
On the Approximability of Some Network Design Problems

Julia Chuzhoy� Anupam Guptay Joseph (Seffi) Naorz Amitabh Sinhax
Abstract

Consider the following classical network design problem: a
set of terminalsT = ftig wants to send traffic to a “root”r in ann-node graphG = (V;E). Each terminalti sendsdi units of traffic, and enough bandwidth has to be allocated
on the edges to permit this. However, bandwidth on an edgee can only be allocated inintegral multiples of some base
capacityue — and hence provisioningk � ue bandwidth on
edgee incurs a cost ofdke times the cost of that edge. The
objective is a minimum-cost feasible solution.

This is one of many network design problems widely
studied where the bandwidth allocation being governed by
side constraints: edges may only allow a subset of cables to
be purchased on them, or certain quality-of-service require-
ments may have to be met.

In this work, we show that the above problem, and in
fact, several basic problems in this general network design
framework, cannot be approximated better than
(log logn)
unless NP � DTIME

�nO(log log logn)�. In particular,
we show that this inapproximability threshold holds for
(i) the Priority-Steiner Tree problem [7], (ii) theCost-
Distance problem [31], and the single-sink version of an
even more fundamental problem, (iii)Fixed Charge Net-
work Flow [33]. Our results provide a further breakthrough
in the understanding of the level of complexity of network
design problems. These are the first non-constant hardness
results known for all these problems.

1 Introduction

Approximation algorithms have had much success in the
area of network design, with both combinatorial and linear-�Laboratory for Computer Science, MIT, Cambridge, MA. Work done
while the author was a graduate student at the Computer Science Depart-
ment at the Technion. Email:cjulia@csail.mit.eduyDept. of Computer Science, Carnegie Mellon University, Pittsburgh PA
15213. Email:anupamg@cs.cmu.eduzComputer Science Department, Technion, Israel Institute of Tech-
nology, Haifa 32000, Israel. Research of is supported in part
by the United States-Israel Binational Science FoundationGrant No.
2002-276 and by EU contract IST-1999-14084 (APPOL II). Email:
naor@cs.technion.ac.ilxRoss School of Business, University of Michigan, Ann Arbor MI
48109. Work done while the author was a graduate student at the Tepper
School of Business at Carnegie Mellon University, and supported in part
by NSF grant CCR-0105548 and ITR grant CCR-0122581 (The ALADDIN
project). Email:amitabh@umich.edu

programming based techniques leading to many constant-
factor approximation algorithms.

Despite these successes, several basic network design
problems have eluded the quest for constant-factor ap-
proximations, with the current best approximation guaran-
tees being logarithmic or worse. Moreover, none of the
previously-known hardness results precludes the possibility
of constant-factor approximation algorithms for these prob-
lems. In this paper, we make progress on this front and show
(log logn)-hardness results for the following problems:

Fixed-Charge Network Flow (FCNF): The FCNF prob-
lem and its many variations has been widely studied
in the Operations Research community [33, 34, 6, 19].
Thesingle sourceversion considered here is a very nat-
ural and basic network design problem. The input is a
graph where each edge has acostce and acapacityue.
Given a setT of terminalsftig (each with a demanddi) and a designatedroot noder, the goal is to choose
a subset of edges, such that every terminalti can routedi flow units to the root. The edge capacities cannot
be violated, and multiple copies of each edgee can be
purchased, each incurring an additional cost ofce.
FCNF generalizes several important network design
problems and hence it is of great interest to theoreticians
and practitioners alike. We show that our hardness
result holds for thesingle sourceversion ofFCNF.

Priority Steiner Tree: Motivated by the heterogeneity in
Quality of Service requirements in multicast (video) ap-
plications [28, 42], thePriority-Steiner Tree problem
was defined by Charikar et al. [7]; special cases of this
problem have also been studied in the Operations Re-
search community [10, 11, 32, 35].

In Priority-Steiner Tree, given a graphG = (V;E)
with edge costsce, a setT of terminals and a root noder, we want to find a min-cost Steiner treeT � G
spanningT [frg. An additional constraint onT is
that each terminalt 2 T desires a certain Quality of
Service (or priority)Q(t) 2 f1; 2; : : : ; kg — here1 is
the highest andk is the lowest QoS. Furthermore, each
edge offers a certain QoSQ(e) 2 f1; 2; : : : ; kg, and we
want the path inT from t 2 T to the rootr to consist
only of edgese with QoS at least as good asQ(t); i.e.,Q(e) � Q(t).

A minf2 ln jtj; 1:55 kg-approximation for thePriority-
Steiner Tree problem was given by Charikar et al. [7];
they also showed that the problem is NP-hard even
when t = V . However, no
(1) approximation
hardness was previously known for the problem.

Cost-Distance: This problem was introduced by Meyerson
et al. [31], as a common generalization of several
problems in network design and facility location. The
problem is identical toFCNF, except that there are no
edge capacities, and each edgee has alength `e; the
costs and lengths of edges may be unrelated to each
other. The goal is to find a Steiner treeT spanningT [frg that minimizes the objective functionXe2T ce +Xi2T di `T(ti; r);
i.e., the sum of edge costs of the tree together with the
weighted distances from the terminals to the root.

Building on the basic framework of Marathe et al. [27],
Meyerson et al. [31] gave anO(log jT j) randomized
approximation algorithm for the problem. This algo-
rithm was subsequently derandomized by Chekuri et
al. [8], and anO(log4 n)-competitive online algorithm
was given by Meyerson [30]. The best hardness re-
sult previously known for this problem was an
(1)-
hardness via facility location.

