
Steiner points in tree metrics don’t (really) help

Anupam Gupta ∗

Computer Science Division

University of California

Berkeley CA 94720.

Email: angup@cs.berkeley.edu

Abstract

Consider an edge-weighted tree T = (V, E, w : E →
R

+), in which a subset R of the nodes (called the
required nodes) are colored red and the remaining
nodes in S = V \R are colored black (and called the
Steiner nodes). The shortest-path distance according
to the edge-weights defines a metric dT on the vertex
set V .

We now ask the following question: Is it possible
to define another weighted tree T ∗ = (R, E∗, w∗ :
E∗ → R

+), this time on just the red vertices so that
the shortest-path metric dT∗ induced by T ∗ on the
vertices in R is “close” to the metric dT restricted
to the red vertices? I.e., does there exist a weighted
tree T ∗ = (R, E∗, c∗) and a (small) constant α such
that dT (u, v) ≤ dT∗(u, v) ≤ α dT (u, v) for any two
red vertices u, v ∈ R?

We answer this question in the affirmative, and give a
linear time algorithm to obtain a tree T ∗ with α ≤ 8.
We also give two applications of this result: an upper
bound, in which we show that emulating multicasts
using unicasts can be almost as good as general
multicasts for certain performance measures; and a
lower bound, in which we give a simple combinatorial
proof of the fact that the metric generated by a graph
of girth g must suffer a distortion of at least Ω(g)
when approximated by a tree.

1 Introduction

Suppose we are given an edge-weighted tree T =
(V, E, w), in which a subset R ⊆ V of the nodes are

∗Supported by NSF grant CCR-9820951.

called the required nodes and are colored red. The
rest of the nodes in S = V \R are colored black and
called Steiner nodes. The shortest-path distances in
the tree (w.r.t. the edge-weights w) define a metric
dT on the vertex set V . We now ask the following
question: Is it possible to define a new weighted
tree T ∗ = (R, E∗, w∗) on just the red vertices so
that the distances between red points are almost the
same in both T and T ∗? I.e., does there exist a tree
T ∗ = (R, E∗, w∗) and a small constant α such that
the shortest-path metric dT∗ of T ∗ satisfies

dT (u, v) ≤ dT∗(u, v) ≤ α dT (u, v)

for any two red vertices u, v ∈ R? Furthermore, can
the weight of T be within a constant factor of the
weight of T ∗?

It is clear that we cannot preserve all the distances
exactly. E.g. consider the star K1,n with unit weight
edges, the leaves being the required nodes and the
central vertex being the sole Steiner node. In this
case, the distances between any two of the nodes
in R is exactly 2. It is simple to show that no
tree on the n vertices in R can achieve this metric
exactly. However, we can approximate distances
in R to within a factor of 2 by the star K1,n−1.
Furthermore, this turns out to be the best we can
do, and in Section 6 we show that any graph with n
vertices and less than

(

n

2

)

edges cannot approximate
distances in the uniform metric to better than a factor
of 2.

But the star is a particularly simple tree, and it
seems conceivable that preserving distances to within
a constant may not be possible for more complex
trees. In this paper, we show that this is indeed
possible, and our main result is the following:



Theorem 1.1. Given a tree T = (V, E, w) and a

set of required vertices R ⊆ V , there exists a tree

T ∗ = (R, E∗, w∗) such that for all x, y ∈ R,

1 ≤ dT∗(x, y)

dT (x, y)
≤ 8.(1.1)

Furthermore, the weight of T ∗ is at most 4 times

the weight of T . The tree T ∗ can be obtained in

polynomial time from T .

We will also show how to obtain T ∗ from T in
linear time in Section 5.1. Clearly, the constant
in equation (1.1) cannot be less than 2, as the
aforementioned example of the star shows. We shall
also show a better lower bound of 4(1 − o(1)) in
Section 6.

