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Abstract THEOREM1.2. We can efficiently find a directed multicut

We give a simple algorithm for the Mimum Direct- With cost withinO(y/n) of optimal.
ED MULTICUT problem, and show that it gives & /n)-
approximation. This improves on the previous approxima- . ; . : ;

tion guarantee of)(v/nTog k) of Cheriyan, Karloff and Ra- fistfifoessvely find these cuts, are given in the following two
bani [1], which was obtained by a more sophisticated algo- '

rithm.

The proofs of these theorems, along with the algorithms

2 Relating Cutsand Flows

1 Introduction Note that the following integer linear program is a reformu-

Assume we are given a directed netwadrk= (V, A) with lation of the minimum multicut problem.

positive edge capacitias. : A — Z>o, and withk source- (IP1) min 3, uee
sink pairs{(s;, ;) }%_,, with s;,¢; € V for all i. A directed t Pe > 1 Vst pathsP. Vi
multicutis a set of arcd/ C A such that for any (directed) st z(P) = sitti PAINSIE, v
path P from somes; to its corresponding;, P N M # ¢. ze € {0,1}

The MINIMUM DIRECTED MULTICUT problem is to find

the multicut) ¢ A with the least total capacity(M), linear program (LP1) that can be solved in polynomial time.
whereu(M) = >,y Ue-

This problem. being an important tool for designinwe interpret the variable, as the “length” of an are, and

divide-and-conquer algorithms for NP-hard problems, hasg-;fes Uele tq be the volume O.f a set of arcs. .

. ) . . . It is easily seen that the linear programming dual of
long and illustrious history. The undirected case is better : : C .

. : . P1) is the following, which is a formulation of the so-
understood: we point the interested reader to the survey Y . .
. led MaxiIMuM MULTIFLOW problem onG with termi-
Shmoys [4] for many details and references. However, tﬁgls{( )}
directed variant of the problem appears to be much hardﬁ'er, i ti) i
and is NP-hard even fdr = 2 [2], a case that can be solveq| p) max Y f(P)
efficiently for the undirected variant [3]. st ¥ £(P) < Vec A
The first non-trivial approximation algorithm for direct- " P:P3e = e V€
ed multicut, anO(y/nTogn) approximation algorithm, was f(P)>0
given by Cheriyan et al. [1]. Central to their result is an
gorithm which, given a network with, > 1 foralle € A,
outputs a multicuf/ with capacityO(F?2 log n), whereF' is
the maximum multiflow inG with terminals{(s;, t;)}; (de-
fined in the next section).
They also gave a much simpler algorithm which outputdgorithm I: The algorithm maintains a current graph

a cut of capacity at mog?(F3). In this note, we show that ainitially the input graph=,. As long as there is a source-sink
variant of this latter algorithm gives us the following riésu pair such thatz has a directed path from to ¢;, we find a

_ . _ . good cut separating; from ¢; as described below, remove
THEOREM1.1. Given a directed multicommodity flow netthese edges to get the néy and continue.

WOI’kGo with Ue Z 1foralle € A, we can efﬁciently find a To find the cut, we look at the Subnetwomi —
multicut M with ¢(M) = O(F?), whereF is the maximum @[, t,], whereG|z, y] denotes the subgraph &f induced
multiflow inG with terminals{(s;, ;) }:. by edgese which lie on some directed path fromto y.

Relaxing the integrality constraints @ > 0 gives us a

all__et F' be the optimal value of (LP2), and hence value of
the maximum multiflow inG with terminals{(s;, t;) };. By
linear programming duality, the minimum multicut has value
at leastF’; we now proceed to find a cut of valdy F?).



Sincez is a solution to (LP1) and{; is a subnetwork of 3 An approximation algorithm

Go, the distance froms; to ¢; in H; is at least 1. Let gjnce we do not have any restrictions on the capacities of

Fi = Y ccn, uete- Let us look at level-cuts iff;, i.e., edgesin Theorem 1.2, the algorithm is slightly different:
cuts that are obtained by deleting all points (i.e., all edge

that these points lie on) if; at some distance from s;. Algorithm I1: Consider all edges wite > 1/,/n, and

Furthermore, we restrict our attention to those cuts wigh't them (which corresponds to raising to 1). Now run

r €[4, 2], i.e., those “far” from boths; and¢;, and find the the previous algonthm on the remaining graph to detach the

smaliest such cuf;. A simple averaging argument showé€maining terminal pairs.

that this cut inH; has capacity at mosf; /(3 — 1) = 3F;.
To finish, we must show that the sum of the cuts in t

various stages does not exca@@F?). For the rest of the

discussion, we assume that all edges have capagity:

1. This assumption can be discharged by replacing every : ;

edgee with [u.] parallel edges, which changéds by at ¥/, since each cut edge hasraised from> l/yntol.

t a factor of: furth i tion | I f Let us now bound the capacity of the edges cut in the
most a factor oL, Turthermore, this assumption 1S only 10 -, step. We use three simple facts. The first fact

simplicity — the proof can be done without this assumptior, . 1c one used before: for each iteratiovhereA, (¢) is
incremented, the length &f;(e) in length at least. Since
all edges surviving the first step have length less tyayin,
there must be at leagt,/n edges orQ;(e).

Proof of Theorem 1.1: Let us associate two counters, the  Secondly, lef:(P) be the set of vertices at the heads of

left counterA,(e), and the right counteA,.(¢), with each edges in a directed patR. Hence there are at lea$t/n

edgee in the graph, both initially set to 0. We also defingertices in each(Q;(e)).

a potential function® = 3 x(e)(A;(e) + A,(e)). When Finally, for any subsequent caGt; whereA, (e) is raised,

making a cut in somé7;, we increment counters for all ther(Q;(e)) N h(Q;(e)) = ¢. Indeed, if there is a vertexin

edges inH; (and no other edges) thus: If an edgee H; the intersection, then there would be a path froto v that

lies on the left of the cut, we incremeAi(e); if it lies to survived the deletion of’;, giving a contradiction. Hence

the right, we incremené,.(e). (In the event that the edgethe setsi(Q;(e)) are disjoint for all iterationg whereA (¢e)

itself is cut, we can increment either of the counters.) 8inis incremented, and since each such set has at ge@@t

the cut value i<)(F;), and} ., @(e) = F;, the value of vertices,A;(e) < 3/n. Similarly, A,(e) < 3y/n, and thus

® goes up by exactly;. Hence it suffices to show that theb and the total cut capacity by (F\/n).

final value of® is O(F?).

For this, we show that both;(e), A, (e) < O(F), i.e.,

an edge can lie in som&; only O(F') times. We will Show References

this forA;; the proof forA,. is identical. Consider an iteration
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