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Abstract

In this paper, we study the metrics of negative type,
which are metrics (V,d) such that

√
d is an Euclidean

metric; these metrics are thus also known as “`2-
squared” metrics.

We show how to embed n-point negative-type met-
rics into Euclidean space `2 with distortion D =
O(log3/4 n). This embedding result, in turn, implies

an O(log3/4 k)-approximation algorithm for the Spars-
est Cut problem with non-uniform demands. Another
corollary we obtain is that n-point subsets of `1 embed
into `2 with distortion O(log3/4 n).

1 Introduction

The area of finite metric spaces and their embeddings
into “simpler” spaces lies in the intersection of the areas
of mathematical analysis, computer science and discrete
geometry. Over the past decade, this area has seen
hectic activity, partly due to the fact that it has proved
invaluable in many algorithmic applications. Many
details can be found in the surveys by Indyk [Ind01] and
Linial [Lin02], or in the chapter by Matoušek [Mat02].

One of the first major applications of metric embed-
dings in Computer Science was an O(log k) approxima-
tion to the Sparsest Cut problem with non-uniform de-
mands (henceforth called the Generalized Sparsest Cut

problem) [LLR95, AR98]. This result was based on a
fundamental theorem of Bourgain [Bou85] in the local
theory of Banach spaces, which showed that any finite
n-point metric could be embedded into `1 space (and in-
deed, into any of the `p spaces) with distortion O(log n).
The connection between these results uses the fact that
the Generalized Sparsest Cut problem seeks to mini-
mize a linear function over all cuts of the graph, which
is equivalent to optimizing over all n-point `1 metrics.
Since this problem is NP-hard, we can optimize over
all n-point metrics instead, and then use an algorithmic
version of Bourgain’s embedding to embed into `1 with
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only an O(log n) loss in performance.
A natural extension of this idea is to optimize over

a smaller class of metrics that contains `1; a natural
candidate for this class is NEG, the class of n-point
metrics of negative type1. These are just the metrics
obtained by squaring an Euclidean metric, and hence
are often called “`2-squared” metrics. It is known that
the following relationships hold:

`2 metrics ⊆ `1 metrics ⊆ NEG metrics. (1.1)

Since it is possible to optimize over NEG via semidefinite
programming, this gives us a semidefinite relaxation for
the Generalized Sparsest Cut problem [Goe97]. Now if
we could prove that n-point metrics in NEG embed into
`1 with distortion D, we would get a D-approximation
for Sparsest Cut; while this D has been conjectured to
be O(

√
log n) or even O(1), no bounds better than the

O(log n) were known prior to this work.
In a recent breakthrough, Arora, Rao, and Vazi-

rani [ARV04] showed that every n-point metric in NEG

has a contracting embedding into `1 such that the sum
of the distances decreases by only O(

√
log n). Formally,

they showed that the SDP relaxation had an integral-
ity gap of O(

√
log n) for the case of uniform demand

Sparsest Cut; however, this is equivalent to the above
statement by the results of Rabinovich [Rab03].

We extend their techniques to give embeddings
for n-point metrics in NEG into `2 with distortion
O(log3/4 n). More generally, we obtain the following
theorem.

Theorem 1.1. Given (V,d), a negative-type metric,

and a set of terminal-pairs D ⊆ V × V with |D| = k,

there is a contracting embedding ϕ : V → `2 such that

for all pairs (x, y) ∈ D,

‖ϕ(x) − ϕ(y)‖2 ≥ 1

O(log3/4 k)
d(x, y).

1Note that NEG usually refers to all distances of negative-type,

even those that do not obey the triangle inequality. In this paper,
we will use NEG only to refer to negative-type metrics.



Note that the above theorem requires the embedding
to be contracting for all node pairs, but the resulting
contraction needs to be small only for the terminal
pairs. In general, when D = V × V , the embedding
is an O(log3/4 n)-distortion embedding into `2. Though
we also give a randomized polynomial-time algorithm
to find this embedding, let us point out that optimal
embeddings into `2 can be found using semidefinite
programming [LLR95, Thm. 3.2(2)].

Finally, let us note some simple corollaries.

Theorem 1.2. Let D(n) = O(log3/4 n). Every n-point

metric in NEG embeds into `1 with D(n) distortion, and

every n-point metric in `1 embeds into Euclidean space

`2 with D(n) distortion. These embeddings can be found

in polynomial time.

The existence of both embeddings follows immediately
from (1.1). To find the map NEG → `1 in polynomial
time, we can use the fact that every `2 metric can be
embedded into `1 isometrically; if we so prefer, we can
find a distortion-

√
3 embedding into `1 in deterministic

polynomial time using families of 4-wise independent
random variables [LLR95, Lemma 3.3].

Theorem 1.3. There is a randomized polynomial-time

O(log3/4 k)-approximation algorithm for the Sparsest

Cut problem with non-uniform demands.

Theorem 1.3 thus extends the results of Arora et
al. [ARV04] to the case of non-uniform demands, al-
beit it proves a weaker result than the O(

√
log k) that

they achieve for uniform demands.
The proof of Theorem 1.3 follows from the fact

that distortion-D embeddings of negative-type metrics
into `1 show the integrality gap of the semidefinite
programming relaxation of the Sparsest Cut problem
is at most D, and furthermore the embedding can be
used to find such a cut as well. (For more details
about this connection of embeddings to the Sparsest Cut
problem, see the survey by Shmoys [Shm97, Sec. 5.3];
the semidefinite programming relaxation can be found
in the survey by Goemans [Goe97, Sec. 6]).

