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1 Introduction1.1 BackgroundMany optimization problems on graphs and related combinatorial objects involve some �nite metric asso-ciated with the object. In particular, the shortest-path metric on the vertices of an undirected graph withnonnegative weights on the edges frequently plays an important role. While for general metric spaces suchan optimization problem can be intractable, it is often possible to identify a subset of \nice" metrics forwhich the problem is easy. Thus, a natural approach to such problems | and one which has proved highlysuccessful in many cases | is to embed the original metric into a nice metric, solve the problem for thenice metric, and �nally translate the solution back to the original metric.When the optimization problem is monotone and scalable in the associated metric (as is usually the case),it is natural to restrict one's attention to nice metrics which dominate the original metric, i.e., in whichno distances are decreased. The maximum factor by which distances are stretched in the approximatingmetric is called the distortion of the embedding. Typically, the distortion translates more or less directlyinto the approximation factor that one has to pay in transforming the problem from one metric to the other,so obviously we seek an embedding with low distortion. The number of applications of this paradigm hasexploded in the past few years, and it has become a versatile and standard part of the algorithm designer'stoolkit: see the recent survey by Indyk [19] and the forthcoming book by Matou�sek [22, Chapter 10]. Theseapplications have also given impetus to the study of the underlying theory of �nite metric spaces.In this paper we will be concerned with embedding �nite metric spaces into `1, i.e., real space endowedwith the `1 (or Manhattan) metric. Low distortion embeddings into `1 have been recognized, along withembeddings into Euclidean space `2 and into low-dimensional `1, to be of fundamental importance inapplications of the above paradigm, as well as for the underlying theory. One of several compelling reasonsfor studying `1-embeddings comes from their intimate connection with the maxow-mincut ratio in amulticommodity ow network. Namely, if every shortest-path metric on a given graph with arbitrary edgelengths can be embedded into `1 with distortion at most �, then the ratio between the sparsest cut and themaximum concurrent ow for any set of capacities and demands on the graph is bounded by � [21, 2, 17]1.For more details on the sparsest cut problem, its relation to embeddings, and its application to the designof a host of divide-and-conquer algorithms, see the survey by Shmoys [29].Equally important in algorithmic applications are certain special `1 embeddings known as embeddings intorandom (dominating) trees, whereby the given metric is approximated by a probability distribution over treemetrics. Since every tree metric can be embedded isometrically (i.e., exactly, or with distortion 1) into `1,approximating a metric by random trees with expected distortion � immediately yields an embeddinginto `1 with distortion �. As has been recognized in the work of Bartal and others [1, 5, 6], randomtree embeddings have many additional applications to online and approximation algorithms that are notenjoyed by arbitrary `1 embeddings.For general metrics the question of embeddability into `1 is essentially resolved: Bourgain [9] showed thatany n-point metric can be embedded into `1 with O(log n) distortion, and a matching lower bound wasestablished for the shortest-path metrics of unit-weighted expander graphs in [21]. For embeddings intorandom trees, a construction of Bartal [6] yields a distortion of O(log n log log n) for an arbitrary n-pointmetric.However, tight bounds are still not known for many important classes of graphs, including planar graphs1Indeed, the distortion of an optimal `1 embedding is exactly the worst cut-ow ratio for any choice of capacities anddemands. 1



and graphs with bounded treewidth; many such restricted classes are conjectured to be embeddable withconstant distortion. Indeed, the general question of how the topology of a graph a�ects its embeddabilityinto `1, and into random trees, is one of the most important open issues in the area of metric embeddings.(See, e.g., the tutorial by Indyk in the last FOCS [19].) In addition to its inherent mathematical interest,this question impacts the design of approximation algorithms for many problems on restricted families ofgraphs and networks.Some limited but interesting progress has been made on embedding restricted metrics into `1. Recently,Rao [26] showed that the shortest-path metric of any graph that excludes a Kr;r is embeddable into `1with distortion O(r3plog n). This beats the 
