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Abstract

This paper studies an extension of the k-median prob-
lem where we are given a metric space (V, d) and not
just one but m client sets {Si ⊆ V }m

i=1, and the goal is
to open k facilities F to minimize:

maxi∈[m]

{ ∑
j∈Si

d(j, F )
}
,

i.e., the worst-case cost over all the client sets. This is
a “min-max” or “robust” version of the k-median prob-
lem; however, note that in contrast to previous papers
on robust/stochastic problems, we have only one stage
of decision-making—where should we place the facili-
ties? We present an O(log n+log m) approximation for
robust k-median: The algorithm is combinatorial and
very simple, and is based on reweighting/Lagrangean-
relaxation ideas. In fact, we give a general framework
for (minimization) facility location problems where
there is a bound on the number of open facilities. For
robust and stochastic versions of such location problems,
we show that if the problem satisfies a certain “projec-
tion” property, essentially the same algorithm gives a
logarithmic approximation ratio in both versions. We
use our framework to give the first approximation algo-
rithms for robust/stochastic versions of k-tree, capaci-
tated k-median, and fault-tolerant k-median.

1 Introduction

Consider the following class of k-facility location prob-
lems: given a metric space (V, d), and a subset of clients
S ⊆ V who want service, we want to locate k facilities
F ⊆ V to minimize some objective function Φ(F | S).
For instance, Φ(F | S) =

∑
x∈S d(x, F ) gives us the k-

median objective function, Φ(F | S) = maxx∈S d(x, F )
is k-center, Φ(F | S) = total distance traveled by sales-
men, one at each f ∈ F , to visit all clients in S is k-
person TSP, etc. Many such problems are known to be
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NP-hard, and have been extensively studied in both the
computer science and operations research communities.

In this paper, we consider the stochastic and robust
versions of these problems. These are cases where we
are given not just one, but several sets S1, S2, . . . , Sm

of clients. Again, we want to locate k facilities, and
the goal is to be simultaneously good for all these client
sets—more precisely, we want to minimize

Robust-Φ = max
i

Φ(F | Si)

in the robust or max-min version, and

Stochastic-Φ =
∑

pi · Φ(F | Si)

in the stochastic version (for given probability values pi

for each scenario).
Robust and stochastic versions of problems natu-

rally model cases with uncertain or dynamic systems.
For instance, we might want to locate our facilities
knowing that one of several scenarios is likely to hap-
pen but we do not know which. Or, we might know
consumer demand patterns on each day of the week
(and maybe on special holidays) and might want to
locate facilities to be simultaneously good given these
scenarios. Note that these problems only have a sin-
gle stage of decision-making, in contrast to much work
that has been done on two-stage stochastic optimiza-
tion [2, 20, 28, 18, 32].

1.1 Our Results and Techniques We consider
the k-median problem as our running example, since
it helps to illustrate the basic ideas we use. Our
first result in Section 2 is obtained using the classi-
cal reweighting/Lagrangean relaxation techniques (see,
e.g., [37, 3]) in conjunction with a natural reverse-greedy
algorithm [7].

Theorem 1.1. (Robust k-Median Result) There
is a combinatorial O(log m + log k)-approximation
algorithm for the robust k-median problem.

In passing, let us mention that a natural approach to
solve the problem by embedding the metric space into
random trees does not seem to give us an advantage
here: we do not currently know how to solve the problem
even on the uniform metric to better than a logarithmic
guarantee.



We then show that, in fact, a similar algorithm
works for any k-facility location problem that sat-
isfies the following “β-projection” property for the
single-scenario version: (The formal definition is given
in (3.7).)

Given any instance of a problem Φ with client
set S, and an infeasible solution F with K > k
facilities, there are K−k facilities F ′ ⊆ F such
that shutting down any facility in F ′ increases
the cost by at most βOpt, and shutting down
a random facility in F ′ (chosen uniformly)
causes the cost to rise by at most β Opt

K−k in
expectation.

To give some intuition for this property, consider the
k-median problem, and the special case when the set
F contains the optimal solution F ∗: in this case we
can set F ′ = F \ F ∗—and when we close a facility
f ∈ F ′, we assign all the clients originally assigned
to f to the facilities these clients were assigned to in
F ∗ = F \ F ′. Clearly, the cost increase in shutting
down any facility in F ′ is at most Opt. Further, the
average cost of shutting down a facility in F ′ will be at
most Opt

|F ′| = Opt
K−k . Note that we looked only at a special

case, and one has to consider other cases when F ∗ 6⊆ F ,
but loosely, the projection property essentially says that
even if F ∗ 6⊆ F , we can “project” the F ∗ onto some k
nodes in F , such that closing a random facility from the
other K−k facilities F \F ∗ behaves more-or-less in the
above-mentioned fashion.

Theorem 1.2. (General Framework) Given any
k-facility location problem Φ that satisfies the above β-
projection property, and where we can efficiently com-
pute the increase in objective function value on dropping
a single facility, there is

• an O(β(log n + log m))-approximation algorithm
for the robust version of Φ, and
• an O(β log n)-approximation for the stochastic
version of Φ.

Theorem 1.3. (Applications) The following prob-
lems have β = O(1): (a) hard-capacitated k-median
with uniform capacities, (b) fault-tolerant k-median with
non-uniform requirements, and (c) k-tree. Hence, all
these problems admit O(log m + log n)-approximation
guarantees for their robust version, and O(log n)-
approximations for their stochastic versions.