1.1 Our Results and Related Work
We show that it is hard to approximate the above prob-

lems to better than a factor of
(log logn). In particular, the
technical heart of the paper is the following theorem:

Theorem 1.1 It is impossible to approximate thePriority-
Steiner Tree problem in polynomial time to better than a
factor of c log logn (for some constantc) unlessNP �
DTIME

�nO(log log log n)�. This is true even for instances of
Priority-Steiner Tree where all edges have unit cost.

We then give approximation-preserving reductions from
the Priority-Steiner Tree problem to theFCNF and the
Cost-Distance problems, which imply similar hardness
results for these problems as well.

As mentioned above, these are the first non-constant in-
approximability thresholds for these network design prob-
lems. In fact, all these problems aresingle-sinkproblems on
undirectedgraphs; non-constant hardness results that were
known previously made crucial use of either (actual or sim-
ulated) directedness, such as the recent work on polyloga-
rithmic inapproximability [22] of directed Steiner and group
Steiner trees, or of the fact that there were multiple sinks
(and hence multiple commodities) in the system [1].

An inapproximability threshold of56015600 for the basic
undirected Steiner tree problem was shown in [9], which
immediately implies the same threshold to all the problems
we consider. A 1.46 inapproximability threshold [16] for
facility location extends toCost-Distance, as shown in
[31]. To the best of our knowledge, these were the only
inapproximability results known for any of the problems
we consider. Hence, our work represents a substantial leap
in showing that several basic network design problems are
unlikely to admit constant-factor approximations.

Note that two of the three problems haveO(log n) ap-
proximations ([7] forPriority-Steiner Tree and [31] for
Cost-Distance). Therefore, our results show the existence
of an intermediate class of network design problems which
are neither constant-approximable nor polylogarithmic-in-
approximable. On one extreme, we have the undirected
single-source network design problems with homogenous
cost functions on edges such as single-source buy-at-bulk,
which admit constant factor approximations. On the other
extreme, incorporating further complexity to the problems
leads, as one would expect, to greater degrees of inap-
proximability: the current inapproximability threshold for
directed Steiner tree is
(log2�� n) [22] and for multi-

commodity buy-at-bulk network design is
(log 14�� n) [1].
Our problems therefore occupy a middle ground with

logarithmic approximations (to date), but super-constantin-
approximability. Indeed, thePriority-Steiner Tree problem
generalizes the undirected Steiner tree problem, but can be
implemented as a special case of the directed Steiner tree
problem.

Network Design: There has been much research in the
area of approximation algorithms for network design, with
many new techniques being developed and problem areas
being explored. A partial list includes [5, 2, 12, 23, 15, 39,
14, 17, 18, 21, 20, 25, 27, 29, 31, 24, 36, 37, 39, 40, 41]; see
the many references therein for more pointers.

To place our results in a better context, we focus on
concave-cost network design, where the cost of using an
edge is a concave function of the flow on the edge. If
the cost function is the same per unit length in all edges
(or uniform), then the problem is constant-approximable in
the single-sink case [18, 41] andO(log n)-approximable in
the multi-commodity case [5, 13], with an
(log 14�� n)-
inapproximability threshold shown by Andrews [1] for the
multi-commodity case. Constant approximations exist for
special cases of multi-commodity concave cost network
design, such as the rent-or-buy cost function [25, 21].Cost-
Distance andFCNF are special cases of single-sink concave
cost network design withnon-uniformcosts on edges; for
these problems, our
(log logn)-inapproximability results

complement the
(log 12��)-inapproximability of the multi-
commodity version in [1]. We hope that our results will help
in providing further understanding of the factors determining

the degree of difficulty of approximating the different types
of network design problems.

Paper Outline: We achieve our goal of showing the
inapproximability of these network design problems by us-
ing one of them (Priority-Steiner Tree) to encode an in-
stance of a Set Cover problem, which itself is shown to be
hard to approximate using a reduction from MAX 3SAT(5).
To this end, we begin in the next section by explicitly con-
structing this set system instance. Subsequently, in Section
3, we show the hardness ofPriority-Steiner Tree using this
construction. We then show the hardness of the other two
network design problems in Section 4, using the hardness of
Priority-Steiner Tree.

2 Set System Construction

In our reduction, we start from a 3SAT(5) formula' and
produce an instance ofPriority-Steiner Tree. As a building
block for our reduction, we use the construction of Lund and
Yannakakis [26] for the hardness of the set cover problem.
Since we will be using some properties of this construction
which are not proved explicitly in [26] (though easily follow
from the paper), as well as for the sake of completeness, we
provide their construction here with slight changes (which
are performed for convenience reasons).

The reduction is performed from the gap version of
Exact MAX 3SAT(5), which is defined as follows. We
are given a CNF formula' with n variables and5n=3
clauses. Each clause contains exactly3 literals, and each
variable appears in exactly5 different clauses. The goal
is to find an assignment which maximizes the number of
satisfied clauses. Formula' is called a yes-instance, if it
is satisfiable, and it is called a no-instance (with respect to
some� : 0 < � < 1), if the maximum fraction of clauses
that can be satisfied simultaneously is(1� �). The following
corollary of the PCP theorem was shown by [3]

Theorem 2.1 For some constant�, it is NP-hard to distin-
guish between the yes and the no instances of 3SAT(5).