(logn) lower bound for general graphs for any constant r,and also gives O(plog n) distortion embeddings for the classes of planar and bounded-treewidth graphs.However, Rao's approach (of �rst embedding these graphs into `2 and then using isometric embeddingsof `2 into `1) was shown to be tight in [23], where a lower bound of 
(plog n) distortion was shown forembedding even treewidth-2 (and hence also planar) graphs into `2.Approaching the question from the other direction, a celebrated theorem of Okamura and Seymour [25]implies that any outerplanar metric can be embedded isometrically into `1.2 However, it has been shownthat outerplanar graphs are essentially the only graphs (with the exception of K4) that are isometricallyembeddable into `1 [24]. More recently, Gupta et al. [17] showed a constant distortion embedding into `1for treewidth-2 graphs (which are essentially series-parallel graphs, and hence also planar). This was the�rst natural class of graphs shown to be embeddable with constant distortion strictly larger than 1. (Forexample, the graph K2;3 has treewidth 2 but is not isometrically embeddable; see [12, Example 6.3.2] fora simple proof of this fact.)Some, but not all of the above results carry over to the more restrictive setting of embedding into randomtrees. In [17] it is shown how to embed outerplanar graphs into random trees with small constant distortion(note that the isometric embedding of Okamura and Seymour is not a tree embedding); on the other hand,in the same paper it is shown that even series-parallel graphs incur a distortion 
(log n) for tree embeddings.Despite this limitation, it is worth pointing out that the random tree embeddings of outerplanar graphsplayed a key role in the development of constant distortion `1 embeddings of series-parallel graphs in [17]:the trick was to combine the special structure of the tree embeddings with judicious use of random cuts.1.2 ResultsIn this paper, we extend the above line of research to a much wider class of planar graphs, namely k-outerplanar graphs for arbitrary constant k. Informally, a planar graph is k-outerplanar if it has anembedding with disjoint cycles properly nested at most k deep. A formal de�nition is given in Section 2,while Figure 4.2 shows a simple example; a canonical example of a k-outerplanar family is the sequence ofk�n rectangular grids. k-outerplanar graphs play a central role in polynomial time approximation schemesfor many NP-hard optimization problems on general planar graphs (see, e.g., [4]). Our main result is thefollowing:Theorem 1.1 Any shortest-path metric of a k-outerplanar graph can be embedded into a probability dis-tribution over trees, and hence into `1, with O(ck) distortion for some absolute constant c. Moreover, suchan embedding can be found in randomized polynomial time.2Their result deals more generally with the cut/ow ratio in planar networks where all terminals lie on a single face; thisand other results where restrictions are placed on both the ow network and the demand structure can be found in surveys byFrank [14] and Schrijver [28]. 2



Thus, not only do such graphs embed well into `1, but they even embed well into dominating trees. Thisis in contrast to the lower bound of 
(log n) for treewidth-2 graphs [17].Our result immediately implies a constant maxow-mincut ratio for arbitrary multicommodity ow prob-lems on k-outerplanar graphs. This is the �rst progress in this direction in the two decades since theOkamura-Seymour result [25], which proves a ratio of 1 for 1-outerplanar graphs. Additionally, becauseour `1-embeddings are in fact random tree embeddings, we also obtain as an immediate byproduct im-proved approximation ratios for a number of algorithms for problems on k-outerplanar graphs, includingthe buy-at-bulk problem [3] and the group Steiner problem [15]. For any �xed k, the improvement in eachcase is by a 