To the best of our knowledge, the problem of re-
moving Steiner nodes from an arbitrary tree has not
been addressed before. An algorithm which works
for a special class of trees called k-hierarchically well-
separated trees (k-HSTs) was given by Konjevod et

al. [5].

Applications: This question arises in the relevant
and interesting problem of implementing Internet
multicasting using unicasts. In multicast transmis-
sions, a routing tree T = (V, E) is defined on the hosts
participating in the multicast, as well as the routers
that connect these hosts and forward messages. The
edges are the physical connections between hosts and
routers forming a tree. (The restriction that they
form a tree is imposed to keep these protocols sim-
ple.) If a multicast is initiated at any host u, the
edges of the tree are imagined as being directed away

from u; when any internal node v in the tree receives
a packet from its parent, it makes δ(v) copies of it,
where δ(v) is its out-degree, and sends one to each
child. However, multicasting has proven very difficult
to implement for various reasons. One of these is that
routing mechanisms on most routers are designed to
handle only unicasts, where each router forwards a
packet to a unique neighbor; furthermore, since they
are implemented in hardware they are difficult and
expensive to alter.

On the other hand, routing mechanisms on the hosts
are usually implemented in software, and so several
researchers [2, 3, 1] have suggested that a virtual
tree be defined on just the hosts themselves (where
the edges between hosts correspond to paths in the

original network) and multicast be implemented on
this tree in much the same fashion as described above,
using unicast connections to send packets between
adjacent hosts. There are several properties that we
may want these virtual trees to satisfy: e.g., we may
want the total cost of transmissions, which is the
same as the weight of the tree, be small, and that
the delay for any host to receive any transmission
be close to that in the original tree. If we set
the hosts to be the nodes in R and the routers to
be the Steiner vertices, it suffices to have a virtual
tree T ∗ = (R, E∗) of low weight that preserves the
distances in T between the hosts, which is the very
question we consider in this paper.

As a very different application of this result, this
result also allows us to obtain simple lower bounds
on how well distances in graphs can be approximated
by trees. Rabinovich and Raz [6] have shown that
the unweighted n-cycle Cn = (Vn, En) cannot be
approximated well by any tree; i.e., for any tree
T = (V, E) with Vn ⊆ V and dT (x, y) ≥ dCn

(x, y)
for all x, y ∈ Vn, there are two vertices u, v ∈ Vn

which are adjacent in the cycle Cn but are at distance
at least Ω(n) in the tree T . Using Theorem 1.1, we
can bypass the topological arguments required in [6]
and give a purely combinatorial proof of this result
in Section 7.1.

The rest of this paper is organized as follows. In
Section 2, we lay down some basic notation and
definitions. In Section 3, we will give the algorithm
mentioned in the main theorem above and prove the
various claimed properties. We then prove some lower
bounds in Section 6, and show that we cannot get a
constant better than 4(1−o(1)) in our main theorem.
Finally, in Section 7, we end with some details about
the two applications mentioned above.

2 Some definitions

In this paper, we only consider finite metrics. Given
an edge-weighted graph G = (V, E, w : E → R

+),
the metric defined by G is dG(·, ·), where dG(x, y) is
defined to be the length of the shortest path between
x and y in G (with respect to the edge-weights w).
Given a subset R ⊆ V , the metric induced by R
in G is the restriction dG|R×R. We often blur the
distinction between a graph and the metric generated
by it.

Given two metric spaces, (V, ν) and (W, µ), and a



map f : V → W , define the following quantities:

‖f‖ = max
x,y∈V

µ(f(x), f(y))

ν(x, y)
;

‖f−1‖ = max
x,y∈V

ν(x, y)

µ(f(x), f(y))
.

