logn)-inapproximability results
rithmic inapproximability [22] of directed Steiner and gp  complement thé2(log2 ~°)-inapproximability of the multi-
Steiner trees, or of the fact that there were multiple sinkemmaodity version in [1]. We hope that our results will help
(and hence multiple commodities) in the system [1]. in providing further understanding of the factors detefingn



the degree of difficulty of approximating the different tgpesent to the second prover. Each prover answers with an

of network design problems. assignment to all the variables that appear in its quenh(bot
Paper Outline: We achieve our goal of showing theas distinguished variables and as variables belongingeto th

inapproximability of these network design problems by uguery clauses). The verifier checks that for each clayse

ing one of them Rriority-Steiner Tree) to encode an in- 1 < i < ¢/2, the assignment sent by the first prover satisfies

stance of a Set Cover problem, which itself is shown to biee clause and that for each clausg ¢/2 + 1 < i < ¢, the

hard to approximate using a reduction from MAX 3SAT(5assignment sent by the second prover satisfies the clause. If

To this end, we begin in the next section by explicitly corhis is not true, the verifier rejects. Finally, the verifibecks

structing this set system instance. Subsequently, in @ectihat for each : 1 < i < ¢, the assignments of both provers

3, we show the hardness Bfiority-Steiner Tree using this to x; are identical, and accepts or rejects accordingly.

construction. We then show the hardness of the other two

network design problems in Section 4, using the hardnessl‘ﬂfaorem 2.2 ([4, 3, 38))If

o . is a yes-instance of 3SAT(5),
Priority-Steiner Tree.

then there is a strategy of the provers that makes the verifier

) always accept. Ip is a no-instance, then no matter what the

2 Set System Construction strategy of the provers is, the acceptance probability ef th

In our reduction, we start from a 3SAT(5) formulaand verifier is at mos2—<¢, for some universal constaat

produce an instance &fiority-Steiner Tree. As a building

block for our reduction, we use the construction of Lund and We denote byX andY the sets of all the possible

Yannakakis [26] for the hardness of the set cover problequeries to prover$ and2 respectively (each query contains

Since we will be using some properties of this constructiam//2-tuple of clauses and aif2-tuple of variables). Given

which are not proved explicitly in [26] (though easily follo a queryg € X UY, let A(q) be the set of all the possible

from the paper), as well as for the sake of completeness, avesswers to this query that satisfy all the clauses appearing

provide their construction here with slight changes (whigh Note that|X| = |Y'| < (2n)¢, and for eacly € X U Y,

are performed for convenience reasons). |A(g)| < 8°. We denote byR the set of all the random
The reduction is performed from the gap version afrings of the verifier, spR| < (5n)¢. For a random string

Exact MAX 3SAT(5), which is defined as follows. Wer € R, let ¢;(r) andg.(r) be the queries sent to the two

are given a CNF formulg with »n variables and5n/3 provers when the verifier chooses

clauses. Each clause contains exaétliterals, and each Given a 3SAT(5) formuleg, we build a set system using

variable appears in exactly different clauses. The goalthe Raz verifier defined above. The collection of sets is

is to find an assignment which maximizes the number @énoted byS, and it contains, for each quegye X UY

satisfied clauses. Formulais called a yes-instance, if itand for each answer e A(q), a setS(q,a), i.e.,

is satisfiable, and it is called a no-instance (with respect t

somee : 0 < e < 1), if the maximum fraction of clauses S={S(g,a) |ge XUY,a € A(g)}

that can be satisfied simultaneouslyis- €). The following

corollary of the PCP theorem was shown by [3] The number of sets is bounded Bg‘n‘. We now

proceed to define the elements. Consider some random string

Theorem 2.1 For some constant, it is NP-hard to distin- " € R, and letzy, ... , x, be its corresponding distinguished

guish between the yes and the no instances of 3SAT(5). variables. Let4 be the set of all the possible assignments
to these variables,A| = 2¢. For eachd’ C A, there is an

