Improved Results for Directed Multicut

Anupam Gupta Lucent Bell Labs 600 Mountain Avenue Murray Hill NJ 07974 anupamg@research.bell-labs.com

Abstract

We give a simple algorithm for the MINIMUM DIRECT-ED MULTICUT problem, and show that it gives an $O(\sqrt{n})$ approximation. This improves on the previous approximation guarantee of $O(\sqrt{n \log k})$ of Cheriyan, Karloff and Rabani [1], which was obtained by a more sophisticated algorithm.

1 Introduction

Assume we are given a directed network G = (V, A) with positive edge capacities $u_e : A \to \mathbb{Z}_{\geq 0}$, and with k sourcesink pairs $\{(s_i, t_i)\}_{i=1}^k$, with $s_i, t_i \in V$ for all i. A directed multicut is a set of arcs $M \subseteq A$ such that for any (directed) path P from some s_i to its corresponding $t_i, P \cap M \neq \phi$. The MINIMUM DIRECTED MULTICUT problem is to find the multicut $M \subseteq A$ with the least total capacity u(M), where $u(M) = \sum_{e \in M} u_e$.

This problem, being an important tool for designing divide-and-conquer algorithms for NP-hard problems, has a long and illustrious history. The undirected case is better understood: we point the interested reader to the survey by Shmoys [4] for many details and references. However, the directed variant of the problem appears to be much harder, and is NP-hard even for k = 2 [2], a case that can be solved efficiently for the undirected variant [3].

The first non-trivial approximation algorithm for directed multicut, an $O(\sqrt{n \log n})$ approximation algorithm, was given by Cheriyan et al. [1]. Central to their result is an algorithm which, given a network with $u_e \ge 1$ for all $e \in A$, outputs a multicut M with capacity $O(F^2 \log n)$, where F is the maximum multiflow in G with terminals $\{(s_i, t_i)\}_i$ (defined in the next section).

They also gave a much simpler algorithm which outputs a cut of capacity at most $O(F^3)$. In this note, we show that a variant of this latter algorithm gives us the following results.

THEOREM 1.1. Given a directed multicommodity flow network G_0 with $u_e \ge 1$ for all $e \in A$, we can efficiently find a multicut M with $c(M) = O(F^2)$, where F is the maximum multiflow in G with terminals $\{(s_i, t_i)\}_i$. THEOREM 1.2. We can efficiently find a directed multicut with cost within $O(\sqrt{n})$ of optimal.

The proofs of these theorems, along with the algorithms to effectively find these cuts, are given in the following two sections.

2 Relating Cuts and Flows

Note that the following integer linear program is a reformulation of the minimum multicut problem.

(IP1)
$$\min \sum_{e} u_e x_e$$

s.t. $x(P) \ge 1 \quad \forall s_i \text{-} t_i \text{ paths } P, \forall i$
$$x_e \in \{0, 1\}$$

Relaxing the integrality constraints to $x_e \ge 0$ gives us a linear program (LP1) that can be solved in polynomial time. We interpret the variable x_e as the "length" of an arc e, and $\sum_{e \in S} u_e x_e$ to be the "volume" of a set of arcs S.

It is easily seen that the linear programming dual of (LP1) is the following, which is a formulation of the socalled MAXIMUM MULTIFLOW problem on G with terminals $\{(s_i, t_i)\}_i$.

(LP2)
$$\max \sum_{P} f(P)$$

s.t.
$$\sum_{P:P \ni e} f(P) \le u_e \quad \forall e \in A$$
$$f(P) \ge 0$$

Let F be the optimal value of (LP2), and hence value of the maximum multiflow in G with terminals $\{(s_i, t_i)\}_i$. By linear programming duality, the minimum multicut has value at least F; we now proceed to find a cut of value $O(F^2)$.

Algorithm I: The algorithm maintains a current graph G, initially the input graph G_0 . As long as there is a source-sink pair such that G has a directed path from s_i to t_i , we find a good cut separating s_i from t_i as described below, remove these edges to get the new G, and continue.

To find the cut, we look at the subnetwork $H_i = G[s_i, t_i]$, where G[x, y] denotes the subgraph of G induced by edges e which lie on some directed path from x to y.

Since x is a solution to (LP1) and H_i is a subnetwork of G_0 , the distance from s_i to t_i in H_i is at least 1. Let $F_i = \sum_{e \in H_i} u_e x_e$. Let us look at level-cuts in H_i , i.e., cuts that are obtained by deleting all points (i.e., all edges that these points lie on) in H_i at some distance r from s_i . Furthermore, we restrict our attention to those cuts with $r \in [\frac{1}{3}, \frac{2}{3}]$, i.e., those "far" from both s_i and t_i , and find the smallest such cut C_i . A simple averaging argument shows that this cut in H_i has capacity at most $F_i/(\frac{2}{3} - \frac{1}{3}) = 3F_i$.

To finish, we must show that the sum of the cuts in the various stages does not exceed $O(F^2)$. For the rest of the discussion, we assume that all edges have capacity $u_e = 1$. This assumption can be discharged by replacing every edge e with $\lfloor u_e \rfloor$ parallel edges, which changes F by at most a factor of 2; furthermore, this assumption is only for simplicity – the proof can be done without this assumption.

