
Counting Inversions in Lists

Anupam Gupta Francis X. Zane
Lucent Bell Labs

600 Mountain Avenue
Murray Hill NJ 07974fanupamg,francisg@research.bell-labs.com

Abstract

In a recent paper, Ajtai et al. [1] give a streaming algorithm
to count the number of inversions in a streamL 2 [m]n using
two passes andO(��1pn logn(logm+logn)) space. Here,
we present a simple randomized streaming algorithm for the
same problem that uses one pass andO(��3 log2 n logm)
space. Our algorithm is based on estimating quantiles of the
items already seen in the stream, and using that to estimate
the number of inversions involving each element.

1 Preliminaries

Let L be the list of elements appearing as a stream with thei’th element being denoted byL[i]. The quantity we want to
approximate isK(L), the number of inversions inL; this
is the number of pairsi < j such thatL[i] > L[j]. In
order to simplify our notation, we restate this in an equivalent
form, that of countingnon-inversions in the list when the
total order, and thus the results of all strict comparisons,has
been reversed. Thus, all comparisons between list elements
in what follows use this reversed total order. Formally,
let a(j) = jfi < jj L[i] < L[j] gj, the number of
non-inversions involving elementL[j]. ClearlyK(L), the
number of inversions in the original ordering, is equal toPj aj .

The length of the listL is n; it suffices for our purposes
thatn be an upper bound for the list length. The elements
in L are drawn from an alphabet� = f1; 2; : : : ;mg of m
elements. The subsequenceL[1::i] is denoted byLi.

The � quantile of a set ofs elements, for� 2 [0; 1],
is the element at thed�se position in the sorted order of
the set. Hence� = 1 denotes the maximum element, and0 < � � 1=s denotes the minimum element; we abuse
notation and define the0-quantile to the minimum as well.

For � � 12 , an�-approximate� quantile ofs elements
is an element that lies in a position betweends�(1 � �)e
andds�(1 + �)e. The reader familiar with the literature will
notice that this is a stronger guarantee than usual. Most
previous papers defined this to be an error margin of��s
instead of���s [3, 4, 2]; however, [4, Sec. 7] looks at some

issues we face here.
In the rest of the paper,� = (1 + �), where� is the

allowed error. We will make the reasonable assumption in
this paper that� � 1=2. We have not made an attempt to
optimize constants.

2 The Algorithm

Suppose that for allt = 2�0; 2�1; 2�2; : : : , we knew thet
quantilesQj(t) of Lj�1 exactly. We claim that we can use
this to approximatea(j) to within a factor of2.

First, observe thatQj(1) � Qj(12) � Qj(14) : : : �Qj(0). Given a list elementL[j], if L[j] < Qj(0), then
it is smaller than all elements before it anda(j) = 0; ifL[j] � Qj(1), we havea(j) = (j � 1). Otherwise, letk
be such thatQj(2�(k+1)) < L[j] � Qj(2�k). Now we
know that at least(j � 1) 2�(k+1) elements in the list beforeL[j] are smaller than it, and less than(j � 1) 2�k are; this
allows us to pina(j) down to within a factor of2. Now, if we
replace2�k by��k in the above analysis, where� = (1+�),
then we can approximatea(j) to within�.

Of course, we have not specified how to find the quan-
tiles using small space in a single pass; and indeed, Munro
and Paterson showed that is not possible to do so [5]. Their
results show that computing the median exactly in one pass
takes linear space. However, our saving grace is that if we
could find�-approximate quantiles, we would be done.

To see this, letbQj(x) be an�=4-approximatex-quantile.
If L[j] lies betweenbQj(��(k+1)) and bQj(��k), we know
that a(j) is less than(j � 1)��k(1 + �=4), and at least(j � 1)��k(1 � �=4)=(1 + �), giving us an approximation
of (1 + O(�)). (Hence we should have chosen� = �=(some
constant).)

However, note that all these approximate quantiles were
needed for calculating a singlea(j); to guess the value
of K(L), we need good approximations forQj(x) for all1 � j � n. In the next section, we show the following
theorem:

THEOREM 2.1. There exists a one pass randomized stream-
ing data structure which for each 1 � j � n and 0 �

k � log� n gives an �-approximation to Qj(�k) with prob-
ability 1 � 1=n2. The total storage required is space forO(log2 n=�3) numbers from �.

