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This paper studies an extension of the k-median problem under uncertain demand. We are given an n-vertex metric space
�V �d� and m client sets 	Si ⊆ V �mi=1. The goal is to open a set of k facilities F such that the worst-case connection cost over
all the client sets is minimized, i.e.,

min
F⊆V � �F �=k

max
i∈�m�

{∑
j∈Si

d�j� F �

}
�

where for any F ⊆ V , d�j� F �=minf∈F d�j� f �. This is a “min-max” or “robust” version of the k-median problem. Note that
in contrast to the recent papers on robust and stochastic problems, we have only one stage of decision-making where we select
a set of k facilities to open. Once a set of open facilities is fixed, each client in the uncertain client-set connects to the closest
open facility. We present a simple, combinatorial O�logn+ logm�-approximation algorithm for the robust k-median problem
that is based on reweighting/Lagrangean-relaxation ideas. In fact, we give a general framework for (minimization) k-facility
location problems where there is a bound on the number of open facilities. We show that if the location problem satisfies
a certain “projection” property, then both the robust and stochastic versions of the location problem admit approximation
algorithms with logarithmic ratios. We use our framework to give the first approximation algorithms for robust and stochastic
versions of several location problems such as k-tree, capacitated k-median, and fault-tolerant k-median.
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1. Introduction. Consider the following class of facility location problems: given a metric space �V �d�
with �V � = n locations, and a subset of locations S ⊆ V containing clients that want service, we want to locate a
set of k facilities F ⊆ V to minimize the cost of servicing clients S from the facilities F , denoted by ��F � S�.
Because the number of facilities to be opened is constrained by the number k, we refer to such problems as
k-facility location problems.
Below we list several examples of problems that fall into this category.
(i) k-median: For the k-median problem,

��F � S�=∑
x∈S

d�x�F ��

where we define d�x�F �=minf∈F d�x� f �.
(ii) k-center: For the k-center problem,

��F � S�=max
x∈S

d�x�F ��

(iii) k-person TSP: For the k-person TSP,

��F � S� = minimum total distance traveled by salesmen, one at each f ∈ F �
so as to visit all clients in S�

Many k-facility location problems are known to be NP-hard, and have been extensively studied in both the
computer science and operations research literature.
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In this paper, we study several k-facility location problems under uncertainty in demands, i.e., when the
client-set is not fixed in advance. Specifically, we consider the following stochastic and robust versions of these
problems. We are given several sets S1� S2� � � � � Sm of clients, which are called scenarios. The goal is to locate
k facilities that are simultaneously good for all scenarios—more precisely, we want to minimize the objective
function

Robust-�= m
max
i=1

��F � Si��

in the robust (or min-max) version, and

Stochastic-�=
m∑
i=1
pi ·��F � Si��

in the stochastic version (for given probability values pi for each scenario Si). Recall that ��F � Si� denotes the
cost of servicing client set Si using the set of facilities F .
The robust and the stochastic versions of these location problems naturally model cases with uncertain or

dynamic systems. For instance, we might want to locate our facilities knowing that one of several scenarios are
likely to happen but we do not know which. Or, we might know consumer demand patterns on each day of the
week (and maybe on special holidays) and might want to locate facilities to be simultaneously good given these
scenarios. Note that these problems only have a single stage of decision-making, in contrast to much work that
has been done on two-stage stochastic optimization (Birge and Louveaux [2], Immorlica et al. [22], Ravi and
Sinha [32], Gupta et al. [19], Shmoys and Swamy [36]).

1.1. Our results and techniques. We use the k-median problem as an example to illustrate the basic ideas
of our algorithm. We present an O�logm+ logn�-approximation algorithm for the robust k-median problem in §3
where m is the number of different client sets and n is the number of vertices in the given metric. The algorithm
uses ideas from the classical reweighting/Lagrangean-relaxation techniques (see, e.g., Welzl [42], Cesa-Bianchi
and Lugosi [4]) in conjunction with a reverse-greedy algorithm (Chrobak et al. [8]). We note that the natural
approach to solving the problem by embedding the metric space into a tree metric does not seem to give us an
advantage here as we do not know how to obtain a better than logarithmic approximation for the problem even
on a uniform metric. (The uniform metric is one where all points are at equal distance from each other, and it
is a tree metric, because it can be represented as the shortest-path metric on the leaves of the unweighted star
graph K1� n.)
We then show that, in fact, a similar algorithm works for any k-facility location problem that satisfies the

following “�-projection” property for the single-scenario version (this is formalized in (6)).

Given any instance of a k-location problem with objective function �, client set S, and an infeasible solution F with
K > k facilities, there are K − k facilities F ′ ⊆ F such that shutting down a random facility in F ′ (chosen uniformly)
causes the cost to rise in expectation by at most �/�K− k� times the optimum.

To give some intuition for this property, consider the k-median problem and the special case when the set
F contains the optimal solution F ∗: in this case we can set F ′ = F \F ∗ and when we close a facility f ∈ F ′,
we assign all the clients originally assigned to f to the facilities these clients were assigned to in F ∗ = F \F ′.
The sum over all f ∈ F ′ of the cost increase in shutting down facility f is at most OPT, where OPT denotes
the optimal objective value. Hence the average cost increase of shutting down a facility in F ′ is at most
OPT/�F ′� = OPT/�K − k�. Note that we looked only at a special case, and one has to consider other cases
when F ∗ �⊆ F , but loosely, the projection property says that even if F ∗ �⊆ F , we can “project” the F ∗ onto some
k vertices in F , such that closing a random facility from the other K − k facilities F \F ∗ behaves more-or-less
in the above-mentioned fashion.
In §4, we show that for any k-location problem � with the above �-projection property and where the

objective function � is computable in polynomial time, there is
(i) an O�� · �logn+ logm��-approximation algorithm for the robust version of �, and
(ii) an O�� · logn�-approximation algorithm for the stochastic version of �.

Additionally, the algorithm for stochastic k-location problems is incremental (Mettu and Plaxton [28], Lin
et al. [26]) in the following sense. We obtain a permutation � of all locations V such that for any bound
1 ≤ t ≤ n on the number of facilities, 	�1� � � � ��t� is an approximately optimal solution to the stochastic
t-location problem.
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We show that the projection property holds for the following problems with �=O�1�:
(i) Hard-capacitated k-median with uniform capacities (the nonuniform soft-capacitated version was studied

in Chuzhoy and Rabani [9]),
(ii) Fault-tolerant k-median with nonuniform requirements (the uniform version was studied in Swamy and

Shmoys [38]), and
(iii) k-tree.

Hence, the robust and the stochastic versions of all these problems admit logarithmic approximation guarantees.
We also note that the results for hard-capacitated k-median and nonuniform fault-tolerant k-median seem to
be the first logarithmic approximation guarantees known for even the deterministic versions of these problems
(where there is only one scenario or client set).
Finally, we show that not all natural k-facility location problems give good results using this framework,

because they do not satisfy the projection property. In particular, we show that the stochastic k-center problem
is as hard to approximate as the (minimization) dense-k-subgraph problem. Dense-k-subgraph is a well-studied
problem for which the best approximation guarantee is O�n�� (for some constant � < 1/3) (Feige et al. [16]),
and improving on this is a long-standing open question.
We would like to point out that in all the k-location problems we consider, we do not have costs associated

with opening facilities at specific locations.

1.2. Related work. Location problems under uncertainty have long been studied in the operations research
literature because of their vast applicability in real-world scenarios. Sheppard [35] used a scenario-based
approach to model uncertainty in demand and minimize the expected cost, while Cooper [11] was among the
first to consider the robust objective on location problems. Following this, similar models for location problems
such as k-median and uncapacitated facility location were studied (Mirchandani and Odoni [29], Weaver and
Church [41], Rosenblatt and Lee [33]). See Louveaux [27] and Daskin and Owen [12] for more thorough surveys
of location problems under uncertainty with robust and stochastic objectives; a good summary can be found in
the recent survey by Snyder [37]. The papers by Van Hentenryck et al. [39] have also proposed online stochastic
algorithms for some stochastic location problems. However, to the best of our knowledge, no algorithms with
provable guarantees have been given for robust k-median and the other stochastic/robust location problems we
consider in our work.
In the single-scenario case, many results are known for the k-median problem (Charikar et al. [7], Charikar

and Guha [6], Jain and Vazirani [23], Arya et al. [1], Mettu and Plaxton [28], Chrobak et al. [8]) as well as
its capacitated (Chuzhoy and Rabani [9]) and fault-tolerant versions (Swamy and Shmoys [38]), and k-center
problems (Sahni and Gonzalez [34], Hochbaum and Shmoys [20]). Out of these, the one most relevant to our
work is the reverse-greedy algorithm of Chrobak et al. [8] whose work we adapt and extend: our proofs of the
projection property give reverse-greedy O�logn�-approximation algorithms for all the problems we consider.
While facility location problems have been considered in the context of stochastic optimization (see, e.g.,

Immorlica et al. [22], Ravi and Sinha [32], Gupta et al. [19], Shmoys and Swamy [36]), and robust optimization
(see, e.g., Dhamdhere et al. [13], Golovin et al. [18], Feige et al. [15]), it is not clear how to use the techniques
in these previous papers to solve the problems we consider where we have a strict bound on the number of open
facilities.
Bicriteria results for robust versions of profit maximization k-location problems (e.g., locating k depots such

that one salesman can start at each of these depots and travel for at most some time budget B, so as to maximize
the number of clients visited) can be obtained by recent work on robust submodular function maximization by
Krause et al. [25].

Outline. In §3, we present our results for the robust k-median problem. We first consider the case of
uniform metrics, which gives many of the ideas, and then extend the ideas to general metrics. We then abstract
out the general framework in §4. In the following sections (§§5, 6, and 7), we show that the k-tree problem,
capacitated k-median problem, and the fault-tolerant k-median problem satisfy our general framework and thus
admit O�logm+ logn�-approximation guarantees for their robust version and O�logn�-approximations for their
stochastic versions. Finally, we give evidence of the hardness of approximating stochastic k-center in §8.

2. Notation and preliminaries. In the following discussion, we consider finite metric spaces �V �d� with
�V � = n points. The function d! V ×V →�+ satisfies the following two conditions:
(i) d�u� v�+d�v�w�≥ d�u�w� for all u� v�w ∈ V (triangle inequality), and
(ii) d�u� v�= d�v�u� for any u� v ∈ V (symmetry).
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A metric �V �d� is uniform if d�x� y� = 1 for all x� y ∈ V , x �= y. For a set S ⊆ V and j ∈ V , we define
d�j� S�=minj ′∈S d�j� j ′�. We let diam�V �d� denote the diameter of the metric; i.e.,

diam�V �d�=max
i� j∈V

d�i� j��

For any integer t ≥ 1, �t� denotes the set 	1�2� � � � � t�. All logarithms in the paper are base-2 logarithms, unless
otherwise specified. The tth harmonic number is Ht = 1 + 1

2 + 1
3 + · · · + 1

t
. We will often use the standard

approximation that Ht =O�log t�. We also use the notation ⊕ for symmetric difference; i.e., for sets A and B,
A⊕B= �A\B�∪ �B\A�.