2.1 The Set System elementE(r, A"), which belongs to all such se$§q, (r), a),

We start from a 3SAT(5) formula and we build a set whgreq is consistent with_ spme_assignmgnb&h (i.e., the
system. A useful tool for defining the construction is the R&80jection ofa onto the distinguished variables belongs to
verifier for 3SAT(5) with¢ = O (logloglogn) repetitions. ') and to all such setS(gs(r), a'), whered' is consistent
The verifier receives as an input a 3SAT(5) formyla With some assignment i’ (i.e., the projection of' onto
and proceeds as follows. As the first step, the verifige distinguished variables is not m‘?- As |R| < (5n)",
chooses, independently at random, a sequendect#uses and since for each € R there are2? elegnents, the total
C,...,C, from the formula and a sequencefvariables number of elements is bounded )" - 2%
z1,...,xs Where foreach : 1 < i < ¢, z; is chosen This completes the description of the set system. We
randomly and independently from the variables particigatiwill need the following properties of the system.
in C;. Variablex; is called the distinguished variable of  Setsizes:Observe that for each quefyc X, there are
C;. The indices of clauses§’, ... ,C;, and of variables 152 random strings: € R, such Ehat] = qi(r). The same
Ty/241,- - ¢ are sentto the first prover, while the indicess true forq € Y. As there are? elements corresponding
of variablesr,, ... , x4/, and of clause€';/» ., ... ,C¢ are tor, and, given some assignment A(q), exactly half of



these elements belong to $#g, a), the sizes of all the setsas follows. Each queryy ¢ (@ chooses randomly one

are identical and equal to= % .15% . 92° of its < 4h assignments that correspond to the set§in
The probability that the verifier chooses a random string in

Element degrees:Given an element = E(r, A’), denote R" is at Ieast%. If this happens, then the probability that

by d. the number of sets in which participates. Let4 be the answers of the provers are consistent is at Igé—;t.

the set of all the assignments to the distinguished vasabldwus in total, the verifier accepts with probability at least

corresponding to random string For eacha € A, there gz > 27%. o

are exactly2! answers of prover 1 to quegy(r) (prover 2 to

querygs(r)), that are consistent with(though some ofthem ~ Consider some random string € R’ \ R" (i.e., S

may not satisfy all the query clauses). This is because fiftains less thadh sets from the family{S(qi(r),a) |

distinguished variables must have the same assignment as i A(¢1(r))} and less thanth sets from the family

a, and additionally there a £ = ¢ variables that appearin{S(q:(r),a') | o' € Alg(r))}, and no pair of sets

query clauses and are not distinguished variables. Thexef§ (¢1(r),a), S(g2(r),a’) wherea,a’ are consistent). Let

d, < 20 |A] = 22t Puttingd = max.{d.} < 22, the € = E(r, A) be some element and lelf, be the subset of

assignments to the distinguished variables, such thaafdr e

a € Al thereis some séi(z,a’) € S whered' is consistent

Yes-Instances: Assumey is a yes-instance. Then there i¥/ith a. Def|,neAfy similarly. Clearly,|A; | < 4h, |4, | < 4h
a strategy of the provers which makes the verifier alwa§8d4: N 4, = 0. Elemente = E(z,y, A) is covered by
accept. We show that we can cover all the elements bysgs InS iff AN A} # 0, or AN A} # (. As for each assign-
most|X| + |Y| sets. For each query € X UY, choose Menta to the distinguished variables, exactly half the séts
the setS(g,a), wherea is the answer (under the abové&ontain this assignment and half the seftsio not contain
strategy) to query. Now consider some element(r, A). it, the fraction of elements corresponding to random string
Leta be the correct assignment to the distinguished variabfaich are not covered is at leag: .
corresponding to random string If a € A, then there Since|R' \ R"| > L1|R|, the total fraction of elements
is a setS(qi(r),a’) in the solution ¢’ € A(q:(r)) anda’ which are not covered by’ is at least—sr. This completes
is consistent withz), that covers this element. Otherwisghe proof of Theorem 2.3. 0
there is a sef (g2, a”) in the solution that covers this element
(a" € A(gz(r)) anda’ is consistent with). 3 Hardness of Priority Steiner Tree