1.1 Our Techniques. The proof of the Main The-
orem 1.1 proceeds thus: we first classify the terminal
pairs in D by distance scales. We define the scale-i set
Di to be the set of all pairs (x, y) ∈ D with d(x, y) ≈ 2i.
For each scale i, we find a partition of V into com-
ponents such that a constant fraction of the terminal
pairs (x, y) ∈ Di, the following two “good” events hap-
pens: (1) x and y lie in different components of the
partition, and (2) the distance from x to any other
component is at least η 2i, and the same for y. Here
η = 1/O(

√
log k). Informally, both x and y lie deep

within their distinct components, and this happens for
a constant fraction of the pairs (x, y) ∈ Di. (The details
of this process are given in Section 3; the proofs use
ideas from [ARV04] and the subsequent improvements
in [Lee05].)

Note that the good event happens for only a con-
stant fraction of the pairs in Di, and we have little
control over which of the pairs will be the lucky ones.
However, to get the embedding, we want a partitioning
scheme that separates a random constant fraction of the
pairs in Di. To this end, we employ a simple reweight-
ing scheme (reminiscent of the Weighted Majority algo-
rithm [LW94] and many other applications). We just
duplicate each unlucky pair and repeat the above pro-
cess O(log k) times. Since each pair that is unlucky gets
a higher weight in the subsequent runs, a simple ar-
gument given in Section 4 shows that each pair in Di

will be separated in at least log k of these O(log k) par-
titions. (Picking one of these partitions uniformly at
random would now ensure that each vertex is separated
with constant probability.)

We could now use these partitions näıvely to con-
struct an embedding where the contraction for the pairs
in D would be bounded by

√
log k/η. However, this

would be no better than the previous bounds, and
hence we have to be more careful. We slightly adapt
the measured descent embeddings of Krauthgamer
et. al. [KLMN04] to combine the O(log k) partitions
for the various distance scales to get a distortion-
O(

√

log k/η) = O(log3/4 k) embedding. The details of
the embedding are given in Section 5.

1.2 Related Work. This work adopts and adapts
techniques of Arora, Rao and Vazirani [ARV04], who
gave an O(

√
log n)-approximation for the uniform de-

mand case of Sparsest Cut. In fact, using their results
about the behavior of projections of negative-type met-
rics almost as a black-box, we obtain an O(log5/6 n)-
approximation for Generalized Sparsest Cut. Our ap-
proximation factor is further improved to O((log n)3/4)
by results of Lee [Lee05] showing that the hyperplane
separator algorithm from [ARV04, Section 3] itself gives
an O(

√
log n) approximation for the uniform demand

case.
As mentioned above, there has been a large body

of work on low-distortion embeddings of finite met-
rics; see, e.g., [Bar98, Bou85, CGN+03, FRT03, GKL03,
GNRS04, KLMN04, LLR95, Mat96, Mat99, Rao99],
and our work stems in spirit from many of these pa-
pers. However, it draws most directly on the tech-
nique of measured descent developed by Krauthgamer
et. al. [KLMN04].

Independently of our work, Lee [Lee05] has used so-



called “scale-based” embeddings to give low-distortion
embeddings from `p (1 < p < 2) into `2. The paper
gives a “Gluing Lemma” of the following form: if for
every distance scale i, if we are given a contracting
embedding φi such that each pair x, y with d(x, y) ∈
[2i, 2i+1) has ‖φi(x) − φi(y)‖ ≥ d(x,y)

K , one can glue
them together to get an embedding φ : d → `2 with
distortion O(

√
K log n). His result is a generalization

of [KLMN04], and of our Lemma 5.1; using this gluing
lemma, one can derive an `2 embedding from the
decomposition bundles of Theorem 4.1 without using
any of the ideas in Section 5.

2 Notation and Definitions

2.1 Sparsest Cut. In the Generalized Sparsest Cut

problem, we are given an undirected graph G = (V,E)
with edge capacities ce, and k source-sink (terminal)
pairs {si, ti} with each pair having an associated de-
mand Di. For any subset S ⊆ V of the nodes of the
network, let D(S, S̄) be the net demand going from the
terminals in S to those outside S, and C(S, S̄) the total
capacity of edges exiting S. Now the generalized spars-

est cut is defined to be

Φ = min
S⊆V

C(S, S̄)

D(S, S̄)
= min

cut metrics δS

∑

cuv δS(u, v)
∑

ij Di δS(si, ti)

= min
d∈`1

∑

(u,v)∈E cuv d(u, v)
∑

ij Di d(si, ti)
(2.2)

(If there is unit demand between all pairs of vertices,
then the problem is just called the Sparsest Cut prob-
lem.) The problem is NP-hard [SM90], as is optimiz-
ing over the cone of `1-metrics [Kar85]. There is much
work on this fundamental problem (see, e.g., [LR99,
Shm97]), and O(log k) approximations were previously
known [LLR95, AR98]. These algorithms proceeded by
relaxing the problem and optimizing over all metrics in-
stead of over `1-metrics in (2.2), and then rounding the
solution. A potentially stronger relaxation is obtained
by optimizing only over metrics d ∈ NEG instead of over
all metrics:

ΦNEG = min
d∈NEG

∑

(u,v)∈E cuv d(u, v)
∑

i Di d(si, ti)
(2.3)

This quantity is the semidefinite relaxation of the prob-
lem, and can be approximated well in polynomial time
(see, e.g., [Goe97]). Since `1 ⊆ NEG, it follows that
ΦNEG ≤ Φ. Now if we can embed n-point metrics in
NEG into `1 with distortion at most D, one can show
that Φ ≤ D×ΦNEG, and also get a D approximation for
Generalized Sparsest Cut.