Approximation algorithm. Given a minimization problem ( and a parameter )≥ 1, an )-approximation
algorithm for the problem ( is an algorithm that, on every input instance � , outputs a feasible solution whose
cost is at most a factor ) times the cost of an optimal solution for the instance � (Vazirani [40]) in time
polynomial in the length of the input.

3. The robust k-median problem. In the robust k-median problem, we are given an n-vertex metric space
�V �d�, m subsets S1� � � � � Sm ⊆ V of clients, and a bound k on the number of facilities. We want to find a set
of k facilities F ⊆ V that minimizes the objective,

m
max
i=1

∑
v∈Si

d�v� F ��

In this section, we prove the following.

Theorem 3.1 (Robust k-Median Result). There is an O�logm+ logn�-approximation algorithm for the
robust k-median problem where m is the number of client sets and n is the number of vertices in the given
metric.

3.1. A warm up: The uniform metric. We first study the special case when �V �d� is a uniform metric. The
analysis here illustrates the basic ideas for the subsequent algorithms. In the uniform metric case, the problem
can be recast as follows:

Given a ground set V and a family of m sets S1� � � � � Sm ⊆ V , find a set F ⊆ V where �F � = k such that the maximum
“exposure” maxmi=1 �Si\F � is minimized.
The set F corresponds to open facilities and the exposure of any set Si is the number of elements in Si that

are left uncovered by the open facilities; i.e., �Si\F �. We first observe that it is NP-hard to approximate robust
k-median on uniform metrics to better than a factor of two (see Figure 3 for an illustration).

Theorem 3.2. The robust k-median problem on uniform metrics is NP-hard.

Proof. We reduce from the decision version of the minimum vertex cover problem: given a graph G =
�V �E� and a parameter k, the goal is to decide if there is a subset V ′ ⊂ V with �V ′� ≤ k such that for each edge
�u� v� ∈E, at least one of u and v is in V ′.
Given an instance �G= �V �E�� k� of vertex cover, we construct a robust k-median instance as follows. We

consider a uniform metric on the vertex set V , and corresponding to each edge e= �u� v� ∈E there is a scenario
Se = 	u� v�. The goal is to open k facilities F so as to minimize the maximum exposure, maxe=�u� v�∈E �	u� v�\F �.
If G has a vertex cover V ′ of size k, then setting F = V ′ would cover at least one vertex from each set

	Se � e ∈E�, and hence the optimal value of robust k-median is at most 1. On the other hand, if G has no vertex
cover of size at most k, then any choice of F ⊆ V (of size k) would miss both vertices of some edge in E.
Hence in this case, the optimal value of the robust k-median instance would be 2. Because the vertex cover
problem is NP-hard, this proves the theorem.
The same reduction implies that robust k-median on general metrics is �2− -�-hard to approximate for any

-> 0. For this, we modify the above uniform metric by introducing L (some large number) copies of each vertex
in V (all copies of a vertex are at zero distance from each other), and for each edge e= �u� v� ∈ E scenario Se
consists of all copies of vertices u and v. In this case, if G has a vertex cover of size k, then the optimal value
is L; otherwise the optimal value is 2L. Thus it is NP-hard to approximate robust k-median on general metrics
to better than factor of two. �
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Our algorithm for the uniform metric robust k-median problem is based on maintaining “weights” for each
scenario and reweighting them appropriately. This technique is similar to the Experts algorithm in learning theory
(see the survey by Blum [3]), and the fast combinatorial algorithms for solving fractional covering/packing
linear programs (Plotkin et al. [31]).
We first observe that two natural greedy algorithms do not work well for this problem. One simple approach

is to start with all elements and repeatedly drop the element that increases the exposure of the fewest sets until
the number of elements is k. Another greedy approach would be to repeatedly drop any element that keeps the
maximum exposure minimized until the number of elements is k. Appendix B gives bad examples for both these
algorithms.
To get a result for minimizing the maximum exposure, we “penalize” the newly exposed sets by increasing their

weights, so that exposing them further costs us even more. Formally, the algorithm is as stated in Algorithm 1.

Algorithm 1 (Uniform metric robust k-median)

• Set w1i ← 1 (1≤ i≤m) and open facilities F 1 = V .
• For t = 1� � � � � n− k do:

(i) For each v ∈ F t , Wt�v� !=∑
i�Si�v w

t
i ; i.e., total weight of sets containing v.

(ii) Let vt be the element v ∈ F t that minimizes Wt�v�.
(iii) Drop this element to get F t+1 ← F t\	vt�.
(iv) Set wt+1

i ← 2 ·wt
i if Si � vt , and wt+1

i ←wt
i if Si �� vt .

• Output F n−k+1 of size k.

The next claim follows immediately from the statement of the algorithm.

Claim 3.1. If the exposure of some set Si at the end of the algorithm is l, then its weight is 2l.

Claim 3.2. Let Wt = ∑m
i=1w

t
i be the total weight at the beginning of round 1 ≤ t ≤ n − k, and let the

maximum exposure of the optimal solution be l∗. Then

Wt+1 ≤Wt

(
1+ l∗

n− k− t+ 1
)
�

Proof. Let F ∗ be the k elements picked in the optimal solution: they expose at most l∗ in each of the
sets. Note that there are n− k elements in V \F ∗, and by round t at most t − 1 of these elements might have
been discarded, leaving at least n − k − t + 1 elements in F t\F ∗. Because each set contains at most l∗ of
these elements, an averaging argument shows that there must be an element such that the total weight of sets
containing it is at most Wt× l∗/�n− k− t+ 1�. Thus Wt�vt� is at most this quantity. But the weight adjustment
step implies that Wt+1 =Wt +Wt�vt�, which proves the lemma. �

We are now ready to prove the performance guarantee of Algorithm 1.

Theorem 3.3. If the maximum exposure of the optimal solution is l∗, then the maximum exposure in the
solution found by Algorithm 1 is O�logn� · l∗ +O�logm�. Hence there is an O�logm+ logn�-approximation
algorithm for robust k-median on uniform metrics.

Proof. By Claim 3.2, the total weight of the m sets at the end of Algorithm 1 is at most:

W 1 ·
n−k∏
t=1

(
1+ l∗

n− k− t+ 1
)

≤ m · exp
{n−k∑
t=1

l∗

n− k− t+ 1
}

= m · exp	l∗Hn−k��

where Ht is the tth harmonic number. Now, if some set is exposed l times, its weight (and hence the total weight
of all sets) is at least 2l by Claim 3.1. Therefore,

2l ≤m · exp	l∗Hn−k�� (1)

Taking logarithms on both sides of (1), we get that

l≤ logm+O�l∗ ·Hn−k��

Finally using Ht =O�log t� proves the theorem. �

We note that an algorithm based on solving a suitable linear programming relaxation followed by randomized
rounding gives an improved �1+1�l∗ +O�logm/1� guarantee (with any constant 0< 1 < 1) for robust k-median
on uniform metrics, where l∗ is the optimal value; the details appear in Appendix A. However, that algorithm
does not extend to the case of general metrics considered in the next section.
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3.2. Robust k-median on general metrics. In this section, we generalize the algorithm on uniform metrics
to obtain an O�logm+ logn�-approximation algorithm for the robust k-median problem on general metrics.
This algorithm is based on a reverse greedy algorithm for k-median because of Chrobak et al. [8] combined
with a weight-update scheme similar to the one described above. We assume (by scaling) that distances in the
metric are at least one and we let 2 != diam�V �d�. Then observe that the optimal value of any robust k-median
instance lies in the interval �1� n2�; recall that n= �V �.
In Algorithm 2 (described below), we also assume that we know a value B such that 4 ·OPT≤ B ≤ 8 ·OPT,

where OPT is the optimal value of the given robust k-median instance. This assumption can be discharged by
running the algorithm several times, trying all values of B that are powers of two in the interval �1�8n2� and
finally taking the minimum cost solution. We need to try O�log�n2�� different values for B, which is polynomial
in the size of the input.

Algorithm 2 (Robust k-median for general metrics).
• Set w1i ← 1 for all 1≤ i≤m and F 1 ← V .
• For t = 1� � � � � n− k do:

(i) For each v ∈ F t and each 1≤ i ≤m, let �ti�v� be the increase in the k-median objective for Si when
the set of facilities changes from F t to F t\	v�; i.e.,

�ti�v� !=
∑
x∈Si

�d�x� F t\v�−d�x�F t���

(ii) Set �F t ← 	v ∈ F t � �ti�v�≤ B/2 ∀1≤ i≤m�.
(iii) Set vt ← argmin	

∑m
i=1w

t
i · �ti�v�! v ∈ �F t�. Drop this vertex and set F t+1 ← F t\	vt�.

(iv) For all 1≤ i≤m, update

wt+1
i ←wt

i ·
(
1+ 1

B

)�ti �v
t �

�

• Output F n−k+1 with k facilities.

We first prove the following lemma.

Lemma 3.1. In any iteration 1≤ t ≤ n− k, there exists a set Qt ⊆ F t of size at most k such that for each
scenario 	Si�

m
i=1, ∑

v∈F t\Qt
�ti�v�≤ 2

∑
x∈Si

d�x� F ∗�≤ 2OPT�

where F ∗ is an optimal solution to the robust k-median instance, and OPT=maxmi=1
∑

x∈Si d�x� F
∗�.

Proof. Our arguments here follow those by Chrobak et al. [8]. For each f ∗ ∈ F ∗, let 4�f ∗� !=
argming∈F t d�f

∗� g�; i.e., the vertex in F t closest to f ∗. Let Qt ⊆ F t be the “projection” of F ∗ onto F t; i.e.,
the vertices in F t closest to F ∗. Formally, Qt != 	4�f ∗� � f ∗ ∈ F ∗�. Note that the size of the projection is
�Qt� ≤ �F ∗� = k.
In the following discussion, fix any i ∈ 	1� � � � �m�; the superscripts t are dropped for brevity. Summing the

changes �i�v� over all the vertices in R= F \Q, we get
∑
v∈R

�i�v� =
∑
v∈R

(∑
x∈Si

d�x� F \v�− ∑
x∈Si

d�x� F �

)

= ∑
x∈Si

∑
v∈R
�d�x�F \v�−d�x�F ��

≤ ∑
x∈Si

�d�x�Q�−d�x�F �� (2)

≤ ∑
x∈Si

�2 ·d�x�F ∗�+d�x�F �−d�x�F �� (3)

= 2
∑
x∈Si

d�x� F ∗�� (4)

To derive inequality (2), consider some client x ∈ Si and fx ∈ F that serves x in solution F (see also Figure 1).
If fx ∈Q, then for any v ∈R,

d�x�F \v�= d�x�F � ⇒ ∑
v∈R
�d�x�F \v�−d�x�F ��= 0�
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F* F = Ft

Qt

x fx

fx
*

d(x, Q)

d(x, F )

d(x, F*)

d( fx, Q)*

Figure 1. Argument for robust k-median. The shaded portion on the right is Q=Qt , and the grey arrows indicate the “projection” from
F ∗ to F .