We note in passing that the results for hard-capacitated
k-median and non-uniform fault-tolerant k-median seem
to be the first logarithmic approximation guarantees
known for even the one-scenario versions of these prob-
lems. Moreover, our algorithms give incremental solu-
tions for these problems in the sense of [26, 24]: the

output is a permutation of the vertices such that for
every i, the solution consisting of the first i vertices in
this permutation is a good robust/stochastic solution
for the i-location problem on that instance; we elabo-
rate on this in the full version of the paper.

Finally, we show that not all k-facility location
problems give good results using this framework, since
they do not satisfy the projection property:

Theorem 1.4. (Stochastic k-Center) The Sto-
chastic k-center problem is as hard to approximate as
the (minimization) Dense-k-subgraph problem.

Roadmap. In Section 2 we present results for the
Robust k-median problem: first for the uniform metric,
which gives many of the ideas, and then for general
metrics. We then abstract out the general framework in
Section 3. Due to lack of space, we can present only one
of the β-projection proofs in this version (that for k-Tree
in Section 4.1): the rest appear in the final version of the
paper, as do many of the other proofs throughout the
paper. Finally, we give the hardness of the Stochastic
k-center problem in Section 5.

1.2 Other Related Work Location problems under
uncertainty have long been studied in the operations
research literature due to their vast applicability in
real world scenarios. Sheppard [31] used a scenario
based approach to model uncertainty in demand and
minimize the expected cost, while Cooper [9] was among
the first to consider the robust objective on location
problems. Following this, similar models for location
problems such as k-median and UFL were studied [27,
36, 29]. See Louveaux [25] and Daskin and Owen [10]
for more thorough surveys of location problems under
uncertainty with robust and stochastic objectives; a
good summary can be found in the recent survey by
Snyder [33]. The papers by van Hentenryck et al. [35]
have also proposed online stochastic algorithms for some
stochastic location problems. However, to the best of
our knowledge, no algorithms with provable guarantees
have been given for Robust k-Median and the other
Stochastic/Robust location problems we consider in our
work.

In the single-scenario case, many results are known
for the k-median [6, 5, 21, 1, 26, 7] as well as its
capacititated [8] and fault-tolerant versions [34], as well
as for the k-tree [12] and k-center problems [30, 19]. Out
of these, the one most relevant to our work is the reverse-
greedy algorithm of Chrobak et al [7] whose work we
adapt and extend: our proofs of the projection property
give reverse-greedy O(log n)-approximation algorithms
for all the problems we consider.

While facility location problems have been con-
sidered in the context of stochastic optimization (see,



e.g., [20, 28, 18, 32], and robust optimization (see,
e.g., [11, 17, 14]), it is not clear how to use their tech-
niques to solve the problems we consider here. As an
aside, our paper gives results in the explicit scenarios
model: it would be interesting to extend results to cases
where exponentially many scenarios can be handed, e.g.,
like in [18, 32, 4, 14].

Bicriteria results for robust versions of profit max-
imization k-location problems (e.g., locating k depots
such that one salesman can start at each of these de-
pots and travel for at most some time budget B, so as
to maximize the number of clients visited) can be ob-
tained by recent work on robust submodular function
maximization by Krause et al. [23].

2 The Robust k-Median Problem

The robust k-median is the following: given an n-vertex
metric space (V, d), m subsets S1, · · · , Sm ⊆ V of ver-
tices, and a number k, find a subset T ⊆ V of size |T | =
k that minimizes the objective maxm

i=1

∑
v∈Si

d(v, T ),
where given a vertex x ∈ V and S ⊆ V , d(x, S) =
miny∈S d(x, y). In this section, we will give a logarith-
mic approximation algorithm for the problem on general
metric spaces.

2.1 A Warm Up: the Uniform Metric When
(V, d) is the uniform metric, the analysis gives some
intuition for subsequent algorithms. Note that the
problem can be recast as the following:

Given a ground set V , and a family of m
sets {Si ⊆ V }m

i=1, find a set T ⊆ V of size
|T | = k such that the maximum “exposure”
maxi |Si \ T | is minimized.

By a reduction from vertex cover, this is NP-hard to
approximate to better than a factor of 2 (details are
deferred to a full version of the paper). To solve this
problem, we consider the following algorithm which
starts with all the elements, and repeatedly drops the
element that exposes the fewest sets. This would
just minimize the exposure on average, so to get a
result for the maximum exposure, we “penalize” the
newly exposed sets by increasing their weights, so that
exposing them further costs us more. Formally, the
algorithm is given as Algorithm I.

Lemma 2.1. If some set Si is exposed ` times by the
end of the algorithm, its weight is 2`.

Lemma 2.2. Let W t =
∑

i wt
i be the total weight at the

beginning of any round t, and let the optimal solution
expose at most `∗ elements in each set. Then W t+1 ≤
W t(1 + `∗

n−k−t+1 ).

Proof. Let T ∗ be the k elements picked in the optimal
solution: they expose at most `∗ in each of the sets.

Algorithm I: Uniform Metric Robust k-Median

1. Set w1
i = 1 (1 ≤ i ≤ m) and open facilities F 1 = V .

2. For t = 1, · · · , n− k do:

(a) For v ∈ F t, W t(v) = weight of sets containing v.