2.2 Metrics. The input to our embedding procedure
will be a negative-type metric (V,d) with |V | = n.
We can, and indeed will use the following standard
correspondence between finite metrics and graphs: we
set V to the node set of the graph G = (V,E = V ×V ),
where the length of an edge (x, y) is set to d(x, y).
This correspondence allows us to perform operations
like deleting edges to partition the graph. By scaling, we
can assume that the smallest distance in (V,d) is 1, and
the maximum distance is some value Φ(d), the diameter

of the graph.
It is well-known that any negative-type distance

space admits a geometric representation as the square of

a Euclidean metric; i.e., there is a map ψ : V → R
n such

that ‖ψ(x)−ψ(y)‖2
2 = d(x, y) for every x, y ∈ V [DL97,

Thm. 6.2.2]. Furthermore, the fact that d is a metric
implies that the angle subtended by any two points at a
third point is non-obtuse. Since this map can be found
in polynomial time using semidefinite programming, we
will assume that we are also given such a map ψ. For any
node x ∈ V , we use ~x to denote the point ψ(x) ∈ R

n.

2.3 Terminal Pairs. We are also given a set of
terminal pairs D ⊆ V × V ; these are the pairs of nodes
for which we need to ensure a small contraction. In the
sequel, we will assume that each node in V takes part
in at most one terminal-pair in D. This is without loss
of generality; if a node x belongs to several terminal
pairs, we add new vertices xi to the graph at distance 0
from x, and replace x in the i-th terminal pair with xi.
(Since this transformation adds at most O(|D|) nodes,
it does not asymptotically affect our results.) Note that
a result of this is that D may have two terminal pairs
(x, y) and (x′, y′) such that d(x, x′) = d(y, y′) = 0.

A node x ∈ V is a terminal if there is a (unique)
y such that (x, y) ∈ D; call this node y the partner of
x. Define Di to be the set of node-pairs whose distance
according to d is approximately 2i.

Di = {(x, y) ∈ D | 2i ≤ d(x, y) < 2i+1} (2.4)

We use the phrase scale-i to denote the distances in
the interval [2i, 2i+1), and hence Di is merely the set of
terminal pairs that are at distance scale i. If (x, y) ∈ Di,
then x and y are called scale-i terminals. Let D be the
set of all terminal nodes, and Di be the set of scale-i
terminals.

The radius r ball around x ∈ V is naturally defined
to be B(x, r) = {z ∈ V | d(x, z) ≤ r}. Given a set
S ⊆ V , the ball B(S, r) = ∪x∈SB(x, r).

2.4 Metric Decompositions: Suites and Bun-

dles. Much of the paper will deal with finding decom-
positions of metrics (and of the underlying graph) with



specific properties; let us define these here. Given a dis-
tance scale i and a partition Pi of the graph, let Ci(v)
denote the component containing a vertex v ∈ V . We
say that a pair (x, y) ∈ Di is δ-separated by the partition
Pi if

• the vertices x and y lie in different components; i.e.,
Ci(x) 6= Ci(y), and

• both x and y are “far from the boundary of their
components”, i.e., d(x, V \ Ci(x)) ≥ δ d(x, y) and
d(y, V \ Ci(y)) ≥ δ d(x, y).

A decomposition suite Π is a collection {Pi} of
partitions, one for each distance scale i between 1
and blog Φ(d)c. Given a separation function δ(x, y) :
V × V → [0, 1], the decomposition suite Π is said to
δ(x, y)-separate (x, y) ∈ D if for the distance scale i
such that (x, y) ∈ Di, (x, y) is δ(x, y)-separated by the
corresponding partition Pi ∈ Π.

Finally, a δ(x, y)-decomposition bundle is a collec-
tion {Πj} of decomposition suites such that for each
(x, y) ∈ D, at least a constant fraction of the Πj δ(x, y)-
separate the pair (x, y).

In Section 2.4, we show how to create a decompo-
sition suite that Ω(1/

√
log k)-separates a constant frac-

tion of the pairs (x, y) ∈ Di, for all distance scales i. Us-
ing this procedure and a simple reweighting argument,
we construct a Ω(1/

√
log k)-decomposition bundle with

O(log k) suites. Finally, in Section 5, we show how de-
composition bundles give us embeddings of the metric
d into `2.

3 Creating Decomposition Suites

3.1 The Procedure Project-&-Prune. In this sec-
tion, we will give the procedure Project-&-Prune that
takes a distance scale i, and constructs a partition of
V that η-separates at least a constant fraction of the
pairs in Di. Here the parameter η = 1

4c
√

log k
, where

c is a constant to be defined later; let us also define
f = 1

4η = c
√

log k.

Procedure Project-&-Prune:

Input: The metric (V,d), and its geometric represen-
tation where x ∈ V is mapped to ~x. Also, a distance
scale i.

1. Project. In this step, we pick a random direction
and project the points in V on the line in this
direction. Formally, we pick a random unit vector
u. Let px =

√
n 〈~x, u〉 be the normalized projection

of the point ~x on u.

2. Bucket. Let ` = 2i/2, and set β = `/6. Informally,
we will form buckets by dividing the line into

A1A0 A2 A3A0 A0A2 A3 A1

β

separated pair

~u

Figure 3.1: Projection and Bucketing

intervals of length β. We then group the terminals
in Di according to which interval (mod 4) they
lie in. (See Figure 3.1.) Formally, for each a =
0, 1, 2, 3, define

Aa = { x ∈ Di | px ∈ ∪m∈Z

`

(4m+a)β, (4m+1+a)β
´

}

A terminal pair (x, y) ∈ Di is split by Aa if x ∈ Aa

and y ∈ A(a+2) mod 4. If the pair (x, y) is not split
by any Aa, we remove both x and y from the sets
Aa. For a ∈ {0, 1}, let Ba ⊆ Di be the set of
terminal pairs split by Aa or Aa+2.