If fx ∈R, then ∑
v∈R
�d�x�F \v�−d�x�F ��= d�x�F \fx�−d�x�F �≤ d�x�Q�−d�x�F ��

To obtain inequality (3), let f ∗
x ∈ F ∗ be the facility that serves x in solution F ∗ (see Figure 1). Using the triangle

inequality, we have that

d�x�Q� ≤ d�x� f ∗
x �+d�f ∗

x �Q�

= d�x� f ∗
x �+d�f ∗

x � F �

≤ d�x� f ∗
x �+d�f ∗

x � x�+d�x�F �

= 2 ·d�x�F ∗�+d�x�F ��

Finally, for any i ∈ �m�, the last expression (4) is bounded from above by 2 ·OPT. �

The following claim ensures that the algorithm is well defined and always terminates with a feasible solution
to robust k-median.

Claim 3.3. Assuming B ≥ 4 ·OPT, in any iteration 1≤ t ≤ n− k and in step (ii) of Algorithm 2, we have
F t\Qt ⊆ �F t; hence �F t is nonempty.

Proof. By Lemma 3.1, there is a set Qt (of size at most k) such that
∑

v∈F t\Qt �ti�v�≤ 2 ·OPT ≤ B/2 for
all scenarios i ∈ �m�. Moreover, the �’s are nonnegative: hence, each cost increase �ti�v� is at most B/2 for all
v ∈ F t\Qt and for all i ∈ �m�, implying that �F t ⊇ F t\Qt . Since Qt has size at most k, and �F t�> k, the set �F t

is nonempty. �

Claim 3.4. Assuming B ≥ 4 ·OPT, in any iteration 1≤ t ≤ n− k, we have

min
v∈ �F t

{ m∑
i=1
wt
i · �ti�v�

}
≤ 2 ·OPT
n− k− t+ 1

m∑
i=1
wt
i �

Proof. Let us fix Qt as in Lemma 3.1. Let us sum the weighted �ti�v� values, this time both over vertices
in F t\Qt and over scenarios i ∈ �m�:

∑
v∈F t\Qt

m∑
i=1
wt
i · �ti�v�=

m∑
i=1
wt
i ·

∑
v∈F t\Qt

�ti�v�≤
m∑
i=1
wt
i · 2 ·OPT �
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The last inequality follows from Lemma 3.1. Finally, simple averaging using the fact that F t\Qt ⊆ �F t (from
Claim 3.3) shows that:

min
v∈ �F t

{ m∑
i=1
wt
i · �ti�v�

}
≤ min

v∈F t\Qt

{ m∑
i=1
wt
i · �ti�v�

}

≤ 1
�F t\Qt�

∑
v∈F t\Qt

m∑
i=1
wt
i · �ti�v�

≤ 2 ·OPT
n− k− t+ 1

m∑
i=1
wt
i �

The last inequality uses �F t\Qt� ≥ n− t− k+ 1 since �F t� = n− t+ 1 and �Qt� ≤ k. �

Lemma 3.2. Assume that B ≥ 4 ·OPT. Let Wt =∑m
i=1w

t
i denote the total weight of all scenarios at the start

of iteration 1≤ t ≤ n− k. Then the total weight at the start of the next iteration,

Wt+1 ≤Wt · exp
(

1
n− k− t+ 1

)
�

Proof. For any iteration t and scenario i, the weight update step ensures that

wt+1
i =wt

i

(
1+ 1

B

)�ti �v
t �

≤wt
i · exp��ti�vt�/B��

where vt ∈ �F t is the facility that is dropped in iteration t. From the definition of the set �F t , we have 0 ≤
�ti�v

t�/B ≤ 1/2. Moreover, for y ∈ �0�1/2�, we have ey ≤ 1+√
e · y. This implies

wt+1
i ≤wt

i ·
(
1+√

e
�ti�v

t�

B

)
�

and hence

Wt+1 ≤
m∑
i=1
wt
i ·
(
1+√

e
�ti�v

t�

B

)
=Wt +

√
e

B
·
m∑
i=1
wt
i · �ti�vt��

Using Claim 3.4 and the facts that B ≥OPT/4 and
√
e < 2, it follows that

Wt+1 ≤Wt +
√
e

B
· 2 ·OPT
n− k− t+ 1 ·W

t ≤
(
1+ 1

n− k− t+ 1
)
Wt ≤Wt · exp�1/�n− k− t+ 1���

where the last inequality follows as 1+ x≤ ex. �

We now prove the main result of this section.
Proof of Theorem 3.1. Let Alg = maxmi=1

∑n−k
t=1 �

t
i�v

t� denote the value of the solution F n−k+1 at the end
of the algorithm, and let i0 be the value of i achieving the maximum in the above expression. Hence, the total
weight

Wn−k+1 ≥wn−k+1
i0

=
(
1+ 1

B

)Alg

�

Furthermore, repeated applications of Lemma 3.2 imply that

Wn−k+1 ≤W 1 · eHn−k =m · eHn−k �
Taking logarithms and approximating the harmonic number by a logarithm, we get

Alg ≤O�logm+ logn�/ log
(
1+ 1

B

)
�

Using B=7�OPT�, B ≥ 1, and the fact that log2�1+ y�≥ y for y ∈ �0�1�, we get
Alg ≤O�logm+ logn� ·OPT � �

In the next section, we show how a similar algorithm works for robust and stochastic location problems
satisfying certain properties, and give a general framework for solving such problems.
We note that the stochastic k-median problem can be easily reduced to the usual k-median problem with

weights on clients. Because this latter problem admits a constant factor approximation algorithm (Jain and
Vazirani [23], Arya et al. [1]), the same holds for stochastic k-median as well.
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4. A general framework for robust and stochastic location. Consider a location problem ( on a metric
space �V �d� where the cost of serving a set of clients S ⊆ V from a set of facilities F ⊆ V is given by ��F � S�.
We assume that � is a monotone nonincreasing function in the set of facilities; i.e., ��F ∪ 	x� � S�≤��F � S�
for all F �S ⊆ V and x ∈ V . In other words, opening more facilities does not cause the cost to increase. We are
also given a parameter k ≤ n= �V � and want to choose a set of at most k facilities F ⊆ V that minimizes the
resulting cost ��F � S�. For instance, ��F � S�=∑

v∈S d�v� F � defines the k-median objective function.

Robust version, Robust((). In the robust version Robust�(� of the location problem (, we are given m
different scenarios S1� S2� � � � � Sm ⊆ V and the goal is to open a set of k facilities F that minimizes

m
max
i=1

��F � Si��

Stochastic version, Stoc((). In the stochastic version Stoc�(� of the location problem (, we are given
scenarios 	Si�

m
i=1 each occurring with probabilities 	pi�

m
i=1 (with

∑m
i=1 pi = 1) and the goal is to find a set F of

size k that minimizes
m∑
i=1
pi��F � Si��

We show that simple greedy-like procedures give good approximations to both these versions of the location
problem (, given that the following properties hold:
P1 (Cost Computation). For any facility set F ⊆ V and client set S ⊆ V , the objective value ��F � S� is

computable in polynomial time. This implies that for any client set S ⊆ V , facility set F ⊆ V , and x ∈ F , we
can compute, in polynomial time, the incremental cost of dropping x:

��F �x � S� !=��F \x � S�−��F � S�� (5)

Note that the monotonicity property implies that this value is always nonnegative.
P2 (�-Projection). There is a �≥ 1 such that, for any set F ∗ ⊆ V of size k and a set F ⊆ V of size greater

than k, there exists a “small” set Q⊆ F of size �Q� ≤ k such that for all client-sets S ⊆ V ,

∑
x∈F \Q

��F �x � S�≤ � ·��F ∗ � S�� (6)

In applications, it also suffices to prove (P1) and (P2) with any lower bound �′ in place of �, that satisfies
the following properties:

• �′ is a 8-factor lower bound for �; i.e., it satisfies �′�F � S�≤��F � S�≤ 8 ·�′�F � S� for all F �S ⊆ V .
In addition, there is a polynomial-time algorithm that given any F �S ⊆ V , outputs a solution satisfying clients S
from facilities F , having cost at most 8 ·�′�F � S�.

• �′ is monotone; i.e., �′�F ∪ 	x� � S�≤�′�F � S� for all F �S ⊆ V and x ∈ V .
If we use �′ in place of �, an additional factor 8 appears in the approximation guarantees of Theorems 4.1

and 4.2. This modification is useful in cases where the lower bound �′ is polynomial-time-computable, but the
objective function � itself is not; e.g., the k-person TSP (§5).
The first property (P1) naturally arises in a reverse-greedy-style algorithm for location problems. The second

property (P2) is only required to prove the performance guarantee: it seems somewhat mysterious at first, and
is useful in the same way as Lemma 3.1 was for the robust k-median problem. Proving this property is very
problem specific; see §1.1 for some intuition for property (P2) applied to the k-median problem.

4.1. Algorithm for robust location. Recall that the input consists of a metric �V �d�, client sets 	Si�
m
i=1,

and objective function � satisfying properties (P1) and (P2). We assume (by scaling) that distances in the
metric are at least one. We also assume that there is a polynomial-time computable upper bound U such that (i)
��F � S�≤U for every F ⊆ V (with �F � = k) and S ⊆ V , and (ii) logU is polynomial in the input size. This is
a mild assumption, and (to the best of our knowledge) is satisfied by all previously studied location problems.
For example, in the k-median problem U = n · diam�V �d�.
The general algorithm (described below) is a natural extension of the algorithm for the robust k-median

problem. We assume that the algorithm knows a value B ∈ �2�OPT�4�OPT�, where OPT denotes the optimal
value of the robust k-location instance. As in the k-median case, this can be achieved by trying all values of B
that are powers of two in the interval �1�4�U� and finally taking the minimum cost solution.
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General algorithm for robust k-location
1. Initialize weights w1i ← 1 for all 1≤ i≤m and the set of facilities F 1 ← V .
2. For t = 1� � � � � n− k do:
(a) For each v ∈ F t and i ∈ �m�, let �ti�v� != ��F t� v � Si�=��F t\	v� � Si�−��F t � Si�.
(b) Set �F t ← 	v ∈ F t � �ti�v�≤ B/2 ∀1≤ i≤m�.
(c) Let vt = argmin	∑m

i=1w
t
i · �ti�v�! v ∈ �F t� be a vertex with the least weighted increase.