In Priority-Steiner Tree, we are given a grapf = (V, E)
No-Instances: Assume thal is a no-instance. The follow-with edge costs:. € R>o and edge priorities)(e) €
ing theorem shows that even if we choose a “large” numbgr, 2, ... | k}. (We will use the terms “priority” and “level”
of sets, there is still a substantial fraction of elements naterchangeably; it is useful to remember that levés the
covered by these sets. highest priority and levet is the lowest, and hencetégher

priority corresponds to bbower number.) There is also a set
Theorem 2.3 Suppose we are given a family C S of sets, T of terminals and a root node with each terminat € T
whose size is less thgX|+|Y'|)-h for some integeh > 1, desiring a certain prioritg)(¢) € {1,2,... ,k}. The goal is
where2*¢ > 64h*. Then, at least a fractionzs of the (o build a min-cost Steiner tré® spanning the roat and all
elements are not covered by setsSi the terminals, such that each edgen the path front € T

Proof. Let C X UY be the subset of queries, such that f(%tr) rhas pnontyQ(e_) < Q). : .
) We now describe the reduction from the gap version of
each query € @, the number of setS(q,a) € S’ is at least

4h. By a simple averaging argumei, contains at most a3SAT(5) to thePriority-Steiner Tree problem. The value of

fraction L . k will be specified later.
raction ; of queries.
Let R’ C R be the subset of random strings, such thgt

q1(r) ¢ @ andgx(r) € Q. As each query participates in th?h
same number of constrain{g’| > 1|R|.

Let R" C R’ be the subset of random stringssuch
that there are set$(q; (1), a) andS(¢z2(r),a’) in S, wherea

number of elements is at Iea‘%—z.

1 The Reduction from Gap-3SAT(5) In order to define
e graph, we use the set system constructed in Section 2.1.
(Recall that the collection of sets is denoted¥)y The graph
consists of a root, and of a collection ofS| disjoint sets

, ) : of non-terminal vertice¥), . .. , Vjs|, each set of cardinality
anda’ are consistent. We prove the following lemma. M + 1 (M is a large integer to be determined later). The
Lemma 2.1 [R"| < L|R/| vertices in seV;, 1 < i < |S| are denoted by{, ... ,v,.

. < 3R

Foreach : 1 < i < [S], for each pair of successive vertices
Proof. Assume otherwise. We show an assignment thgtv;,, (where0 < j < M), there are; edges connecting
satisfies a large number of constraints. The assignmenqtz;iisandv;i+1 of k different priority levels. The weights (or



lengths) of all these edges q@%ﬁ (22)7~! level{j — 1) subpaths. We will use;_; copies of
Intuitively, it is convenient to view this construction aghe set system, while for each 1 < i < |S] and for each

follows. For each : 1 < i < |S|, there is a path of lengthb : 1 < b < n;_1, theb’™ subpath off; represents the s&}

}S , representing se$; € S. The path is denoted by, in b"" set system.

and it consists of many small edges. The number of edges is The setl; of terminals is defined as follows. For each

denoted by/, which is a large integer to be determlnedlatelr 1 < b < njg, for each element in the set system,

So the length (or the cost) of each edge along ﬁaﬂa S|M’ there is a termlnat’( ) in T;. The priority level of all

and the total length of all the paths is unit. Finally, in ardéhe terminals inT} is j. We now proceed to define the

to obtain our construction, for each paly, 1 < i < |S|, set of levelj edgesE Given somei : 1 < i < S

each edge belonging 1 is replaced by: parallel edges of andb : 1 < b < nj_;, consider theb™ level{(;j — 1)

different priority levels. subpath ofP;. We divide this subpath int®z equal-length
In addition to the sets of edges and non-terminal vertidgyel-j subpath. Denote the endpoints of these subpaths by

described above, for each priority level 1 < j < k, there Po,P1,-..,p2.. Connect the verticegs,ps, ... ,p2.2 tO

is a setT; of level j terminals and a sdf; of level j edges, the rootand foreach : 1 < a < z, connect vertey,,_;

which are described below. The welght of each edggjin t0 terminalt] (e;,). The priority levels of the newly added
is 0. edges arg.