Then we say that f has contraction ‖f−1‖, expansion

‖f‖ and distortion D(f) = ‖f‖ · ‖f−1‖. We say that
(V, ν) r-approximates (W, µ) (or that the distortion

between µ and ν is at most r) if there exists a map
f : V → W with D(f) ≤ r. Often we shall consider
two graphs G′ = (V ′, E′) and G = (V, E) such that
V ⊆ V ′. In such cases, let f be the identity map
between the vertices in the metrics (V, dG′ |V ×V ) and
(V, dG), and define both D(G → G′) and D(G′ → G)
to be D(f).

3 Removing the Steiner nodes

In this section, we shall show how to remove the
Steiner nodes from the given tree T = (V, E, w) to get
a tree T ∗ = (R, E∗, w∗) on just the required nodes,
as claimed in Theorem 1.1. We first prove this for
the special case when R is the set of leaves L(T ) of
the tree T ; the proof of the general case will follow
as a simple corollary of this special case.

Lemma 3.1. Given a weighted tree T , we can define

a tree T ∗ on the set of leaves R = L(T ) of T such

that for any x, y ∈ L(T ),

1

4
≤ dT∗(x, y)

dT (x, y)
≤ 2.

Proof: Let us choose the root for the tree T
arbitrarily from its set of internal vertices V \R. (If
there are no internal vertices, then T is a single edge,
and we are done.) This imposes a partial order on the
vertices of T , and hence the relations “ancestor” and
“descendant” are well-defined. This also allows us to
define the subtree of v as all the vertices which are
descendants1 of v. We also assume that all distances
in the tree are distinct, since any ties can be broken
using (say) lexicographic rules.

We use the term “fringe-distance” of a vertex v to
mean the distance of the vertex v from the (unique)

1At the risk of causing genealogical havoc, we include v

among its descendents.

closest leaf x ∈ R lying in its subtree. We denote
this vertex x by C(v), and the fringe-distance of v by
h(v) = d(v, C(v)). Note that C(v) = v iff v is a leaf.

We give a recursive algorithm to remove Steiner nodes
for T : we start with T and remove a set of edges to
get a set of smaller trees. These trees are recursively
“cleaned” (i.e., the Steiner nodes in all these trees are
removed), and then they are joined back together to
get a clean tree T ∗ whose distances are close to those
in T .

The Algorithm:

Let T be rooted at a Steiner vertex r. If T has
only one required vertex, i.e., it is a path with a
required vertex at its end, then T ∗ is set to be the
isolated vertex C(r). Otherwise, we look at all points
in T at distance h(r)/2 from r. If any such point
is not a vertex of T (and lies within an edge), we
add a new Steiner vertex in T by subdividing the
edge at that point. Let us consider these Steiner
vertices r1, . . . , rk, and consider the rooted subtrees
T1, T2, . . . , Tk, with Ti being rooted at ri. We now
delete the edges that lie between r and the ri’s in T .
Let us assume that C(r) ∈ T1. For an example, see
figure 1. Applying the above procedure to the tree T
on the left gives rise to the trees drawn on the right.
In this case, the Steiner vertices r1, r2 and r3 have
been added because the cut at distance h(r)/2 from
the vertex r fell within the edges.

It is easy to see that the vertex C(r) will also
be the vertex in R that will be closest to r1, i.e.,
C(r) = C(r1). Further, note that h(ri) ≥ h(r1). We
recursively construct the clean trees T ∗

i for each Ti.
To obtain the clean tree T ∗, we connect C(r) ∈ T ∗

1

to each C(ri) ∈ T ∗

i (for i 6= 1) with an edge of length
h(ri).

Before we continue, note that we add new Steiner
vertices during the process and have to argue that the
process actually terminates. Unfortunately, it is not
the case that the number of vertices decreases at each
step; nor is it the case that the fringe-distance goes
down by a constant fraction at each step. However,
it is indeed the case that at least one of these two
things happens at each step, and thus this process
will terminate in O(n log ∆) steps, where ∆ is the
diameter of T .

