
Improved Bandwidth Approximation for TreesAnupam Gupta�Computer Science DivisionUniversity of CaliforniaBerkeley CA 94720.Email: angup@cs.berkeley.eduAbstractA linear arrangement of an n-vertex graph G =(V;E) is a one-one mapping f of the vertex set V ontothe set [n] = f0; 1; : : : ; n�1g. The bandwidth of thislinear arrangement is the maximum distance betweenthe images of the endpoints of any edge in E(G).When the input graph G is a tree, the best known ap-proximation algorithm for the minimum bandwidthlinear arrangement (which is based on the principleof volume respecting embeddings) outputs a lineararrangement which has bandwidth within O(log3 n)of the optimal bandwidth. In this paper, we presenta simple randomized O(log2 nplogn)-approximationalgorithm for bandwidth minimization on trees.1 IntroductionThe Bandwidth Minimization problem is the follow-ing: given an undirected graph G = (V;E), �nd aone-one mapping of the vertices f : V ! [n] whosebandwidth, which is de�ned to bemax(i;j)2E jf(i)� f(j)j;is minimum. This problem is equivalent to the ma-trix bandwidth minimization problem, which, given asquare symmetric matrixM , seeks to �nd a permuta-tion matrix P such that PMP T has all its non-zeroentries in a band of minimum width about the di-agonal. This not only reduces the space needed tostore the matrices, but can help speed up matrix op-erations such as Gaussian elimination, making this ofmuch importance in many engineering applications.Other applications of the Bandwidth Minimizationproblem are given in [8, 3].�Supported by NSF grants CCR-9505448 and CCR-9820951.

In 1976, this problem was shown to be NP-hard forgeneral graphs by Papadimitriou [14]. Subsequentwork strengthened the hardness result to trees withmaximum degree 3, and to caterpillars of hair-lengthat most 3 [5, 13], making this one of the few problemsknown to be hard even when the input graphs aretrees of a very simple form. Furthermore, it hasalso been shown that the Bandwidth Minimizationproblem is hard to even approximate on trees. Infact, it is NP-hard to approximate it to within anyconstant even when the input graph is a caterpillarof maximum degree 3 [16].On the positive side, approximation algorithms wereknown only for special classes of trees and forasteroidal-triple free graphs [8, 7, 9] until 1998, whenFeige developed a O(log4:5 n)-approximation algo-rithm for general graphs [3], and independently, Blumet al. [2] obtained O(pn=b logn)-approximation algo-rithms, where b is the bandwidth of the input graph.Both these algorithms are based on the idea of ob-taining a \nice" embedding of the input graph intoEuclidean space and then projecting down onto a ran-dom line.The embeddings used in [3] were called volumerespecting embeddings. Subsequent improvementson the bandwidth problem have been achieved bydisplaying better volume respecting embeddings:Feige [4] gave a better analysis of his volume re-specting embeddings to improve the approximationguarantee to O(log3:5 nplog logn) for general graph-s, and independently, Rao [15] obtained improvedvolume respecting embeddings for planar graphs andEuclidean graphs, which gave even better guaranteesof O(log3 n) and O(log3 n log k) respectively for theBandwidth Minimization problem on those graphs.This O(log3 n) guarantee is also the best known re-sult for trees, which are a fortiori planar.