(d) Drop this vertex vt and set F t+1 ← F t\	vt�.
(e) Update weights by wt+1

i ←wt
i · �1+ 1/B��ti �vt � for all 1≤ i≤m.

3. Output F n−k+1 with k facilities.

Theorem 4.1 (Framework: Robust Version). Given a robust location problem Robust�(�, where ( sat-
isfies properties (P1) and (P2), there is an O�� · log�n+m��-approximation algorithm for Robust�(�, where m
is the number of scenarios and n= �V �.
The proof is almost identical to that for robust k-median, and is given here for completeness.

Lemma 4.1. Assuming that B ≥ 2� ·OPT, in any iteration 1≤ t ≤ n−k and in step 2(b), we have F t\Qt ⊆
�F t , and hence �F t is nonempty.

Proof. By the projection property (P2), there is a set Qt (of size at most k) such that
∑

v∈F t\Qt �ti�v� ≤
� ·OPT≤ B/2 for all scenarios i. Because the �s are nonnegative, each cost increase �ti�v� is at most B/2 for
all v ∈ F t\Qt and i ∈ �m�. This implies that �F t ⊇ F t\Qt . Since Qt has size at most k, and �F t�> k, the set �F t

must be nonempty. �

Lemma 4.2. Assuming that B ≥ 2� ·OPT, in any iteration 1≤ t ≤ n− k, we have

min
v∈ �F t

{ m∑
i=1
wt
i · �ti�v�

}
≤ � ·OPT
n− k− t+ 1

m∑
i=1
wt
i �

Proof. Let us fix Qt as promised by the projection property (P2), and sum the �ti�v� values both over
vertices v ∈ F t\Qt and over scenarios i ∈ �m�:

∑
v∈F t\Qt

m∑
i=1
wt
i · �ti�v�=

m∑
i=1
wt
i ·

∑
v∈F t\Qt

�ti�v�=
m∑
i=1
wt
i ·

∑
v∈F t\Qt

��F t� v � Si�≤
m∑
i=1
wt
i ·� ·OPT �

The last inequality follows from Property (P2). Since F t\Qt ⊆ �F t by Lemma 4.1, we have:

min
v∈ �F t

{ m∑
i=1
wt
i · �ti�v�

}
≤ min

v∈F t\Qt

{ m∑
i=1
wt
i · �ti�v�

}

≤ 1
�F t\Qt�

∑
v∈F t\Qt

m∑
i=1
wt
i · �ti�v�

≤ � ·OPT
n− k− t+ 1

m∑
i=1
wt
i �

The last inequality uses �F t\Qt� ≥ n− t− k+ 1 since �F t� = n− t+ 1 and �Qt� ≤ k. �

Lemma 4.3. Assume that B ≥ 2� ·OPT. Let Wt =∑m
i=1w

t
i denote the total weight of all scenarios at the

start of iteration 1≤ t ≤ n− k. Then the total weight at the start of the next iteration,

Wt+1 ≤Wt · e1/�n−k−t+1��
Proof. For any iteration t and scenario i, the weight update step ensures that

wt+1
i =wt

i

(
1+ 1

B

)�ti �v
t �

≤wt
i · exp��ti�vt�/B��

where vt ∈ �F t is the facility that is dropped in iteration t. From the definition of the set �F t , we have 0 ≤
�ti�v

t�/B ≤ 1/2. Moreover, for y ∈ �0�1/2�, we have ey ≤ 1+√
e · y. This implies

wt+1
i ≤wt

i ·
(
1+√

e
�ti�v

t�

B

)
�
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and hence

Wt+1 ≤
m∑
i=1
wt
i ·
(
1+√

e
�ti�v

t�

B

)
=Wt +

√
e

B
·
m∑
i=1
wt
i · �ti�vt��

Using Lemma 4.2 and the facts that B ≥ 2� ·OPT and
√
e < 2, it follows that

Wt+1 ≤Wt +
√
e

B
· � ·OPT
n− k− t+ 1 ·W

t ≤
(
1+ 1

n− k− t+ 1
)
Wt�

Finally, the inequality 1+ x≤ ex implies the lemma. �

Proof of Theorem 4.1. Let Alg = maxmi=1
∑n−k

t=1 �
t
i�v

t� denote the value of the solution F n−k+1 at the end
of the algorithm, and let i0 be the value of i achieving the maximum in the above expression. Hence the total
weight

Wn−k+1 ≥wn−k+1
i0

=
(
1+ 1

B

)Alg

�

A repeated application of Lemma 4.3 implies that

Wn−k+1 ≤W 1 · eHn−k =m · eHn−k �

Taking logarithms and approximating the harmonic number by a logarithm, we get

Alg ≤O�logm+ logn�/ log
(
1+ 1

B

)
�

Using the fact that log2�1+ y�≥ y for y ∈ �0�1�, we get

Alg ≤O�logm+ logn� ·� ·OPT � �

4.2. Algorithm for stochastic location. We can extend our framework to stochastic problems as well: given
a location problem ( as in the previous section and scenarios 	Si�

m
i=1 that now come with probabilities 	pi�

m
i=1

with
∑m

i=1 pi = 1, the stochastic problem Stoc�(� seeks to find a set F of size k that minimizes
∑m

i=1 pi��F � Si�.
We denote the optimal set by F ∗, each scenario’s cost by OPTi = ��F ∗ � Si�, and StocOpt = ∑m

i=1 pi OPTi.
The algorithm we present for stochastic location problems is similar to that for the robust version, but is even
simpler because it does not use the weight updates.

General algorithm for stochastic k-location
1. Initialize the set of facilities F 1 ← V .
2. For t = 1� � � � � n− k do:
(a) For each v ∈ F t and i ∈ �m�, let �ti�v� != ��F t� v � Si�=��F t\	v� � Si�−��F t � Si�.
(b) Let vt = argmin	∑m

i=1 pi�
t
i�v�! v ∈ F t� be a vertex with the least expected increase.

(c) Drop this vertex vt and set F t+1 ← F t\	vt�.
3. Output F n−k+1 with k facilities.

Theorem 4.2 (Framework: Stochastic Version). Given a stochastic location problem Stoc�(�, where (
satisfies properties (P1) and (P2), there is an O�� · logn�-approximation algorithm for Stoc�(�. Here n= �V �
is the number of vertices.

Lemma 4.4. In any iteration 1≤ t ≤ n− k, we have

min
v∈F t

{ m∑
i=1
pi�

t
i�v�

}
≤ � · StocOpt
n− k− t+ 1 �

Proof. Let us fix Qt as promised by the projection property (P2). Then

∑
v∈F t\Qt

m∑
i=1
pi · �ti�v�=

m∑
i=1
pi

∑
v∈F t\Qt

�ti�v�≤
m∑
i=1
pi ·� ·OPTi = �StocOpt �
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The second inequality follows from the projection property (P2). Observe that �F t� = n− t + 1≥ k+ 1 and
�Qt� ≤ k; hence �F t\Qt� ≥ n− k− t+ 1≥ 1. Now,

min
v∈F t

{ m∑
i=1
pi · �ti�v�

}
≤ min

v∈F t\Qt

{ m∑
i=1
pi · �ti�v�

}

≤ 1
�F t\Qt�

∑
v∈F t\Qt

m∑
i=1
pi · �ti�v�

≤ � · StocOpt
n− k− t+ 1 �

which completes the proof of the lemma. �

Proof of Theorem 4.2. The cost of the solution found by the algorithm is eventually:

m∑
i=1
pi ·

n−k∑
t=1

�ti�v
t�=

n−k∑
t=1

m∑
i=1
pi · �ti�vt�≤

n−k∑
t=1

� · StocOpt
n− k− t+ 1 �

using Lemma 4.4. But this is just O�� · log�n− k�� · StocOpt, proving the theorem. �

Remark 1. Our algorithm for stochastic location problems is also incremental in the sense of Mettu and
Plaxton [28] and Lin et al. [26]: given metric �V �d� and scenarios 	Si� pi�

m
i=1, the output is a single permutation

of the vertices such that for every 1≤ k≤ �V �, the solution consisting of the first k vertices in this permutation
is an approximate solution to the stochastic k-location instance.
Remark 2. Our framework for stochastic location problems also extends to the model where the demand

distribution is not given explicitly, instead by means of a sampleable black-box. This model is well studied in
the context of two-stage stochastic optimization problems, e.g., Gupta et al. [19], Shmoys and Swamy [36], and
Charikar et al. [5]. Let � denote the demand distribution; i.e., the actual client-set S ⊆ V is drawn according
to �. We now describe the modifications required in the above algorithm for stochastic location. In any iteration
1≤ t ≤ n− k, define �t�v� != ES←����F

t� v � S�� for each v ∈ F t . For each v ∈ F t , let �̃t�v� denote an estimate
of �t�v� obtained by taking the average of a large (polynomial) number of independent samples from �. The
algorithm for general demand distributions replaces steps 2(a) and 2(b) by the following:
(2a′) For each v ∈ F t , compute �̃t�v� by sampling from �.
(2b′) Let vt ← argmin	�̃t�v� � v ∈ F t�.

Using Chernoff bounds (Motwani and Raghavan [30]), it can be shown that with high probability (w.h.p.), all the
estimates �̃t�v� obtained in the algorithm are within a factor of two of the respective true values �t�v�. Then the
same analysis as above implies that w.h.p. the solution F n−k+1 has objective value O�� · log�n− k�� · StocOpt.

5. The k-tree and k-person TSP problems. In the k-tree problem, we are given a metric space �V �d� and
a set S of clients, and we want to open a set of k facilities F ⊆ V and build a forest of minimum cost in the
induced metric �F ∪S�d� so that for each client v ∈ S, there is some facility f ∈ F such that this forest contains
a path from v to f (and we say that the forest connects v to f ). In particular, we want to minimize d�:�F �S��,
where :�F �S� denotes the minimum-cost forest in the metric induced on the set F ∪S that connects each vertex
in S to some vertex in F . Thus the objective function is:

��F � S�= d�:�F �S��= ∑
e∈:�F �S�

d�e�� (7)

It is worth noting that once we choose the set F of facilities, :�F �S� (for a given client-set S) is a minimum
spanning tree in the distance function obtained from �F ∪S�d� by shrinking all the nodes in F to a single “root”
vertex; hence the real effort is in choosing the set of facilities F . This also implies that property (P1) holds for
the k-tree problem.

k-person TSP. In this problem, given a metric space �V �d� and a set S of clients, the goal is to open a set
of k facilities F ⊆ V ; but now the goal is to build k tours, so that for each i ∈ �k�, the ith tour contains the ith
facility in F , each client in S is visited by some tour, and the sum of the tour lengths is minimized. Given an
instance � of the k-person TSP problem, the cost of the optimal k-tree for � is a lower bound on the cost of
the optimal k-person TSP for � ; moreover, given a forest which is a k-tree solution to the instance � , taking
Euler tours for each of the trees in the forest gives a solution for k-person TSP with cost at most twice as much.
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Hence, an )-approximation algorithm for the robust version of the k-tree problem gives a 2)-approximation
algorithm for the robust version of the k-person TSP problem. In this section we focus on the k-tree problem.
To apply the general framework of §4 to k-tree, we show that this problem satisfies the two required conditions.