(b) Let vt be the element that minimizes W t(v)

(c) Drop this element to get F t+1 ← F t \ vt.

(d) Set: wt+1
i = 2 wt

i if Si 3 vt, and wt+1
i = wt

i if
Si 63 vt.

3. Output F n−k+1 of size k.

There are n − k elements in V \ T ∗; in round t, t − 1
of these elements might have been discarded in the
previous rounds, leaving at least n−k−t+1 candidates
in (V \ T ∗) ∩ F t. Since each set contains at most `∗ of
these elements, an averaging argument shows that there
must be one element that is contained in sets whose
weight is at most W t × `∗

n−k−t+1 , and thus W t(vt) is
at most this quantity. But the weight adjustment step
gives us that W t+1 = W t + W t(vt), which proves the
lemma.

Theorem 2.1. If the optimal solution exposes `∗ sets,
then the number of sets exposed by the above algorithm
is at most O(log n)`∗ + O(log m).

Proof. By Lemma 2.2, the total weight of the system at
the end of the algorithm is at most

W 0
∏n−k

t=1

(
1 + `∗

n−k−t+1

)
≤ m exp

{∑n−k
t=1

`∗
n−k−t+1

}

= m exp{O(`∗ log(n− k))}.(2.1)

Now if some set is exposed ` times, its weight (and
hence the total weight of the set system) is at least 2`

by Lemma 2.1; hence 2` is at most the quantity in (2.1).
Taking logs, we get that ` ≤ log m + O(`∗ log(n − k)),
which proves the theorem.

We note that an LP-rounding algorithm can give
an improved 2 · l∗+O(log m) guarantee for this problem
(details in Appendix A). However, that algorithm does
not seem to extend to the general case we consider next.

2.2 Robust k-Median on General Metrics The
algorithm on uniform metrics can be generalized to
obtain an O(log m+log k)-approximation algorithm for
this problem on arbitrary metric spaces: this is based on
a reverse greedy algorithm for k-median due to Chrobak
et al. [7] combined with a weight-update scheme similar
to the one above. In Algorithm II, we first guess a
value B such that 4 · Opt ≤ B ≤ 8 · Opt, where Opt
is the optimal value of the given instance. Note that



a polynomial number of guesses suffice, and we can
assume that B ≥ 1 (by scaling distances).

Algorithm II: Robust k-Median for general metrics

1. Set w1
i = 1 for all 1 ≤ i ≤ m and F 1 = V .

2. For t = 1, · · · , n− k do:

(a) For each v ∈ F t and each 1 ≤ i ≤ m, let δt
i(v) be

the increase in the k-median objective for Si when
the set of facilities changes from F t to F t \ v.

(b) Set cF t = {v ∈ F t | δt
i(v) ≤ B

2
∀1 ≤ i ≤ m}.

(c) Let vt = argmin{Pm
i=1 wt

i · δt
i(v) : v ∈ cF t}.

Drop this vertex and set F t+1 ← F t \ vt.

(d) Update wt+1
i = wt

i ·(1+ 1
B

)δt
i(v

t) for all 1 ≤ i ≤ m.

3. Output F n−k+1 with k facilities.

Let us first prove a technical claim about the
algorithm:

Lemma 2.3. At any time instant t, there exists a set
Qt ⊆ F t of size at most k such that for any scenario Si

∑
v∈F t\Qt δt

i(v) ≤ 2 Opt.

Proof. Our arguments here follow those by Chrobak et
al. [7]. Let T ∗ denote the optimal solution to the robust
k-median problem, and Qt ⊆ F t be the “projection” of
T ∗ onto F t—that is, for each vertex in T ∗ choose one
closest vertex in F t, and let Qt be the resulting set of
chosen vertices. Note that the size of the projection is
|Qt| ≤ |T ∗| = k.

In the following, fix any i ∈ {1, · · · , m}; also, the
superscripts t are dropped for brevity. Summing the
changes δi(v) over all the vertices in R = F \Q, we get
∑

v∈R δi(v) =
∑

v∈R(
∑

x∈Si
d(x, F \ v)−∑

x∈Si
d(x, F ))

=
∑

x∈Si

∑
v∈R(d(x, F \ v)− d(x, F ))

≤ ∑
x∈Si

(d(x,Q)− d(x, F ))(2.2)

≤ ∑
x∈Si

(2 · d(x, T ∗) + d(x, F )− d(x, F ))(2.3)

= 2
∑

x∈Si
d(x, T ∗)(2.4)

To derive inequality (2.2), consider some demand x ∈
Si, and fx ∈ F that serves x in solution F . If fx ∈ Q,
then for any v ∈ R, d(x, F \ v) = d(x, F ), and hence∑

v∈R(d(x, F \ v) − d(x, F )) = 0; if fx ∈ R, then∑
v∈R(d(x, F \ v)− d(x, F )) = d(x, F \ fx)− d(x, F ) ≤

d(x,Q)− d(x, F ). The inequality (2.3) follows from the
triangle inequality:

d(x,Q) ≤ d(x, f∗x) + d(f∗x , Q) = d(x, f∗x) + d(f∗x , F )
≤ d(x, f∗x) + d(f∗x , x) + d(x, F ) = 2 · d(x, T ∗) + d(x, F ),

where f∗x ∈ T ∗ is the facility that serves x in solution
T ∗. Finally, the last expression (2.4) is bounded above
by 2 ·maxm

i=1

∑
x∈Si

d(x, T ∗) = 2 · Opt.