3. Prune. If there exist terminals x ∈ Aa and y ∈
A(a+2) mod 4 for some a ∈ {0, 1} (not necessarily
belonging to the same terminal pair) with d(x, y) <
`2/f , we remove x and y and their partners from
the sets {Aa}.

4. Cleanup. For each a, if (x, y) ∈ Ba and the above
pruning step has removed either of x or y, then
we remove the other one as well, and remove (x, y)
from Ba. Once this is done, Aa×A(a+2) mod 4 ⊆ Di,
and Ba is once again the set of terminal pairs split
by Aa or Aa+2.

5. If max{|B0|, |B1|} ≤ 1
64 |Di|, go back to Step 1, else

go to Step 6.

6. Say the set Ba has more pairs than B(1−a) mod 2.
Define the partition Pi by deleting all the edges
at distance `2/2f from the set Aa. (This step can
be thought of as taking C = B(Aa, `2/2f), and
defining the partition Pi to be G[C] and G[V \ C],
the components induced by C and V \ C.)

Note the procedure above ensures that for any pair

of terminals (x, y) ∈ Aa × A(a+2) mod 4, the distance
d(x, y) is at least `2/f = 2i/f , even if (x, y) 6∈ Di.
Why do we care about these pairs? It is because the
separation of `2/f between the sets Aa and A(a+2) mod 4

ensures that the balls of radius `2

2f around these sets are
disjoint.



~u
A0A2A2 A2 A2A1A3A0 A0

≤ 3β√
2πσ

x

A1 A3 A1A3

Figure 3.2: The distribution of projected edge lengths
in the proof of Lemma 3.1. If y falls into a light-shaded
interval, the pair (x, y) is split.

This in turn implies that terminal pairs (x, y) ∈
Di ∩ (Aa × A(a+2) mod 4) are η-separated upon deleting
the edges in Step 6. Indeed, for such a pair (x, y), the
components Ci(x) and Ci(y), obtained upon deleting

the edges at distance `2

2f from the set Aa, are distinct,

and both d(x, V \Ci(x)) and d(y, V \Ci(y)) are at least
`2

2f ≥ d(x,y)
4f .

The following theorem now shows that the proce-
dure Project-&-Prune indeed terminates quickly.

Theorem 3.1. For any distance scale i, the procedure

Project-&-Prune terminates in a constant number of

iterations. This gives us a random polynomial-time

algorithm that outputs a partition Pi which η-separates

at least 1
64 |Di| pairs of Di.

The proof of this theorem has two parts, which we
will prove in the next two subsections. We first show
that the sets B0 and B1 contain most of Di before the
pruning step (with a high probability over the random
direction u). We then show that the pruning procedure
removes only a constant fraction of the pairs from these
sets B0 and B1 with a constant probability, and that the
size of B0 ∪B1 is at least |Di|/32. It follows that one of
these sets must have half of the terminal pairs, proving
the theorem.

3.1.1 The Projection Step

Lemma 3.1. Fix a distance scale i. At the end of the

bucketing stage, the set B0 ∪B1 contains at least 1
16 |Di|

terminal pairs w.p. 1
15 .

Proof. Recall that a terminal pair (x, y) ∈ Di is split if
x lies in the set Aa and y lies in A(a+2) mod 4 for some
a ∈ {0, 1, 2, 3}. Also, we defined `2 = 2i, and hence
(x, y) ∈ Di implies that ‖~x − ~y‖ = d(x, y) ∈ [`2, 2 `2).
Consider the normalized projections px and py of the
vectors ~x, ~y ∈ R

n on the random direction u, and note
that py−px is distributed as a Gaussian random variable
Zu ∼ N(0, σ2) with a standard deviation σ ∈ [`,

√
2`)

(see Figure 3.2.)
Now consider the bucket of width β in which px

lies. The pair (x, y) will not be separated if py lies in

either the same bucket, or in either of the adjoining
buckets. (The probability of each of these three events
is at most 1√

2π σ
× β.) Also, at least 1

4 of the remainder

of the distribution causes (x, y) to be split, since each
good interval is followed by three bad intervals with less
measure.

Putting this together gives us that the probability
of (x, y) being split is at least

1

4

(

1 − 3β
1√
2π σ

)

≥ 1

4

(

1 − 3(`/6)√
2π `

)

≥ 1

8

Since each pair (x, y) ∈ Di is separated with probability
1/8, the linearity of expectations and Markov’s inequal-
ity implies that at least one-sixteenth of Di must be split
at the end of the bucketing stage with probability 1

15 .
¤

3.1.2 The Pruning Step. We now show that a
constant fraction of the terminal pairs in Di also survive
the pruning phase. This is proved by contradiction, and
follows the lines of the argument of Arora et al. [ARV04].

Assume that, with a large probability (over the
choice of the random direction u), a large fraction of
the terminal pairs in Di (say 1

64 |Di|) get removed in
the pruning phase. By the definition of the pruning
step, the projection of ~x − ~y on u must have been
large for such removed pair (x, y). In our algorithm,
this happens when d(x, y) < `2/f , or equivalently when
β >

√

d(x, y) ×
√

f/6. Since px and py are separated
by at least one bucket of width β, and the expected
value of |px − py| is exactly

√

d(x, y), this implies that
the expectation is exceeded by a factor of at least√

f/6 = Ω(log1/4 k). Setting t =
√

f/6, we can say
that such a pair (x, y) is “stretched by a factor t in the
direction u”. For any given direction u, the stretched
pairs removed in the pruning step are disjoint, and hence
form a matching Mu.