Property (P1) has been established above. The subsequent lemma shows that the �-projection property (P2) is
satisfied with �= 4.
Lemma 5.1 (Property (P2) for k-Tree). For every F ∗ ⊆ V with �F ∗� = k and F ⊆ V with �F �> k, there

exists a subset Q⊆ F of size at most k such that for all S ⊆ V ,

∑
r∈F \Q

�d�:�F \r� S��−d�:�F �S���≤ 4 ·d�:�F ∗� S���

Proof. For each f ∗ ∈ F ∗ choose a facility 4�f ∗� ∈ F closest to f ∗; i.e., 4�f ∗� != argming∈F d�f ∗� g�. Define
Q = 	4�f ∗� � f ∗ ∈ F ∗�; clearly �Q� ≤ �F ∗� = k. Fix an arbitrary client set S ⊆ V . Recall that ��F � r � S� =
d�:�F \r� S��−d�:�F �S�� denotes the increase in the cost for S upon dropping facility r ∈ F . For each vertex
r ∈ F , define:

C�r�= 	s ∈ S! �r� s� is an edge in :�F �S�� and D�r�=C�r�\F ∗�

Because each tree in :�F �S� contains exactly one vertex from F , the sets 	D�r��r∈F are disjoint subsets of
S\F ∗; define D !=⋃

r∈F D�r�. We define a useful map ?! D→D∪ F ∗ as follows (see also Figure 2).
1. Obtain an Euler tour on each tree in forest :�F ∗� S�. This corresponds to �F ∗� = k vertex-disjoint tours

@1� � � � � @k on F
∗ ∪ S.

2. For each j ∈ �k�, orient tour @j clockwise and restrict the tour to vertices in D ∪ F ∗, by short-cutting over
vertices S\�D∪ F ∗�.
3. For each vertex v ∈D, let @j (some j ∈ �k�) be the tour that contains v; and set ?�v�← v′ where v′ ∈D∪F ∗

is the unique successor vertex of v, given by the clockwise orientation in @j .
Note that this map is indeed well defined: since D ⊆ S, each vertex in D appears in some tour 	@j�

k
j=1 and

hence has a unique successor as required in the last step above. Because each vertex of D ∪ F ∗ has in-degree
one in the orientation of tours, it follows that map ? is one-to-one. Finally, the total length of the tours 	@j�

k
j=1

is at most 2 ·d�:�F ∗� s��, which implies:
∑
v∈D

d�v�?�v��≤ 2 ·d�:�F ∗� S��� (8)

Now fix any r ∈ F \Q; we will upper bound ��F � r � S�. To show this, we modify � ′ = :�F �S� to obtain a
feasible forest � �r� such that each S-vertex is connected to some vertex in F \r . We will show that the length
of forest � �r� is not much more than d�� ′�, which would bound ��F � r � S�. The forest � �r� is constructed

F

a

�(F, S )

D(b)D(a)

c

D(c)

b1 c2
a1 a2 a3 b2

c1

b

f1
* f2

*
f3

*

Tour �1 Tour �3Tour �2

a3

a2 c2 b1

c1

a1b2

Figure 2. The solution :�F �S� and one possible mapping ?! D→D∪ F ∗.
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as follows: starting with the forest � ′, delete the edges 	�r� v� � v ∈ C�r�� adjacent to r in this forest, and add
the following edge-sets: (i) 	�v�?�v�� � v ∈ D�r�� where ? is the map defined earlier; (ii) 	�f ∗�4�f ∗�� � f ∗ ∈
?�D�r��∩ F ∗�; and (iii) 	�g�4�g�� � g ∈C�r�∩ F ∗�. Recall that for any f ∈ F ∗, 4�f � ∈Q is the closest facility
to f in F .

Feasibility of � �r�. We first show that � �r� is a feasible forest connecting each S-vertex to F \r : it suffices
to argue that C�r� is connected to F \r . Note that vertices C�r� ∩ F ∗ are directly connected to Q ⊆ F \r by
edge-set (iii) above. We will now show that edge-sets (i) and (ii) suffice to connect D�r�=C�r�\F ∗ to F \r as
well. Let E�r� != 	�v�?�v�� � v ∈D�r��; i.e., edge-set (i) above.
Claim 5.1. The edges E�r� connect each D�r�-vertex to some vertex in �D\D�r��∪ �F ∗ ∩?�D�r���.
Proof of Claim 5.1. Fix any v ∈D�r�, and let Tv denote the set of vertices that are connected to v using

edges E�r�. Note that by definition of the map ? , we have Tv ⊆D ∪ �F ∗ ∩ ?�D�r���. Hence if Tv\D�r� �= �,
it follows that v is connected to some vertex in �D\D�r��∪ �F ∗ ∩?�D�r���. Suppose (for a contradiction) that
Tv\D�r�=�; i.e., Tv ⊆D�r�. Since F ∗ ∩D�r�=�, it must be (again by construction of ?) that there is some
vertex u ∈ Tv with ?�u� �∈ Tv. But as �u�?�u�� ∈E�r�, this contradicts the definition of Tv. Thus it must be that
Tv contains some vertex from �D\D�r��∪ �F ∗ ∩?�D�r���. �

Note that edge-set (ii) connects each vertex in F ∗∩?�D�r�� to Q. Combined with Claim 5.1, each D�r�-vertex
is connected to some vertex in D\D�r� or Q. Finally observe that each vertex in D\D�r� remains connected to
F \r in forest � �r�; and since Q⊆ F \r , we obtain that � �r� connects each D�r�-vertex to some vertex in F \r .

Bounding cost of � �r�. Next, we upper bound the increase in cost ��F � r � S�≤ d�� �r��−d�� ′� by:

��F � r � S�≤− ∑
v∈C�r�

d�r� v�+ ∑
v∈D�r�

d�v�?�v��+ ∑
g∈C�r�∩F ∗

d�g�F �+ ∑
f ∗∈?�D�r��∩F ∗

d�f ∗� F �� (9)

The last term of this expression can be bounded by

∑
f ∗∈?�D�r��∩F ∗

d�f ∗� F � ≤ ∑
v∈D�r�

d�?�v�� F �

≤ ∑
v∈D�r�

�d�?�v�� v�+d�v�F ���

where the last inequality follows from triangle inequality. Plugging the final expression above into (9),

��F � r � S�≤ 2 · ∑
v∈D�r�

d�v�?�v��+ ∑
v∈C�r�

�d�v� F �−d�v� r��≤ 2 · ∑
v∈D�r�

d�v�?�v���

where the final inequality uses that r ∈ F .
Now summing over all r ∈ F \Q, we get:

∑
r∈F \Q

��F � r � S�≤ 2 · ∑
r∈F \Q

∑
v∈D�r�

d�v�?�v��≤ 2 ·∑
v∈D

d�v�?�v���

Finally, by (8), this last expression is at most 4 ·d�:�F ∗� S��, which completes the proof. �

Using this lemma within our general framework, we obtain:

Corollary 5.2 (Robust/Stochastic k-Tree Result). There is an O�log�m + n��-approximation algo-
rithm for the robust k-tree problem, and an O�logn�-approximation algorithm for the stochastic k-tree problem.

Note that we could also consider robust/stochastic versions of the k-Steiner-tree problem, where given clients S
and facilities F , the goal is to construct a forest that is not necessarily induced on F ∪ S, connecting each
S-vertex to some F -vertex; i.e., the solution may use vertices outside F ∪ S as Steiner points. In the k-tree
problem considered above, :�F �S� was required to be induced on F ∪ S. However, these two objectives are
within a factor two of each other, and we obtain the same approximation results for robust/stochastic k-Steiner-
tree. As mentioned earlier, we also obtain identical guarantees for the robust/stochastic versions of the k-person
TSP.
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6. Capacitated k-median problem. In this problem, we are given a metric �V �d�, a client-set S ⊂ V ,
a number k, and a capacity B such that �S� ≤ k ·B; the goal is to open a set of k facilities F ⊆ V and construct
an assignment C! S→ F of clients to open facilities such that at most B clients are assigned to any open facility
(i.e., �C−1�f �� ≤B for all f ∈ F ), and the objective ∑v∈S d�v�C�v�� is minimized. A map C! S→ F is said to be
feasible iff �C−1�f �� ≤B for all f ∈ F ; additionally we define the cost of mapping C as D�C� !=∑

v∈S d�v�C�v��.
Thus, given client-set S ⊆ V and facility-set F ⊆ V , the objective in capacitated k-median is:

��F � S�=min	D�C� �map C! S→ F is feasible��

Note that ��F � S� and the map C! S→ F achieving the minimum can be found in polynomial time by solving
a minimum cost b-matching problem (Cook et al. [10]). In this section we show that the capacitated k-median
problem satisfies the conditions for our general framework, and hence we obtain logarithmic approximations for
its robust and stochastic versions.
To the best of our knowledge, our algorithm for the robust version gives the first nontrivial approxima-

tion guarantee for even the deterministic version of the problem, with hard capacity constraints. Chuzhoy and
Rabani [9] obtain a constant factor approximation for the deterministic version with nonuniform soft capacities
where the algorithm violates capacities by a constant factor.
To apply our general framework for robust and stochastic location problems, we establish the two proper-

ties (P1) and (P2). Property (P1) holds trivially: as noted above, given facilities F ⊂ V and clients S ⊆ V ,
��F � Si� can be computed in polynomial time via b-matching (Cook et al. [10]).
We will prove the �-projection property (P2) with � = 2. Recall that we are given any set F ∗ ⊆ V of k

facilities, and another set F ⊆ V of more than k facilities. Define ?! F ∗ → F to be a minimum cost matching
between F ∗ and F that assigns each vertex of F ∗ to a distinct vertex in F . We set Q != ?�F ∗� to be those
facilities in F that are matched to some facility in F ∗. Note that �Q� = �F ∗� = k, as required. In the rest of this
section we show that for any S ⊆ V , ∑

r∈F \Q
��F � r � S�≤ 2 ·��F ∗ � S�� (10)

This would establish property (P2) with � = 2. Let C∗! S → F ∗ (resp. C! S → F ) denote the minimum-cost
feasible mapping from S to F ∗ (resp. S to F ). To establish (10), we construct for each r ∈ F \Q, a feasible
mapping C�r�! S→ F \	r� such that: ∑

r∈F \Q
�D�C�r��−D�C��≤ 2 ·��F ∗ � S�E (11)

this suffices since ��F � r � S�≤D�C�r��−D�C� for any r ∈ F \Q. In the next subsection we describe how these
new mappings are constructed, and in the following subsection we bound the cost increases.