The following claim ensures that the algorithm
is well-defined, and always terminates with a feasible
solution to robust k-median.

Lemma 2.4. If |F t| > k, the set F̂ t ⊆ F t in step 2b is
non-empty.

Proof. By Lemma 2.3, there is a set Qt such that∑
v∈F t\Qt δt

i(v) ≤ 2Opt ≤ B/2 for all scenarios i. More-
over, the δ’s are non-negative: hence each individual
cost increase δt

i(v) ≤ B/2 for all v ∈ R, implying that
F̂ t ⊇ F t \Qt. Since Qt has size at most k, and |F t| > k,
this must be non-empty.

Lemma 2.5. In iteration t, we have

min
v∈cF t {

∑m
i=1 wt

i · δt
i(v)} ≤ 2·Opt

n−k−t+1

∑m
i=1 wt

i .

Proof. Let us fix Qt as in Lemma 2.3, and sum the
weighted δt

i(v) values, both over vertices in F t \Qt and
over scenarios:
∑

v∈F t\Qt

∑m
i=1 wi · δt

i(v) =
∑m

i=1 wi ·
∑

v∈F t\Qt δt
i(v)

≤ ∑m
i=1 wi · 2Opt

The inequality above follows from Lemma 2.3. Finally,
a simple averaging shows that

min
v∈cF t{

∑m
i=1 wt

i · δt
i(v)} ≤ minv∈F t\Qt{∑m

i=1 wt
i · δt

i(v)}
≤ 1

|F t\Qt|
∑

v∈F T \Qt

∑m
i=1 wi · δt

i(v) ≤ 2·Opt
n−k−t+1

∑m
i=1 wt

i ,

which completes the proof of the lemma.

Lemma 2.6. Let W t =
∑m

i=1 wt
i denote the weight in

iteration t. Then W t+1 ≤ W t · eO(1)/(n−k−t+1).

Proof. For any iteration t and scenario i, the weight
update step ensures that

wt+1
i = wt

i(1 + 1
B )δt

i(v
t) ≤ wt

i · eδt
i(v

t)/B ,

where vt ∈ F̂ is the facility that is dropped in iteration
t. From the definition of the set F̂ , δt

i(v
t)/B ∈ (0, 1

2 ];
moreover, for y ∈ [0, 1

2 ], we have ey ≤ 1 +
√

e · y. This

implies wt+1
i ≤ wt

i · (1 +
√

e
δt

i(v
t)

B ), and hence W t+1 ≤∑m
i=1 wt

i · (1 +
√

e
δt

i(v
t)

B ) ≤ W t +
√

e
B

∑m
i=1 wt

i · δt
i(v

t).
Using Lemma 2.5 and the fact that B = Θ(Opt), it
follows that

W t+1 ≤ W t +
√

e
B · 2·Opt

n−k−t+1 ·W t ≤ (1 +
√

e/2
n−k−t+1 )W t.

Finally, the inequality 1 + x ≤ ex implies the lemma.



Theorem 2.2. There is an O(log m + log k)-
approximation algorithm for robust k-median.

Proof. Let Alg = maxi

∑
t δt

i(v
t) denote the value of

the solution F at the end of the algorithm, and let
i0 be the scenario achieving the maximum in the
above expression. Hence, the total weight Wn−k+1 ≥
wn−k+1

i0
= (1 + 1

B )Alg. Furthermore, repeated appli-
cations of Lemma 2.6 implies that Wn−k+1 ≤ W 1 ·
eO(log(n−k)) = m · elog(n−k). Taking logarithms, we get
Alg ≤ (log m+O(log n))/ log(1+ 1

B ). Using B = Θ(Opt)
and the fact that log(1 + y) ≥ y for y ∈ [0, 1], we get
Alg ≤ O(log m+log n) ·Opt. We can perform a filtering
step to ensure that each scenario consists of at most k
demands, which implies n ≤ mk. Hence we have the
theorem.

3 A General Framework for Robust Problems

Consider a location problem Π defined by an objective
function Φ: given a metric space (V, d) and a set of
demand points S ⊆ V , the cost of serving S from a set
of facilities T ⊆ V is given by Φ(T | S). We assume
that Φ is a monotone non-increasing function in the set
of facilities: i.e., Φ(T∪{x} | S) ≤ Φ(T | S) for all facility
sets T ; in other words, opening more facilities does not
cause the cost to increase. Given this monotonicity
property, the natural solution would be to open all of V
as facilities: however, we are given a parameter k, and
want to choose a set of at most k facilities T ⊆ V that
minimizes the resulting cost Φ(T | S). (For instance,
Φ(T | S) =

∑
v∈S d(x, T ) defines the k-median objective

function.)
In the robust version Robust(Π) of the location

problem Π, given m different scenarios S1, S2, . . . , Sm ⊆
V , the goal is to open k facilities T that minimize
maxi Φ(T | Si). Let the optimal solution to this robust
problem be denoted by T ∗, the cost in scenario i be
denoted by Opti = Φ(T ∗ | Si), and the global cost be
denoted by Opt = maxi Opti.