The algorithm presented in this paper tries to cir-cumvent the step of getting a good volume-respectingembedding1, and is much simpler by comparison:it assigns random lengths to the edges of the tree,and places the vertices in order of their resultingdistance from some arbitrarily chosen vertex. Weshow that this algorithm approximates the minimumbandwidth of the input tree T to within a factor ofO(log2 np�(T )), where �(T ) is the caterpillar dimen-sion of the tree T 2. Since it can be shown that thecaterpillar dimension of any n-vertex tree is at mostO(log n), the performance of our algorithm is alwayswithin O(log2:5 n) of optimal.We note in passing that better approximation algo-rithms are known for some special classes of trees:deterministic O(log n)-approximations are known forcaterpillars [8] and some generalizations of height-balanced trees [7]. Though our general analysis on-ly gives an O(log2 n)-approximation guarantee forcaterpillars, we can, by a more specialized argumen-t, show that our algorithm is in fact an O(log n)-approximation algorithms when the input is a cater-pillar.The rest of the paper is organized as follows: insection 2, we �x some notation and de�nitions. Insection 3, we describe the approximation algorithm,which we analyze in section 4. The analysis for theO(log n)-approximation guarantee for caterpillars ispresented in section 5. Finally, more informationabout the proof of a crucial concentration bound usedin the analysis is given in Appendix A.2 Some de�nitionsWe consider a tree T = (V;E) with n vertices and lleaves, which we root at an arbitrary vertex r. Thisimposes an ancestor-descendent relationship on thevertex set of T . We shall also assume that a vertex isits own ancestor. Finally, let d(u; v) be the numberof edges in the unique path between u and v in T .The caterpillar dimension [12, 11] of a rooted tree T ,henceforth denoted by �(T ), is de�ned thus: For atree with a single vertex, �(T ) = 0. Else, �(T ) �1It does not quite escape this paradigm: see section 4.12This quantity, formally de�ned in section 2, has beenpreviously used in [11, 12, 6] to capture the \complexity" oftrees, being, for example, 2 for caterpillars and log n for thecomplete binary tree.

k + 1 if there exist paths P1; P2; : : : ; Pk beginningat the root and pairwise edge-disjoint such that eachcomponent Tj of T � E(P1) � E(P2) � : : : � E(Pk)has �(Tj) � k, where T � E(P1) � E(P2) � : : : �E(Pk) denotes the tree T with the edges of the Pi'sremoved, and the components Tj are rooted at theunique vertex lying on some Pi. The collection ofedge-disjoint paths in the above recursive de�nitionform a partition of E, and are called the caterpillardecomposition of T . It is simple to see that theunique path between any two vertices of T intersectsat most 2�(T ) of these paths. It can also be shownthat �(T ) is at most log l, and that a decompositionwith the minimum value of �(T ) can be computedin polynomial time by dynamic programming (see,e.g., [12]). Furthermore, if time is at a premium,it is possible to compute a (possibly suboptimal)decomposition of value O(log n) in linear time.We assign the vertices of the tree to paths in thecaterpillar decomposition in the following manner: avertex v belongs to the path P if the edge connectingv to its parent belongs to P . The root vertex r isarbitrarily assigned to one of the paths of its children.This also allows us to impose an ordering on thechildren of a vertex v: the child w which lies on thesame path as v is de�ned to be its leftmost child, andits other children are arbitrarily ordered after it.The tree volume Tvol(S) of a k-point metric S is aproduct of the lengths of the edges of the minimumspanning tree of S (considered as a graph with theweight of edge (i; j) being �(i; j)). Hence, if T is anyspanning tree of S, the product of its edge lengths ofT is at least Tvol(S).The local density D of a graph G is de�ned to bemaxv2V maxddjN(v; d)j=2de, where N(v; d) is the setof vertices in G at distance at most d from the vertexv. It is easy to see that this is a lower bound on thebandwidth of G.3 Minimum Bandwidth Approximation forTreesLet us consider the following simple algorithm forproducing a linear arrangement of a rooted tree: let�(r) = 0, and �(v) = d(r; v). Though this is nota one-one map, we can make it so by arranging theset of vertices falling on a particular position in somearbitrary (or random) fashion. Unfortunately, thisis a poor algorithm for bandwidth, since there are



simple examples where the bandwidth is about pn,while this algorithm gives us O(n). One such exampleis given in �gure 1, where the degrees of vertices a andall the bi is about pn, a is connected to each bi by apath of length about pn, and the children of the biare the leaves.
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Figure 1: A bad example for the simplest algorithmsA simple twist to the algorithm is to give independentrandom lengths (say, from the interval [1; 2]) tothe edges to get a weighted tree (with distancefunction d0), and embed as above. Unfortunately,this performs very poorly on the same example givenabove.Continuing with this idea, we again choose randomlengths for the edges, but instead of choosing thelength of each edge independently, we �x a caterpillardecomposition of the tree and for any path P inthe decomposition, we choose a length in [1; 2] andassign this length to all edges lying on P . The mainresult of this paper is that this extremely simplealgorithm (which clearly runs in linear time, given thecaterpillar decomposition) outputs an O(log2:5 n)-approximation for the minimum bandwidth problem.3.1 The AlgorithmLet T = (V;E) be an unweighted undirected treerooted at r. The algorithm Random-Lengthsoutputs a linear arrangement of T , i.e., a mappingf : V ! [n]:Algorithm Random-Lengths� For each path Pi in caterpillar decomposition,choose a rate Ri independently and uniformlyin [1; 2]. For each edge in Pi, let its length beRi. Let the distance function using these edgelengths be denoted by d0, and let �(v) = d0(r; v).