6.1. Constructing new assignments. A useful assignment is C′ != ?  C∗, which maps S to Q. This is a
candidate choice for C�r� for every r ∈ F \Q; however this may result in a large increase in cost. Another natural
choice for C�r� is to map (i) all v ∈ S with C�v� = r to C′�v� ∈ Q, and (ii) all other u ∈ S to C�u�. However
this might violate capacity at some facilities. Hence, defining the new mappings requires several clients to be
reassigned, as described below.
It will be convenient to view any map F! S → F as a bipartite graph on disjoint vertex-sets S and F with

edge-set E�F� != 	�v� F�v�� � v ∈ S�. Note that for any feasible map F, in the resulting bipartite graph, vertices
in S have degree one, and those in F have degree at most B. Recall that both C and C′ = ?  C map S to F .
Define a bipartite multigraph H with disjoint vertex-sets S and F , and edge-set EH != E�C�!E�C′� (i.e., if an
edge appears in both E�C� and E�C′�, then graph H contains two distinct copies of it). Note that in graph H ,
each S-vertex has degree exactly two, vertices in F \Q have degree at most B, and vertices in Q have degree at
most 2B.
A path P ⊆EH is called an alternating path if it starts at a vertex in F \Q, ends at a vertex in Q, and uses edges

alternately from E�C� and E�C′�. For every vertex v ∈ C−1�F \Q�, we will show the existence of an alternating
path Pv starting at vertex C�v� ∈ F \S and with edge �C�v�� v� ∈ E�C�. Define � != 	Pv � v ∈ C−1�F \Q�� and
E��� !=⋃

Pv. We will also ensure the following two conditions for this collection � of paths.
Condition 1. The paths in � are edge disjoint; i.e., Pv ∩Pu =� for all distinct u� v ∈ C−1�F \Q�.
Condition 2. The bipartite graph on vertex-sets S and F with edges E���⊕ E�C� has each S-vertex of

degree one and each F -vertex of degree at most B.
To establish the existence of this collection �, we first prove the existence of a circulation in a suitably

defined network flow problem. Then we show how this circulation gives rise to the desired collection �.
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F* F

Q

x

�*(x)

�(x)

�′(x) = � (�* (x))

Figure 3. Figure showing maps C! S→ F , optimal map C∗! S→ F ∗ applied to point x ∈ S, and also the matching ?! F ∗ → F .

An auxiliary flow problem. Consider a directed multigraph T on vertex set V �T � != F ∪ 	s� where s is
a new vertex. The arcs in T are given by the multiset A�T � != 	�C�v��C′�v�� � v ∈ S� ∪ 	�s� f � � f ∈ F \Q� ∪
	�q� s� � q ∈ Q�. For any vertex u ∈ F , denote by �+�u� (resp. �−�u�) the number of arcs in the multiset
	�C�v��C′�v�� � v ∈ S� leaving (resp. entering) vertex u. By the properties of mappings C and C′, it follows that
�+�u���−�u�≤B for all u ∈ F ; furthermore, �−�u�= 0 for all u ∈ F \Q. Consider an instance of the circulation
problem on T given by integer lower-bounds 	:a � a ∈ A�T �� and upper-bounds 	4a � a ∈ A�T �� on arcs. An
assignment of integer values x! A�T �→�+ to the arcs is called a circulation iff:∑

�u� v�∈A�T �
x�u� v�− ∑

�v�u�∈A�T �
x�v�u�= 0� ∀u ∈ V �T � and :a ≤ x�a�≤ 4a� ∀a ∈A�T ��

Hoffman’s circulation theorem (Hoffman [21]) states that there exists a circulation if and only if:

∑
�u� v�∈A�T ��u∈X�v �∈X

4u�v ≥
∑

�v�u�∈A�T ��u∈X�v �∈X
:v�u� for all X ⊆ V �T �� (12)

Set the upper and lower bounds on arcs of A�T � as follows:

4u�v !=



B− �+�u� if v= s and u ∈Q�
1 if u� v ∈ F �
" if u= s and v ∈ F \Q�

:u�v !=



0 if v= s and u ∈Q�
0 if u� v ∈ F �
�+�v� if u= s and v ∈ F \Q�

We claim that this circulation instance satisfies (12). Consider any X ⊆ V �T �. We denote the left-hand side
in (12) by 4�X�, and the right-hand side by :�X�. If s ∈ X, then it follows that :�X� = 0 and 4�X� ≥ :�X�
trivially. Now suppose s �∈ X, and let X1 = X ∩ �F \Q� and X2 = X ∩ Q; so X = X1 ∪ X2. It is clear that
:�X�=∑

u∈X1 �
+�u�. For any Y ⊆ F , define 2+�Y � to be the number of arcs �u� v� ∈ 	�C�w��C′�w���w∈S with

u ∈ Y and v �∈ Y . Observe that 4�X�=B · �X2�−
∑

u∈X2 �
+�u�+2+�X�. To establish 4�X�≥ :�X�, it suffices to

show that 2+�X�+B · �X2� ≥
∑

u∈X �+�u�.
Consider the arcs AX ⊆ 	�C�w��C′�w���w∈S having their tail1 in X: there are �AX � =

∑
u∈X �+�u� such arcs.

Since �−�u�= 0 for all u ∈ F \Q, we can partition AX into A
′
X ⊆AX having a head in X2 =X∩Q, and A′′

X ⊆AX

having a head in Q\X. Since �−�u� ≤ B for all u ∈ Q, we have �A′
X � ≤

∑
u∈X2 �

−�u� ≤ B · �X2�. Observe that
each arc in A′′

X has a tail in X and a head in Q\X: thus �A′′
X � ≤2+�X�. Finally,

∑
u∈X

�+�u�= �AX � = �A′
X � + �A′′

X � ≤B · �X2� +2+�X��

which gives 4�X�≥ :�X� that, in turn, implies (12).

1 We use the standard terminology for directed graphs, the tail of an arc �u� v� is u, and its head is v.
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Constructing alternating paths �. We now show how this integral circulation x in T can be used to
construct the alternating paths �. Note that by the definition of the circulation instance, x restricted to arcs
	�C�w��C′�w���w∈S can be decomposed into an arc-disjoint collection of paths 	P̂v � v ∈ C−1�F \Q�� where each
P̂v originates at C�v� using arc �C�v��C

′�v�� and ends at some Q-vertex. Moreover, the total number of paths
ending at any q ∈ Q is at most B− �+�q� because of the upper-bounds 4as. Note that there is a one-to-one
correspondence between arcs 	�C�w��C′�w���w∈S and set S. Using this, for each v ∈ C−1�F \S�, directed path P̂v
corresponds to path Pv in the (undirected) bipartite graph H , defined as follows: for every arc �C�w��C

′�w��
(where w ∈ S) in P̂v, path Pv contains two edges �C�w��w� and �w�C′�w��. Thus it follows that each Pv is an
alternating path in H , that starts at vertex C�v� using edge �C�v�� v� and ends at some Q-vertex.
Proving Condition 1. Since the collection 	P̂v � v ∈ C−1�F \Q�� is arc-disjoint in T , paths � = 	Pv � v ∈

C−1�F \S�� are edge-disjoint in H .
Proving Condition 2. Let 	P̂v � v ∈ C−1�F \Q�� consist of arcs 	�C�w��C′�w�� � w ∈ W�, where W ⊆ S.

Then E���= 	�C�w��w��w∈W ∪ 	�C′�w��w��w∈W . So E ′
H !=E�C�⊕E���= 	�C�y�� y��y∈S\W ∪ 	�C′�w��w��w∈W .

Clearly each S-vertex has degree exactly one in E ′
H . Vertices in F \Q have zero degree in E ′

H : since W ⊇
C−1�F \Q� by construction and C′ maps S to Q. We now upper bound the degree of any vertex q ∈ Q in
E ′
H . Recall that �

+�q� is the degree of vertex q in E�C�. Let e�q� denote the number of directed paths in
	P̂v � v ∈ C−1�F \Q�� that end at vertex q; by construction of the circulation instance, e�q�≤ B− �+�q�. Addi-
tionally the number of paths in � ending at q also equals e�q�. Since � consists of edge-disjoint alternating
paths in graph H , the degree of vertex q in E ′

H = E�C�⊕E��� equals �+�q�+ e�q�≤ B. This completes the
proof of Condition 2.

Defining mappings C�r�. For each r ∈ F \Q, we define C�r�! S→ F \	r� as follows.
1. Consider bipartite graph Gr on disjoint vertex-sets S and F , and edge set:

Er !=E�C�⊕
( ⋃
v∈C−1�r�

Pv

)
�

2. For each v ∈ S, set C�r��v�← u, where �u� v� ∈Er is the unique such edge.
Lemma 6.1. For each r ∈ F \Q, the map C�r� is well defined, feasible, and C�r��S�⊆ F \	r�.
Proof. Fix any r ∈ F \Q for this proof. Note that each S-vertex has degree one in E�C�, and degree zero or

two in every alternating path of �. So the degree of each S-vertex in Er is odd. However, Er ⊆ EH and each
S-vertex has degree two in EH ; thus the degree of each S-vertex in Er is exactly one. This implies that C

�r� is
indeed well defined.
To show that C�r� is feasible, we will prove that each F -vertex has degree at most B in Er . Let W != C−1�r�⊆ S

and X != C−1�F \Q�. Number the vertices in X from 1 to �X� such that W = 	1�2� � � � � �W ��. Consider the
following iterative way of modifying E�C�. Starting with J0 ← E�C�, define for each i ∈ 	1� � � � � �X��, Ji ←
Ji−1 ⊕ Pi. Since the paths � = 	Pi�

�X�
i=1 are edge-disjoint, it follows that J�X� = E�C�⊕E��� and J�W � = Er . For

each 1≤ i≤ �X�, the following hold:
1. For any vertex in F \Q, its degree in Ji is at most its degree in Ji−1. Note that Pi contains exactly one edge

incident to a vertex in F \Q, namely edge �i� C�i��. Thus the degree of vertices F \Q\	C�i�� is unchanged going
from Ji−1 to Ji. Additionally, �i� C�i�� ∈ Ji−1 since it is in E�C� and in none of P1� � � � � Pi−1. Hence the degree
of vertex C�i� in Ji is one less than in Ji−1.
2. For any u ∈Q, its degree in Ji is at least its degree in Ji−1. Clearly the degree of Q-vertices not in Pi remain

the same in Ji and Ji−1. For any vertex u ∈Q visited in Pi, there is an edge �u�C
′−1�u�� that lies in path Pi but

not Ji−1; so the degree of u in Ji is at least that in Ji−1.
From the above, we obtain that (i) the degree in J�W � of any �F \Q�-vertex is at most its degree in J0 =E�C�;

i.e., B; and (ii) the degree in J�W � of any Q-vertex is at most its degree in J�X� =E�C�⊕E���, which is at most
B by Condition 2. Recall that J�W � =Er , so we obtain that Er is a feasible map.
We now show that vertex r has degree zero in Er , which would imply that C