2.1 The Set System
We start from a 3SAT(5) formula' and we build a set

system. A useful tool for defining the construction is the Raz
verifier for 3SAT(5) with` = �(log log logn) repetitions.
The verifier receives as an input a 3SAT(5) formula',
and proceeds as follows. As the first step, the verifier
chooses, independently at random, a sequence of` clausesC1; : : : ; C` from the formula and a sequence of` variablesx1; : : : ; x`, where for eachi : 1 � i � `, xi is chosen
randomly and independently from the variables participating
in Ci. Variablexi is called the distinguished variable ofCi. The indices of clausesC1; : : : ; C`=2 and of variablesx`=2+1; : : : ; x` are sent to the first prover, while the indices
of variablesx1; : : : ; x`=2 and of clausesC`=2+1; : : : ; C` are

sent to the second prover. Each prover answers with an
assignment to all the variables that appear in its query (both
as distinguished variables and as variables belonging to the
query clauses). The verifier checks that for each clauseCi,1 � i � `=2, the assignment sent by the first prover satisfies
the clause and that for each clauseCi, `=2 + 1 � i � `, the
assignment sent by the second prover satisfies the clause. If
this is not true, the verifier rejects. Finally, the verifier checks
that for eachi : 1 � i � `, the assignments of both provers
to xi are identical, and accepts or rejects accordingly.

Theorem 2.2 ([4, 3, 38])If ' is a yes-instance of 3SAT(5),
then there is a strategy of the provers that makes the verifier
always accept. If' is a no-instance, then no matter what the
strategy of the provers is, the acceptance probability of the
verifier is at most2��`, for some universal constant�.

We denote byX and Y the sets of all the possible
queries to provers1 and2 respectively (each query contains
an`=2-tuple of clauses and aǹ=2-tuple of variables). Given
a queryq 2 X [Y , let A(q) be the set of all the possible
answers to this query that satisfy all the clauses appearinginq. Note thatjX j = jY j � (2n)`, and for eachq 2 X [Y ,jA(q)j � 8`. We denote byR the set of all the random
strings of the verifier, sojRj � (5n)`. For a random stringr 2 R, let q1(r) andq2(r) be the queries sent to the two
provers when the verifier choosesr.

Given a 3SAT(5) formula', we build a set system using
the Raz verifier defined above. The collection of sets is
denoted byS, and it contains, for each queryq 2 X [Y
and for each answera 2 A(q), a setS(q; a), i.e.,S = fS(q; a) j q 2 X [Y; a 2 A(q)g

The number of sets is bounded by32`n`. We now
proceed to define the elements. Consider some random stringr 2 R, and letx1; : : : ; x` be its corresponding distinguished
variables. LetA be the set of all the possible assignments
to these variables,jAj = 2`. For eachA0 � A, there is an
elementE(r;A0), which belongs to all such setsS(q1(r); a),
wherea is consistent with some assignment inA0 (i.e., the
projection ofa onto the distinguished variables belongs toA0), and to all such setsS(q2(r); a0), wherea0 is consistent
with some assignment inA0 (i.e., the projection ofa0 onto
the distinguished variables is not inA0). As jRj � (5n)`,
and since for eachr 2 R there are22` elements, the total
number of elements is bounded by(5n)` � 22` .

This completes the description of the set system. We
will need the following properties of the system.

Set sizes:Observe that for each queryq 2 X , there are15 2̀ random stringsr 2 R, such thatq = q1(r). The same
is true forq 2 Y . As there are22` elements corresponding
to r, and, given some assignmenta 2 A(q), exactly half of

these elements belong to setS(q; a), the sizes of all the sets
are identical and equal toz = 12 � 15 2̀ � 22` .
Element degrees:Given an elemente = E(r;A0), denote
by de the number of sets in whiche participates. LetA be
the set of all the assignments to the distinguished variables
corresponding to random stringr. For eacha 2 A, there
are exactly2l answers of prover 1 to queryq1(r) (prover 2 to
queryq2(r)), that are consistent witha (though some of them
may not satisfy all the query clauses). This is because the
distinguished variables must have the same assignment as ina, and additionally there are2 � 2̀ = ` variables that appear in
query clauses and are not distinguished variables. Therefore,de � 2` � jAj = 22`. Puttingd = maxefdeg � 22`, the
number of elements is at leastjSjzd .

Yes-Instances:Assume' is a yes-instance. Then there is
a strategy of the provers which makes the verifier always
accept. We show that we can cover all the elements by at
most jX j + jY j sets. For each queryq 2 X [Y , choose
the setS(q; a), wherea is the answer (under the above
strategy) to queryq. Now consider some elementE(r;A).
Leta be the correct assignment to the distinguished variables
corresponding to random stringr. If a 2 A, then there
is a setS(q1(r); a0) in the solution (a0 2 A(q1(r)) anda0
is consistent witha), that covers this element. Otherwise,
there is a setS(q2; a00) in the solution that covers this element
(a00 2 A(q2(r)) anda00 is consistent witha).

No-Instances: Assume that' is a no-instance. The follow-
ing theorem shows that even if we choose a “large” number
of sets, there is still a substantial fraction of elements not
covered by these sets.

Theorem 2.3 Suppose we are given a familyS 0 � S of sets,
whose size is less than(jX j+ jY j) �h for some integerh > 1,
where2�` > 64h2. Then, at least a fraction 14�28h of the
elements are not covered by sets inS 0.
Proof. LetQ � X[Y be the subset of queries, such that for
each queryq 2 Q, the number of setsS(q; a) 2 S 0 is at least4h. By a simple averaging argument,Q contains at most a
fraction 14 of queries.

Let R0 � R be the subset of random strings, such thatq1(r) 62 Q andq2(r) 62 Q. As each query participates in the
same number of constraints,jR0j � 12 jRj.

Let R00 � R0 be the subset of random stringsr, such
that there are setsS(q1(r); a) andS(q2(r); a0) in S, wherea
anda0 are consistent. We prove the following lemma.

Lemma 2.1 jR00j � 12 jR0j.
Proof. Assume otherwise. We show an assignment that
satisfies a large number of constraints. The assignment is

as follows. Each queryq 62 Q chooses randomly one
of its � 4h assignments that correspond to the sets inS.
The probability that the verifier chooses a random string inR00 is at least14 . If this happens, then the probability that
the answers of the provers are consistent is at least116h2 .
Thus in total, the verifier accepts with probability at least164h2 > 2��l.