� The map � : V ! R induces a linear order onthe vertices in V . The map f is the naturalconversion of � into a map from V to [n] thus:f(i) = j if jfv 2 V j �(v) < �(i) gj = j. (Notethat this will be a one-one map with probability1.)4 The Analysis for Arbitrary TreesTheorem 4.1. Random-Lengths is anO(log2 np�(T ))-approximation algorithm forthe bandwidth problem on trees.Proof of Theorem 4.1: The proof closely followsthat given by Feige [3]. The basic structure of hisproof is sketched below.1. Let a integer interval be an interval (a; a + 1),where a is an integer. For any S � V withjSj = k, show that the chance that �(S) fallsin some integer interval of unit length (and iscalled bad) is at most �k�1=Tvol(S) for some �.The expected number of bad sets of size k is thusat most �k�1PS(1=Tvol(S)). By Markov, thetotal number of bad sets is not more than twicethis with probability at least a half.2. By Theorem 7 of [3], PS 1=Tvol(S) �n(D logn)k�1. Substituting this into the pre-vious expression, we get that the number of badsets is at most n(D� logn)k�1 with probabilityhalf.3. Now if the bandwidth of f is B, and the lengthof each edge is at most M , then one of the (atmost)M+1 integer intervals an edge spans musthave had at least B=(M + 1) points in it. Thisimplies that we have at least �(B=M+1)k � bad sets.Choosing k = logn and simplifying, B � D �M� log2 n. Since D is a lower bound for theoptimal bandwidth, this gives an O(M� log2 n)-approximation.In the previous results, both M and � wereO(plogn). In lemma 4.1, we will show that the as-sertion in step 1 holds for our algorithm with � =O(p�(T )). Since the length of any edge is at mostM = 2, we will get the claimed approximation guar-antee of O(log2 np�(T )).



Lemma 4.1. For any set S of k points, the probabili-ty that all the points of S fall in some integer intervalis bounded above by O(p�(T ))k�1=Tvol(S).Before we prove this lemma, let us record a usefulresult about the distribution of sums of \well spread-out" variables. This is obtained by unraveling atheorem of Leader and Radcli�e [10], the details ofwhich we defer to the appendix.Lemma 4.2. Let Xi be independent random vari-ables, where Xi takes a value uniformly from the set[di; 2di], where di 2 Z>0. Then there exists a con-stant c > 0 (independent of the di's) such that forany unit open interval I � R,Pr" tXi=1Xi 2 I# � c(Pi d2i )1=2 � c pt(Pti=1 di) :Proof of Lemma 4.1: Look at the set S of kvertices of the tree T . Note that no two vertices ofT which are related to each other can fall into I ,and hence we can assume (w.l.o.g.) that S has noancestor-descendent pairs in it.An important observation is the following: any twovertices in S must be at almost the same distancefrom their least common ancestor, else S can neverbe bad. More formally, for any pair u; v 2 S withleast common ancestor r0, it must be the case thatd(v; r0)=d(u; r0) lies between 12 and 2. This followssimply from the fact that edges are being stretchedby at most a factor of 2. Thus, if the set S does notsatisfy this property, then the vertices of S cannotall lie in the same unit interval. We can thus (again,w.l.o.g.) assume that S satis�es this property.First, let us give an ordering on the vertices of S.Consider the inorder traversal of the tree T (wherethe ordering on the children of any node is inducedby the caterpillar decomposition, and is de�ned insection 2), and let S = fv1; v2; : : : ; vkg, where vi isvisited in this traversal before vi+1. Now let us choosethe random rates for the paths in a delayed fashionbased on this inorder traversal. The rate for a pathis chosen when a vertex belonging to it is visited forthe �rst time. Finally, we choose rates for paths inthis way until the position of v1 is �xed: we now �x Ito be the interval (a; a+1) into which v1 falls, wherea 2 Z.