�r��S� ⊆ F \	r�. By definition
of the alternating paths �, we have 	�v�C�v�� � v ∈W� ⊆⋃

v∈W Pv. Clearly 	�v�C�v�� � v ∈W� ⊆ E�C�. Thus
	�v�C�v�� � v ∈W�∩Er =�. Finally, since r ∈ F \Q, the only edges in H that are incident to r are 	�v�C�v�� �
v ∈W�: recall that C′ maps S to Q⊆ F . Hence it follows that r has degree zero in Er . �

6.2. Bounding the cost increase. Given the alternating paths � and the mappings in Lemma 6.1, we now
complete the proof of (11) by bounding the cost increases; i.e., D�C�r��−D�C� for r ∈ F \Q.
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Increase of single alternating path. Consider any v ∈ C−1�F \Q� and let S ∩ Pv = 	u1� u2� � � � � ul� (in that
order) be the S-vertices in alternating path Pv; note that u1 = v. By definition of an alternating path, we have
C′�uj�= C�uj+1� for all 1≤ j ≤ l− 1. Define

-�Pv� !=
l∑

j=1
�d�uj� C

′�uj��−d�uj� C�uj����

For any 1≤ j ≤ l, using triangle inequality we have

d�uj� C
′�uj��−d�uj� C�uj�� ≤ d�uj� C

∗�uj��+d�C∗�uj�� C
′�uj��−d�uj� C�uj��

= 2 ·d�uj� C∗�uj��+d�C∗�uj�� C
′�uj��− �d�uj� C�uj��+d�uj� C

∗�uj���

≤ 2 ·d�uj� C∗�uj��+d�C∗�uj�� C
′�uj��−d�C∗�uj�� C�uj���

Using the above, we can bound

-�Pv�≤ 2
l∑

j=1
d�uj� C

∗�uj��+
l∑

j=1
�d�C∗�uj�� C

′�uj��−d�C∗�uj�� C�uj���� (13)

Define a weighted bipartite graph M on disjoint vertex-sets F ∗ and F , with each edge �f �w� (for any f ∈ F ∗

and w ∈ F ) having cost d�f �w�. A subset of edges E ′ in M is said to be an F ∗-matching if E ′ is a matching
that contains some edge incident to each vertex in F ∗. Recall that ?! F ∗ → F is the minimum cost F ∗-matching
in M . Let E�?� != 	�f �?�f �� � f ∈ F ∗� denote the edges in this matching.
Consider the path in graph M defined by edges P̃v != 	�C�uj�� C

∗�uj���lj=1 ∪ 	�C∗�uj�� C′�uj���lj=1. Note that
this indeed describes a path since C′�uj�= C�uj+1� for all 1≤ j ≤ l−1. We claim that E�?�⊕ P̃v is also an F

∗-
matching in M . This is because for each j = 1� � � � � l, edge �C∗�uj�� C′�uj�� ∈E�?� and edge �C�uj�� C∗�uj�� �∈
E�?�, and since C�u1� ∈ F \Q, it has zero degree in E�?�. Since E�?� is the minimum cost F ∗-matching,
we have ∑

e∈E�?�
d�e�− ∑

e′∈E�?�⊕P̃v
d�e′�=

l∑
j=1
�d�C∗�uj�� C

′�uj��−d�C∗�uj�� C�uj���≤ 0�

Plugging this into (13), we get

-�Pv�≤ 2
l∑

j=1
d�uj� C

∗�uj��= 2
∑

u∈S∩Pv
d�u�C∗�u��� (14)

Bounding cost of C�r�. Fix any r ∈ F \Q, and let W�r� != C−1�r�. Now,

D�C�r��−D�C� = ∑
e∈E�C�⊕�∪v∈W�r�Pv�

d�e�− ∑
e′∈E�C�

d�e′�

= ∑
v∈W�r�

-�Pv�

≤ 2
∑

v∈W�r�

∑
u∈S∩Pv

d�u�C∗�u��� (15)

where the first equality is by definition of C�r� (Lemma 6.1), the second equality uses the fact that 	Pv � v ∈W�r��
are edge-disjoint, and the last inequality is by (14).
By Condition 1 the alternating paths in � are edge-disjoint in graph H . Furthermore, each S-vertex has degree

two in H , and degree zero or two in each path of �. Thus each S-vertex appears in at most one alternating path
from �. Thus we have∑

r∈F \Q
�D�C�r��−D�C��≤ 2 ∑

r∈F \Q

∑
v∈W�r�

∑
u∈S∩Pv

d�u�C∗�u��≤ 2∑
u′∈S

d�u′� C∗�u′�� = 2 ·��F ∗ � S��

Above, the first inequality is by (15), and the second inequality uses (i) 	W�r� � r ∈ F \Q� are disjoint subsets
of C−1�F \Q�, and (ii) 	S ∩ Pv � v ∈ C−1�F \Q�� are disjoint (as argued above). This completes the proof of
property (P2) for capacitated k-median with �= 2.
Corollary 6.1 (Robust/Stochastic Capacitated k-Median Result). There is an O�logm + logn�-

approximation algorithm for robust capacitated k-median and an O�logn�-approximation algorithm for stochas-
tic capacitated k-median.
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7. Fault-tolerant k-median. In this problem, we are given a client set S ⊆ V , and a requirement rv ∈
	1�2� � � � � k� for each client v ∈ S. The goal is to open a set of k facilities F ⊆ V and connect each client v to rv
distinct facilities in F such that the total connection cost is minimized. Given the facility-set F ⊆ V , each client
v ∈ S should clearly be connected to be the rv facilities in F that are closest to v, to minimize the objective.
For any F ⊆ V , v ∈ S, and integer 0≤ h≤ �F �, let O�v� F �h� denote the set of h distinct facilities in F that are
closest to v; and let 8�v�F �h� denote the cost of connecting v to the h distinct facilities in O�v� F �h�; i.e.,

8�v�F �h� != ∑
f∈O�v� F �h�

d�v� f �� ∀F ⊆ V � v ∈ S� h ∈ 	0�1� � � � � �F ���

Thus the objective in fault-tolerant k-median is:

��F � S� !=∑
v∈S
8�v� F � rv��

To use our framework to solve the robust and stochastic fault-tolerant k-median problems, the next lemma
proves the �-projection property (P2) with �= 2. Again property (P1) is trivial because it is easy to calculate
the exact cost of any solution.
For the problem where all the requirements rv are uniform, the best known approximation guarantee for the

single scenario version is four (Swamy and Shmoys [38]). To the best of our knowledge, our result is the first
nontrivial algorithm for nonuniform requirements, even for a single scenario.

Lemma 7.1 ((P2) for Fault-Tolerant k-Median). For every F ∗ ⊆ V (�F ∗� = k) and F ⊆ V with �F �> k,
there exists Q⊆ F with �Q� = k such that

∑
f∈F \Q

∑
v∈S
�8�v� F \f � rv�−8�v�F � rv��≤ 2 ·��F ∗ � S� ∀S ⊆ V � (16)

Proof. Define the subset Q as a one-to-one mapping �! F ∗ → F as follows. Arbitrarily order the elements
of F ∗ and initialize Q←�. For each g ∈ F ∗ in this order, set ��g� != argmin	d�g� f � � f ∈ F \Q� and Q←
Q∪ 	��g��. Clearly �Q� = �F ∗� = k and mapping � is one-to-one.
Fix any client-set S ⊆ V . For each v ∈ S, we define a mapping @v! O�v� F � rv�→Q thus:
1. Define Gv != O�v� F � rv�∩Q. Set @v�g�← g for all g ∈Gv.
2. For each g ∈ O�v� F � rv�\Q, set @v�g� to be a distinct vertex from ��O�v� F ∗� rv��\Gv.

Note that the second step is well defined since �O�v� F � rv�\Q� = rv − �Gv� = ���O�v� F ∗� rv��� − �Gv� ≤
���O�v� F ∗� rv��\Gv�. Additionally @v indeed maps O�v� F � rv� to Q since ��O�v� F ∗� rv��⊆Q. Finally observe
that @v is also one-to-one. Next we bound the total cost of this map @v.

Claim 7.1. For any v ∈ S,
∑

g∈O�v� F � rv�
d�v� @v�g��≤ 8�v�F � rv�+ 2 ·8�v�F ∗� rv��

Proof. Note that by the definition of @v in step 1 above,
∑

g∈Gv
d�v� @v�g�� =

∑
g∈Gv

d�v� g� (recall that
Gv = O�v� F � rv�∩Q). For each g ∈ O�v� F � rv�\Gv, define fg !=�−1�@v�g��; note that this is well defined since
@v�g� ∈ Q and furthermore, fg ∈ O�v� F ∗� rv� by the definition of @v in step 2 above. Observe that the fg’s for
each g ∈ O�v� F � rv�\Gv are distinct.
Fix any g ∈ O�v� F � rv�\Gv. Now recall the greedy construction of Q, and consider the time when fg ∈ F ∗

was mapped under � to its nearest vertex in F . At that point, g ∈ O�v� F � rv�\Gv was not in Q (because it is
not in Q at the end of that process). Hence, the distance d�fg���fg��≤ d�fg� g�≤ d�g� v�+d�v� fg�. Thus,

d�v� @v�g��= d�v���fg��≤ d�v� fg�+d�fg���fg��≤ d�g� v�+ 2 ·d�v� fg��
Summing this expression over all g ∈ O�v� F � rv�\Gv and using the fact that 	fg � g ∈ O�v� F � rv�\Gv� are

distinct vertices in O�v� F ∗� rv�, we get:∑
g∈O�v� F � rv�\Gv

d�v� @v�g�� ≤ 2 · ∑
f∈O�v� F ∗� rv�

d�v� f �+ ∑
g∈O�v�F �rv�\Gv

d�v� g�

⇒ ∑
g∈O�v� F � rv�

d�v� @v�g��≤ 2 ·8�v�F ∗� rv�+
∑

g∈O�v�F �rv�
d�v� g��

Rewriting the right-hand side as 2 ·8�v�F ∗� rv�+8�v�F � rv� completes the proof of Claim 7.1. �
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To complete the proof of Lemma 7.1, we show that for any f ∈ F \Q, we can obtain a feasible assignment
of each vertex v ∈ S to rv facilities Cv�f � ⊆ F \	f � as follows. If f �∈ O�v� F � rv�, then Cv�f � != O�v� F � rv�.
Otherwise, if f ∈ O�v� F � rv� (note also that f ∈ F \Q), then Cv != �O�v� F � rv�\	f ��∪ 	@v�f ��. By the definition
of map @v, we have @v�f � ∈Q\O�v� F � rv�; thus in either case, Cv�f �⊆ F \	f � and �Cv�f �� = rv. Observe that the
increase in v’s connection cost upon dropping f from F is 8�v�F \	f �� rv�−8�v�F � rv�≤ d�v� @v�f ��−d�v� f �.
Now we have,

∑
f∈F \Q

∑
v∈S
�8�v� F \	f �� rv�−8�v�F � rv�� ≤

∑
f∈F \Q

∑
v! f∈O�v� F � rv�

�d�v� @v�f ��−d�v� f ��

= ∑
v∈S

∑
f∈O�v� F � rv�\Q

�d�v� @v�f ��−d�v� f ��

= ∑
v∈S

∑
f∈O�v� F � rv�

�d�v� @v�f ��−d�v� f ��

= ∑
v∈S

(( ∑
f∈O�v� F � rv�

d�v� @v�f ��

)
−8�v�F � rv�

)

≤ ∑
v∈S
��2 ·8�v�F ∗� rv�+8�v�F � rv��−8�v�F � rv��

= 2
∑
v∈S
8�v� F ∗� rv�= 2 ·��F ∗ � S��

where the third to last inequality follows from Claim 7.1. This finishes the proof of the lemma. �

Corollary 7.2 (Robust/Stochastic Fault-Tolerant k-Median Result). There is an O�logm+ logn�-
approximation algorithm for robust fault-tolerant k-median, and an O�logn�-approximation algorithm for
stochastic fault-tolerant k-median.

