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Abstract

We give a simple algorithm for the MINIMUM DIRECT-
ED MULTICUT problem, and show that it gives anO(pn)-
approximation. This improves on the previous approxima-
tion guarantee ofO(pn log k) of Cheriyan, Karloff and Ra-
bani [1], which was obtained by a more sophisticated algo-
rithm.

1 Introduction

Assume we are given a directed networkG = (V;A) with
positive edge capacitiesue : A ! Z�0, and withk source-
sink pairsf(si; ti)gki=1, with si; ti 2 V for all i. A directed
multicut is a set of arcsM � A such that for any (directed)
pathP from somesi to its correspondingti, P \M 6= �.
The MINIMUM DIRECTED MULTICUT problem is to find
the multicutM � A with the least total capacityu(M),
whereu(M) =Pe2M ue.

This problem, being an important tool for designing
divide-and-conquer algorithms for NP-hard problems, has a
long and illustrious history. The undirected case is better
understood: we point the interested reader to the survey by
Shmoys [4] for many details and references. However, the
directed variant of the problem appears to be much harder,
and is NP-hard even fork = 2 [2], a case that can be solved
efficiently for the undirected variant [3].

The first non-trivial approximation algorithm for direct-
ed multicut, anO(pn logn) approximation algorithm, was
given by Cheriyan et al. [1]. Central to their result is an al-
gorithm which, given a network withue � 1 for all e 2 A,
outputs a multicutM with capacityO(F 2 logn), whereF is
the maximum multiflow inG with terminalsf(si; ti)gi (de-
fined in the next section).

They also gave a much simpler algorithm which outputs
a cut of capacity at mostO(F 3). In this note, we show that a
variant of this latter algorithm gives us the following results.

THEOREM 1.1. Given a directed multicommodity flow net-
workG0 with ue � 1 for all e 2 A, we can efficiently find a
multicutM with c(M) = O(F 2), whereF is the maximum
multiflow inG with terminalsf(si; ti)gi.

THEOREM 1.2. We can efficiently find a directed multicut
with cost withinO(pn) of optimal.

The proofs of these theorems, along with the algorithms
to effectively find these cuts, are given in the following two
sections.

2 Relating Cuts and Flows

Note that the following integer linear program is a reformu-
lation of the minimum multicut problem.minPeuexe(IP1)

s.t. x(P ) � 1 8si-ti pathsP , 8ixe 2 f0; 1g
Relaxing the integrality constraints toxe � 0 gives us a

linear program (LP1) that can be solved in polynomial time.
We interpret the variablexe as the “length” of an arce, andPe2S uexe to be the “volume” of a set of arcsS.

It is easily seen that the linear programming dual of
(LP1) is the following, which is a formulation of the so-
called MAXIMUM MULTIFLOW problem onG with termi-
nalsf(si; ti)gi. maxPP f(P )(LP2)

s.t.
PP :P3e f(P ) � ue 8e 2 Af(P ) � 0

Let F be the optimal value of (LP2), and hence value of
the maximum multiflow inG with terminalsf(si; ti)gi. By
linear programming duality, the minimum multicut has value
at leastF ; we now proceed to find a cut of valueO(F 2).
Algorithm I: The algorithm maintains a current graphG,
initially the input graphG0. As long as there is a source-sink
pair such thatG has a directed path fromsi to ti, we find a
good cut separatingsi from ti as described below, remove
these edges to get the newG, and continue.

To find the cut, we look at the subnetworkHi =G[si; ti], whereG[x; y] denotes the subgraph ofG induced
by edgese which lie on some directed path fromx to y.



Sincex is a solution to (LP1) andHi is a subnetwork ofG0, the distance fromsi to ti in Hi is at least 1. LetFi = Pe2Hi uexe. Let us look at level-cuts inHi, i.e.,
cuts that are obtained by deleting all points (i.e., all edges
that these points lie on) inHi at some distancer from si.
Furthermore, we restrict our attention to those cuts withr 2 [ 13 ; 23 ], i.e., those “far” from bothsi andti, and find the
smallest such cutCi. A simple averaging argument shows
that this cut inHi has capacity at mostFi=( 23 � 13 ) = 3Fi.