The Analysis:



C(r)

r

r
1 2

r r
3 4

r

1
T

2
T

3
T

4
T

h(r)/2

T

Figure 1: One step of the Algorithm

We will show that T maintains distances between the
vertices in R to within a factor of 8. In the following,
let d indicate distances in the original tree T , and d∗

be the distances in the clean tree T ∗. We will first
bound the contraction incurred in going from T to
T ∗ by 4, and the expansion by 2.

To show a bound on the contraction, we can use the
following simple fact: the contraction of this process
is simply the expansion of the reverse process of
going from T ∗ to T . Since it is easy to see that the
expansion of a graph is worst for its edges, it suffices
to show that the length of each edge (u, v) ∈ T ∗

is at least d(u, v)/4, and thus the distances in T
are at most 4 times those in T ∗. It is not difficult
to show this, since the edges added to the tree T ∗

at any step are between C(r1) and C(ri) and have
a length of h(ri). However, the distance between
C(r1) and C(ri) in T is at most 3h(r1) + h(ri).
Now using the fact that h(ri) ≥ h(r1) gives us that
d(C(r1), C(ri)) ≤ 4h(ri), which proves the claimed
contraction.

Showing that the expansion is bounded is slightly
more involved. To prove this, we will need the fol-
lowing technical claim about distances in the cleaned
tree.

Claim 4. Given a tree T with required vertices R and

root r, the above algorithm returns a tree T ∗ on the

required vertices such that

d∗(x, C(r)) ≤ 2d(x, r) − h(r)(4.2)

for any x ∈ R.

Before we prove this claim, let us show that this
bound on the distances implies the claimed bound
of 2 on the expansion ‖T → T ∗‖.

Claim 5. Given a tree T with required nodes R, the

above algorithm returns a tree T ∗ such that

d∗(x, y) ≤ 2d(x, y)(5.3)

for all x, y ∈ R.

Proof of Claim 5: The proof is by induction on
the recursion tree of the algorithm. For the base case,
let the tree T have a single required vertex x. In this
case, the inequality (5.3) is vacuously satisfied.

Let us now inductively assume that all the pairs
of trees (Ti, T

∗

i ) created by starting with T and
performing the cut satisfy the inequality (5.3) above.
We shall now prove that it holds for the pair (T, T ∗)
as well. To prove this, note that when both the
vertices lie in the same subtree Ti, the inequality (5.3)
holds by the induction hypothesis. Hence we assume
that the x and y lie in two different subtrees Ti and
Tj respectively.

The distance d∗(x, y) is bounded above by
d∗(x, C(ri)) + h(ri) + h(rj) + d∗(C(rj), y). (It may
be less that this if i or j is 1.) However, by Claim 4,
we know that d∗(x, C(ri)) ≤ 2d(x, ri) − h(ri)
and d∗(y, C(rj)) ≤ 2d(y, rj) − h(rj). Putting
everything together and using the fact that
d(x, ri) + d(rj , y) is a lower bound for d(x, y),
we get that d∗(x, y) ≤ 2d(x, y).

Let us now complete the argument by proving
Claim 4.

Proof of Claim 4: The proof is also by induction
on the recursion tree of the algorithm. For the base
case, let the tree T have a single required vertex x.
In this case, x = C(r) and d(x, r) = h(r), and hence
0 = d∗(x, C(r)) ≤ 2d(x, r) − h(r).

Let us again inductively assume that all the pairs
of trees (Ti, T

∗

i ) created by starting with T and
performing the cut satisfy the inequality (4.2). We
now prove that it holds for the pair (T, T ∗) as well.
There are two cases: when the required vertex x lies
in T1, and when it is in some Ti with i 6= 1.