We show that a simple greedy-like procedure gives
good approximations for this problem, given the follow-
ing properties hold.

P1. (Incremental Cost Computation) For each fa-
cility set T ⊆ V and each x ∈ T , we can efficiently
compute the incremental cost of dropping x, to each
scenario i:

δi(T, x) .= Φ(T \ x | Si)− Φ(T | Si).(3.5)

Note that the monotonicity property implies that
this value is non-negative.

P2. (k-Projection) Given any set F ∗ ⊆ V of size k
and a set F ⊆ V of size greater than k, we can

prove the existence of a “small” set Q ⊆ F of size
|Q| ≤ k such that for all scenarios i,

∑
x∈F\Q δi(F, x) ≤ β · Φ(F ∗ | Si).(3.6)

In applications, it also suffices to prove (P1)
and (P2) with any ‘good’ lower bound Φ′ in place of
Φ.1 This modification is useful in cases where the
incremental cost-functions δi’s are approximable under
Φ′, but not under Φ. The first property (P1) naturally
arises in a reverse-greedy-style algorithm for location
problems. The second property (P2) is only required to
prove the performance guarantee: it seems somewhat
mysterious at first, and is useful in the same way as
Lemma 2.3 was for the Robust k-Median problem. In
fact, for applications to robust location problems it suf-
fices to drop the quantification on F ∗ and just prove
(P2) with β · Opt in the right hand side of (3.7).

3.1 The General Algorithm Recall that we start
off with a metric (V, d), demand sets {Si}m

i=1, and the
cost incurred for demand set Si and facility set T is
given by Φ(T | Si). Moreover, we assume that we have
guessed a value B ∈ [2β Opt, 4 β Opt]. The algorithm is
the natural extension of that for Robust k-Median.

General Algorithm for Robust k-Location

1. Initialize weights w1
i = 1 for all 1 ≤ i ≤ m and set of

facilities F 1 = V .

2. For t = 1, · · · , n− k do:

(a) For each v ∈ F t, let δt
i(v) = Φ(F t \ {v} |

Si)− Φ(F t | Si).

(b) Let cF t = {v ∈ F t | δt
i(v) ≤ B

2
∀1 ≤ i ≤ m}.

(c) Let vt = argmin{Pm
i=1 wt

i · δt
i(v) : v ∈ cF t} be a

vertex with the least weighted increase.

(d) Drop this vertex vt and set F t+1 ← F t \ {vt}.
(e) Update weights by wt+1

i = wt
i · (1 + 1

B
)δt

i(v
t) for

all 1 ≤ i ≤ m.

3. Output F n−k+1 with k facilities.

Theorem 3.1. (General Thm: Robust Version)
Given an instance of a robust location problem
Robust(Π) satisfying the properties (P1) and (P2),
the above algorithm is an O(β(log n + log m)) approx-
imation, where m is the number of scenarios, and
n = |V |.

1Lower bound Φ′ is said to be a γ-factor lower bound if it
satisfies Φ′(T | S) ≤ Φ(T | S) ≤ γ · Φ′(T | S) for all T, S ⊆ V .
If we use Φ′ in place of Φ, an additional factor γ appears in the
approximation guarantees of Theorems 3.1 & 3.2.



The proof of this theorem is very similar to that for
Robust k-median, and is deferred to the full version of
the paper.

3.2 Framework for Stochastic Problems We can
extend our framework to stochastic problems as well:
given a location problem Π as in the previous section,
scenarios {Si} that now come with probabilties pi ≥ 0
with

∑m
i=1 pi = 1, the stochastic problem Stoc(Π) seeks

to find a set T of size k that minimizes
∑m

i=1 pi Φ(T |
Si). Once again, we denote the optimal set by T ∗, each
scenario’s cost by Opti = Φ(T ∗ | Si), and StocOpt =∑

i pi Opti. We present the following algorithm for
Stochastic location problems. We assume that we have
guessed a value B ∈ [2β Opt, 4 β Opt]. This algorithm
is similar to that for the robust version; however it does
not use the weight updates.

General Algorithm for Stochastic k-Location

1. Initialize set of facilities F 1 = V .

2. For t = 1, · · · , n− k do:

(a) For each v ∈ F t, let δt
i(v) = Φ(F t \ {v} |

Si)− Φ(F t | Si).

(b) Let vt = argmin{Pm
i=1 pi δt

i(v) : v ∈ F t} be
a vertex with the least weighted increase (by
probability).

(c) Drop this vertex vt and set F t+1 ← F t \ {vt}.
3. Output F n−k+1 with k facilities.

Theorem 3.2. (General Thm: Stoch. Version)
Given an instance of a stochastic location problem
Stoc(Π) satisfying properties (P1) and (P2), the above
algorithm is an O(β log n) approximation, where n is
the number of vertices in V .

Again, the proof of this theorem appears in the full
version of the paper. We note that for this theorem
it suffices to prove (P2) with F ∗ being the optimal
stochastic solution T ∗, in which case the right hand
side in (3.7) becomes β ·Opti. For all problems that we
consider in this paper, we manage to prove (P2) itself,
which immediately implies the corresponding results for
both robust and stochastic versions.