The definition of the terminal and edge sef§, and This concludes the definition of the reduction. Note

Ej, is recursive, and we start from the highest priority levé1at the only non-zero cost edges in our construction are the
1. The set of terminald} contains, for every element €dges on path$y,...,Ps. Moreover, all the edges on
in our set system, a priority level terminal t! (e), which these paths have the same cost, including parallel edgles wit
represents this element. In order to define the set of edg#ékerent priority levels. So, obviously, an optimal satut
E;, consider some patl;, 1 < i < |S]|, corresponding can buy only levelt edges on these paths (but will also have
to setS; € S. Recall thatz denotes the set size and leto use some zero-cost edgedip, . .. , Ey of priority levels
ei ... ,e;. be the elements belonging &. We subdivide 1, ... , k). The idea is that in the yes-instance it is enough to
P; into 2z equal-length subpaths and denote the endpoihty a small fraction of edges on path, ... , 5. More
of these subpaths byo, p1,...,p2.. Connect each onespecifically, for each sef; belongingto the optimal set cover
of the verticesps, pu, - .. ,p2.—» to the root, and for eachsolution, we will buy all the level edges on pat¥;. On the
a,1 < a < z, connect vertey,,_; to terminalt! (e;, ). All other hand, in the case of no-instance, any solution wilehav
the newly added edges belongfp and have priority level. to use a large fraction of edges on paths. . . , Pis|-
We now proceed to analyze the properties of our reduc-
root tion in Sections 3.2 and 3.3, showing a gap of a factor of
h/2 between the “yes” and “no” instances; we then set the
value ofh to beO(log log n) in Section 3.4 to get the desired

hardness.
7 R (T Pr2 \poibs. -2 Yes-instance
Theorem 3.1 Supposep is a Yes-instance. Then there is a
th(es) t'(ei,) t'(ei.) solution of the corresponding priority Steiner tree prahble
instance whose cost is at md&%

Figure 1: Levell construction for pattP;.

Proof. Sincey is a yes-instance, there is a fam#y C S
of sets that cover all the elements, add| = |X| + |V

Thus, foreach : 1 < i < S, we have divided patl®;
H solution to the priority Steiner tree problem contafos,

into 2z subpaths. These subpaths are called level-1 subpat ,
of P;. Each one of these paths is in turn divided i2to chs; € &, all the priority-levell edges on patt#; and

equal-length subpaths, called level-2 subpaths. Geyeraﬁ s0 all the edges i, Y » B _that are adja_lcent to some
for each priority levelj : 1 < j < k, pathP; is divided into vertex on pathP;. As S’ constitutes a feasible set cover,

(22)7 level-j subpaths. for each priority levelj : 1 < j < k, .for each set cover
Consider some priority levej, 1 < j < k. We instanceb : 1 < b < nj;_4, all the terminals corresponding

define the corresponding set of terminéjsand set of edgestﬁ the etleﬁﬁnts of thitln_stan;:e ofl;et colvtta_r are Eonnectetd_to
E;. For each sef; € S in our set system, consider th © root. ,‘é?;“;vf obtain a feasible solition whose cost s
ounded WT‘ d

corresponding patt®;. This path is divided intoy;_; =



3.3 No-instanceln order to simplify the analysis, we aswhich completes the proof of the theorem. d
sume without loss of generality that any solution uses lowes

possible priority edges, i.e., if edgeof priority j is in the Corollary 3.1 Let the number of priority level& in our
solution, then using priority+ 1 edge instead af will make construction bel6 - 28" - 22¢, Then the solution cost is at
the solution infeasible. We can also assume that each IeMstﬁ(|X| +1Y)).

Jj terminalt is connected to' via a subpath of one of the o o
pathsPy, P», ... , Ps| of length -1, and different ter- Proof. Suppose this is not true. Then for each priority level

minals of the same priority Ieve‘fléié) connected via distingt: 1 < J =< the conditions of Theorem 3.2 hold, and
subpaths. (For example, the path from termirjé; ) goes f[hus the cost ?f the priority Ie_vq edges in the solution
from the terminal tQsq_1 t0 pag to the root, where the seg S at 1€astisxr.  Since this is true for each one of
ment (p2a_1,p2q) is a levels subpath as described in thd = 16 - 2" - 2%¢ priority levels, it is impossible that the
construction.) Therefore, for each levesubpathp of each total cost of the solution is less thafk (|X | + [Y). 0
pathP; (wherel < j < k,1 < i < |S]), for each priority
level j' < j, either all the edges of this priority on paitare 3.4 Setting the Parametersit is easy to see that param-
in the solution or none of them is. eter M should be at least2z)* and that the construction
Given a solution to the priority Steiner tree problersize is bounded byV = O(|S|(22)*). Recall thatk =
instance, for each priority levgl 1 < j < k, let¢; denote 16-2%"-22¢ and that in the set cover constructi@f? > 6442
the cost of all the edges in the solution whose priority Isve$ required ¢ < 1 is a constant). We are going to choose
arel,2,...,7. h = O(loglogn) and? = O(logloglogn), so that the above
inequality holds. Therefore we can bouhthy 29" and
Theorem 3.2 Supposep is a no-instance of 3SAT(5). Set
h = ©(loglogn) and¢ = O(logloglogn), so that2®¢ > ,
64h? holds. Assume that for some priority leyel 1 < j < N < 32'nf(152%)
k. ¢j—1 < 5151 (IX| + [Y]). Then, the cost of priority level