Consider some random stringr 2 R0 n R00 (i.e., S
contains less than4h sets from the familyfS(q1(r); a) ja 2 A(q1(r))g and less than4h sets from the familyfS(q2(r); a0) j a0 2 A(q2(r))g, and no pair of setsS(q1(r); a), S(q2(r); a0) wherea; a0 are consistent). Lete = E(r;A) be some element and letA0x be the subset of
assignments to the distinguished variables, such that for eacha 2 A0x, there is some setS(x; a0) 2 S wherea0 is consistent
with a. DefineA0y similarly. Clearly,jA0xj � 4h, jA0yj � 4h
andA0x \ A0y = ; . Elemente = E(x; y;A) is covered by
sets inS iff A\A0x 6= ;, orA\A0y 6= ;. As for each assign-
menta to the distinguished variables, exactly half the setsA
contain this assignment and half the setsA do not contain
it, the fraction of elements corresponding to random stringr
which are not covered is at least128h .

SincejR0 n R00j � 14 jRj, the total fraction of elements
which are not covered byS 0 is at least 14�28h . This completes
the proof of Theorem 2.3.

3 Hardness of Priority Steiner Tree

In Priority-Steiner Tree, we are given a graphG = (V;E)
with edge costsce 2 R�0 and edge prioritiesQ(e) 2f1; 2; : : : ; kg. (We will use the terms “priority” and “level”
interchangeably; it is useful to remember that level1 is the
highest priority and levelk is the lowest, and hence ahigher
priority corresponds to alower number.) There is also a setT of terminals and a root noder, with each terminalt 2 T
desiring a certain priorityQ(t) 2 f1; 2; : : : ; kg. The goal is
to build a min-cost Steiner treeT spanning the rootr and all
the terminals, such that each edgee on the path fromt 2 T
to r has priorityQ(e) � Q(t).

We now describe the reduction from the gap version of
3SAT(5) to thePriority-Steiner Tree problem. The value ofk will be specified later.

3.1 The Reduction from Gap-3SAT(5) In order to define
the graph, we use the set system constructed in Section 2.1.
(Recall that the collection of sets is denoted byS). The graph
consists of a rootr, and of a collection ofjSj disjoint sets
of non-terminal verticesV1; : : : ; VjSj, each set of cardinalityM + 1 (M is a large integer to be determined later). The
vertices in setVi, 1 � i � jSj are denoted byvi0; : : : ; viM .
For eachi : 1 � i � jSj, for each pair of successive verticesvij ; vij+1 (where0 � j < M), there arek edges connectingvij andvij+1 of k different priority levels. The weights (or

lengths) of all these edges are1jSjM .
Intuitively, it is convenient to view this construction as

follows. For eachi : 1 � i � jSj, there is a path of length1jSj , representing setSi 2 S. The path is denoted byPi
and it consists of many small edges. The number of edges is
denoted byM , which is a large integer to be determined later.
So the length (or the cost) of each edge along pathPi is 1jSjM ,
and the total length of all the paths is unit. Finally, in order
to obtain our construction, for each pathPi, 1 � i � jSj,
each edge belonging toPi is replaced byk parallel edges of
different priority levels.

In addition to the sets of edges and non-terminal vertices
described above, for each priority levelj : 1 � j � k, there
is a setTj of level j terminals and a setEj of level j edges,
which are described below. The weight of each edge inEj
is 0.

The definition of the terminal and edge sets,Tj andEj , is recursive, and we start from the highest priority level
1. The set of terminalsT1 contains, for every elemente
in our set system, a priority level1 terminal t1(e), which
represents this element. In order to define the set of edgesE1, consider some pathPi, 1 � i � jSj, corresponding
to setSi 2 S. Recall thatz denotes the set size and letei1 ; : : : ; eiz be the elements belonging toSi. We subdividePi into 2z equal-length subpaths and denote the endpoints
of these subpaths byp0; p1; : : : ; p2z. Connect each one
of the verticesp2; p4; : : : ; p2z�2 to the root, and for eacha; 1 � a � z, connect vertexp2a�1 to terminalt1(eia). All
the newly added edges belong toE1 and have priority level1.

. . .

. . .

. . .

p0 p1 p2 p3 p4 p2z−2 p2z−1 p2z

t1(ei1) t1(ei2) t1(eiz)

root r

Figure 1: Level1 construction for pathPi.
Thus, for eachi : 1 � i � S, we have divided pathPi

into 2z subpaths. These subpaths are called level-1 subpaths
of Pi. Each one of these paths is in turn divided into2z
equal-length subpaths, called level-2 subpaths. Generally,
for each priority levelj : 1 � j � k, pathPi is divided into(2z)j level-j subpaths.

Consider some priority levelj, 1 < j � k. We
define the corresponding set of terminalsTj and set of edgesEj . For each setSi 2 S in our set system, consider the
corresponding pathPi. This path is divided intonj�1 =

(2z)j�1 level-(j � 1) subpaths. We will usenj�1 copies of
the set system, while for eachi : 1 � i � jSj and for eachb : 1 � b � nj�1, thebth subpath ofPi represents the setSi
in bth set system.

The setTj of terminals is defined as follows. For eachb : 1 � b � nj�1, for each elemente in the set system,
there is a terminaltjb(e) in Tj . The priority level of all
the terminals inTj is j. We now proceed to define the
set of level-j edgesEj . Given somei : 1 � i � S
and b : 1 � b � nj�1, consider thebth level-(j � 1)
subpath ofPi. We divide this subpath into2z equal-length
level-j subpath. Denote the endpoints of these subpaths byp0; p1; : : : ; p2z. Connect the verticesp2; p4; : : : ; p2z�2 to
the root and for eacha : 1 � a � z, connect vertexp2a�1
to terminaltjb(eia). The priority levels of the newly added
edges arej.