Arora et al. showed the following geometric
property—for a given set W and some constant C,
the number of disjoint t-stretched pairs in W × W
cannot be more than C|W | with constant probabil-
ity (over the choice of u); however, their proof only

proved this for stretch t = Ω(log1/3 |W |). The depen-
dence on t was improved subsequently by Lee [Lee05] to

t = Ω(log1/4 |W |).
In order to make the above discussion more precise,

let us first recall the definition of a stretched set of
points.

Definition 3.1. ([ARV04], Defn. 4) A set of n
points ~x1, ~x2, . . . , ~xn in R

n is said to be (t, γ, β)-
stretched at scale l, if for at least a γ fraction of the di-

rections u, there is a partial matching Mu = {(xi, yi)}i,



with |Mu| ≥ βn, such that for all (x, y) ∈ Mu, d(x, y) ≤
l2 and 〈u, ~x − ~y〉 ≥ tl/

√
n. That is, the pair (x, y) is

stretched by a factor of t in direction u.

Theorem 3.2. ([ARV04], Thm. 5) For any γ, β > 0,

there is a C = C(γ, β) such that if t > C log1/3 n, then

no set of n points in R
n can be (t, γ, β)-stretched for any

scale l.

The above theorem has been subsequently improved by
Lee, and follows from [Lee05, Thm. 4.1].

Theorem 3.3. For any γ, β > 0, there is a C =
C(γ, β) such that if t > C log1/4 n, then no set of n
points in R

n can be (t, γ, β)-stretched for any scale l.

Summarizing the implication of Theorem 3.3 in our
setting, we get the following corollary.

Corollary 3.1. Let W be a set of vectors correspond-

ing to some subset of terminals satisfying the following

property: with probability Θ(1) over the choice of a ran-

dom unit vector u, there exist subsets Su, Tu ⊆ W and a

constant ρ such that |Su| ≥ ρ|W | and |Tu| ≥ ρ|W |, and

the length of the projection |〈u, ~x − ~y〉| ≥ `/(6
√

n) for

all ~x ∈ Su and ~y ∈ Tu. Then with probability Θ(1) over

the choice of u, the pruning procedure applied to sets

Su and Tu returns sets S′
u and T ′

u with |S′
u| ≥ 3

4 |Su|
and |T ′

u| ≥ 3
4 |Tu|, such that for all ~x ∈ S′

u and ~y ∈ T ′
u,

d(x, y) ≥ `2/f .

Proof. For a unit vector u, let M(u) denote the match-
ing obtained by taking the pairs (x, y) of terminals that
are deleted by the pruning procedure when given the
vector u. Note that pairs (x, y) ∈ M(u) have the prop-
erty that d(x, y) < `2/f and |px − py| > `/6. For the
sake of contradiction, suppose there is a constant γ such
that the matchings M(u) are larger than ρ/4|W | with
probability at least 1 − γ over the choice of u.

Using Definition 3.1 above, we get that the vectors
in W form an (6

√
f, γ, ρ/4)-stretched set at scale `/

√
f .

Theorem 3.3 now implies that 6
√

f = 6
√

c(log k)1/4

must be at most C log1/4|W |. However, since |W | ≤ 2k,
setting the parameter c suitably large compared to C
would give us the contradiction. ¤

Finally, we are in a position to prove Theorem 3.1
using Lemma 3.1 and Corollary 3.1.

Proof. [Proof of Theorem 3.1] Define W to be Di, the
set of all terminals that belong to some terminal pair
in Di. Let a be the index corresponding to the larger
of B0 and B1 before the pruning step, and set Su = Aa

and Tu = A(a+2) mod 4 for this value of a. Lemma 3.1

assures us that |Su| = |Tu| ≥ 1
32 |Di| = 1

16 |W | with

probability 1
15 (over the random choice of the vector

u ∈ R
n). Furthermore, for each ~x ∈ Su and ~y ∈ Tu, the

fact that |px − py| ≥ β translates to the statement that
〈~x − ~y, u〉 ≥ `/(6

√
n).

These vectors satisfy the conditions of Corollary 3.1,
and hence we can infer that with a constant probability,
the pruning procedure removes at most 1

4 |Su| and 1
4 |Tu|

vertices from Su and Tu respectively. Their partners
may be pruned in the cleanup step as well, and hence
the total number of terminal pairs pruned is at most
1
2 |Su|. Thus the number of terminal pairs remaining in
Di ∩ (S′

u × T ′
u) is at least 1

2 |Su| ≥ 1
64 |Di| pairs.

Since this happens with a constant probability, we
will need to repeat Steps 1-3 of the procedure (each
time with a new unit vector u) only a constant number
of times until we find a partition that η-separates at
least 1

64 |Di| of the terminal pairs; this proves the result.
¤

Running the procedure Project-&-Prune for each
distance scale i between 1 and blog Φ(d)c, we can get
the following result with γ = 1

64 .

Theorem 3.4. Given a negative-type metric d, we can

find in randomized polynomial time a decomposition

suite Π = {Pi} that η-separates a constant fraction γ
of the terminal pairs at each distance scale i.

In the next section, we will extend this result to
get a set of O(log k) decomposition suites {Πj} so that
each terminal pair (x, y) ∈ D is separated in a constant
fraction of the Πj ’s.

4 Obtaining Decomposition Bundles:

Weighting and Watching

To start off, let us observe that the result in Theorem 3.4
can be generalized to the case where terminal pairs have
an associated weight wxy ∈ {0, 1, 2, . . . , k}.

Lemma 4.1. Given terminal pairs (x, y) ∈ D with

weights wxy, there is a randomized polynomial time al-

gorithm that outputs a decomposition suite Π which, for

each distance scale i, Ω(1/
√

log k)-separates terminals

with total weight at least γ
∑

(x,y)∈Di
wxy.