(logn) factor.We should also note that our result is the �rst demonstration of constant distortion `1 embeddings for anatural family of graphs with arbitrarily large (but bounded) treewidth3. Indeed, k-outerplanar graphsare a natural parameterized family of planar graphs having bounded treewidth. (Note that although alltreewidth-2 graphs are planar, treewidth-3 graphs include non-planar examples such as K3;3.)Finally, recall that constant distortion random tree embeddings of 1-outerplanar graphs were a key ingredi-ent in the construction of good `1 embeddings of series-parallel graphs in [17]. We are therefore optimisticthat, with the addition of suitably chosen cuts, our new tree embeddings of k-outerplanar graphs maybecome a building block for constant distortion `1 embeddings of wider classes of graphs, such as boundedtreewidth graphs or planar graphs.1.3 TechniquesWe start with the approach of trying to extend the random tree embeddings of outerplanar graphs [17]to 2-outerplanar graphs. We do not know a way to solve this problem directly. The �rst main idea inthe paper is to identify a subclass of 2-outerplanar graphs that are easier to embed, namely Halin graphs.Informally, a \Halin graph" is obtained by embedding a tree in the plane and attaching a cycle around theleaves. (The formal de�nition can be found in Section 2). Halin graphs are useful for the following reason.Given a 2-outerplanar graph, we can use the random embedding of [17] to embed the inner outerplanargraphs obtained by removing the outer face(s) into a random tree (in fact a forest). If we now add theouter face to this random tree we get a graph which is (very similar to) a Halin graph. Hence, if we canembed Halin graphs we can embed 2-outerplanar graphs. We are then able to extend this approach toembed any k-outerplanar graph by peeling o� the outer layer and recursively embedding the inner layers.The second main idea is a technique for embedding Halin graphs. We note that even this deceptively simplesubclass of 2-outerplanar graphs had so far resisted attempts at constant distortion embeddings. This isderived by a subtle modi�cation of the algorithm of Gupta [16] which showed how to remove Steinervertices4 from a tree metric with only a constant factor distortion in distances between the remainingvertices. Though seemingly unrelated to our problem (since we have no Steiner vertices), this algorithmcan nonetheless be applied (with suitable modi�cations) to the tree in the Halin graph, with the e�ect ofreducing the Halin graph to an outerplanar graph on its leaves. This we can once again embed into randomtrees using [17].The rest of the paper is organized as follows. We �rst �x notation and give essential de�nitions in Section 2.In Section 3 we show how to embed Halin graphs into random trees with constant distortion. This is3The maximum treewidth among k-outerplanar graphs is �(k).4Given an induced metric de�ned on a subset of vertices of a graph, we call the vertices not belonging to this subset theSteiner vertices. Although we are interested only in the metric space induced on the non-Steiner vertices, the Steiner verticesmight be necessary in order to de�ne the distances between the non-Steiner vertices.3



extended to obtain constant distortion embeddings for all k-outerplanar graphs in Section 4. In theinterests of clarity of exposition, we make no attempt to optimize the constants that arise in the varioussteps of our procedure.2 Notation and PreliminariesMetrics: For general background on �nite metrics and embeddings, see the book of Deza and Laurent [12].Given two metric spaces, (V; �) and (W;�), and a map f : V !W , de�ne the following quantities.kfk = maxx;y2V �(f(x); f(y))�(x; y)kf�1k = maxx;y2V �(x; y)�(f(x); f(y))We say that f has contraction kf�1k, expansion kfk and distortion D(f) = kfk � kf�1k. The distortionbetween � and � is at most r if there exists f : V !W with D(f) � r. We often consider two metrics �and � over the same vertex set V ; in such cases, we assume that f is the identity map. Metric � is said todominate � if for all x; y 2 V , �(x; y) � �(x; y).Let G = (V;E) be an undirected graph. A metric (V; �) is supported on (or generated by) G if it is theshortest-path metric of G w.r.t. some nonnegative weighting of the edges E. Given a graph G with edgeweights w(�), dG denotes the shortest path metric of G, and we assume that the edge weights satisfyw(e) = dG(x; y) for e = fx; yg 2 E unless otherwise stated.For S � V , the cut metric ÆS(x; y) is de�ned to be 1 if jS \fx; ygj = 1, and 0 otherwise. It is known that ametric is embeddable into `1 i� it can be written as a non-negative linear combination of cut metrics [12].A metric dG supported on a graph G is �-probabilistically approximated by a distribution D over treesif (1) each tree T in the distribution D has V (G) � V (T ); (2) for all x; y 2 V (G) and T in thedistribution, dT dominates