This concludes the definition of the reduction. Note
that the only non-zero cost edges in our construction are the
edges on pathsP1; : : : ; PjSj. Moreover, all the edges on
these paths have the same cost, including parallel edges with
different priority levels. So, obviously, an optimal solution
can buy only level-1 edges on these paths (but will also have
to use some zero-cost edges inE1; : : : ; Ek of priority levels1; : : : ; k). The idea is that in the yes-instance it is enough to
buy a small fraction of edges on pathsP1; : : : ; PjSj. More
specifically, for each setSi belonging to the optimal set cover
solution, we will buy all the level-1 edges on pathPi. On the
other hand, in the case of no-instance, any solution will have
to use a large fraction of edges on pathsP1; : : : ; PjSj.

We now proceed to analyze the properties of our reduc-
tion in Sections 3.2 and 3.3, showing a gap of a factor ofh=2 between the “yes” and “no” instances; we then set the
value ofh to beO(log logn) in Section 3.4 to get the desired
hardness.

3.2 Yes-instance

Theorem 3.1 Suppose' is a Yes-instance. Then there is a
solution of the corresponding priority Steiner tree problem
instance whose cost is at mostjXj+jY jjSj .

Proof. Since' is a yes-instance, there is a familyS 0 � S
of sets that cover all the elements, andjS 0j = jX j + jY j.
The solution to the priority Steiner tree problem contains,for
eachSi 2 S 0, all the priority-level1 edges on pathPi and
also all the edges inE1; : : : ; Ek that are adjacent to some
vertex on pathPi. As S 0 constitutes a feasible set cover,
for each priority levelj : 1 � j � k, for each set cover
instanceb : 1 � b � nj�1, all the terminals corresponding
to the elements of this instance of set cover are connected to
the root. Thus, we obtain a feasible solution whose cost is
bounded byjXj+jY jjSj .

3.3 No-instanceIn order to simplify the analysis, we as-
sume without loss of generality that any solution uses lowest
possible priority edges, i.e., if edgee of priority j is in the
solution, then using priorityj+1 edge instead ofewill make
the solution infeasible. We can also assume that each level-j terminal t is connected tor via a subpath of one of the
pathsP1; P2; : : : ; PjSj of length 1jSj(2z)j , and different ter-
minals of the same priority level are connected via distinct
subpaths. (For example, the path from terminaltjb(eia) goes
from the terminal top2a�1 to p2a to the root, where the seg-
ment (p2a�1; p2a) is a level-j subpath as described in the
construction.) Therefore, for each level-j subpathp of each
pathPi (where1 � j � k; 1 � i � jSj), for each priority
levelj0 � j, either all the edges of this priority on pathp are
in the solution or none of them is.

Given a solution to the priority Steiner tree problem
instance, for each priority levelj, 1 � j � k, let cj denote
the cost of all the edges in the solution whose priority levels
are1; 2; : : : ; j.
Theorem 3.2 Suppose' is a no-instance of 3SAT(5). Seth = �(log logn) and ` = �(log log logn), so that2�` >64h2 holds. Assume that for some priority levelj : 1 < j �k, cj�1 < h2jSj(jX j+ jY j). Then, the cost of priority levelj
edges in the solution is at least 116�28h�22` .

Proof. Consider somei : 1 � i � jSj andb : 1 � b � nj�1,
and letp be thebth level-(j � 1) subpath ofPi. Recall that
this subpath represents setSi in thebth set cover instance of
priority levelj. We say that this set is chosen by the solution
iff for some priority levelj0 < j, all the edges ofp of priority
level j0 are in the solution (note that by our assumption, if
this set is not chosen, then no edge on pathp of priority levels1; : : : ; j � 1 is in the solution).

As cj�1 < h2jSj (jX j + jY j), the total number of level-j sets that are chosen by the solution is at mosth2 (jX j +jY j) � (2z)j�1 (recall that the length of the path representing
each such set is 1jSj�(2z)j�1). Therefore, in at least half of
the level-j set cover instances, less thanh(jX j + jY j) sets
are chosen. By Theorem 2.3, in each one of these instances,
a fraction of at least 14�28h of elements do not belong to the
sets chosen by the solution. Each one of the corresponding
level-j terminals must be connected to the root by a level-j
subpath of one of the pathsP1; : : : ; PjSj, and these subpaths
are disjoint. The cost of each such subpath is1jSj(2z)j . As the

number of elements in the set cover instance is at leastjSjzd
and the number of level-j set-cover instances is(2z)j�1, the
cost of priority levelj edges used by the solution must be at
least:(2z)j�12 � jSjzd � 14 � 28h � 1jSj(2z)j = 116 � 28h � d� 116 � 28h � 22` ;

which completes the proof of the theorem.

Corollary 3.1 Let the number of priority levelsk in our
construction be16 � 28h � 22`. Then the solution cost is at
least h2jSj (jX j+ jY j).
Proof. Suppose this is not true. Then for each priority levelj : 1 < j � k, the conditions of Theorem 3.2 hold, and
thus the cost of the priority levelj edges in the solution
is at least 116�28h�22` . Since this is true for each one ofk = 16 � 28h � 22` priority levels, it is impossible that the
total cost of the solution is less thanh2jSj (jX j+ jY j).
3.4 Setting the ParametersIt is easy to see that param-
eterM should be at least(2z)k and that the construction
size is bounded byN = O(jSj(2z)k). Recall thatk =16�28h�22` and that in the set cover construction,2�` � 64h2
is required (� < 1 is a constant). We are going to chooseh = �(log logn) and` = �(log log logn), so that the above
inequality holds. Therefore we can boundk by 2O(h) andN � 32`n`(15`22`)2O(h) � n` � 22O(h)

Since we chooseh = �(log logn), we have thatN �nO(log log logn)22log logn holds, and thush = �(log logN)
as well. Observing that the yes and the no instances differ
by the factor ofh4 = �(log logN), we have proved the
following theorem:

Theorem 3.3 There is noc log logn approximation for the
priority Steiner tree problem (for some constantc), unlessNP � DTIME(nO(log log logn)).