Proof. The proof is almost immediate: we replace
each terminal pair (x, y) ∈ Di having weight wxy >
0 with wxy new terminal pairs (xj , yj), where the
points {xj} and {yj} are placed at distance 0 to
x and y respectively. Doing this reduction for all
weighted pairs gives us an unweighted instance with
a set D

′
i of terminal pairs. Now Theorem 3.4 gives

us a decomposition suite η-separating at least 1
64 |D′

i|
of the new terminal pairs at distance scale i, where



η = 1/O(
√

log D′
i) = 1/O(

√
log k). Finally, observing

that the separated terminal pairs at scale i contribute
at least 1

64

∑

(x,y)∈Di
wxy completes the claim. ¤

In the sequel, we will associate weights with the ter-
minal pairs in D and run the procedure from Lemma 4.1
repeatedly. The weights start off at k, and the weight
of a pair that is separated in some iteration is halved in
the subsequent iteration; this reweighting ensures that
all pairs are separated in significantly many rounds.
(Note: this weighting argument is fairly standard and
has been used, e.g., in geometric algorithms [Cla95],
machine learning [LW94], and many other areas; see
Welzl [Wel96] for a survey.)

The Algorithm:

1. Initialize w(0)(x, y) = 2dlog ke for all terminal pairs
(x, y) ∈ D. Set j = 0.

2. Use the algorithm from Lemma 4.1 to obtain a
decomposition suite Πj . Let Tj be the set of
terminal pairs η-separated by this decomposition.

3. For all (x, y) ∈ Tj , set w(j+1)(x, y) ← w(j)(x, y)/2.
If w(j+1)(x, y) < 1 then w(j+1)(x, y) ← 0.

4. Increment j ← j+1. If
∑

(x,y)∈Di
w(j)(x, y) ≥ 1 for

some i, go to step 2, else halt.

Note that the distance function d in each iteration
of the algorithm remains the same.

Lemma 4.2. In each iteration j of the above algorithm
∑

(x,y)∈Di
w(j+1)(x, y) ≤ (1 − γ

2 )
∑

(x,y)∈Di
w(j)(x, y).

Proof. In each iteration, the algorithm of Lemma 4.1
separates at least a γ fraction of the weight
∑

(x,y)∈Di
wj(x, y), and hence the total weight in the

next round drops by at least half this amount. ¤

Noting that initially we have
∑

(x,y)∈Di
w(0)(x, y) ≤

k2, one derives the following simple corollary:

Corollary 4.1. The above algorithm has at most
4
γ log k iterations.

Lemma 4.3. Every pair (x, y) ∈ Di is η-separated in at

least log k iterations.

Proof. Since we start off with w(0)(x, y) = k and end
with w(j)(x, y) < 1, the weight w(j)(x, y) must have
been decremented at least log k times. Each such
reduction corresponds to a round j in which (x, y) was
η-separated by Πj . ¤

Theorem 4.1. The above procedure outputs an η-

decomposition bundle with at most 4
γ log k ccdecompo-

sition suites, such that each terminal pair (x, y) is η-

separated in at least log k of these suites.

5 Embedding via decomposition bundles

In the previous sections we have constructed a decompo-
sition bundle with a large separation between terminal
pairs. Now, we show how to obtain a small distortion
`2-embedding from this. The proof mainly follows the
lines of [KLMN04].

Theorem 5.1. Given an α(x, y)-decomposition bundle

for the metric d and a set D, there exists a randomized

contracting embedding ϕ : V −→ `2, such that for each

pair (x, y) ∈ D,

||ϕ(x) − ϕ(y)||2 ≥ Ω

(

√

α(x, y)

log k

)

·d(x, y)

Note that for α(x, y) = Ω(1/
√

log k) this theorem
implies Theorem 1.1.

Along the lines of [KLMN04], we define a measure
of “local expansion”. Let

V (x, y) = max



log
|B(x, 2d(x, y))|

|B(x, d(x, y)/8)|
, log

|B(y, 2d(x, y))|

|B(y, d(x, y)/8)|

ff

where B(x, r) denotes the set of terminal nodes within
the ball of radius r around x. We derive Theorem 5.1
from the following lemma.

Lemma 5.1. Given an α(x, y)-decomposition bundle,

there is a randomized contracting embedding ϕ : V −→
`2 such that for every pair (x, y) with constant probabil-

ity

||ϕ(x) − ϕ(y)||2 ≥ Ω

(

√

V (x, y)

log k
· α(x, y)

)

·d(x, y) .

Corollary 5.1. Given an α(x, y)-decomposition bun-

dle, there is a randomized contracting embedding ϕ :
V −→ `2 such that for every pair (x, y),

||ϕ(x) − ϕ(y)||2 ≥ Ω

√

V (x, y)

log k
· α(x, y) · d(x, y) .

Proof. The corollary follows by applying Lemma 5.1
repeatedly and independently for each decomposition
suite several times2. Then concatenating and rescaling
the resulting maps gives with high probability an em-
bedding that fulfills the corollary. ¤

To see that the above corollary implies Theorem
5.1, we use a decomposition due to [FRT03] (and its ex-
tension to general measures, as observed in [LN04] and

2Note that this algorithm may give an embedding with a
large number of dimensions. However, we can use semidefinite

programming to obtain a nearly-optimal embedding of the metric
into `2 in polynomial time.



[KLMN04]) that has the property that with probabil-
ity at least 1/2, a pair (x, y) is Ω(1/V (x, y))-separated
in this decomposition. Applying the corollary to this
decomposition bundle, we get an embedding ϕ1, such
that

||ϕ1(x) − ϕ1(y)||2 ≥ Ω

(

1
√

V (x, y) · log k

)

·d(x, y) .