Let x be any required vertex in the tree T1. Since
both x and C(r) = C(r1) lie in the same subtree T1,



it must be the case that

d∗(x, C(r)) ≤ 2d(x, r1) − h(r1)

= 2(d(x, r) − h(r)/2) − h(r1)

= 2d(x, r) − h(r) − h(r1)

≤ 2d(x, r) − h(r).

where the first inequaility follows from the inductive
hypothesis. In the other case, let x ∈ Ti (for i 6= 1).
Then we have

d∗(x, C(r)) = d∗(x, C(ri)) + h(ri)

≤ (2d(x, ri) − h(ri)) + h(ri)

= 2d(x, ri)

= 2(d(x, r) − h(r)/2) = 2d(x, r) − h(r).

which completes the proof of the claim. (The inequal-
ity again follows from the inductive hypothesis.)

Combining the bound on the expansion given by
Claim 5 with the bound on the contraction completes
the proof of the Lemma 3.1.

Note that we can now scale up all the edge-weights in
the tree T ∗ output by the above algorithm by a factor
of 4 to ensure that d(x, y) ≤ d ∗ (x, y) 8d(x, y). Using
this fact, it is easy to show that the weight of this
tree T ∗ is at most 8 times the weight of T . We can
improve this bound slightly in the following lemma,
the proof of which is an induction very similar to the
ones above and is omitted for lack of space.

Lemma 5.1. The weight of the tree T ∗ defined above

is at most 4 times the weight of the tree T ′.

We are now in a position to prove the main theorem
of the paper.

Proof of Theorem 1.1: We reduce the general
statement to the special case, when R is the set of
leaves of T and then use Lemma 3.1. Firstly, note
that we can always assume that L(T ) ⊆ R. Indeed,
if any leaf x does not lie in the set R, the edge ex

incident to it cannot lie on any shortest path between
two required vertices and hence ex (along with x) can
be deleted from the tree. This process is repeated
until L(T ) ⊆ R.

Now suppose x ∈ R − L(T ); i.e., it is an internal
required node, and let it have degree δ(v). Let us split
the vertex x into δ(v) parts, causing T to split into

δ(v) trees {Ti}, each having its own incarnation of x.
We can now define Ri = V (Ti)∩R. Inductively, these
trees can be cleaned to get trees T ∗

i with V (T ∗

i ) = Ri.
We now identify the incarnations of x in the various
T ∗

i to get the tree T ∗. It can be checked that the
distortion D(T → T ∗) is at most max D(Ti → T ∗

i ),
which is inductively at most 8. Furthermore, the
weights of each of the T ∗

i is at most 4 times the weight
of Ti, and so the same holds for T ∗ and T . Finally,
the extra work involved can easily be done in linear
time, which completes the proof.

5.1 A linear-time algorithmTo get a faster al-
gorithm that does not depend on the magnitude of
the distances, we modify the algorithm of Lemma 3.1
slightly. Firstly, we can assume that there are no
Steiner nodes of degree 2, since the two edges inci-
dent on such a node can be fused together. Now note
that if the root r of the tree T has only one child r1,
then instead of performing the cut, we can recurse on
the subtree T1 rooted at r1 to obtain the tree T ∗

1 . It
can be easily checked that this tree T ∗

1 also satisfies
the two inequalities (4.2) and (5.3) required for T .

This gives us the basic idea for the faster algorithm:
we delete all edges that intersects the (open) ball
of radius h(r)/2 around the root r to get the trees
T1, . . . , Tk. These have roots r′i (which are the unique
children of the roots ri used in the earlier procedure).
Now we can clean these trees, and then attach each
of C(r′i) (with i > 1) to C(r′1) = C(r), with edges of
length h(ri) (and not h(r′i)). An analysis very similar
to the one in Lemma 3.1 shows that the distortion is
no more than 8 for this algorithm as well.

We can simplify things even further. Note that if
T ∗ is the cleaned tree for T , the length of each edge
{u, v} in T ∗ is at least dT (u, v), and we can reduce
it so that it is exactly this value without increasing
the distortion. Indeed, as explained above, the
contraction of the map from T → T ∗ is the expansion
of the reverse map T ∗ → T , and hence is worst for
edges of T ∗. However, each edge of T ∗ preserves
its distance in T , so there is no contraction at all.
Furthermore, since we are reducing the distances in
T ∗, the expansion of the map T → T ∗ can only
decrease.