Clearly, every time a new elementL[j] is read from the
stream, this data structure may be usedO(log n=�) times to
estimatea(j). Using a trivial union bound shows that with
high probability, all the answers received will be correct,
and hence an(1 + �)-approximation for the number of non-
inversions of a stream can be obtained. Since each of the
elements of� uselogm space, and counting inversions and
non-inversions are equivalent (by reversing the total order),
this gives us the following theorem:

THEOREM 2.2. There is a randomized streaming algorithm
to calculate the number of inversions in a stream that usesO(log2 n logm=�3) space.

3 Finding Quantiles

In this section, we shall build a suite ofO(��1 logn) sam-
plers, which we shall use to answer all queriesQj(x), wherex is some power of(1 + �)�1. Each of these samplers will
storeO(��2 logn) elements of the alphabet�, bringing the
total space requirements toO(��3 log2 n logm). The main
techniques used here are fairly routine, and are given here
largely for both concreteness and completeness. For the rest
of the section, let� = (1 + �), and� = (1 + �=10). LetT = d8��2 lnne.

The i-th sampler,Ai, does the following: each element
from the stream is picked with probabilitypi = T=�i.
However, not all picked elements are retained byAi; it just
maintains thesmallest T elements it picked in a listHi.
When queried, it returns themaximum of the elements inHi.

Note that the valuespi make sense only for�i � T , or
for i � log� T ; hence we keep samplersAi for log� T �i � (log� n+ 1). We also keep a “sampler”A0 which picks
all the elements and maintains the sorted list of all theT
smallest items seen in the stream till now. We should point
out that on the arrival of thej-th element, all these updates
are made after all the queries to estimatea(j) have already
been made.

Upon getting a query asking forQj(��k), we defineq = (j� 1)��k, and see ifq � T . If so, we can just read off
the element at thedqe-th position inA0’s list. If not, we find
the value ofk0 such that�k0 � q � �k0+1. We then query
the samplerAk0 , and return the result as the�-approximate
quantilebQj(��k).

We now prove that, for any fixed queryQj(��k), the
chance of error isO(1=n2), and hence taking a union bound
over the entire process, we would not make an error with
constant probability. Let us see how errors can be made:
clearly, if we are reading a value fromA0, there is no error.
If not, then we can err in two ways. LetE1 be the event
that the top element returned byAk0 is too low; i.e., it falls

among theN1 = (j � 1)��k(1 � �) smallest elements ofLj . Similarly, E2 is the event that we are too high; i.e.,
fewer thanT elements are chosen from among the smallestN2 = (j � 1)��k(1 + �) elements ofLj .

Let Xi be the indicator variable for thei-th smallest
element ofLj being picked, and letS1 = PN1i=1Xi. Then�1 = ES1 = N1(T=�k0) � �(1 � �)T � (1 � 4�=5)T .
Now setting� = 4�=5T , we can bound

Pr[E1] � Pr[S1 � �1 > �] � e��2=3�1 � 1=n2:
Similarly, to boundPr[E2], we can setS2 =PN2i=1Xi. Then�2 = ES2 = N2(T=�k0) � (1 + �)T , and setting� = �T ,
we can bound

Pr[E2] � Pr[�2 � S2 > �] � e��2=2�2 � 1=n2:
References

[1] Miklós Ajtai, T.S. Jayram, S. Ravi Kumar, and D. Sivakumar.
Counting inversions in a data stream. InProceedings of
the 34th Annual ACM Symposium on Theory of Computing,
pages 370–379, 2002.

[2] Michael Greenwald and Sanjeev Khanna. Space-efficient
online computation of quantile summaries. InProceedings
ACM SIGMOD International Conference on Management of
Data, pages 58–66, 2001.

[3] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G.
Lindsay. Approximate medians and other quantiles in one
pass and with limited memory. InProceedings ACM SIG-
MOD International Conference on Management of Data,
pages 426–435, 1998.

[4] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G.
Lindsay. Random sampling techniques for space efficient on-
line computation of order statistics of large datasets. InPro-
ceedings ACM SIGMOD International Conference on Man-
agement of Data, pages 251–262, 1999.

[5] J. I. Munro and M. S. Paterson. Selection and sorting with
limited storage.Theoret. Comput. Sci., 12(3):315–323, 1980.