4 Applications to Location Problems

In this section, we apply our general framework to
the following location problems: k-tree, capacitated k-
median, and fault-tolerant k-median. The main step in
each of these applications is proving the k-projection
property (P2). In the following subsection, we present
the proof for the k-tree problem, which is representative

of techniques used to prove the projection property. The
proofs for capacitated k-median and fault-tolerant k-
median appear in the full version of the paper.

4.1 The k-Tree Problem The k-tree problem is the
following: given a metric space (V, d) and a set S of
demand points, we want to open k facilities T ⊆ V and
build a forest of minimum cost in the induced metric
(T ∪ S, d) so that each demand in S lies in a tree
containing some facility in T . In particular, we want
to minimize d(forest(T, S)), where forest(T, S) denotes
the minimum-cost forest in the metric induced on the
set T ∪S that connects each vertex in S to some vertex
in T , so the objective function is:

Φ(T | S) = d(forest(T, S)) =
∑

e∈forest(T,S) d(e).(4.7)

It is worth noting that once we choose the set T
of facilities for a given demand set S, forest(T, S)
corresponds to a minimum spanning tree in the metric
obtained from (T ∪ S, d) by shrinking all the nodes in
T to a single “root” vertex; hence the real effort is in
choosing the set of facilities T .

Note that by taking an Euler tour of the forests
constructed, we also get an approximate solution for
the k-person TSP problem where we have to locate k
salespersons, such that each demand point is visited by
at least one salesperson, and the total distance traveled
by these salespeople is minimized. The robust version
of this problem can be thought of as the case when we
locate k salespeople not knowing which of the m demand
sets S1, . . . , Sm will materialize: the objective function
is then the total distance traversed by these salespeople
on the worst of these m sets.

To apply the general framework of Section 3 to k-
tree, it suffices to prove that this problem satisfies the
two conditions. Property (P1) is easy, since we can
compute the objective function given S and T , and
hence can calculate the exact difference between the cost
of any two solutions in polynomial time. The following
lemma shows that the k-projection property (P2) is
satisfied with β = 4.

Lemma 4.1. (Property P2 for k-Tree) For every
F ∗ ⊆ V (|F ∗| = k) and F ⊆ V with |F | > k, there exists
a subset Q ⊆ F of size at most k such that ∀ 1 ≤ i ≤ m:

∑
r∈F\Q[d(forest(F \ r, Si))− d(forest(F, Si))]

≤ 4 · d(forest(F ∗, Si))

Proof. We prove the lemma for a generic scenario i ∈
[m]. For each f∗ ∈ F ∗ choose a facility η(f∗) ∈ F
closest to f∗. Define Q = {η(f∗) | f∗ ∈ F ∗} to be the
chosen facilities; clearly |Q| ≤ |F ∗| = k. Let δi(r) =
d(forest(F \ r, Si))− d(forest(F, Si)) denote the increase



F

a

forest(F, Si)

Ci(b)Ci(a)

c

Ci(c)

b1 c2
a1 a2 a3 b2

c1

b

f ∗

1
f ∗

2 f ∗

3

Tour τ1 Tour τ3Tour τ2

a3

a2 c2
b1

c1

a1b2

Figure 1: The solution forest(F, Si) and one possible
mapping σ : Ci → Ci ∪ F ∗.

in the cost for Si upon dropping facility r ∈ F \Q. For
each vertex r ∈ F , define:

Ci(r) = {s ∈ Si : (r, s) is an edge in forest(F, Si)}

Since each tree in forest(F, Si) contains at most one
vertex from F , we get that the sets {Ci(r)}r∈F are
disjoint subsets of Si; define Ci = tr∈F Ci(r). The
following claim will be useful in the sequel.

Claim 1. There exists a one-to-one map σ : Ci →
CitF ∗ such that

∑
v∈Ci

d(v, σ(v)) ≤ 2·d(forest(F ∗, Si)).

Proof of Claim 1: Consider the optimal solution
forest(F ∗, Si) induced on the vertices F ∗∪Si, and double
each tree in it to obtain |F ∗| = k vertex-disjoint tours
τ1, · · · , τk (some of which may be empty) on F ∗ ∪ Si

having total length at most 2 · d(forest(F ∗, Si)). Note
that each tour τj contains a distinct vertex from F ∗, and
together these tours contain all of Si ⊇ Ci. We define
a mapping σ : Ci → Ci t F ∗ as follows. Arbitrarily
fix an orientation in each tour τ1, · · · , τk and restrict
each tour to vertices in Ci t F ∗ (by short-cutting).
Now each vertex v ∈ Ci has a unique successor vertex
v′ ∈ Ci t F ∗ in one of the (now oriented) tours: set
σ(v) = v′. Observe that this mapping σ is one-to-one,
and

∑
v∈Ci

d(v, σ(v)) ≤ 2 · d(forest(F ∗, Si)).
We now show how to modify the forest F ′ =

forest(F, Si) to obtain a feasible forest F(r) that con-
nects Si to F \ r, for each r ∈ F \ Q. Furthermore,
we will show that the length of each forest F(r) is
not much more than d(F ′), which would bound δi(r).
For any r ∈ F \ Q, the forest F(r) is constructed as
follows: starting with the forest F ′, delete the edges
{(r, v) | v ∈ Ci(r)} adjacent to r in this forest, and
add the following two edge-sets (i) {(v, σ(v)) | v ∈

Ci(r)} where σ is the map defined in Claim 1; and (ii)
{(f∗, η(f∗)) | f∗ ∈ σ(Ci(r))∩F ∗} (recall that η(f∗) ∈ Q
is the closest facility to f∗ in F ).