In the composite procedure, we first do a depth
first search on the tree starting from the root, and
compute all the distances h(v) for each vertex v. We



then perform the algorithm as mentioned above, and
whenever we attach two vertices {u, v} by an edge in
T ∗, we can simply put dT (u, v) as the length of the
edge. It is not difficult to show that the procedure
can be implemented in linear time.

6 Lower bounds

To warm up, let us prove the lower bound of 2 for
the star graph Sn = K1,n with unit edge weights,
where R is the set of n leaves of the star. We want
to show that, for any tree T = (R, E), it is the case
that D(Sn → T ) is at least 2. In fact, we can prove
a much stronger result as the following proposition
shows.

Lemma 6.1. If G is an edge-weighted graph on the n
vertices in R with fewer than

(

n
2

)

edges, then

D(Sn → G) ≥ 2.

Proof: Let us assume (w.l.o.g.) that the edge
weights w(·, ·) of G satisfy the triangle inequality,
and the smallest edge-weight (and hence the smallest
distance) in G is exactly 2. Now consider a pair of
vertices {u, v} which are not connected by an edge
in E(G). Such a pair must always exist, since G has
less than

(

n

2

)

edges. Since the length of each edge in
G is now at least 2, and the shortest path between
u and v must have at least two edges, dG(u, v) is at
least 4. This implies that the largest distance in G is
at least 4, and hence D(Sn → G) is at least 2.

A more conceptually involved argument given below
shows a lower bound of 4(1 − 1/2k) for the complete
ternary tree Tk with k levels, where the edge weights
are geometrically decreasing.

Theorem 6.1. There exists a sequence of weighted

trees Tk = (Vk, Ek) and sets Rk ⊆ Vk such that for

any k, any tree T ′

k with V (T ′

k) = Rk and dT ′

k
≥

dTk
|Rk×Rk

has

dT ′

k
(u, v) ≥ 4(1 − o(1)) dTk

(u, v)

for some vertices u, v ∈ Rk.

Proof: Let Tk denote the ternary tree with k levels
having 1

2
(3k+1−1) vertices, and root rk. Equivalently,

we can describe Tk as formed by connecting a vertex
rk to three copies of the tree Tk−1. Let the length
of the edges connecting rk to the three copies be
max{1, 2k−2}. Let the set Rk be the leaves of Tk

and the internal nodes be the Steiner nodes as usual.
Note that the distance from rk to any leaf of Tk is
2k−1.

Let us look at any tree T on the vertices Rk with no
contraction, i.e., dT ≥ dTk

. Either the expansion
of T is more than 4, in which case we are done;
or it is at most 4. In the latter case, we will show
that T has diameter at least 4 · (2k − 1). Since the
distance between any two points in Tk is at most
2k, this implies that the distance between some two
points must have been blown up by a factor of at
least 4 − 1/2k−2, which will complete the proof of
the theorem. We shall prove this by induction on the
number of levels k in the tree.

For the base case, consider T1: this has three non-
Steiner vertices, and any tree on three points must be
a path with 2 edges. Further, since we no contraction,
both the edges must have length at least 2. Thus it
has a diameter of at least 4 = 4(21 − 1).

Let us now inductively assume that the diameter for
any non-contracting Steiner-less tree for Tk−1 with
distortion less than 4 is at least 4(2k−1 − 1). To
construct the tree for Tk, look at the three subtrees
isomorphic to Tk−1 hanging off the root r, and let
the vertices of Rk in them be called {Ai}3

i=1. We
first claim that any tree T on Rk in which the
subgraph induced by any Ai is not connected must
have distortion at least 4. To see this, if A1 is such a
set, then there are two vertices of A1 in T which are
connected via vertices in Rk\A1. But the distance
between them in T will be at least 2k+1, since T is
non-contracting and the distance between any vertex
in A1 to any vertex in Rk\A1 is 2k. This will give us
an expansion of at least 4.