edges in the solution is at leagtssrse .

20(h) 20(h)

< nt-2
Since we choosgé = O(loglogn), we have thafV <

_ pOogloglogn) 92 ™ nolds and thus = O (loglog N)

Proof. Considersomeé: 1 <i < |S|andb:1<b<n;_1, aswell. Observing that the yes and the no instances differ

and letp be theb'" level(j — 1) subpath of;. Recall that by the factor of2 = ©(loglog N), we have proved the
this subpath represents sgtin the bt set cover instance offollowing theorem:

priority level j. We say that this set is chosen by the solution

iff for some priority levelj’ < j, all the edges of of priority  Theorem 3.3 There is nocloglog n approximation for the
level j' are in the solution (note that by our assumption, friority Steiner tree problem (for some constagt unless
this set is not chosen, then no edge on pathpriority levels NP C DTIME(nO(IOg log log n))_

1,...,7 — lisin the solution).
Ascj ;| < %(m +]Y]), the total number of level- Note that the above theorem can be extended to show an

. Lo (loglogn) -hardness for the special case of priority Steiner
j sets that are chosen by the solution is at 3 G| + tree problem where all the edges have unit costs, as follows.

Y] - (22)7 (rgcall }hat the length of th? path representinphe construction remains the same, except that every edge
each such set IW)' Therefore, in at least half ofe on pathsP, ... , Pys, is replaced by a path 4’| edges,

the level; set cover instances, less tha(l.X| + [Y[) Sets \ypqse priority levels are the same as that ¢ecall thai 7|

are chosen. By Theogem 2.3, in each one of these instanteg,e number of terminals). The costs of all the edges are
a fraction of at leasis of elements do not belong to the it |tis not hard to see that the gap between the yes and the

sets chosen by the solution. Each one of the correspondia9nsiances i€ (log log N'), whereN’ < N? is the size of
level-j terminals must be connected to the root by a levely, o hew construction. ' -

subpath of one of the patlf§, .. . , Ps|, and these subpaths

number of elements in the set cover instance is at Ije%fst In this section, we show that th@(loglogn) hardness
and the number of level-set-cover instances {22)’ ', the ' result of Priority Steiner can be extended to prove idehtica
cost of priority levelj edges used by the solution must be giapproximability of two popular network design problems:

least: fixed charge network flow, and cost-distance network design.
(22)77 ||z 1 I 1
2 d 4.98%h° IS|(22)7 ~ 1628k .4 4.1 Fixed charge network flow The single source fixed
1 charge network flow problem is defined onxamode graph

> 16. 280 . 220 G with a specified root vertex. Each nodes has demand



d, and each edgehas capacity,. and unit cost. A feasible The next theorem follows from the above discussion and
solution specifies an integral number of copiesof each Theorem 3.3.
edgee that must be purchased so that the demand from each

vertex can be simultaneously routed to the root. The to‘ieHeorem 4.1 The Fixed-Charge Network Flow problem is
cost of the solution is thereforg’, c.x., and the objective Q(loglog n)-hard to approximate, even in the single-source
is to findz to minimize it? case. unles&/ P C DT[ME(nO(log log log n))

Suppose we are given an instance of priority Steiner -

tree, where the costs of all the edges are unit. We convert Note that the demands and the capacities in the above

it into an instance of fixed charge network flow as followseduction could be as large a&’(™). However, in our

Let & be the total number of priority levels. The underlyingonstruction for the priority Steiner tree problem, the foem

graphis unchanged. For each vertef priority i, we setthe of priority levels is©(logn). Therefore, we have shown

demand to b, = n*(*~?, and for each edgeof priority i  ()(loglog n)-hardness for fixed charge network flow unless

the capacity isi, = n°*F=9+2, NP C DTIME(nClem), even if the demands and the
Given a solutionTp for the priority Steiner tree in- capacities are given in unary.