Proof of Theorem 1.1: Let us associate two counters, the left counter $A_l(e)$, and the right counter $A_r(e)$, with each edge e in the graph, both initially set to 0. We also define a potential function $\Phi = \sum_e x(e)(A_l(e) + A_r(e))$. When making a cut in some H_i , we increment counters for all the edges in H_i (and no other edges) thus: If an edge $e \in H_i$ lies on the left of the cut, we increment $A_l(e)$; if it lies to the right, we increment $A_r(e)$. (In the event that the edge itself is cut, we can increment either of the counters.) Since the cut value is $O(F_i)$, and $\sum_{e \in H_i} x(e) = F_i$, the value of Φ goes up by exactly F_i . Hence it suffices to show that the final value of Φ is $O(F^2)$.

For this, we show that both $A_l(e), A_r(e) \leq O(F)$, i.e., an edge can lie in some H_i only O(F) times. We will show this for A_l ; the proof for A_r is identical. Consider an iteration when e lies in H_i and $A_l(e)$ is incremented. The definition of H_i ensures that e lies on some s_i - t_i path. Let this path $P_i(e)$ be called the *witness* for e in C_i , and let $Q_i(e)$ be those edges in $P_i(e)$ that lie in or to the right of the cut C_i . Note that the fact that the cut C_i is at distance at most $\frac{2}{3}$ from s_i implies that the edges on $Q_i(e)$ have $\sum_{e' \in Q_i(e)} x_{e'} \geq \frac{1}{3}$.

Let us consider a subsequent cut C_j where $A_l(e)$ is incremented, and look at the corresponding $Q_j(e)$, the portion of the witness path $P_j(e)$ for e in C_j lying in or to the right of C_j . We claim that $Q_i(e)$ and $Q_j(e)$ cannot share any edges. Indeed, if e' is an edge in $Q_i(e) \cup Q_j(e)$, then there exists a path from e to e' after C_i has been deleted, and hence a path between s_i and t_i . But this contradicts the fact that C_i is an s_i - t_i cut, and proves our claim. Hence, for every cut C_i , the edges in $Q_i(e)$ are disjoint. Furthermore, $x(Q_i(e)) \ge \frac{1}{3}$ for all i, and $\sum x(Q_i(e)) \le F$, the sum taken over all i where $A_l(e)$ is incremented. Thus $A_l(e) \le F/\frac{1}{3} = 3F$. A similar argument shows $A_r(e) \le 3F$, and hence $\Phi \le 6F^2$, proving the theorem.

3 An approximation algorithm

Since we do not have any restrictions on the capacities of edges in Theorem 1.2, the algorithm is slightly different:

Algorithm II: Consider all edges with $x_e \ge 1/\sqrt{n}$, and cut them (which corresponds to raising x_e to 1). Now run the previous algorithm on the remaining graph to detach the remaining terminal pairs.

THEOREM 3.1. The cut found by the above algorithm is within $O(\sqrt{n})$ of optimum.

Proof. The cost of the edges cut in the first step is at most $F\sqrt{n}$, since each cut edge has x_e raised from $\geq 1/\sqrt{n}$ to 1.

Let us now bound the capacity of the edges cut in the second step. We use three simple facts. The first fact extends one used before: for each iteration *i* where $A_l(e)$ is incremented, the length of $Q_i(e)$ in length at least $\frac{1}{3}$. Since all edges surviving the first step have length less than $1/\sqrt{n}$, there must be at least $\frac{1}{3}\sqrt{n}$ edges on $Q_i(e)$.

Secondly, let h(P) be the set of vertices at the heads of edges in a directed path P. Hence there are at least $\frac{1}{3}\sqrt{n}$ vertices in each $h(Q_i(e))$.

Finally, for any subsequent cut C_j where $A_l(e)$ is raised, $h(Q_j(e)) \cap h(Q_i(e)) = \phi$. Indeed, if there is a vertex v in the intersection, then there would be a path from e to v that survived the deletion of C_i , giving a contradiction. Hence the sets $h(Q_i(e))$ are disjoint for all iterations i where $A_l(e)$ is incremented, and since each such set has at least $\frac{1}{3}\sqrt{n}$ vertices, $A_l(e) \leq 3\sqrt{n}$. Similarly, $A_r(e) \leq 3\sqrt{n}$, and thus Φ and the total cut capacity by $O(F\sqrt{n})$.

References

- Joseph Cheriyan, Howard Karloff, and Yuval Rabani. Approximating directed multicuts. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 320–328, 2001.
- [2] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and node-weighted graphs. In Proceedings of the 21st International Colloquium on Automata, Languages and Programming, volume 820 of Lecture Notes in Computer Science, pages 487–498, 1994.
- [3] T. C. Hu. Combinatorial algorithms. Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1982.
- [4] David B. Shmoys. Cut problems and their application to divide-and-conquer. In Dorit S. Hochbaum, editor, *Approximation Algorithms for NP-hard Problems*, pages 192–235. PWS Publishing, 1997.