Hence T must consist of three trees {Ti} which are
joined together by some two edges. Further, the
length of these edges must be at least 2k, since
we want no contraction. However, we know that
the diameter of each of these trees, since they are
assumed to have distortion less than 4, is at least
4(2k−1−1), and hence the eccentricity of each vertex
is at least half that value2. Now it is simple to see

2The eccentricity of a vertex u is the largest distance from

u to any other vertex in the graph.



that the diameter of T must be at least 2 · 2k + 2 ·
2(2k−1 − 1) = 4(2k − 1).

7 Two Applications

7.1 Combinatorial Lower Bounds on distor-

tion: In this section, we show that if ρ is the metric
generated by the unweighted n-cycle Cn, and T is
any tree on the n vertices of the cycle, then the dis-
tortion between ρ and dT is at least n − 1. As an
consequence of this result and Theorem 1.1, we can
show lower bounds on the distortion between metrics
generated by graphs of large girth and tree metrics.
To the best of our knowledge, these are the first com-
binatorial proofs of this result.

Lemma 7.1. If ρ is the metric generated by the n-

cycle Cn = (Vn, En), and T is a tree on Vn, then

D(ρ → T ) ≥ n − 1.

Proof: Since scaling the edge weights does not alter
the distortion, let us just focus on trees such that
dT ≥ ρ. Let the optimal distortion possible be D,
and let T be a tree which achieves this distortion
and which has minimum total length. Note that if
{u, v} is an edge in T , the length of {u, v} is exactly
ρ(u, v). If this is not so, we can reduce the length to
be ρ(u, v) without violating the property that dT ≥ ρ,
and reduce the total length of the edges. We claim
that T has only vertices of degree at most two and
thus T is a path.

Let the vertices of the cycle be numbered 0, 1, . . . , n−
1, and let the two semicircles of vertex i be the sets
of vertices S(i) = {i + 1, i + 2, . . . , i + bn/2c} and
S′(i) = Vn\(S(i) ∪ {i}), where addition is modulo n.
Let us assume to the contrary that T has a vertex v
of degree 3. In this case, at least two of the edges
incident on v are in one of the semicircles of v. Say
these edges connect v to i and j, and j is further from
v than i is (as shown in the figure 2). Let us remove
the edge {v, j} and add the edge {i, j} instead.

It is easy to check that the resulting graph is a tree.
We claim that the distortion of this new tree to ρ
has not increased. Indeed, any path which earlier
used the edge {v, j} can now use the edges {v, i} and
{i, j} and not increase its length, since the sum of
their lengths is the same as that of {i, j}. However,

v

k

O

j

i

Figure 2: Proof of Lemma 7.1

the sum of the edge lengths has gone down, which
contradicts the minimality of the total edge length.
Thus all vertices of T must have degree two.

Further, an identical argument shows that if a vertex
v has degree 2, then the two edges incident on v
cannot both lie in the same semicircle of v. Now
consider a pair of adjacent vertices u and v on the
cycle such that {u, v} is not an edge in T . Such a
pair of vertices must exist, since T cannot have all
the edges in the cycle. Now to get from u to v using
the path T , one must travel a distance at least (n−1).

We can now give combinatorial lower bounds on how
well large girth graphs can be approximated by trees.
Rabinovich and Raz had proved this and other such
results in [6] using topological arguments.

Theorem 7.1. For any unweighted graph G =
(V, E) with girth g and any tree T ′ = (V ′, E′) with

V ⊆ V ′,

D(G → T ′) ≥ (g − 1)/8.