We first show that F(r) is a feasible forest con-
necting Si to F \ r: it suffices to argue that Ci(r) is
connected to F \ r. We claim that the edges Ei(r) =
{(v, σ(v)) | v ∈ Ci(r)} (edge-set (i) above) define a col-
lection of paths such that each path contains a vertex in
(F ∗ t Ci) \ Ci(r). Clearly, the edges Ei(r) ⊆ t1≤j≤kτj

correspond to a collection of paths or cycles. They are
acyclic since each tour τj contains an F ∗-vertex and
Ei(r) contains no σ-edge out of F ∗. Now suppose some
path in this collection contained only Ci(r)-vertices: the
σ-edge out of one of its end points (which are in Ci(r))
would have to be missing from Ei(r), which is a con-
tradiction! So each path in Ei(r) contains a vertex in
(F ∗tCi)\Ci(r). The paths in Ei(r) that contain a ver-
tex from Ci \Ci(r) are clearly connected to F \ r, since
the vertices in Ci\Ci(r) remain connected to F \r. Each
of the remaining paths contains a vertex from F ∗, and
the direct edges from σ(Ci(r))∩F ∗ to Q ⊆ (F \r) (edge-
set (ii) above) connect the remaining Ci(r)-vertices to
F \ r.

Next, note that we can upper bound the increase in
cost δi(r) ≤ d(F(r)) − d(F ′) by −∑

v∈Ci(r)
d(r, v) +∑

v∈Ci(r)
d(v, σ(v)) +

∑
f∗∈σ(Ci(r))∩F∗ d(f∗, Q). The

last term of this expression can be bounded thus:
∑

f∗∈σ(Ci(r))∩F∗ d(f∗, Q)

=
∑

f∗∈σ(Ci(r))∩F∗ d(f∗, F )

≤ ∑
f∗∈σ(Ci(r))∩F∗ [d(f∗, σ−1(f∗)) + d(σ−1(f∗), F )]

≤ ∑
v∈Ci(r)

[d(σ(v), v) + d(v, F )]

Above, the first equality is by the choice of Q ⊆ F , and
subsequent inequality follows from triangle inequality
and the observation that σ is one-to-one. Plugging
the final expression into the original bound, the cost
increase δi(r) is bounded by

2 ·∑v∈Ci(r)
d(v, σ(v)) +

∑
v∈Ci(r)

[d(v, F )− d(v, r)]

≤ 2 ·∑v∈Ci(r)
d(v, σ(v))

where the final inequality uses that r ∈ F . Now
summing over all r ∈ F \ Q, we get

∑
r∈F\Q δi(r) ≤

2 · ∑r∈F\Q
∑

v∈Ci(r)
d(v, σ(v)) ≤ 2 · ∑v∈Ci

d(v, σ(v)).
Finally, by Claim 1, this last expression is at most
4 · d(forest(F ∗, Si)), which completes the proof.

For the k-person TSP problem (mentioned earlier), we
can work with the k-tree lower bound in place of Φ
in properties (P1) & (P2); as noted in Section 3, this
suffices to obtain the robust/stochastic results for k-
person TSP as well.



4.2 Capacitated k-Median Problem In the ca-
pacitated k-Median problem, we are given a metric
(V, d), a subset S ⊂ V of demand points, a number k
and a capacity µ such that |S| ≤ k · µ. We are required
to open at most k facilities F and give an assignment
ρ : S → F of demand points to open facilities such that
at most µ demand points are assigned to any open fa-
cility (i.e., |ρ−1(f)| ≤ µ for all f ∈ F ). Note that given
the map ρ, the facility set F = ρ(S) is implicitly spec-
ified; moreover, given a facility set F one can find the
map ρ by solving a min-cost b-matching problem. The
cost of a solution F is Φ(F | S) =

∑
v∈S d(v, ρ(v)), for ρ

as defined above. In the full version, we show that this
problem satisfies the conditions for our general frame-
work, and hence we obtain the corresponding results for
robust and stochastic capacitated k-Median.

4.3 Fault-tolerant k-Median In this problem, we
are given a demand set S ⊆ V , and also a requirement
rv ∈ {1, 2, . . . , k} for each client v ∈ S: the goal is
to open some k facilities F ⊆ V and connect each
client v to rv distinct facilities in F such that the total
connection cost is minimized. Given a facility set F ,
each client v ∈ S is connected to the set Cv of rv distinct
facilities in F closest to v. So the cost of the solution is
Φ(F | S) =

∑
v∈S

∑
f∈Cv

d(v, f). In the full version, we
prove the k-projection property for this problem, and
hence obtain a logarithmic approximation for robust
fault-tolerant k-Median.

5 The Stochastic k-Center Problem

In the previous sections, we gave efficient approximation
algorithms for some robust and stochastic location
problems. In this section, we study another natural
location problem, that turns out to be fairly difficult to
approximate. An instance of the Stochastic k-Center
problem consists of subsets {Si}m

i=1 of vertices in a
metric space (V, d), and the goal is to open a set T of
k facilities to minimize

∑m
i=1 maxx∈Si d(x, T ). (Under

our generic definition of stochastic location problems,
this is really only a special case where all scenarios have
equal probabilities.) Note that if there is only one set Si,
this is the classical k-center problem, for which several
2-approximations are known, and this is the best we can
do unless P = NP .