Note that the above theorem can be extended to show an
(log logn) -hardness for the special case of priority Steiner
tree problem where all the edges have unit costs, as follows.
The construction remains the same, except that every edgee on pathsP1; : : : ; PjSj is replaced by a path ofjT j edges,
whose priority levels are the same as that ofe (recall thatjT j
is the number of terminals). The costs of all the edges are
unit. It is not hard to see that the gap between the yes and the
no instances is
(log logN 0), whereN 0 � N2 is the size of
the new construction.

4 Hardness of Other Network Design Problems

In this section, we show that the
(log logn) hardness
result of Priority Steiner can be extended to prove identical
inapproximability of two popular network design problems:
fixed charge network flow, and cost-distance network design.

4.1 Fixed charge network flow The single source fixed
charge network flow problem is defined on ann-node graphG with a specified root vertexr. Each nodev has demand

dv and each edgee has capacityue and unit cost. A feasible
solution specifies an integral number of copiesxe of each
edgee that must be purchased so that the demand from each
vertex can be simultaneously routed to the root. The total
cost of the solution is therefore

Pe cexe, and the objective
is to findx to minimize it.1

Suppose we are given an instance of priority Steiner
tree, where the costs of all the edges are unit. We convert
it into an instance of fixed charge network flow as follows.
Let k be the total number of priority levels. The underlying
graph is unchanged. For each vertexv of priority i, we set the
demand to bedv = n5(k�i), and for each edgee of priority i
the capacity isue = n5(k�i)+2.

Given a solutionTP for the priority Steiner tree in-
stance, we can construct a solutionTF for the fixed charge
network flow instance of no greater cost, as follows. Con-
sider some edgee. If it belongs to the solutionTP , then
set xe = 1. Otherwise,xe = 0. Clearly, the costs of
the two solutions are identical. It remains to show thatTF is a feasible solution for the fixed charge network flow
problem. Consider an edgee of priority i, and letU(e)
be the set of terminals whose paths to the root inTP use
edgee. Clearly, the priority of all terminals inU(e) are infi; i+1; : : : ; kg. Since there are at mostn terminals of each
priority level, the total demand of all the vertices inU(e) is at
mostn�n5(k�i)+n�n5(k�i�1)+� � �+n�n5+n � n5(k�i)+2
so the capacity of edgee is sufficient to serve all nodes inU(e).

The other direction is also true. Suppose we are given
an optimal solutionTF to the fixed charge network flow
problem. We can construct a solutionTP to the priority
Steiner tree problem of no greater cost, as follows.TP is
also defined to be identical toTF , except that for every edgee with xe � 1, we use a single edge inTP . Therefore, the
cost ofTP is no greater that that ofTF . It now suffices to
show the feasibility ofTP . First, observe that since there
are at mostn terminal nodes and each terminal node has
a path of length at mostn to the root, and sinceTF is an
optimal solution, its cost cannot exceedn2. Now suppose
for contradiction thatTP was infeasible. That is, for some
terminalt of priority i, there is a cut that separates it from
the root and all the edges of this cut belonging toTP have
priorities infi+ 1; i+ 2; : : : ; kg.

Note that the demand oft is n5i, whereas the capacities
of these edges are at mostn5i�3. But then in order to supply
the demand oft, the number of edges in this cut that belong
to TF must be at leastn3, contradicting the fact that the
solution cost is at mostn2.

1Note that the general version ofFCNF also incorporates an incremental
costle for each edge, so that the cost of sendingfe units of flow on edgee
is cedfe=uee+lefe. We show that even withle = 0 our inapproximability
result holds. Also, while the classical version ofFCNF hasxe 2 f0; 1g,
this can easily be incorporated by replacing each edge with amulti-edge.

The next theorem follows from the above discussion and
Theorem 3.3.

Theorem 4.1 The Fixed-Charge Network Flow problem is
(log logn)-hard to approximate, even in the single-source
case, unlessNP � DTIME(nO(log log logn)).

Note that the demands and the capacities in the above
reduction could be as large asnO(n). However, in our
construction for the priority Steiner tree problem, the number
of priority levels is�(logn). Therefore, we have shown
(log logn)-hardness for fixed charge network flow unlessNP � DTIME(nO(logn)), even if the demands and the
capacities are given in unary.

Furthermore, note that there are onlyO(log n) different
values ofue used in the instanceIF . This brings our result
into the realm of modern-day telecom network design, where
only a few cable types are used to design networks to serve
massive numbers of nodes.

4.2 Cost-distance network designAn instance of the
Cost-Distance network design problem is defined onn-
node graphs rooted atr as follows. Each edgee has a
distancele and a costce, and each nodev has demanddv .
A feasible solution consists of a treeTC spanning all nodes
with positive demand and the root. LetV (e) be the set of
nodes whose paths to the root use edgee. The total cost of
the solution is given byc(TC) = Pe(ce + lePv2V (e) dv).
The objective is a minimum cost feasible solution.