dG, i.e., dG(x; y) � dT (x; y); and (3) for all x; y 2 V (G), the expected distanceED[dT (x; y)] � � �dG(x; y). We shall also refer to this as an embedding of G with distortion � into randomtrees. (The fact that the distortion is only in expectation will often not be mentioned.) It is known thatgeneral graphs can be embedded into random trees with distortion O(logn log logn) [20, 1, 5, 6, 10, 11].Graph-Theoretic Terms: Most graph-theory concepts which we use, such as treewidth, minors, andplanarity, are covered in standard text-books (see, e.g., [13, 31]).An embedding of a graph G is outerplanar (or 1-outerplanar) if it is planar, and all vertices lie on theunbounded face. An embedding of a graph G is k-outerplanar if it is planar, and deleting all the verticeson the unbounded face leaves a (k � 1)-outerplanar embedding of the remaining graph. A graph is k-outerplanar if it has a k-outerplanar embedding. It is known that a k-outerplanar graph has treewidth� 3k � 1 [8, 27]; other properties of these graphs and related concepts can be found in [4, 8]. Given aplanar graph, a k-outerplanar embedding for which k is minimal can be found in polynomial time [7].A Halin graph [18] is obtained by taking a planar embedding of a tree T = (V;E) and attaching a cycleC = (U;Ec) around the leaves of the tree (in order). L denotes the set of leaves of T , and hence V \U = L.(Note that there may be vertices on the cycle that are not leaves of T .) A Halin graph G = (V [U;E]Ec)is 2-outerplanar and has treewidth 3. Many algorithmic problems can be solved eÆciently on these graphs(see, e.g., [30] and the references therein). 4



3 Embedding a Halin GraphGiven a Halin graph, we will embed it into random trees thus: we �rst take the tree T = (V;E) fromthe Halin graph and process it to give a random dominating tree T (1), which approximates distances inT to within a constant (in expectation). Furthermore, T (1) has a speci�c structure: it consists of a treeT 00 = (L;E00) on just the leaves L of the original tree T , and the rest of the vertices in V n L are attachedto vertices in T 00. Also, the tree T 00 is a minor of T , and so attaching the cycle C back to the vertices in T 00gives us an outerplanar graph. This outerplanar graph is then embedded into a random tree using knowntechniques [17] to give the following theorem, which is the main result of this section:Theorem 3.1 Any metric generated by a Halin graph can be embedded into a distribution over dominatingtrees with constant distortion.3.1 Processing the treeLet us assume that the tree T has a root vertex r 2 (V nL), which imposes an ancestor-descendant relationbetween the vertices in V . Each vertex v naturally de�nes a tree T (v), namely the subtree induced by thevertices that are descendents of v. For a vertex v, let l(v) be the leaf in T (v) closest to v, and h(v) be thedistance of v from l(v) in T . Note that these functions are �xed given the input tree T . The processingalgorithm works in two parts.� The �rst step of the algorithm, given in Section 3.1.1, returns a tree T (1=2). This tree consists of atree T 0 de�ned on the vertices of L and some extra (or Steiner) vertices, and the vertices of V n Lhang o� the vertices of T 0 in the form of (possibly several) subtrees. This is done incurring a constantexpected distortion.� Note that the previous step was almost what we wanted | we just have to get rid of the Steinervertices. The second part, given in Section 3.1.2, eliminates the Steiner vertices of T 0 by contractingsome of its edges, thus converting T (1=2) into T (1). This process is shown to incur a further distortionof a constant factor.3.1.1 Processing I: Getting the tree T (1=2)In this section, we will show how to convert the tree T into the tree T (1=2) while incurring only a constantdistortion. The algorithm Process-Tree to perform this processing cuts o� a subtree T̂0 of T whichcontains the root but not the leaves, recursively acts on the subtrees thus created, makes a new root vertexand adds edges from it to the roots of each of the processed subtrees, and �nally hangs T̂0 o� this newroot. (See Figure 3.1.)Before we make Process-Tree concrete, we de�ne the auxiliary procedure Cut-Midway which cuts arandom set of edges to separate the root r from all the leaves of T . It returns a special tree T̂0 containingthe root r of T and none of its leaves, and a set of subtrees Ti (for 1 � i � t), each rooted at some vertexri. We say that an edge e is at a distance d from a vertex r if e is in the cut de�ned by the set of verticeswhose distance from r is at most d.Algorithm Cut-Midway(T )while there is a path from r to a leaf in Tlet d distance to closest leaf 5