Applying the corollary to the decomposition bundle
assumed by the theorem gives an embedding ϕ2 with

||ϕ2(x) − ϕ2(y)||2 ≥ Ω

(

√

V (x, y)

log k
· α(x, y)

)

·d(x, y) .

Concatenating the two mappings and rescaling, we
get a contracting embedding ϕ = 1

2 (ϕ1 ⊗ ϕ2), with

||ϕ(x) − ϕ(y)||2

≥ Ω

(

1√
log k

·
( 1

V (x, y)
1

2

+ V (x, y)
1

2 α(x, y)
)

)

·d(x, y)

≥ Ω

(

√

α(x, y)

log k

)

·d(x, y)

as desired.

The embedding. Let T = {1, . . . , log k} and Q =
{0, . . . ,m − 1}, for some suitably chosen constant m.
In the following we define an embedding into |T | · |Q|
dimensions. For t ∈ T , let rt(x) denote the minimum
radius r such that the ball B(x, r) contains at least
2t terminal nodes. We call rt(x) the t-radius of x.
Further, let `t(x) ∈ N denote the distance class this
radius belongs to (i.e., 2`t(x)−1 ≤ rt(x) ≤ 2`t(x)).

Fix a decomposition suite Π = {Ps} from the de-
composition bundle. For every distance scale s, we
pick a partitioning Ps from the distribution Ps. In
the following δ(x, y) denotes the separation-factor be-
tween x and y in this suite, i.e., δ(x, y) = min{d(x, V \
Cs(x)),d(y, V \ Cs(y))} if Cs(y) 6= Cs(x) and 0, other-
wise. Observe that with constant probability we have
δ(x, y) ≥ α(x, y).

The standard way to obtain an embedding from a
decomposition suite is to create a coordinate for every
distance scale and embed points in this coordinate with
respect to the partitioning for this scale. For example,
one could assign a random color, 0 or 1, to each cluster
C ∈ Pi. Let Wi denote the set of nodes contained
in clusters with color 0 in partitioning Pi. By setting
the i-th coordinate of the image ϕ(x) of a point x to
d(x,W i

0), a pair (x, y) gets a distance Ω(δ(x, y)d(x, y))
with probability 1/2, because this is the probability that

the clusters Ci(x) and Ci(y) get different colors (in this
case the distance is Ω(δ(x, y)d(x, y)) since both nodes
are at least that far away from the boundary of their
cluster). Overall this approach gives an embedding into
`2 with distortion O(

√
log k/δ(x, y)), and has e.g. been

used in [Rao99] for getting a
√

log n embedding of planar
metrics into `2.

In order to improve this, along the lines of
[KLMN04], the goal is to construct an embedding in
which the distance between (x, y) increases as the lo-
cal expansion V (x, y) increases. This can be achieved
by constructing a coordinate for every t ∈ T and then
embed points in this coordinate according to the parti-
tioning for the corresponding distance scale `t(x) (i.e.,
different points use different distance scales depending
on their local expansion). Thereby, for a pair with
a high V (x, y)-value the nodes will often (≈ V (x, y)
times) be embedded according to the partitioning for
distance scale i = blog d(x, y)c that corresponds to
d(x, y). Therefore, the pair (x, y) gets a higher distance
in the embedding than in the standard approach.

However, transferring the rest of the standard anal-
ysis to this new idea has some difficulties. If we define
the set Wt as the nodes x that are colored 0 in the par-
titioning `t(x) we cannot argue that for a pair (x, y)
either d(x,Wt) or d(y,Wt) is large, because nodes very
close to x or y may have distance scales different from
`t(x) or `t(y). In order to ensure local consistency such
that all nodes close to x obtain their color from the same
partitioning, we construct several coordinates for every
t, such that for each distance scale `t(x) there is a co-
ordinate in which all nodes close to x derive their color
from the partitioning for scale `t(x). The details are as
follows.

distance groups

l  (x)2

boundaries of

l  (x)
i 2

x

r  (x)
2

π (        )

Figure 5.3: A partition of distance scales into distance
groups.

For a parameter q ∈ Q we partition the distance
classes into distance groups by assigning the `-th class
to group gq(`) := d `−q

m e (see Figure 5.3). Note that
each distance group contains (at most) m consecutive



distance classes which means that distances within a
group differ at most by a constant factor. All distances
in group g are in Θ(2m·g). We define a mapping πq

between distance classes that maps all classes of a group
to the medium distance class in this group.

πq(`) :=







0 if q + m · gq(`) − bm
2 c < 0

p if q + m · gq(`) − bm
2 c > p

i + m · gq(`)− bm
2 c otherwise

Observe that for each distance class i there is a q such
that πq(i) = i.

Based on this mapping we define a set W q
t for each

choice of t ∈ T and q ∈ Q by W q
t = {x ∈ V :

colorπq(`t(x))(x) = 0}, where colori(x) denotes the color
of the cluster that contains x in partitioning Pi. Note
that all nodes whose t-radii fall into the same distance
group (w.r.t. parameter q) derive their color (and hence
whether they belong to W q

t ) from the same partitioning.
Based on the sets W q

t we define an embedding ft,q :
V −→ R for each coordinate (t, q) — ft,q(x) = d(x,W q

t ).
The embedding f : V −→ R

|T ||Q| is defined by
f(x) := ⊗t,q ft,q(x). Each coordinate of this embedding
is contracting. Therefore, we have for all x, y ∈ V

||f(x) − f(y)||2 ≤
√

|T | · |Q| · d(x, y)2

≤ O(
√

log k) · d(x, y)

Now, we show that for a pair x, y that is δ(x, y)-
separated in the partitioning corresponding to its dis-
tance scale, with a constant probability, we get

||f(x) − f(y)||2 ≥ Ω(δ(x, y) · d(x, y)) ·
√

V (x, y)

This gives Lemma 5.1 since δ(x, y) > α(x, y) with
constant probability.