Cost-Distance is also a special case of the general
FCNF problem. To show the inapproximability ofCost-
Distance, we use a standard reduction of single-source
zero-incremental costFCNF to Cost-Distance. Given an
instanceIF of FCNF, we convert it to an instanceIC of CD
by defining the lengthle of edgee to be le = ce=ue. The
costs of edges and demands at nodes are unchanged.

Theorem 4.2 It is not possible to approximate theCost-
Distance problem to better than an
(log logn) factor
unlessNP � DTIME(nlog log logn).
Proof. LetT be an underlying tree rooted atr, with its coun-
terparts inIF andIC denoted asTF andTC respectively.
It was shown in [31, 14] (among others) that the following
relationship holds between their costs:c(TF) � c(TC) �2c(TF). We briefly prove this for expositionary clarity.

Consider an edgee with flow fe. Since the tree is
the same in bothIF and IC , the flow is the same in both
cases. The cost of this edge inIF andIC are, respectively,cedfe=uee andce + fele, wherele = ce=ue. We therefore
havefele = fece=ue � cedfe=uee. The claim now follows
by observing that either the edge has zero flow (and hence
zero cost) or positive flow (and hence cost at leastce in IF).

Since solutions toFCNF andCost-Distance are within
constant factors of each other, we can apply Theorem 4.1 and
this theorem follows.

At this point, it is worth considering the relationship
of Cost-Distance to the single-source buy-at-bulk problem,
which is known to have a constant factor approximation
[18, 41]. The fundamental difference is that in the buy-at-
bulk problem, edge costs and lengths areuniform; that is,
they are proportional to edge lengths and universally avail-
able. In other words, the same set of cables is available
for installation on every edge. In contrast, theFCNF prob-
lem andCost-Distance are non-uniform, so that each edge
may have its own set of available costs, lengths and capac-
ities, with no relation whatsoever with other edges. Our re-
sults point to the fact that this non-uniformity plays a funda-
mental role in separating the approximability of such prob-
lems from homogenous network design problems like single-
source buy-at-bulk. A similar distinction was pointed out by
Andrews [1], who proved stronger inapproximability results
for non-uniform multi-commodity buy-at-bulk network de-
sign.

5 Conclusions

Designing networks in practice often involves various levels
of complexity and requirements, and an understanding of
precisely what characteristics of the problem govern their
level of approximability is critical. While our work makes
some progress in this quest, several important questions
remain. For instance, the gap between the approximability of
Cost-Distance andPriority-Steiner Tree (bothO(log n))
and their inapproximability remains to be closed. The
class of problems that can be modeled viaFCNF-type
constructions is vast, and the approximability ofFCNF
as defined in this paper is still open. Finally, designing
networks on directed graphs presents several challenges
which are as yet poorly understood.

Acknowledgments We would like to thank Moses Charikar,
Chandra Chekuri, Kedar Dhamdhere, Jochen Könemann,
Amit Kumar, and especially Bruce Shepherd for many useful
conversations.

References

[1] Matthew Andrews. Hardness of buy-at-bulk network design.
In Proceedings of the45th Annual IEEE Symposium on
Foundations of Computer Science, 2004.

[2] Matthew Andrews and Lisa Zhang. Approximation algo-
rithms for access network design.Algorithmica, 34(2):197–
215, 2002. (Preliminary version in 39th FOCS, 1998.).

[3] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Su-
dan, and Mario Szegedy. Proof verification and the hardness
of approximation problems.J. ACM, 45(3):501–555, 1998.

[4] Sanjeev Arora and Shmuel Safra. Probabilistic checkingof
proofs: a new characterization of NP.J. ACM, 45(1):70–122,
1998.

[5] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network
design. InProceedings of the 38th Annual IEEE Symposium
on Foundations of Computer Science, pages 542–547, 1997.

[6] Robert D. Carr, Lisa Fleischer, Vitus J. Leung, and Cynthia A.
Phillips. Strengthening integrality gaps for capacitatednet-
work design and covering problems. InSymposium on Dis-
crete Algorithms, pages 106–115, 2000.

[7] Moses Charikar, Joseph (Seffi) Naor, and Baruch Schieber.
Resource optimization in QoS multicast routing of real-
time multimedia. IEEE/ACM Transactions on Networking,
12(2):340–348, 2004.

[8] Chandra Chekuri, Sanjeev Khanna, and Joseph (Seffi) Naor.
A deterministic algorithm for the cost-distance problem. In
Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 232–233, 2001.

[9] Andrea E.F. Clementi and Luca Trevisan. Improved non-
approximability results for minimum vertex cover with den-
sity constraints. Theoretical Computer Science, 225(1–
2):113–128, 1999.

[10] J. R. Current, C. S. Revelle, and J. L. Cohon. The hierarchical
network design problem.European Journal of Operational
Reasearch, 27:57–66, 1986.

[11] Cees Duin and Ton Volgenant. The multi-weighted Steiner
tree problem.Ann. Oper. Res., 33(1-4):451–469, 1991. Topo-
logical network design (Copenhagen, 1989).

[12] Guy Even, Guy Kortsarz, and Wolfgang Slany. On network
design: fixed charge flows and the covering steiner problem.
In Proceedings of the 8th Scandinavian Workshop on Algo-
rithm Theory, volume 2368 ofLecture Notes in Computer Sci-
ence, pages 318–329. Springer, 2002.

[13] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. Atight
bound on approximating arbitrary metrics by tree metrics. In
Proceedings of the35th Annual ACM Symposium on Theory
of Computing, pages 448–455, 2003.

[14] Naveen Garg, Rohit Khandekar, Goran Konjevod, R. Ravi,
F. Sibel Salman, and Amitabh Sinha. On the integrality
gap of a natural formulation of the single-sink buy-at-bulk
network design formulation. InProceedings of the 8th Integer
Programming and Combinatorial Optimization Conference,
volume 2081 ofLecture Notes in Computer Science, pages
170–184, 2001.