let S(d) set of leaves at distance 2 [d; 2d) from r in Tlet T (d) be the union of paths from r to vertices in S(d)choose D 2R [d=2; 3d=4) uniformlyE(d) edges in T (d) at distance D from rdelete edges in E(d) from Tend whileT̂0  component of T containing root r but no leaves of TT1; T2; : : : ; Tt  other components of Tlet di  value of d when edge connecting r to Ti was cut.return (T̂0; hT1; d1i; hT2; d2i; : : : ; hTt; dti).Now we can formally state Process-Tree:Algorithm Process-Tree (T )apply Cut-Midway(T ) to get(T̂0; hT1; d1i; hT2; d2i; : : : ; hTt; dti)let r0 be a new vertex, called the \Steiner twin" of rattach r0 to r with edge of length d0 = h(r)for 1 � i � t // We don't have to work on T̂0if Ti is just a single vertex x (hence x 2 L) thenT (1=2)i  TielseT (1=2)i  Process-Tree (Ti)let r0i be root of T (1=2)i// r0i is the Steiner twin of ri, the root of Tiadd edge (r0; r0i) with length 3diend forreturn tree T (1=2) with r0 as its rootRecall that we had mentioned that T (1=2) would have a portion called T 0; this is formed by the new edgesadded between r0 and r0i (for 1 � i � t) during the various recursive calls to Process-Tree. (Note that thisdoes not include the edges added between r0 and r, i.e., between the original roots and their Steiner twins.)Hence T 0 includes all the leaves of T , plus all the Steiner twins created. For an example, see Figure 3.1,where Cut-Midway performed three cuts, and Process-Tree resulted in the tree on the right. The solidedges belong to T , the dashed ones to T 0, and the edge (r; r0) is shown as a faint line.Let us call an edge a candidate to be cut at some step if it has a non-zero probability of being cut at thatstep. We can now show the following bound on the expected distortion incurred by the above procedure:Theorem 3.2 The (expected) distortion introduced by procedure Process-Tree is at most 25.Proof: Before we prove this, let us give a high-level sketch. It can be veri�ed to see that distancesare never contracted by Process-Tree, and hence it suÆces to bound the expected expansion. We showthis via two lemmas: �rstly, Lemma 3.3 shows that an edge is a candidate to be cut on at most two(consecutive) occasions. Lemma 3.4 then shows that when an edge is a candidate to be cut, it su�ers onlya constant expected expansion. Combining these two results then gives us the result.6
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Figure 3.1: One call of the procedure Process-Tree.Lemma 3.3 No edge is a candidate for cutting more than twice during the entire run of the algorithmProcess-Tree.Proof: Let e = (u; v) be an edge, where u is the ancestor of v. Consider the �rst instant when an edge eis a candidate to be cut in a call to Cut-Midway. Let r be the root at this point, and d� be the value ofthe parameter d in the while loop of this call to Cut-Midway. In this call of Cut-Midway, it is clearthat e cannot be considered again. Indeed, after the cut, e will not lie on any path from r to a leaf. Afact that will be useful later is that the portion of e that lies in the distance interval [d�=2; 3d�=4) from ris (min(dT (r; v); 3d�=4) �max(dT (r; u); d�=2)), and that value multiplied by 4=d� is the probability that eis cut at this time.The edge e will never be considered again if the cut fell \below" v, or if it passed through e, so let usassume that the cut was above u and e lies in one of the trees Ti with root ri. Clearly, it lies in some pathfrom ri to a leaf, and hence it will be part of the tree T (d��) at some point in the call to Cut-Midwayfrom ri.We claim that the cut made at this point will lie below u; i.e., d��=2 � dT (ri; u). Indeed, such a cut madefrom ri at a distance at least d��=2 � h(ri)=2 from it, where h(ri) � d�� dT (r; ri). Hence taking distancesfrom r, this cut is at distance at least dT (r; ri) + h(ri)=2 � 12(dT (r; ri) + d�) � 3d�=4. But this distanceis greater than dT (r; u), and hence u always lies above this next cut. Thus, when this next cut is made,either e will be deleted (if v fell below this cut), or the cut will fall below v and the edge e will never againbe a candidate to be cut, proving the lemma.Before we end, let us note that the portion of e that lies in distance interval [d��=2; 3d��=4) is disjoint fromthe portion considered earlier, and has a length of at most max(dT (r; v)�3d�=4; 0). As before, multiplyingthis by 4=d�� gives the probability that e is cut if it is considered a second time.Let `e denote the length of edge e in G.Lemma 3.4 If an edge e = (u; v) is cut by Cut-Midway with parameter di, the expected distance betweenu and v in T (1=2) is at most 6di � `e. 7