We claim that conditional on the rates chosen till viis visited, the probability that vi+1 also falls into I is3cp�(T )=d(vi; vi+1), where c is the constant in lem-ma 4.2. This would imply that the chance of S beingbad would be bounded by �k�1i=1 3cp�(T )=d(vi; vi+1),which is at most O(p�(T ))k�1=Tvol(S).To prove the claim, consider the time at which viis visited. Let x be the least common ancestorof vi and vi+1. Clearly, x is distinct from boththese vertices, since they both lie in S, and thusare unrelated. Hence it has children y and z whichare ancestors of vi and vi+1 respectively, and y liesto the left of z. This implies that x and z lieon di�erent paths, and the path containing z andall the paths that hang o� it can not have beenseen yet, and hence the paths between x and vi+1must have still not been seen. Further, the totalcontribution of the paths is d(x; vi+1), which by theabove observation, is at least d(x; vi)=2, and thusat least d(vi; vi+1)=3. Now the position of vi+1,conditional on the events up to when vi is visited, isa sum of at most �(T ) independent random variablesXj , being the contribution of the paths between xand vi+1, and thus lying in some range [dj ; 2dj ],where P dj = d(x; vi+1). By lemma 4.2, the chancethat vi+1 lies in I is at most cp�(T )=d(x; vi+1) =3cp�(T )=d(vi; vi+1).
4.1 Random ProjectionsThough the above algorithm was described withoutany reference to the idea of random projections andvolume respecting embeddings, it turns out to have astrong connection to volume-respecting embeddings.The distance-preserving embedding given in [11, 12]can be easily seen to also be a partial �(T )-volumerespecting embedding of the tree; being partial in thesense that it only preserves volumes of sets S � V inwhich all points lie in di�erent paths of the caterpillardecomposition. Our algorithm can be viewed asprojecting such an embedding onto a random vectorchosen from the positive orthant so that it is not\too close" to any of the coordinate axes. Looselyspeaking, this ensures that sets with more than onepoint from a single caterpillar path do not create anyproblems, which gives us the result.



5 Improved Analysis for CaterpillarsIn this section, we will show that the algorithm givenabove has a better performance guarantee when theinput tree is a caterpillar.Theorem 5.1. The bandwidth of the output pro-duced by the algorithm Random-Lengths on cater-pillars is an logn-approximation to the optimal band-width.Proof: A Caterpillar is a path P (called thespine) with paths fLijgj (called hairs) attached tothe vertex i 2 P , and has caterpillar dimension ofat most 2. For the sake of analysis, let us imagineadding paths of length 2n to either end of the spineto get a new caterpillar which we shall embed. Notethat the local density D0 of this modi�ed caterpillaris almost the same as the local density D of the inputgraph. (In fact, D0 � D + 2.) Hence if we can showthat B � O(D0 logn), we will be done. W.l.o.g., wecan assume that the (extended) spine P is given aunit rate, and thus is isometrically embedded alongthe real line. Again, it suÆces to bound the numberof vertices that fall in some unit interval.Let us focus on the interval I = [i; i + 1]. Nowlet us look at the hair L attached to vertex j. IfjLj < 12 ji � jj, then no vertex from that hair canever fall into i, else it will have at most one vertexin I . Thus there is a constant c such that the(worst-case) number of vertices from L falling intoI is bounded by nL = cPv2L 1=d(vi; v), where thevi is the vertex of P lying at position i. Thus thetotal number of vertices in I can be bounded byPL nL = cPv2V 1=d(vi; v).It is easy to see that the latter sum is bounded aboveby O(D0 logn), since there are at most 2D0d verticesat distance d, and thus the sum can be bounded aboveby 2D0Pi 1=i.AcknowledgmentsMany thanks to David Aldous, Jaikumar Radhakr-ishnan and Alex Russell for discussions on the con-centration bounds. Thanks also to Ashwin Nayakand Alistair Sinclair for several helpful discussions.References
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