Fix a pair (x, y) that is δ(x, y)-separated in the
partitioning for distance scale blog(d(x, y))c. Without
loss of generality assume that the maximum in the
definition of V (x, y) is attained by the first term, i.e.,
|B(x,2d(x,y))|
|B(x,d(x,y)/8)| ≥ |B(y,2d(x,y))|

|B(y,d(x,y)/8)| . We show that for each

t with |B(x,d(x, y)/8)| ≤ 2t ≤ |B(x, 2d(x, y))| there
is a q ∈ Q such that the coordinate (t, q) gives a large
contribution, i.e., |ft,q(x)−ft,q(y)| ≥ Ω(δ(x, y) ·d(x, y)).

Fix an integer t with log(|B(x,d(x, y)/8)|) ≤ 2t ≤
log(|B(x, 2d(x, y))|), and let i = blog d(x, y)c denote
the distance class of d(x, y). Clearly, the distance class
`t(x) of the t-radius of x is in {i− 4, . . . , i+ 2}, because
d(x, y)/8 ≤ rt(x) ≤ 2d(x, y). The following claim gives
a similar bound on the t-radius for nodes that are close
to x.

Claim 5.1. Let z ∈ B(x, 1
16d(x, y)). Then `t(z) ∈

{i − 5, i + 3}.

Proof. For the t-radius rt(z) around z we have rt(x) −
d(x, y)/16 ≤ rt(z) ≤ rt(x) + d(x, y)/16. Since
d(x, y)/8 ≤ rt(x) ≤ 2d(x, y) we get 1

16d(x, y) ≤ rt(z) ≤
33
16d(x, y), which yields the claim. ¤

In the following we choose m (the number of dis-
tances classes within a group) as 10, and q such that
πq(i) = i, i.e., i is the median of its distance group.
Then the above claim ensures that for all nodes z ∈
B(x, 1

16d(x, y)), the distance class `t(z) is in the same
distance group as i. Furthermore, these nodes choose
their color (that decides whether they belong to W q

t )
according to the partitioning for distance scale i. Recall
that x is δ(x, y)-separated in this partitioning. There-
fore, we can make the following claim.

Claim 5.2. If x does not belong to the set W q
t then

d(x,W q
t ) ≥ min{ 1

16 , δ(x, y)}d(x, y) ≥ 1
16δ(x, y)d(x, y).

Now, we consider the following events concerning the
distances of x and y from W q

t , respectively.

• X0 = {d(x,W q
t ) = 0}, i.e., x ∈ W q

t

• Xfar = {d(x,W q
t ) > 1

16δ(x, y)d(x, y)}
• Yclose = {d(y,W q

t ) ≤ 1
32δ(x, y)d(x, y)}

• Yfar = {d(y,W q
t ) > 1

32δ(x, y)d(x, y)}
These events only depend on the random colorings

chosen for the partitionings in different distance classes.
The events X0 and Xfar are independent of events Yclose

and Yfar. To see this, note that X0 and Xfar only depend
on colors chosen for nodes in B(x, 1

16δ(x, y)d(x, y)).
Claim 5.1 implies that these colors are derived from
the partitioning for distance class i, and all nodes
in B(x, 1

16δ(x, y)d(x, y)) get the color assigned to the
cluster that contains x.

The events Yclose and Yfar, however, depend on
colors chosen for nodes in B(y, δ(x, y) 1

32d(x, y)). Such a
color is either derived from a partitioning for a distance
class different from i (in this case independence is
immediate), or it is equal to the color assigned to the
cluster that contains y in the partitioning for class i. In
the latter case the independence follows, since x and y
lie in different clusters in this partitioning as they are
separated by it.

If X0 ∩ Yfar or Xfar ∩ Yclose happens, then the
dimension (t, q) gives a contribution of Ω(δ(x, y)d(x, y)).
This happens with probability

Pr[X0∩Yfar ] Xfar ∩ Yclose]

= Pr[X0 ∩ Yfar] + Pr[Xfar ∩ Yclose]

= Pr[X0] · Pr[Yfar] + Pr[Xfar] · Pr[Yclose]

= Pr[X0] · Pr[Yfar] + Pr[Xfar] · (1 − Pr[Yfar])

= 1/2 .



Here we used the fact that Pr[X0] = Pr[Xfar] = 1/2
which holds due to Claim 5.2. This completes the proof
of Lemma 5.1.
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[Mat02] Jǐŕı Matoušek. Lectures on discrete geometry, vol-
ume 212 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002.

[Rab03] Yuri Rabinovich. On average distortion of embed-
ding metrics into the line and into `1. In Proceedings
of the thirty-fifth ACM symposium on Theory of com-
puting, pages 456–462. ACM Press, 2003.

[Rao99] Satish B. Rao. Small distortion and volume pre-
serving embeddings for planar and Euclidean metrics.
In 15th Annual ACM Symposium on Computational
Geometry, pages 300–306, 1999.

[Shm97] David B. Shmoys. Cut problems and their appli-
cation to divide-and-conquer. In Dorit S. Hochbaum,
editor, Approximation Algorithms for NP-hard Prob-
lems, pages 192–235. PWS Publishing, 1997.

[SM90] Farhad Shahrokhi and D. W. Matula. The max-
imum concurrent flow problem. J. Assoc. Comput.
Mach., 37(2):318–334, 1990.

[Wel96] Emo Welzl. Suchen und Konstruieren durch Ver-
doppeln. In Ingo Wegener, editor, Highlights der In-
formatik, pages 221–228, Berlin, 1996. Springer.