Proof: Consider an edge e = (u; v) of length `e which is cut in some iteration of Cut-Midway, and letdi be the value of the parameter d at this point. Consider the distance dT 1=2(u; v) between u and v in theresulting tree T (1=2).The vertex u will be in T̂0 and the vertex v is the root of Ti for some i and hence will be in T (1=2)i whenTi, rooted at ri = v, is processed. From the description of Process-Tree we see that dT (1=2)(u; v) =dT (1=2)(u; ri) can be expressed as dT (u; r) + dT (1=2)(r; r0) + dT (1=2)(r0; r0i) + dT (1=2)(r0i; ri). From our construc-tion, dT (1=2)(r; r0) = h(r) and dT (1=2)(r0; r0i) = 3di and dT (1=2)(r0i; ri) = h(ri). We observe that h(r) � di forall i, and that h(ri) � 2di � dT (r; ri). The latter is true because for e to be cut, ri is on the path from rto a leaf in T of length at most 2di. Putting these observations together we obtain thatdT (1=2)(u; ri) = dT (u; r) + dT (1=2)(r; r0) + dT (1=2)(r0; r0i) + dT (1=2)(r0i; ri)� dT (u; r) + h(r) + 3di + (2di � dT (r; ri))� dT (u; r) + di + 3di + (2di � dT (r; ri))� dT (u; r)� dT (r; ri) + 6di= 6di � `e:Now we complete the proof of Theorem 3.2: by Lemma 3.3, the edge e = (u; v) is cut at most twice. The �rsttime it is considered, it is cut with probability p1 = (min(dT (r; v); 3d�=4)�max(dT (r; u); d�=2))�4=d�, andthe expected length is at most 6d��`e. The second time the chance is p2 = (max(dT (r; v)�3d�=4; 0))�4=d�� ,and the expected length is 6d�� � `e. Finally, with probability (1 � p1 � p2), the length remains `e. Thusthe expected distance between u and v is at most6d� p1 + 6d�� p2 + (1� 2p1 � 2p2)le � 6(d� p1 + d�� p2) + le� 24 [min(dT (r; v); 3d�=4)�max(dT (r; u); d�=2)+ max(dT (r; v) � 3d�=4; 0)] + le� 24 le + le � 25 le;which implies an expected distortion of at most 25, and proves the theorem.We close this subsection with a further observation about the tree T' constructed by the procedure Process-Tree.Claim 3.5 The tree T 0 constructed as above is a minor of the tree T .Proof: In each call to Process-Tree, we progressively construct T 0 by removing the tree T0 and replacingit with a star connecting r0 to the various ri (for 1 � i � t). But this star could equivalently be obtainedby contracting all but the leaf edges of the tree T0. (Of course, we are placing new lengths on these edges,but this does not a�ect the structure.)This claim also shows that the tree T 0 with the cycle around its leaves is still a Halin graph, since Halingraphs are closed under taking minors.3.1.2 Processing II: Removing the Steiner verticesIn this section, we remove the Steiner vertices in the tree T 0 that were created during runs of Process-Tree, giving us a tree T 00. (Since T (1=2) consists of T 0 with several subtrees attached to it via cut-edges,8



attaching those subtrees to T 00 will give us a new tree T (1).) The argument in this section is similar inspirit to that in [16]. The Steiner twin vertices from T (1=2) are removed in the same order in which theywere created. Consider r0, the root of T 0; it was created as the Steiner twin of vertex r 2 T . We nowidentify all vertices on the path between r0 and l(r) with l(r). This process is performed on each of theSteiner twin vertices in turn (in order of their creation), causing each of them to be identi�ed with somevertex in L � C. Call the resulting tree T (1). This has the vertex set V , since we removed all the Steinervertices we created in the previous section. The following lemma proves the main result of this section:Lemma 3.6 This edge-contraction procedure ensures that the distance between each pair of vertices of Vin T (1) is no shorter than its distance in T .Proof: To show that there is no contraction, it suÆces to check that no edge in T (1) is shorter than thedistance between its endpoints in T . There are just three kinds of edges remaining in T (1): those whichbelong to the trees T̂0 in the various invocations of Process-Tree, those between some r and l(r),5 andthose between l(r) and l(ri). Note that the edges of this last type are the only edges that exist betweenl(ra) and l(rb), since such edges (w.l.o.g.) must be caused by ra being the root at some invocation ofProcess-Tree and rb being one of the ri's created at this step, and ra later being identi�ed with l(ra).Clearly, the edges in the trees T̂0 are not changed at all. Now consider an edge between a vertex l(r) and r.