Proof: Let us assume to the contrary, and suppose
that there is a tree T ′ = (V ′, E′) with D(G → T ′) <
(g − 1)/8. Note that the graph G has an isometric
cycle C with g vertices. Since the distortion between
µ and dG is less than (g − 1)/8, it must be the case
that the distortion between the metric induced by
C (which is the cycle metric on g vertices) and the
restriction of dT ′ to C is also less than (g − 1)/8.

Now let us assume that the vertices of C in T ′ are
the required vertices, and the rest of the vertices
are Steiner vertices. Now, by Theorem 1.1, there
exists a tree on the vertices in C which approximates



distances within the g-cycle to a factor of less than
8 · (g − 1)/8 = (g − 1), which contradicts Lemma 7.1
and proves the theorem.

In a similar vein, a bound of (g′−1)/8 can be proved
where g′ is the length of the longest isometric cycle
in G. Similar arguments can be also employed when
there are large nearly-isometric cycles in the graph
G. As an example, consider the square grid with
n vertices. The metric induced by the vertices on
the bounding face is within distortion 2 of the cycle
metric on 4

√
n vertices. An argument similar to that

above gives a lower bound of Ω(
√

n) on the distortion
incurred by approximating the grid by trees.

7.2 End System Multicast: Recall the problem
described in the introduction: we are given a graph
G of a network, which has as its vertices the hosts
and routers in the network. The edges of the graph
indicate the physical connections between the hosts
and routers, where the length of the edge indicates
the time it takes for a packet to be transmitted across
the link. Multicast routing protocols define a routing

tree T on the hosts and routers, and route all packets
along the edges of this tree. Here we look at two
quantities of interest: the cost of the transmission,
which is the total transmission time and is equal to
the sum of the edge weights in the tree T ′; and the
delay, which is the time it takes for all hosts to receive
the transmission.

If we do not want to change the routing mechanisms
on the routers, which currently only support unicast
transmissions, we would instead want a tree on just
the hosts which can be used to mimic multicast using
unicasts. Our result says that for any multicast
routing tree T , we can define a routing tree T ∗ on
only the hosts, so that both the cost and delay of
emulating the multicast transmission using unicast
transmissions would only be a constant factor more
than in the original routing tree T . In fact, we
have an even better guarantee, i.e., distances between
all pairs of hosts is almost the same as in the
original tree, and so the time for a host to receive
a transmission is almost the same as before. Further,
this all-pairs guarantee is useful for error-recovery:
hosts that drop packets could get them from nearby
hosts without much extra delay, since the closest
vertices in T are also close in T ∗.

At this point, we would like to add that if we

could afford to define separate routing trees for each
host initiating transmissions (the root) and wanted
to preserve the root-node distances as well as to
minimize the cost of the routing tree, both in an
approximate sense, the results of Khuller et al. [4]
could be used instead.

8 Acknowledgments

Many thanks to Yuri Rabinovich for suggesting this
problem, to Ashwin Nayak and Alistair Sinclair for
useful discussions, and to Yatin Chawathe for inform-
ing me about end system multicast.

References

[1] Yatin Chawathe. An architecture for Internet con-
tent distribution as an infrastructure service. In
preparation.

[2] Yang-Hua Chu, Sanjay Rao, and Hui Zhang. A case
for end system multicast. In Proceedings of ACM

Sigmetrics, Santa Clara, CA, 2000.
[3] Paul Francis. Yallcast: Extending the Internet

multicast architecture. http:www.yallcast.com.
[4] Samir Khuller, Balaji Raghavachari, and Neal E.

Young. Balancing minimum spanning and shortest
path trees. Algorithmica, 14(4):305–322, 1995.

[5] Goran Konjevod, R. Ravi, and F. Sibel Salman.
On approximating planar metrics by tree metrics.
Manuscript.

[6] Yuri Rabinovich and Ran Raz. Lower bounds on
the distortion of embedding finite metric spaces
in graphs. Discrete & Computational Geometry,
19(1):79–94, 1998.