To finish, we must show that the sum of the cuts in the
various stages does not exceedO(F 2). For the rest of the
discussion, we assume that all edges have capacityue =1. This assumption can be discharged by replacing every
edgee with duee parallel edges, which changesF by at
most a factor of2; furthermore, this assumption is only for
simplicity – the proof can be done without this assumption.

Proof of Theorem 1.1: Let us associate two counters, the
left counterAl(e), and the right counterAr(e), with each
edgee in the graph, both initially set to 0. We also define
a potential function� = Pe x(e)(Al(e) + Ar(e)). When
making a cut in someHi, we increment counters for all the
edges inHi (and no other edges) thus: If an edgee 2 Hi
lies on the left of the cut, we incrementAl(e); if it lies to
the right, we incrementAr(e). (In the event that the edge
itself is cut, we can increment either of the counters.) Since
the cut value isO(Fi), and

Pe2Hi x(e) = Fi, the value of� goes up by exactlyFi. Hence it suffices to show that the
final value of� isO(F 2).

For this, we show that bothAl(e);Ar(e) � O(F ), i.e.,
an edge can lie in someHi onlyO(F ) times. We will show
this forAl; the proof forAr is identical. Consider an iteration
whene lies inHi andAl(e) is incremented. The definition ofHi ensures thate lies on somesi-ti path. Let this pathPi(e)
be called thewitnessfor e inCi, and letQi(e) be those edges
in Pi(e) that lie in or to the right of the cutCi. Note that the
fact that the cutCi is at distance at most23 from si implies
that the edges onQi(e) have

Pe02Qi(e) xe0 � 13 .
Let us consider a subsequent cutCj whereAl(e) is in-

cremented, and look at the correspondingQj(e), the portion
of the witness pathPj(e) for e inCj lying in or to the right ofCj . We claim thatQi(e) andQj(e) cannot share any edges.
Indeed, ife0 is an edge inQi(e) [ Qj(e), then there exists a
path frome to e0 afterCi has been deleted, and hence a path
betweensi andti. But this contradicts the fact thatCi is ansi-ti cut, and proves our claim. Hence, for every cutCi, the
edges inQi(e) are disjoint. Furthermore,x(Qi(e)) � 13 for
all i, and

Px(Qi(e)) � F , the sum taken over alli whereAl(e) is incremented. ThusAl(e) � F= 13 = 3F . A similar
argument showsAr(e) � 3F , and hence� � 6F 2, proving
the theorem.

3 An approximation algorithm

Since we do not have any restrictions on the capacities of
edges in Theorem 1.2, the algorithm is slightly different:

Algorithm II: Consider all edges withxe � 1=pn, and
cut them (which corresponds to raisingxe to 1). Now run
the previous algorithm on the remaining graph to detach the
remaining terminal pairs.

THEOREM 3.1. The cut found by the above algorithm is
withinO(pn) of optimum.

Proof. The cost of the edges cut in the first step is at mostFpn, since each cut edge hasxe raised from� 1=pn to 1.
Let us now bound the capacity of the edges cut in the

second step. We use three simple facts. The first fact
extends one used before: for each iterationi whereAl(e) is
incremented, the length ofQi(e) in length at least13 . Since
all edges surviving the first step have length less than1=pn,
there must be at least13pn edges onQi(e).

Secondly, leth(P ) be the set of vertices at the heads of
edges in a directed pathP . Hence there are at least13pn
vertices in eachh(Qi(e)).

Finally, for any subsequent cutCj whereAl(e) is raised,h(Qj(e)) \ h(Qi(e)) = �. Indeed, if there is a vertexv in
the intersection, then there would be a path frome to v that
survived the deletion ofCi, giving a contradiction. Hence
the setsh(Qi(e)) are disjoint for all iterationsi whereAl(e)
is incremented, and since each such set has at least13pn
vertices,Al(e) � 3pn. Similarly,Ar(e) � 3pn, and thus� and the total cut capacity byO(Fpn).
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