(This edge is created since r0 was identi�ed with l(r).) The length of this edge in T 00 is just h(r), which isalso the distance between l(r) and r in T . Finally, for an edge e between l(r) and l(ri) in T (1), the lengthis just 6dT (r; ri). However, the distance between these points in T is at most dT (r; l(r)) + dT (r; lTi(ri))which we upper bound next. Let d� be the value of d when ri was separated from r in the procedureCut-Midway. Then it follows that dT (r; l(r)) = h(r) � d� and dT (r; lTi(ri)) = dT (r; ri) + hTi(ri) � 2d�.Hence the distance between l(r) and l(ri) in T is at most 3d�, however dT (r; ri) � d�=2, therefore thedistance is at most 6dT (r; ri).3.2 Wrapping it all upSince the distances in T (1) are at least those in T , and at most 25 times those in T , this gives us a total(expected) distortion of 25. Furthermore, we can now add back the cycle C on the vertices of L, givingthe graph G(1). This consists of an outerplanar graph on L, along with vertices of T � L in the form ofsubtrees attached to vertices of L. To see that T 00 [ C forms an outerplanar graph, note from Claim 3.5that T 0 was a minor of T , and hence T 00 obtained by contracting some edges in T 0 still leaves us with aminor of T , so the planar embedding of T [C induces a planar embedding of T 00 [C. Furthermore, T 00 isde�ned on the vertices of L � U , so all the vertices lie on the outer face.But now we can invoke the procedure of [17, Theorem 5.2] to get a random subtree of G(1) which approx-imates distances (in expectation) in G(1) to within a factor of 8, and hence those in G to within a factorof 8 � 25 = 200. This completes the proof of Theorem 3.1.4 On to k-outerplanar graphsIn this section, we extend the construction of the previous section to k-outerplanar graphs. Recall thatthese are graphs embeddable in the plane such that removing the vertices on the outermost face k times5These edges were added between r and r0, and the latter has been identi�ed with l(r).9



Figure 4.2: A 3-outerplanar graph from [4]. The layers are A-G, a-g, and 1-8.deletes the graph. Before we begin, let us state two simple lemmas (whose proofs we omit) that allow usto replace a subgraph by its tree embedding, and to give embeddings of graphs in terms of their blocks.Proposition 4.1 Let H = (VH ; EH) be a subgraph of G = (V;E). Let H 0 = (VH ; EH0) be a graph on VHsuch that dH(u; v) � dH0(u; v) � � � dH(u; v) for all u; v 2 VH . Then in the graph G0 = (V;E �EH +EH0),dG(u; v) � dG0(u; v) � � � dG(u; v) for all u; v 2 V .Proposition 4.2 Let the graph G have a cut-edge whose removal results in a tree T and a graph H. If Hcan be probabilistically approximated by tree metrics with distortion �, then so can G.The main result of this section, and of the paper is the following:Theorem 4.3 There is a universal constant c such that any metric generated by a k-outerplanar graphcan be embedded into random trees with distortion at most ck.Proof: The proof is by induction on k; however, the induction hypothesis required is stronger than thestatement of the theorem. We will assume that G = (V;E) is given along with its k-outerplanar embedding,and F0(G) is the set of vertices on the outer face of G. (In the sequel, we will often abuse notation andblur the distinction between a face and the vertices that lie on it.)Induction Hypothesis: Let G = (V;E) be a connected k-outerplanar graph with F0(G) as the outerface in some k-outerplanar embedding of G. Then, the shortest-path metric of G can be probabilisticallyapproximated by a collection of trees on V with expected distortion at most ck such that each tree Ti =(V;Ei) in the distribution has the following properties:(i) the subgraph of Ti induced by F0(G) is a minor of G; and(ii) the subgraph of Ti induced by V (G) � F0(G) is a forest, and each tree in the forest is connected toF0(G) by a single edge.Informally, we will require that the random tree for G be embeddable in the plane even when the verticeson the outer face of G are \pinned down" to the plane. Clearly, if the trees Ti are subgraphs of G, then thisis trivially satis�ed. The reader can verify that the Halin graph embedding of Section 3 produces graphswhich, though they are not subgraphs, nevertheless satisfy the above property.10



The base case for the induction is k = 1 when G is an outerplanar graph. For outerplanar graphs [17,Theorem 5.2] shows an embedding of G into trees that are subgraphs of G with constant distortion. Hencethe auxiliary conditions are trivially satis�ed.