stance, we can construct a soluti®g for the fixed charge Furthermore, note that there are ofilylog n) different

network flow instance of no greater cost, as follows. CoQalues ofu. used in the instancgr. This brings our result

sider some edge. If it belongs to the solutiorf p, then into the realm of modern-day telecom network design, where

setz, = 1. Otherwise,z, = 0. Clearly, the costs of only a few cable types are used to design networks to serve
the two solutions are identical. It remains to show thaiassive numbers of nodes.

T r is a feasible solution for the fixed charge network flow

problem. Consider an edgeof priority i, and letU(e) 4.2 Cost-distance network designAn instance of the
be the set of terminals whose paths to the roofjn use Cost-Distance network design problem is defined on
edgee. Clearly, the priority of all terminals i/ (e) are in pode graphs rooted at as follows. Each edge has a
{i,i+1,...,k}. Since there are at mostterminals of each distancel, and a cost., and each node has demand,,.
priority level, the total demand of all the verticedliife) is at - A feasible solution consists of a trée: spanning all nodes
mostn-n®* =) 4n-pd k=D 4o n®4n < PO with positive demand and the root. LEY(e) be the set of
so the capacity of edgeis sufficient to serve all nodes innodes whose paths to the root use edg@he total cost of
Ule). the solution is given by(Tc) = 3=, (ce +le 3 e v(e) do)-
The other direction is also true. Suppose we are givgRe objective is a minimum cost feasible solution.

an optimal solutiontr to the fixed charge network flow  Cost-Distance is also a special case of the general
problem. We can construct a solutid to the priority FCNF problem. To show the inapproximability @ost-
Steiner tree problem of no greater cost, as folloWs: is Distance, we use a standard reduction of single-source
also defined to be identical -, except that for every edgezero-incremental costCNF to Cost-Distance. Given an

e with z. > 1, we use a single edge ifip. Therefore, the jnstancel;: of FCNF, we convert it to an instande of CD
cost of Tp is no greater that that & ». It now suffices to by defining the lengthi, of edgee to bel, = Ce/ue. The

show the feaSIbI'lty offp. First, observe that since ther%osts of edges and demands at nodes are unchanged_
are at most: terminal nodes and each terminal node has

a p_ath of Iength gt most to the root, and sinc& is an Theorem 4.2 It is not possible to approximate th@ost-
optimal solution, its cost cannot excegd. Now suppose .

- : . . Distance problem to better than am(loglogn) factor

for contradiction thaf p was infeasible. That is, for some log log log

. L : > “unlessN P C DTIM E(n'o8loglogn),

terminalt of priority ¢, there is a cut that separates it from

the root and all the edges of this cut belongingtte have

prioritiesin{i + 1,i +2,..., k}. terparts inIr and I denoted a¥ r and % respectively.

51 it
of th’:g;eetga;;h:rszznri;gﬁﬁf nBut \tlrlgirﬁwa;?; (t:(?zicmle 3t was shown in [31, 14] (among others) that the following
9 ; P yrelationship holds between their cost§Zr) < ¢(T¢) <

the demand of, the number of edges in this cut that belon . . - ,
to T must be at least?®, contradicting the fact that the ¢(Tr). We briefly prove this for expositionary clarity.
K ' Consider an edge with flow f.. Since the tree is

. . N
solution cost is at most”. the same in botdy and I, the flow is the same in both

‘ _ _ cases. The cost of this edgelip and¢ are, respectively,
INote that the general version BENF also |nc0rpprates an |ncrementalce |—fe/ue—| ande, + fole, wherel, = ce/ue- We therefore
costl, for each edge, so that the cost of sendfagunits of flow on edge:

iS ce [ fe/ue| +1le fe. We show that even with. = 0 our inapproximability havefele : fecﬁ/uﬁ _S Ce |—f6/u€]' The claim now follows
result holds. Also, while the classical versionRENF hasz. € {0,1}, DY observing that either the edge has zero flow (and hence

this can easily be incorporated by replacing each edge withli-edge. ~ zero cost) or positive flow (and hence cost at leash Ix).