In this section we show that the Stochastic k-Center
problem is closely related to the Dense k-Subgraph
problem. Recall that in the standard (maximization
version of the) Dense k-Subgraph problem, we are given
a graph G with n vertices and a value k, and the goal is
to pick k vertices which maximize the number of edges
in the induced subgraph. The minimization version of
Dense k-Subgraph will also be useful, in which the goal
is to pick k edges to minimize the number of vertices

incident to these edges. The best result known is that
of Feige et al. [15] who give an O(nδ)-approximation
algorithm for some δ < 1/3. The problem is believed
to be fairly hard, and [13, 22] showed that the dense k-
subgraph problem is hard to approximate within some
constant ρ > 1 under two different complexity-theoretic
assumptions.

We study the Stochastic k-Center problem on the
uniform metric, and hence can formulate it as a set-
covering-type problem:

Given m subsets {Si}m
i=1 of a ground set V ,

the goal is to pick a set T of k elements to
minimize the number of sets not contained
within T . I.e., the objective is to minimize
{i ∈ [m] | Si 6⊆ T}.

Theorem 5.1. (Stochastic k-Center Hardness)
An α-approximation to the Stochastic k-Center problem
on the uniform metric implies an α-approximation
for the minimization version of the Dense k-Subgraph
problem.

Proof. Given an instance G of the Dense k-Subgraph
problem, we construct an auxiliary bipartite graph H =
(P, Q,E′) with P = V (G), Q = E(G), and E′ connects
p ∈ P and q ∈ Q if the edge corresponding to q is
incident to the vertex corresponding to p. Note that
solving the minimization version of Dense k-Subgraph
on G is the same as finding a subset A ⊆ Q with size
k such that the number of “vertices” in P that are
adjacent (using the edges in H) to “edges” in A ⊆ Q is
minimized.2

We can now turn this problem on H = (P, Q,E′)
into an instance of Stochastic k-Center. The metric we
consider is the uniform metric on points corresponding
to Q. We have one scenario for each p ∈ P , where
the scenario Sp contains all the demand points q ∈ Q
such that (p, q) ∈ E′. Now consider this instance of
the Stochastic k-Center problem with parameter n− k:
it seeks to find a subset A′ ⊆ Q with |A′| ≤ n − k to
minimize the number of sets Sp not contained within
A′. In other words, it finds a set A ⊆ Q of size at
least k to minimize the the number of vertices in its
neighborhood Γ(A) = {p ∈ P | ∃q ∈ A, (p, q) ∈ E′}.
Hence, if we do not violate the cardinality constraints,
any algorithm for the Stochastic k-Center problem on
the uniform metric with approximation ratio α gives
an identical approximation for the Dense k-Subgraph
minimization problem.

2In other words, the Dense k-Subgraph problem reduces to a
bipartite graph expansion problem, where we want to find a set
of vertices of size at least k on the right hand side that expands
the least.
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A Improved guarantee for Robust k-Median on
uniform metrics

We consider the following natural linear relaxation for
the Robust k-Median problem on a uniform metric.
Recall that there are n elements V , and m scenarios
S1, · · · , Sm ⊆ V ; the goal is to pick k elements so as
to minimize the number of uncovered elements in any
scenario.

min z
s.t. z ≥ ∑

e∈Si
xe ∀1 ≤ i ≤ m∑

e∈V xe = n− k
0 ≤ x ≤ 1
z ≥ 0

Above xe is 1 if element e is not picked, and 0 otherwise.
Let us fix any solution (x, z) to this linear program.
To round this solution, we use the dependent rounding
scheme of Gandhi et al. [16], which implies the following
in our context.

Theorem A.1. (Gandhi et al. [16]) There is a
polynomial time randomized algorithm that generates
Xe ∈ {0, 1} for all e ∈ V such that:

1. Pr[Xe = 1] = xe for all e ∈ V .

2. Pr[
∑

e∈V Xe = n− k] = 1.

3. {Xe | e ∈ V } are negatively correlated. This
implies that for any S ⊆ V , if µS = E[

∑
e∈S Xe]:

Pr[
∑

e∈S

Xe > (1 + δ)µS ] ≤ e
−δ2µS

2+δ ∀δ ≥ 0

Using this rounding scheme, it is clear that we
always pick exactly k elements. For any scenario Si,
we have µi = E[

∑
e∈Si

Xe] =
∑

e∈Si
xe ≤ z. Using

property (3) in the above theorem with δi = µi+α
µi

for
each Si (α > 0 will be fixed later), we have for each
1 ≤ i ≤ m:

Pr[
∑

e∈Si

Xe > 2µi + α] ≤ e
− (µi+α)2

3µi+α ≤ e−α/3

Setting α = O(log m), and using µi ≤ z for all
scenarios Si, we get Pr[

∑
e∈Si

Xe > 2 · z + α] ≤ 1
m2

for each 1 ≤ i ≤ m. Now, by a union bound over
all scenarios we obtain that with probability at least
1− 1

m , the maximum number of uncovered elements in
any scenario is at most 2 · z + O(log m).