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T1; : : : ; T`. Proposition 4.1 implies that the metric induced by G0 is within an expected ck�1 distortion ofdG, and hence approximating G0 by tree metrics with an expected distortion of c will prove the inductionhypothesis for G.Let T 0i be the subtree of Ti induced by F0(Gi). The fact that it is a subtree is guaranteed by condition(i) of the hypothesis; in fact T 0i is a minor of Gi. Furthermore, Vi � F0(Gi), i.e., vertices of Gi not in T 0i ,induces a forest in Ti that is connected via cut-edges to T 0i . Also note that there are no edges betweenF0(G) and Vi�F0(Gi), since the graph is planar, and the layer F0(Gi) separates these two sets of vertices.Using Proposition 4.2, we can eliminate vertices in Vi � F0(Gi) (for 1 � i � `) from G0. It now suÆces toembed the resulting graph, which we call core(G0), into trees with expected distortion at most c.The key claim that essentially reduces this problem to the embeddings of Halin graphs given in the previoussection is the following:Claim 4.5 Let G0i be obtained by taking the tree T 0i , and adding the vertices Fi and all the edges incidenton Fi in G[Vi [ Fi]. Then G0i is a Halin graph.Proof: By the induction hypothesis, the tree T 0i is a minor of Gi, and hence the planar embedding ofGi induces a natural planar embedding of T 0i . Furthermore, from our earlier assumption, each vertex ofFi has at most one edge to T 0i ; let Ei be the set of these edges. It follows that T 0i along with these edgesEi still forms a tree. Finally, the edges along the face Fi form a cycle around this tree, and hence G0i is aHalin graph as claimed.Note that our current graph core(G0) is simply SiG0i. Since each T 0i is a minor of Gi, we obtain thefollowing result.Proposition 4.6 The graph core(G0) is a minor of G.Now since each G0i is a Halin graph (with Fi as its outer face), we can apply the procedure of Section 3 toit. The resulting graph, which we call G00i , will be an outerplanar graph on Fi, with the vertices of G0i�Fiinducing a forest, the trees of which are connected to vertices of Fi via cut-edges. Using Proposition 4.2again, we can remove these hanging trees to obtain the graph core(G00i ).Note that the procedure in Section 3 guarantees that core(G00i ) is a minor of G0i. Furthermore, each core(G00i )is an outerplanar graph on the face Fi of the outerplanar graph GF . These two facts together imply thatH = Si core(G00i ) is also an outerplanar graph. We can embed H into subtrees of H with constant expecteddistortion following [17, Theorem 5.2]. (We assume that the distortion is at most c by choosing c suÆcientlylarge.) This establishes that G can be embedded with expected distortion at most ck.It just remains to show that the conditions (i) and (ii) are met for the trees produced by this procedure.The �nal step is an embedding of H whose vertex set is F0(G). It can be seen that H is a minor of G;indeed, Proposition 4.6 shows that core(G0) = SiG0i is a minor of G, and as observed above, each G00iis a minor of G0i. Finally, using the procedure in [17] to embed H gives subtrees of H which are clearlyminors of H, and thus of G. Hence our procedure guarantees that each random tree, when restricted tothe vertices of F0(G), is a minor of G, thus establishing condition (i). Finally, note that the procedureremoves vertices only when Proposition 4.2 is applied, i.e., if the vertices induce a tree connected via acut-edge to the rest of the graph. This implies condition (ii) of the induction hypothesis, thus completingthe proof.Acknowledgments: We thank Amit Chakrabarti and Amit Kumar for useful discussions.12
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