[15] Michel X. Goemans and David P. Williamson. The primal-
dual method for approximation algorithms and its application
to network design problems. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems. PWS Pub-
lishing, 1997.

[16] Sudipto Guha and Samir Khuller. Greedy strikes back:
Improved facility location algorithms.Journal of Algorithms,
31(1):228–248, 1999.

[17] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hi-
erarchical placement and network design problems. InPro-
ceedings of the 41th Annual IEEE Symposium on Foundations
of Computer Science, pages 603–612, 2000.

[18] Sudipto Guha, Adam Meyerson, and Kamesh Mungala. A
constant factor approximation for the single sink edge installa-

tion problems. InProceedings of the 33rd Annual ACM Sym-
posium on the Theory of Computing (STOC), pages 383–388,
2001.

[19] Oktay Gunluk. A branch-and-cut algorithm for capaci-
tated network design problems.Mathematical Programming,
86:17–39, 1999.

[20] Anupam Gupta, Amit Kumar, Martin Pál, and Tim Rough-
garden. Approximations via cost-sharing. InProceedings of
the 44th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 606–615, 2003.

[21] Anupam Gupta, Amit Kumar, and Tim Roughgarden. Sim-
pler and better approximation algorithms for network design.
In Proceedings of the 35th Annual ACM Symposium on The-
ory of Computing, pages 365–372, 2003.

[22] Eran Halperin and Robert Krauthgamer. Polylogarithmic
inapproximability. InProceedings of the35th Annual ACM
Symposium on Theory of Computing, pages 585–594, 2003.

[23] Kamal Jain. A factor 2 approximation algorithm for the gen-
eralized Steiner network problem.Combinatorica, 21(1):39–
60, 2001. (Preliminary version in39th FOCS, pages 448–457,
1998).

[24] David R. Karger and Maria Minkoff. Building Steiner
trees with incomplete global knowledge. InProceedings of
the 41th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 613–623, 2000.

[25] Amit Kumar, Anupam Gupta, and Tim Roughgarden. A
constant-factor approximation algorithm for the multicom-
modity rent-or-buy problem. InProceedings of the 43rd An-
nual IEEE Symposium on Foundations of Computer Science,
pages 333–342, 2002.

[26] Carsten Lund and Mihalis Yannakakis. On the hardness of
approximating minimization problems.J. Assoc. Comput.
Mach., 41(5):960–981, 1994.

[27] Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi,
Daniel J. Rosenkrantz, and Harry B. Hunt, III. Bicriteria
network design problems. J. Algorithms, 28(1):142–171,
1998.

[28] N. F. Maxemchuk. Video distribution on multicast networks.
IEEE J. on Selected Areas in Communications, 15:357–372,
1997.

[29] Vardges Melkonian and́Eva Tardos. Approximation algo-
rithms for a directed network design problem. InInteger pro-
gramming and combinatorial optimization (Graz, 1999), vol-
ume 1610 ofLecture Notes in Comput. Sci., pages 345–360.
Springer, Berlin, 1999.

[30] Adam Meyerson. Online algorithms for network design. In
Proceedings of the 16th ACM Symposium on Parallelism in
Algorithms and Architectures, 2004.

[31] Adam Meyerson, Kamesh Munagala, and Serge Plotkin.
Cost-distance: Two metric network design. InProceedings
of the 41st Annual IEEE Symposium on Foundations of Com-
puter Science, pages 624–630, 2000.

[32] P. Mirchandani. The multi-tier tree problem.INFORMS
Journal on Computing, 8:202–218, 1996.

[33] George L. Nemhauser and Laurence A. Wolsey.Integer and
Combinatorial Optimization. 1999.

[34] Francisco Ortega and Laurence A. Wolsey. A branch-and-
cut algorithm for the single-commodity, uncapacitated, fixed-

charge network flow problem. Networks, 41(3):143–158,
2003.

[35] H. Pirkul, J. Current, and V. Nagarajan. The hierarchical
network design problem: a new formulation and solution
procedures.Transportation Science, 25:175–182, 1991.

[36] R. Ravi and F. S. Salman. Approximation algorithms for
the traveling purchaser problem and its variants in network
design. InAlgorithms—ESA ’99 (Prague), volume 1643 of
Lecture Notes in Comput. Sci., pages 29–40. Springer, Berlin,
1999.

[37] R. Ravi and Amitabh Sinha. Integrated logistics: Approx-
imation algorithms combining facility location and network
design. In Proceedings of the 9th Integer Programming
and Combinatorial Optimization Conference, volume 2337 of
Lecture Notes in Computer Science, pages 212–229, 2002.

[38] Ran Raz. A parallel repetition theorem.SIAM J. Comput.,
27(3):763–803 (electronic), 1998.

[39] F. Sibel Salman, Joseph Cheriyan, R. Ravi, and Sairam
Subramanian. Approximating the single-sink link-installation
problem in network design.SIAM Journal on Optimization,
11(3):595–610, 2000.

[40] Chaitanya Swamy and Amit Kumar. Primal-dual algorithms
for the connected facility location problem. InProceedings of
the 5th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), volume
2462 ofLecture Notes in Computer Science, pages 256–269,
2002.

[41] Kunal Talwar. Single-sink buy-at-bulk LP has constantinte-
grality gap. InProceedings of the 9th Integer Programming
and Combinatorial Optimization Conference, volume 2337 of
Lecture Notes in Computer Science, pages 475–486, 2002.

[42] T. Turletti and J.-C. Bolot. Issues with multicast video distri-
bution in heterogeneous packet networks. InProceedings of
6th International Workshop on Packet Video, 1994.