Proof. Let¥ be an underlying tree rootedsgtwith its coun-



Since solutions t&CNF andCost-Distance are within  [4] Sanjeev Arora and Shmuel Safra. Probabilistic checkihg
constant factors of each other, we can apply Theorem 4.1 and proofs: a new characterization of NB. ACM 45(1):70-122,

this theorem follows. O 1998.
[5] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network

At this point, it is worth considering the relationship  design. InProceedings of the 38th Annual IEEE Symposium
of Cost-Distance to the single-source buy-at-bulk problem,  on Foundations of Computer Scienpages 542-547, 1997.
which is known to have a constant factor approximatiolf] RobertD. Carr, Lisa Fleischer, Vitus J. Leung, and Cianth
[18, 41]. The fundamental difference is that in the buy-at- Phillips. Strengthening integrality gaps for capacitatet-
bulk problem, edge costs and lengths argforny that is, ‘(’3‘:2;'; i?gs(l)gri':[]han?:ng\éirTgGprlci)l.t)Sle?OstSy mposium on Dis-
g]belz arli T&%?mv\?onrzgotﬁggsz:]iggg; (?1? g;br;gl:rizagz;l\;ﬂg Moses Charikar, Joseph (Seffi) Naor, and Baruch Schieber

. . Resource optimization in QoS multicast routing of real-
for installation on every edge. In contrast, R&NF prob- time multimedia. IEEE/ACM Transactions on Networking

lem andCost-Distance are non-uniform, so that each edge 12(2):340-348, 2004.

may have its own set of available costs, lengths and capag} chandra Chekuri, Sanjeev Khanna, and Joseph (Seffi). Naor
ities, with no relation whatsoever with other edges. Our re- A deterministic algorithm for the cost-distance problenm |
sults point to the fact that this non-uniformity plays a fand Proceedings of the 12th Annual ACM-SIAM Symposium on
mental role in separating the approximability of such prob-  Discrete Algorithmspages 232-233, 2001.

lems from homogenous network design problems like singlé2] Andrea E.F. Clementi and Luca Trevisan. Improved non-
source buy-at-bulk. A similar distinction was pointed oyt b~ @pproximability results for minimum vertex cover with den-
Andrews [1], who proved stronger inapproximability result ~ SIy_constraints. Theoretical Computer Science225(1~

. . : 2):113-128, 1999.
fsci)é:on uniform multi-commodity buy-at-bulk network de[10] J. R. Current, C. S. Revelle, and J. L. Cohon. The hitiaat

network design problem European Journal of Operational

) Reasearch27:57-66, 1986.

5 Conclusions [11] Cees Duin and Ton Volgenant. The multi-weighted Steine
Designing networks in practice often involves various lsve  tree problemAnn. Oper. Res33(1-4):451-469, 1991. Topo-
of complexity and requirements, and an understanding of logical network design (Copenhagen, 1989).

precisely what characteristics of the problem govern thét¢] Guy Even, Guy Kortsarz, and Wolfgang Slany. On network
level of approximability is critical. While our work makes ~ design: fixed charge flows and the covering steiner problem.
some progress in this quest, several important questions In Proceedings of the 8th Scandinavian Workshop on Algo-

in Eorinst th bet th imabfli rithm Theory volume 2368 of.ecture Notes in Computer Sci-
remain. For instance, the gap between the approximabflity o ence pages 318-329. Springer, 2002,

Cost-Distance and Priority-Steiner Tree (both O(log n)) [13] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwatight
and their inapproximability remains to be closed. The * poungd on approximating arbitrary metrics by tree metrics. |
class of problems that can be modeled WENF-type Proceedings of th85tk Annual ACM Symposium on Theory
constructions is vast, and the approximability BENF of Computing pages 448-455, 2003.

as defined in this paper is still open. Finally, designiri4] Naveen Garg, Rohit Khandekar, Goran Konjevod, R. Ravi,
networks on directed graphs presents several challengesF. Sibel Salman, and Amitabh Sinha. On the integrality

which are as yet poorly understood. gap of a natural formulation of the single-sink buy-at-bulk
network design formulation. IRroceedings of the 8th Integer

Programming and Combinatorial Optimization Conference
volume 2081 ofLecture Notes in Computer Scienqeages
170-184, 2001.

Tg] Michel X. Goemans and David P. Williamson. The primal-
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