8. The stochastic k-center problem. In the previous sections, we gave approximation algorithms for some
robust and stochastic location problems. In this section, we study another natural stochastic location problem,
stochastic k-center, and provide some evidence that it is hard to approximate well in polynomial time. We con-
sider the uniform-probability stochastic k-center problem: given a metric space �V �d�, subsets S1� � � � � Sm ⊆ V
and a bound k, the goal is to open a set F of k facilities to minimize

m∑
i=1
max
x∈Si

d�x� F ��

Note that the deterministic version of this problem (i.e., m = 1) is the k-center problem, for which several
2-approximations are known, and this is the best one can do unless P =NP (Vazirani [40]).
In this section we show that the stochastic k-center problem is closely related to the dense k-subgraph problem.

Recall that in the standard (maximization) version of the dense k-subgraph problem, we are given a graph G
with n vertices and a value k, and the goal is to pick k vertices that maximize the number of edges in the
induced subgraph. One can also define the minimization version of dense k-subgraph, where the goal is now
to pick k edges to minimize the number of vertices incident to these edges. The best result known for either
version is that of Feige et al. [16] who gave an O�n��-approximation algorithm for some �< 1/3. The problem
is believed to be hard, and Feige [14] and Khot [24] showed that the dense k-subgraph problem is hard to
approximate within some constant C> 1 under two different complexity-theoretic assumptions.
We study the (uniform-probability) stochastic k-center problem on the uniform metric, and hence can formulate

it as a set-covering-type problem:

Given m sets 	Si�
m
i=1 that are subsets of a ground set V , the goal is to pick a set F ⊆ V of k elements to minimize the

number of sets not contained within F ; i.e., the objective is to minimize �	i ∈ �m� � Si �⊆ F ��.
Theorem 8.1 (Stochastic k-Center Hardness). Suppose there exists an )-approximation algorithm for

the stochastic k-center problem on the uniform metric. Then there is an )-approximation algorithm for the
minimization version of dense k-subgraph.

Proof. Consider an instance of the minimization dense k-subgraph problem: given graph G= �V �G��E�G��
and parameter kG, we want to pick at least kG edges to minimize the number of vertices incident to these
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edges. We construct an instance of stochastic k-center on the ground set V !=E�G�. For each vertex v ∈ V �G�,
we define a set Sv != 	e ∈ E�G� � e is incident to v�. Now consider the instance of stochastic k-center with V ,
	Sv � v ∈ V �G��, and the parameter k= �E�G�� − kG. Given any solution F ⊆ V for this problem, consider the
set F ′ = V \F of size kG. Choosing F to minimize the number of sets Sv that are not contained within F is
the same as choosing F ′ to minimize the number of sets that intersect F ′—but because a set Sv intersects F ′

precisely when some edge in F ′ is incident to v ∈ V �G�, this is precisely the same as solving the minimization
dense k-subgraph instance. In particular, if the bound k is not violated, any algorithm for stochastic k-center on
uniform metrics with approximation ratio ) gives an identical approximation ratio for the minimization dense
k-subgraph problem. �

9. Closing remarks. In this paper we presented the first approximation algorithms for some natural classes
of min-max (robust) and stochastic location problems. Our results propose a general framework for obtaining
approximation guarantees of O�logm+ logn� for such problems, where m is the number of possible “scenarios”
and n is the size of the metric space. For some of these problems, one can improve this to O�logm+ logk�
by first preprocessing the instance to define a new weighted instance on a metric space of size O�k�, and then
extend the current algorithms to work for weighted instances as well. As mentioned in §1, the algorithms in
this paper only work in the case where there are no costs involved with opening facilities at particular locations.
Can we give algorithms with similar performance guarantees for the situation with facility costs?

Appendix A. Improved guarantee for robust k-median on uniform metrics. We now consider a natural
linear relaxation for the robust k-median problem on a uniform metric. Recall that there are n elements V , and m
scenarios S1� � � � � Sm ⊆ V ; the goal is to pick k elements so as to minimize the maximum number of uncovered
elements in any scenario.

min z

s.t. z≥ ∑
e∈Si

xe ∀1≤ i≤m�

∑
e∈V

xe = n− k�

0≤ x≤ 1�
z≥ 0�

In the above linear program, the variable xe is 1 if element e is not picked, and 0 otherwise. Let us fix any
solution �x� z� to this linear program. To round this solution, we use the dependent rounding scheme of Gandhi
et al. [17], which implies the following in our context:

Theorem A.1 (Gandhi et al. [17]). There is a polynomial time randomized algorithm that generates Xe ∈
	0�1� for all e ∈ V such that:
1. Pr�Xe = 1�= xe for all e ∈ V .
2. Pr�

∑
e∈V Xe = n− k�= 1.

3. 	Xe � e ∈ V � are negatively correlated. This implies that for any S ⊆ V and �≥ 0, we have:

Pr
[∑
e∈S
Xe > �1+ ��BS

]
≤min

{
e�−�

2BS�/�2+���
(

e

�+ 1
)BS�1+��}

�

Here BS = E�
∑

e∈S Xe�.

Using this rounding scheme, it is clear that we always pick exactly k elements. For any scenario Si, we have
Bi = E�

∑
e∈Si Xe�=

∑
e∈Si xe ≤ z. Fix any constant 1 ∈ �0�1�, and set ) != �8/1� lnm. Using the first expression

in property 3 of Theorem 0 with �i = �1 ·Bi +)�/Bi for each Si, we have for each 1≤ i≤m:

Pr
[∑
e∈Si

Xe > �1+ 1� ·Bi +)

]
≤ exp

(
− �1Bi +)�2

2Bi + 1Bi +)

)
≤ 1
m2

�

where the last inequality uses the following calculation:

�1Bi +)�2

2Bi + 1Bi +)
≥ ) ·

(
1Bi +)

2Bi + 1Bi +)

)
= ) ·

(
1+ 2Bi

1Bi +)

)−1
≥ ) ·

(
1+ 2

1

)−1
≥ 1

4
·)= 2 lnm�
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Using Bi ≤ z for all scenarios Si, we get Pr�
∑

e∈Si Xe > �1+ 1� · z+ )� ≤ 1/m2 for each 1 ≤ i ≤ m. Now,
by a union bound over all scenarios we obtain that with probability at least 1− 1/m, the maximum number of
uncovered elements in any scenario is at most �1+ 1� · z+ �8/1� · lnm. Thus we have:
Theorem 0. For any constant 0 < 1 < 1, there is a (randomized) approximation algorithm for robust k-

median on uniform metrics that, given any instance, returns a solution of value at most �1+1� · l∗ + �8/1� · lnm,
where l∗ is the optimal value of the given instance.

This randomized rounding algorithm can also be shown to achieve a better multiplicative approximation
guarantee. Set �= 4 lnm/�ln lnm�. For each scenario Si, choose �i so that Bi�1+�i�= � $z%; recall that z is the
LP objective and Bi = E�

∑
e∈Si Xe�=

∑
e∈Si xe ≤ z. We assume that z > 0; otherwise the robust k-median instance

is trivial. Since Bi ≤ z, we have 1+ �i ≥ � for all i ∈ �m�. Now using the second expression in property 3 of
Theorem 0, for any i ∈ �m�,

Pr
[∑
e∈Si

Xe > �$z%
]
≤
(

e

1+ �i

)�$z%
≤ �e/��� ≤ exp

(
−� · 1

2
ln lnm

)
≤ 1
m2

�

Now, again by a union bound, with probability at least 1−1/m, the maximum number of uncovered elements
in any scenario is at most �$z%, which implies:
Theorem 0. There is a randomized O�lnm/�ln lnm��-approximation algorithm for the robust k-median

problem on uniform metrics.

Appendix B. Bad examples from §3. Here we give bad examples for the two greedy algorithms for robust
k-median on uniform metrics, that were mentioned in §3.
Consider first the greedy algorithm that drops the element increasing the exposure of fewest sets. This algo-

rithm performs badly on the following instance. The universe V = 	a1� a2� � � � � a3t�∪ 	b1� b2� � � � � bt�, and the
sets/scenarios are as follows:

• There is a set S0 = 	a1� a2� � � � � a3t�.
• For each j ∈ �t�, there are three sets Sj1 = 	bj� aj�, Sj2 = 	bj� aj+t�, and Sj2 = 	bj� aj+2t�.

Note that each element bj lies in three sets, whereas each element aj lies in two sets. The total number of
elements is n= 4t, and suppose we want to choose a set F ⊆ V with k= 3t to minimize the maximum exposure.
An optimal solution is to choose F = S0, which results in a maximum exposure of one. However, if we keep
greedily dropping elements which increase the exposure of the fewest sets, we will drop some t of the elements
in S0, which will give us an exposure of t = �V �/4.
Next, consider the greedy algorithm that drops any element that keeps the maximum exposure minimized. The

bad instance consists of universe V = 	c1� � � � � ct� ∪ 	d1� � � � � dt�, and let C != 	c1� � � � � ct�. For each j ∈ �t�,
there is a set C ∪ 	dj�. The bound k= t. Clearly the optimal solution picks elements C, resulting in a maximum
exposure of one. However, one possible run of this greedy algorithm is to repeatedly drop each element in C;
this results in a solution having maximum exposure t.
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