Counting Inversions in Lists

Anupam Gupta Francis X. Zane
Lucent Bell Labs
600 Mountain Avenue
Murray Hill NJ 07974
{anupang, franci s}@ esear ch. bel | -1 abs. com

Abstract issues we face here.

In a recent paper, Ajtai et al. [1] give a streaming algorithm [N the rest of the papery = (1 + ¢), wheree is the
to countthe number of inversions in a streang [m]" using aII_owed error. We will make the reasonable assumption in
two passes an@(e ! /n log n(log m+logn)) space. Here, thls_ paper that < 1/2. We have not made an attempt to
we present a simple randomized streaming algorithm for {PitimMize constants.

same problem that uses one pass &> log” nlogm) .

space. Our algorithm is based on estimating quantiles of the The Algorithm

items already seen in the stream, and using that to estinw@pose that for al = 27°,2=1 2=2 .. we knew thet

the number of inversions involving each element. quantiles;(¢) of L;_, exactly. We claim that we can use
this to approximate () to within a factor of2.

1 Preliminaries First, observe tha@;(1) > Q;(1) > Q;(%)... >

Let L be the list of elements appearing as a stream with de(0). Given a list element[j], if L[j] < Q;(0), then
i'th element being denoted yfi]. The quantity we want to it iS smaller than all elements before it andj) = 0; if
approximate isk (L), the number of inversions ifi; this L[] = @;(1), we havea(j) = (j —1). Otherwise, let
is the number of pairs < j such thatL[i] > L[j]. In be such thaw;(2-(1) < L[j] < Q;(27*). Now we
order to simplify our notation, we restate this in an equénal Know that at leastj — 1) 2~ (k1) elements in the list before
form, that of countingnon-inversions in the list when the L[j] are smaller than it, and less thgh— 1) 27 are; this
total order, and thus the results of all strict comparisbas, allows us to pinu(j) down to within a factor og. Now, if we
been reversed. Thus, all comparisons between list eleméfBace2 " bya™* in the above analysis, whetie= (1+e),
in what follows use this reversed total order. Formall{}én We can approximatgj) to within a. _
let a(j) = |{i < j| L[i] < L[j]}|, the number of Of course, we have_not s_pecmed how to f_|nd the quan-
non-inversions involving elemert[j]. Clearly K (L), the tiles using small space in a single pass; and indeed, Munrp
number of inversions in the original ordering, is equal fnd Paterson showed that is not possible to do so [S]. Their
> a5 results show that computing the median exactly in one pass
The length of the lisL is n; it suffices for our Iourposestakes I!near space. However, our saving grace is that if we
thatn be an upper bound for the list length. The elemerfiguld finde-approximate quantiles, we would be done.
in L are drawn from an alphab&t = {1,2,... ,m} of m To see this, le€); () be ane/4-approximater-quantile.
elements. The subsequenc..i] is denoted by.;. If L[j] lies betweer); (a~**1) andQ;(a~*), we know
The ¢ quantile of a set of elements, fory € [0,1], thata(j) is less than(j — 1)a” *(1 + ¢/4), and at least
is the element at thégs] position in the sorted order of(j — 1)a*(1 — ¢/4)/(1 + €), giving us an approximation
the set. Hence = 1 denotes the maximum element, andf (1 + O(e)). (Hence we should have choser= ¢/(some
0 < ¢ < 1/s denotes the minimum element; we abugnstant).)
notation and define the-quantile to the minimum as well. However, note that all these approximate quantiles were
For¢ < i, ane-approximatep quantile ofs elements needed for calculating a single(j); to guess the value
is an element that lies in a position betwem(1 — ¢)] of K(L), we need good approximations f@;(z) for all
and[s¢(1 + €)]. The reader familiar with the literature willl < j < n. In the next section, we show the following
notice that this is a stronger guarantee than usual. Mtgorem:
previous papers defined this to be an error margis-ef
instead oftegs [3, 4, 2]; however, [4, Sec. 7] looks at som@HEOREM 2.1. There exists a one pass randomized stream-
ing data structure which for each 1 < j < nand 0 <

k < log, n gives an e-approximation to @, (a*) with prob-
ability 1 — 1/n?. The total storage required is space for
O(log® n/€®) numbersfrom .

L;.

Clearly, every time a new elemeh{j] is read from the
stream, this data structure may be ug¥tbg n/¢) times to
estimatea(j). Using a trivial union bound shows that with
high probability, all the answers received will be correct’:
and hence afil + €)-approximation for the number of non-
inversions of a stream can be obtained. Since each of the
elements ok uselog m space, and counting inversions and
non-inversions are equivalent (by reversing the total 9rd
this gives us the following theorem:

N, =
Let X; be the indicator variable for th&th smallest
element ofL; being picked, and lef; =

among theN; = (5 — 1)a=*(1 — ¢) smallest elements of

Similarly, & is the event that we are too high; i.e.,

fewer thanT" elements are chosen from among the smallest

(j — D)a"*(1 +¢€) elements of;.

M X;. Then

= ES; = Ni(T/BF) < B(1 —)T < (1 — 4¢/5)T.
Now setting\ = 4¢/5T, we can bound

Pri&] < PriS; —py > A] < e /30 < 1/n?2,

eSimilarly, to boundPr [€,], we can seb, = ZNzl X;. Then

1=

py = ESy = No(T/B¥) > (1 + €)T, and setting\ = T,

THEOREM2.2. Thereisa randomized streaming algorithm we can bound

to calculate the number of inversions in a stream that uses
O(log” nlogm/€®) space.

3 Finding Quantiles

In this section, we shall build a suite 6f(¢ ! logn) sam-
plers, which we shall use to answer all queliggx), where
z is some power ofl + ¢) . Each of these samplers will [1]
storeO(e~? log n) elements of the alphab&, bringing the
total space requirements (e~ log” nlog m). The main
techniques used here are fairly routine, and are given here
largely for both concreteness and completeness. For the rég
of the section, letx = (1 +¢), and3 = (1 + ¢/10). Let

T = [8¢2Inn].

Thei-th sampler.4;, does the following: each element
from the stream is picked with probability, = T7/3'. [3]
However, not all picked elements are retained4y it just
maintains thesmallest T elements it picked in a lisH;.
When queried, it returns threaximum of the elements ;.

Note that the valueg; make sense only fq8? > T, or
fori > logg T'; hence we keep samplerk for log; T <
i < (loggn +1). We also keep a “samplerl, which picks
all the elements and maintains the sorted list of all The
smallest items seen in the stream till now. We should point

(4]

Pr&] < Prips — Sy > A] < e /22 < 1/n?,

References

Miklos Ajtai, T.S. Jayram, S. Ravi Kumar, and D. Sivakam
Counting inversions in a data stream. Mnoceedings of

the 34th Annual ACM Symposium on Theory of Computing,
pages 370-379, 2002.

Michael Greenwald and Sanjeev Khanna. Space-efficient
online computation of quantile summaries. Pnoceedings
ACM SIGMOD International Conference on Management of
Data, pages 58-66, 2001.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G.
Lindsay. Approximate medians and other quantiles in one
pass and with limited memory. IRroceedings ACM S G-
MOD International Conference on Management of Data,
pages 426-435, 1998.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G.
Lindsay. Random sampling techniques for space efficient on-
line computation of order statistics of large datasetsPrim
ceedings ACM SIGMOD International Conference on Man-
agement of Data, pages 251-262, 1999.

out that on the arrival of thg-th element, all these updates [5] J. I. Munro and M. S. Paterson. Selection and sorting with

are made after all the queries to estimaf¢) have already
been made.

Upon getting a query asking fap;(a*), we define
q=(j—1)a"* andseeiff < T. If so, we can just read off
the element at thég]-th position inAy’s list. If not, we find
the value ofk’ such that3*" < ¢ < g*+1. We then query
the sampler4;,, and return the result as theapproximate
quantile@; (a~*).

We now prove that, for any fixed querty;(a—*), the
chance of error i©)(1/n?), and hence taking a union bound
over the entire process, we would not make an error with
constant probability. Let us see how errors can be made:
clearly, if we are reading a value frory), there is no error.

If not, then we can err in two ways. L& be the event
that the top element returned bl is too low; i.e., it falls

limited storage Theoret. Comput. ci., 12(3):315-323, 1980.

